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ABSTRACT

Radiative feedbacks depend on the spatial patterns of sea surface temperature (SST) and thus can change

over time as SST patterns evolve—the so-called pattern effect. This study investigates intermodel differences

in the magnitude of the pattern effect and how these differences contribute to the spread in effective equi-

librium climate sensitivity (ECS) within CMIP5 and CMIP6models. Effective ECS in CMIP5 estimated from

150-yr-long abrupt43CO2 simulations is on average 10% higher than that estimated from the early portion

(first 50 years) of those simulations, which serves as an analog for historical warming; this difference is reduced

to 7% on average in CMIP6. The (negative) net radiative feedback weakens over the course of the

abrupt43CO2 simulations in the vast majority of CMIP5 and CMIP6 models, but this weakening is less

dramatic on average in CMIP6. For both ensembles, the total variance in the effective ECS is found to be

dominated by the spread in radiative response on fast time scales, rather than the spread in feedback changes.

UsingGreen’s functions derived from twoAGCMs shows that the spread in feedbacks on fast time scales may

be primarily due to differences in atmospheric model physics, whereas the spread in feedback evolution is

primarily governed by differences in SST patterns. Intermodel spread in feedback evolution is well explained

by differences in the relative warming in the west Pacific warm-pool regions for the CMIP5 models, but this

relation fails to explain differences across the CMIP6 models, suggesting that a stronger sensitivity of ex-

tratropical clouds to surface warming may also contribute to feedback changes in CMIP6.

1. Introduction

Uncertainty in estimates of equilibrium climate sen-

sitivity (ECS)—the equilibrium surface temperature

change in response to a doubling of CO2 above prein-

dustrial levels—has long been linked to uncertainty in

the radiative feedbacks l that govern the efficiency with

which the climate system radiates energy to space per

degree of surface warming. The strength of l is intrin-

sically set by blackbody radiation, which is further

modulated by radiative feedbacks associated with

changes in atmospheric lapse rate, water vapor, surface

albedo, and clouds. Among these, the cloud feedback

has been found to be the primary source of ECS un-

certainty (Webb et al. 2006; Soden and Held 2006;

Dufresne and Bony 2008; Webb et al. 2013; Caldwell

et al. 2016; Zelinka et al. 2016; Ceppi et al. 2017;

Caldwell et al. 2018; Zelinka et al. 2020). The low-cloud

feedback is particularly uncertain (Bony and Dufresne

2005; Webb et al. 2006, 2015; Ceppi et al. 2017), leading

to tremendous efforts in the community to constrain it

(Bony et al. 2006).

Within global climate models (GCMs), ECS is often

estimated based on a standard linear framework for

global energy balance:

N5F1lT , (1)

ECS5T
eq
52F

23
/l

eq
, (2)

where F is the effective radiative forcing (with F23

representing forcing fromCO2 doubling), and where the

subscript ‘‘eq’’ denotes the equilibrium state when NCorresponding author: Yue Dong, dongy24@uw.edu
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approaches zero. All variables represent global-mean

anomalies with respect to a preindustrial state. A useful

method to derive l and ECS from simulations of abrupt

CO2 doubling or quadrupling is proposed by Gregory

et al. (2004), regressing net TOA radiation imbalanceN

against surface air temperature change T (hereafter re-

ferred to as Gregory N–T regression, with the graphical

illustration of this regression referred to as a Gregory

plot). This method has been widely used to provide es-

timates of l (regression slope), F23 (from the y-axis in-

tercept), and ECS (from the x-axis intercept), but is only

valid under the assumption that l is constant over time

(i.e., l5 leq at any given time). This general assumption

may be violated for several reasons. For example, a

discrepancy between l and leq may arise from nonlinear

state dependence of some feedbacks on global-mean or

local temperature (e.g., Block and Mauritsen 2013;

Andrews et al. 2015; Bloch-Johnson et al. 2015). For

instance, sea ice albedo feedback will become less pos-

itive as the amount of sea ice decreases with warming

(Goosse et al. 2018) while the water vapor feedback

(Meraner et al. 2013) and cloud feedback (Caballero

and Huber 2013) may both become more positive with

warming. Most importantly, the majority of GCMs in

phases 5 and 6 of the Coupled Model Intercomparison

Project (CMIP5 and CMIP6) exhibit a weakening of

the negative net feedback as time evolves after CO2

forcing is imposed, indicated by a curvature in theGregory

N–T regression (Andrews et al. 2015; Armour 2017;

Proistosescu and Huybers 2017; Lewis and Curry 2018).

The time dependence of l has been found to arise pri-

marily from its dependence on the spatial pattern of sea

surface temperature (SST), which itself can evolve over

time (Armour et al. 2013; Zhou et al. 2016; Haugstad

et al. 2017; Ceppi and Gregory 2017; Andrews et al.

2018; Dong et al. 2019)—the so-called pattern effect

(Stevens et al. 2016). An important implication is that

the climate sensitivity inferred from the historical en-

ergy budget is biased low compared to the climate sen-

sitivity estimated over longer time scales under CO2

forcing due to the evolution of surface warming pat-

terns (Armour 2017; Proistosescu and Huybers 2017;

Andrews et al. 2018; Marvel et al. 2018; Dong et al.

2019; Gregory et al. 2020; Rugenstein et al. 2020).What

is less well understood, however, is what sets the magni-

tude of the pattern effect, as illustrated by the large in-

termodel spread in the degree of feedback curvature in

the Gregory regression (Andrews et al. 2015; Armour

2017; Ceppi and Gregory 2017). Moreover, the contri-

bution of model spread in feedback curvature to the

model spread in ECS estimates has not yet been quan-

tified. This work addresses these two key issues in both

CMIP5 and CMIP6 models.

We first present an overview of net feedbacks in

CMIP5 and CMIP6 models by showing the GregoryN–T

regression for the 150-yr-long simulations of abrupt

CO2 quadrupling (hereafter abrupt43CO2) (Fig. 1).

Following Andrews et al. (2015), we calculate radiative

feedbacks based on regression over a fast time scale

(years 1–20) and over a slow time scale (years 21–150),

noted hereafter as l1–20 and l21–150, respectively. We

calculate values ofN andT in eachmodel with respect to

their preindustrial control simulations (piControl) after

accounting for drift by subtracting the linear regression

of piControl values over time segment corresponding to

the abrupt43CO2 simulation [following Forster et al.

(2013) and Armour (2017)]. All of the anomalies used in

this study are annual-mean quantities. Note that we use

year 20 to separate the fast response on decadal time

scales from the slow response on centennial time scales,

following many existing studies, but results are insensi-

tive to the year chosen (Andrews et al. 2015). ECS es-

timated using the regression method over the course of

abrupt43CO2 simulations is often referred to as the

effective equilibrium climate sensitivity (Andrews et al.

2015; Andrews and Webb 2018; Andrews et al. 2018;

Gregory et al. 2020), as it presumably differs from the

true ECS of the Earth system that would be found by

equilibrating over multiple millennia (Rugenstein et al.

2020). In this study, we use several measures of the ef-

fective ECS derived from extrapolation of the Gregory

N–T regressions to the x axis (divided by 2 to account for

CO2 quadrupling) and distinguish them with a subscript

denoting the years over which the regression was per-

formed. Specifically, we use ECS1–20, ECS21–150, and

ECS1–150, corresponding to values derived from the re-

gressions over years 1–20, years 21–150, and years 1–150,

respectively. Of these three, ECS21–150 provides the

most accurate estimate of the true ECS in eight GCMs

analyzed by Rugenstein et al. (2020), so we will make

this approximation and refer the effective ECS of each

model to their ECS21–150 values here.

Figure 1 shows that for both CMIP5 and CMIP6, the

ensemble-mean (negative) net feedback weakens to-

ward the longer time scales. That is, there is a positive

change in the (negative) net feedback (Dl 5 l21–150 2
l1–20 . 0) across 23 of 24 CMIP5 models and 26 of 29

CMIP6 models (see Table 1 for model information),

indicating that ECS1–20 is nearly always smaller than

ECS21–150 in both CMIP5 and CMIP6. Comparing the

two ensembles, we find that ECS1–20 and ECS21–150 on

average are higher in CMIP6 relative to CMIP5, al-

though they have larger variance in CMIP6 (Fig. 1;

Tables 2 and 3). Several up-to-date studies of individual

CMIP6 models [Gettelman et al. (2019) for CESM2;

Golaz et al. (2019) for E3SM; Sellar et al. (2019) for
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UKESM1; Bodas-Salcedo et al. (2019) for HadGEM3;

Andrews et al. (2019) forHadGEM3-GC3.1 andUKESM1]

report that the higher values of ECS in their models are

largely due to stronger positive cloud feedbacks, which is

recently confirmed to be a common feature in the CMIP6

ensemble byZelinka et al. (2020). Here, by quantifying l on

different time scales, we find that both l1–20 (feedback

strength on the fast time scale) and Dl (feedback change

over time) are, on average, different in CMIP6 relative to

CMIP5 (Fig. 1). Key questions are 1) how do l1–20 and

Dl contribute to the spread in ECS across models and be-

tween CMIP5 and CMIP6 ensembles, and how does the

pattern effect over historical period change from CMIP5 to

CMIP6, 2) what causes the differences in Dl across models

and between CMIP5 and CMIP6 ensembles, and 3) what

physical mechanisms govern l1–20 and Dl.
Motivated by the three questions, we assess the ef-

fective ECS, l1–20, and Dl within 24 CMIP5 models and

29 CMIP6 models (summarized in Table 1). In section 2,

we investigate the source of model spread in the effec-

tive ECS relating the radiative response on fast time

scale and the pattern effect on slow time scale, and also

estimate the ECS bias relative to historical estimates in

both ensembles. In section 3, we compare the ensemble-

mean Dl in the CMIP5 and CMIP6 models. In section 4,

we investigate the intermodel spread in l1–20 and

Dl separately, and track down the key regions of the

pattern effect that are most responsible for driving the

spread in Dl across the CMIP5 and CMIP6 models.

2. The contribution of the pattern effect to the
variance of ECS estimates

Figure 1d shows that Dl is on average smaller in

CMIP6 models (0.4Wm22K21) than in CMIP5 models

(0.53Wm22K21), despite the fact that ECS21–150 is on

FIG. 1. Gregory plots for (a) CMIP5 and (b) CMIP6: annual-mean change in global-mean net TOA radiation

(Wm22) against annual-mean change in global-mean surface air temperature (K) from abrupt43CO2 experiments.

Gray dots denote each year from each model; black dots denote each year of multimodel means. Thin (thick) lines

show regression fits for years 1–20 (blue) and for years 21–150 (red) for each model (multimodel means). The slope

of blue line represents the feedback parameter on the fast time scale (l1–20), and the slope of red line represents the

feedback parameter on the longer time scale (l21–150). (c)–(f) Box plots of l1–20 (Wm22 K21), Dl (Wm22 K21),

ECS1–20 (K), and ECS21–150 (K) in CMIP5 (left box) and CMIP6 (right box) models. The box indicates interquartile

range (IQR), the whiskers indicate 1.5 3 IQR range, and the dashed line inside the boxes indicates the median

value, for each quantity.
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average higher in CMIP6 (Fig. 1f) (corresponding to an

overall less-negative l). That is, higher CMIP6-mean

effective ECS is not coming from a stronger pattern

effect (it is weaker, in fact); it is likely due to less-

negative feedbacks on the fast time scale and stronger

radiative forcing (Zelinka et al. 2020). However, there

remains the possibility that intermodel spread inDlmay

contribute to the spread in effective ECS. Therefore, we

first estimate the degree to which Dl affects the spread

in ECS21–150 across models (section 2a). Then we use

abrupt43CO2 simulations as an analog for historical

warming [following Lewis and Curry (2018)] to estimate

the degree to which the pattern effect causes historical

estimates of effective ECS to be less than ECS21–150 (or

ECS1–150) in CMIP5 and CMIP6 models (section 2b).

a. Correlation between ECS21–150 and ECS1–20

Previous studies (Dufresne and Bony 2008; Caldwell

et al. 2016) partitioning ECS into components associ-

ated with radiative feedbacks and radiative forcing have

identified feedbacks as the dominant source of the ECS

spread across models. To estimate the relative roles of

l1–20 and Dl in setting ECS, we evaluate the correlation

between ECS21–150 and ECS1–20. Without any pattern

effect–induced variance, ECS21–150 and ECS1–20 would

be highly correlated.

The correlation (r2) between ECS21–150 and ECS1–20
is 0.69 in CMIP5 and 0.70 in CMIP6, respectively; both

correlations are statistically significant at 95% confi-

dence level. This indicates that the total variance of

ECS21–150 can be primarily explained by the spread in

the radiative response on fast time scales, even without

considering the feedback evolution due to the pattern

effect. The degree to which feedbacks change over time

(Dl) thus explains, at most, 30% of the total variance in

ECS in both model ensembles, given the fact that l1–20
and Dl are weakly correlated (r2 5 0.3 for CMIP5 and

r2 5 0.2 for CMIP6).

These results suggest that the differences in feedback

evolution on longer time scales contribute much less to

the spread in ECS21–150 than do the differences in

feedbacks on the fast time scales (l1–20), even though

this measure of ECS here is based on the latter period

of the abrupt43CO2 simulations (years 21–150). However,

it is worth noting that both in ensemble means and in

individual models, Dl is generally positive (23 of 24

CMIP5 models and 26 of 29 CMIP6 models), therefore

ECS21–150 is nearly always greater than that derived

from early portion of the simulation (ECS1–20). Thus,

while l1–20 is the major driver of variance in ECS, ig-

noring Dl and using an assumption of time-invariant

feedbacks would lead to a low estimate of the true ECS

(as estimated here by ECS21–150).

b. ECS-to-ECShist ratio

As many studies have revealed, the value of ECS es-

timated from historical energy budget constraints is

lower than that based on the behavior of fully coupled

and atmosphere-only GCM simulations (Armour 2017;

Proistosescu and Huybers 2017; Andrews et al. 2018;

Lewis and Curry 2018; Marvel et al. 2018; Gregory et al.

2020). Multiple factors have contributed to the spatial

pattern of warming, and thus the pattern effect, over the

historical period, including the inherent time scales of

ocean adjustment to radiative forcings (e.g., Marvel

et al. 2016; Armour 2017; Proistosescu and Huybers

2017) as well as unforced internal climate variability

(e.g., Andrews et al. 2018; Marvel et al. 2018). The dis-

tinction between forced and unforced pattern effects is

further discussed in Dessler (2020). In this section, we

consider how the forced pattern effect may bias values of

ECS inferred from historical warming based on the be-

havior of the CMIP5 and CMIP6 models’ response to

CO2 forcing.

TABLE 1. The CMIP6 models used in this study.

Institution CMIP6 model Data reference

CSIRO-ARCCSS ACCESS-CM2 Dix et al. 2019

CSIRO ACCESS-ESM1.5 Ziehn et al. 2019

BCC BCC-CSM2-MR Wu et al. 2018

BCC BCC-ESM1 Zhang et al. 2018

CAMS CAMS-CSM1.0 Rong 2019

CCCma CanESM5 Swart et al. 2019

NCAR CESM2 Danabasoglu et al. 2019

NCAR CESM2-WACCM Danabasoglu 2019

CNRM CNRM-CM6.1 Voldoire 2018

CNRM CNRM-ESM2.1 Seferian 2018

E3SM-Project E3SM-1.0 Bader et al. 2019

EC-Earth-

Consortium

EC-Earth3-Veg EC-Earth 2019b

EC-Earth-

Consortium

EC-Earth EC-Earth 2019a

NOAA-GFDL GFDL-CM4 Guo et al. 2018

NOAA-GFDL GFDL-ESM4 Krasting et al. 2018

NASA-GISS GISS-E2.1-G NASA/GISS 2018a

NASA-GISS GISS-E2.1-H NASA/GISS 2018b

MOHC HadGEM3-

GC31-LL

Ridley et al. 2018

INM INM-CM4.8 Volodin et al. 2019

INM INM-CM5.0 Volodin et al. 2019

IPSL IPSL-CM6A-LR Boucher et al. 2018

MIROC MIROC-ES2L Hajima et al. 2019

MIROC MIROC6 Tatebe and Watanabe

2018

MRI MRI-ESM2.0 Yukimoto et al. 2019

NUIST NESM3 Cao and Wang 2019

NCC NorESM2-LM Seland et al. 2019

SNU SAM0-UNICON Park and Shin 2019

MOHC UKESM1.0-LL Tang et al. 2019
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Following Armour (2017) and Andrews et al. (2018),

we rewrite Eq. (2) as

ECS52
F
23

l
eq

52
F
23

l
hist

1 l0 , (3)

where lhist is the feedback parameter estimated from

historical energy budget constraints, and l0 is the change
in feedback at the equilibrium state relative to the his-

torical period. Using lhist based on historical energy

budgets, one can make an estimate of climate sensitivity

(termed ECShist herein):

ECS
hist

52
F
23

l
hist

, (4)

which will underestimate the value of ECS if l0 . 0.

Note that while l0 is expected to have the same sign of

Dl (positive in most GCMs), their magnitudes will be

smaller. The change Dl is defined as the change in

feedbacks between the first 20 years and the last 130

years of abrupt43CO2 simulations, whereas l0 is de-

fined in terms of how feedbacks will change from his-

torical warming to equilibrium warming under CO2

forcing. Armour (2017, hereafter A17) and Lewis and

Curry (2018, hereafter LC18) proposed a ratio of ECS to

ECShist (hereafter ‘‘ECS-to-ECShist ratio’’) to quantify

the difference in ECS estimates, and reported the

CMIP5-mean ECS-to-ECShist ratio as 1.095 (LC18) or

1.26 (A17). The difference between these estimates is

attributed to the differences in the method and time

scale of regression used and to differences in assump-

tions about how CO2 forcing scales with CO2 concen-

tration (LC18).

Ideally, estimates of lhist and ECShist require accurate

estimates of historical energy budgets from observations

or GCM simulations with all historical forcing agents

included (e.g., historical simulations). In the latter case,

TABLE 2. Estimates of feedback parameter (Wm22 K21) and effective climate sensitivity (K) from abrupt43CO2 simulations for the

CMIP6 GCMs and their multimodel mean. Shown from left to right are feedback parameter over the fast time scale (l1–20), feedback

parameter over the longer time scale (l21–150), feedback evolution (Dl 5 l21–150 2 l1–20), effective climate sensitivity from regressions

over years 1–20 (ECS1–20), and effective climate sensitivity from regressions over years 21–150 (ECS21–150). All regressions are calculated

using the ordinary least squares regression method.

CMIP6 model l1–20 l21–150 Dl ECS1–20 ECS21–150

ACCESS-CM2 21.1 20.5 0.6 3.75 5.41

ACCESS-ESM1–5 21.14 20.42 0.73 3.07 4.93

BCC-CSM2-MR 21.26 20.63 0.64 2.85 3.5

BCC-ESM1 21.25 20.74 0.51 2.78 3.5

CAMS-CSM1.0 21.94 21.71 0.24 2.23 2.31

CESM2-WACCM 21.11 20.48 0.63 3.65 5.49

CESM2 21.19 20.38 0.81 3.67 6.42

CNRM-CM6.1 20.92 20.81 0.1 4.29 4.76

CNRM-ESM2.1 20.49 20.58 20.09 5.7 4.91

CanESM5 20.69 20.62 0.08 5.44 5.75

E3SM-1.0 20.77 20.47 0.3 4.78 5.77

EC-Earth3-Veg 21.12 20.7 0.42 3.57 4.45

EC-Earth3 21.12 20.7 0.42 3.57 4.45

GFDL-CM4 21.44 20.59 0.85 2.94 4.4

GFDL-ESM4 21.36 21.46 20.1 2.71 2.63

GISS-E2.1-G 21.46 21.2 0.26 2.74 2.87

GISS-E2.1-H 21.26 21.08 0.17 2.95 3.15

HadGEM3-GC31-LL 20.82 20.58 0.24 4.72 5.73

INM-CM4.8 21.8 20.98 0.82 1.74 1.91

INM-CM5.0 21.7 21.09 0.6 1.85 2.02

IPSL-CM6A-LR 21.01 20.65 0.36 3.86 4.76

MIROC-ES2L 21.48 21.94 20.46 2.69 2.53

MIROC6 21.63 21.44 0.19 2.4 2.59

MPI-ESM1.2-HR 21.51 20.81 0.7 2.77 3.34

MRI-ESM2.0 21.45 20.85 0.6 2.75 3.41

NESM3 20.94 20.79 0.15 4.27 4.72

NorESM2-LM 22.06 20.83 1.23 2.24 2.98

SAM0-UNICON 21.16 20.74 0.42 3.6 4.19

UKESM1.0-LL 20.79 20.63 0.17 4.84 5.49

Mean (median) 21.24 (21.19) 20.84 (20.74) 0.4 (0.42) 3.4 (3.07) 4.08 (4.4)

Standard deviation 0.37 0.38 0.34 1.01 1.27
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additional simulations with the same historical forc-

ings but fixed SSTs are needed to diagnose the mag-

nitude of forcing, namely, the Radiative Forcing Model

Intercomparion Project (RFMIP; Pincus et al. 2016).

Given the absence of the RFMIP simulations for the

majority of the current CMIP5 and CMIP6 models,

several ways to approximate ECShist are proposed, for

example, using abrupt43CO2 or 1pctCO2 simulations

as an analog for historical warming (A17, LC18), or

estimating historical forcings based on empirical scaling

(Gregory et al. 2020). Here, following LC18, we make

use of the early portion of abrupt43CO2 simulations

as a historical analog to estimate ECShist by regressingN

againstT over years 2–50 of eachmodel’s abrupt43CO2

simulation. We also calculate F23 by scaling the y-axis

intercept of the regression ofN against T over years 2–10.

Long-term ECS here is estimated from the regression of

N against T over years 21–150 (equal to ECS21–150),

which is the same period used in bothA17 andLC18, but

using Deming regression to be consistent with LC18 for

comparison. We also provide the results using a more

conventional estimate of ECS derived from the N–T

regression over years 1–150 (ECS1–150; shown in pa-

rentheses in Table 4).

The results of individual CMIP6models and ensemble

means are shown in Table 4. The pattern-effect induced

feedback evolution from the historical period to

equilibrium (l0) is on average weaker in CMIP6

models (0.06Wm22 K21) relative to CMIP5 models

(0.092Wm22K21), so that the ECS-to-ECShist ratio is

also reduced in the CMIP6 ensemble mean (6%) com-

pared to the CMIP5 ensemble mean (9.5%; consistent

with LC18). This suggests that the latest generation of

GCMs produce an overall smaller ECS-to-ECShist ratio,

consistent with results above that the pattern effect

is slightly smaller in the abrupt43CO2 simulations.

However, there remains a large spread across CMIP6

models: l0 varies from 0.3 to 20.23Wm22K21, corre-

sponding to ECS values that are 40% higher to 12%

lower than ECShist.

We note an important caveat of this analysis regarding

the calculation of ECShist. Making use of abrupt43CO2

simulations as an analog for the historical energy budget

is a useful approach as it enables intermodel compari-

son, but it may produce different values of ECShist than

those estimated from historical simulations that include

a more realistic time evolution of CO2 and non-CO2

forcings as well as an unforced pattern effect (Marvel

et al. 2016: Gregory et al. 2020; Andrews et al. 2019). For

example, Andrews et al. (2019) found that ECShist within

historical simulations of HadGEM3-GC3.1-LL is 4.7K,

with a ECS-to-ECShist ratio of 1.21. For comparison, using

TABLE 3. As in Table 2, but for the CMIP5 models.

CMIP5 model l1–20 l21–150 Dl ECS1–20 ECS21–150

ACCESS1.0 21.15 20.57 0.57 3.1 4.3

ACCESS1.3 21.17 20.5 0.67 2.92 4.36

BCC-CSM1.1 21.49 20.87 0.62 2.54 3

BCC-CSM1.1-m 21.42 20.91 0.51 2.71 3.05

CanESM2 21.23 20.89 0.33 3.4 3.85

CCSM4 21.57 20.89 0.69 2.6 3.2

CNRM-CM5 21.06 21.24 20.19 3.38 3.18

CSIRO-Mk3.6.0 21.25 20.4 0.85 2.84 5.03

GFDL CM3 21.19 20.61 0.58 3.11 4.3

GFDL-ESM2G 21.51 20.64 0.87 2.32 3.02

GFDL-ESM2M 21.48 20.99 0.49 2.42 2.68

GISS-E2-H 21.86 21.4 0.46 2.21 2.39

GISS-E2-R 22.47 21.3 1.17 1.88 2.31

HadGEM2-ES 20.83 20.34 0.49 4.01 6.02

INM-CM4 21.5 21.26 0.23 2.04 2.16

IPSL-CM5A-LR 20.89 20.62 0.27 3.77 4.44

IPSL-CM5A-MR 20.91 20.62 0.29 3.85 4.52

IPSL-CM5B-LR 21.29 20.79 0.5 2.35 2.79

MIROC5 21.66 21.3 0.36 2.64 2.84

MPI-ESM-LR 21.38 20.87 0.51 3.32 3.89

MPI-ESM-MR 21.48 20.88 0.59 3.16 3.73

MPI-ESM-P 21.57 20.96 0.61 3.13 3.68

MRI-CGCM3 21.56 21.13 0.43 2.31 2.66

NorESM1-M 21.61 20.77 0.85 2.34 3.18

Mean (median) 21.40 (21.45) 20.86 (20.88) 0.53 (0.51) 2.85 (2.78) 3.52 (3.19)

Standard deviation 0.35 0.3 0.27 0.58 0.95
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HadGEM3-GC3.1-LL’s abrupt43CO2 simulation, our

calculation gives an ECShist of 5.2K, and an ECS-to-

ECShist ratio of 1.08 (Table 4), suggesting that the values

reported here may underestimate the historical pattern

effect. However, our main focus is to provide informa-

tion on the difference in pattern effect between the

CMIP5 and CMIP6 ensembles, rather than to provide a

definitive ECShist metric for each model. Future work

employing RFMIP simulations to accurately quantify ra-

diative feedbacks in the historical simulations of CMIP6

models is needed to shed light on this in greater detail.

3. The consistency and difference in ensemble-
mean Dl between CMIP5 and CMIP6

Even though Dl does not contribute as much as l1–20
to the intermodel spread in ECS, it substantially affects

ECS estimates for both CMIP5-mean and CMIP6-mean

projections (comparing ECS1–20 to ECS21–150 in Figs. 1e

and 1f). In this section, we first compare the global-mean

Dl and its individual components partitioned by radia-

tive kernels. We then examine the spatial patterns of

ensemble-mean Dl from CMIP5 and CMIP6 models. A

comparison of SST patterns is also provided to aid in

uncovering the causes of ensemble differences.

Figure 2 shows global-mean net Dl and its individual

components associated with changes in atmospheric

temperature, water vapor, lapse rate, surface albedo,

and clouds, estimated using radiative kernels (Huang

et al. 2017) as described in Zelinka et al. (2020). We

calculate the cloud feedback using radiative kernels by

removing cloud masking effects from the temperature-

mediated change in net cloud radiative effect. An overall

consistency between CMIP5 and CMIP6 is found in the

TABLE 4. Estimates of ECShist, ECS-to-ECShist ratio, and l
0 (the change in feedback fromhistorical period to equilibrium) for individual

CMIP6models and ensemblemeans of CMIP5 and CMIP6, to be compared with Table S2 in Lewis and Curry (2018). For ECS-to-ECShist
ratio and l0, the results shown are calculated with the values of effective ECS derived from regressions over years 21–150 (or years 1–150),

using the Deming regression method.

CMIP6 model ECShist

ECS-to-ECShist ratio years 21–150 (years

1–150) l0 years 21–150 (years 1–150)

ACCESS-CM2 4.05 1.28 (1.13) 0.22 (0.12)

ACCESS-ESM1.5 3.13 1.41 (1.19) 0.31 (0.17)

BCC-CSM2-MR 2.81 1.06 (1.04) 0.06 (0.05)

BCC-ESM1 3.05 1.07 (1.05) 0.07 (0.05)

CAMS-CSM1.0 2.19 0.98 (1.02) 20.04 (0.03)

CESM2 4.16 1.4 (1.21) 0.32 (0.2)

CESM2-WACCM 3.9 1.32 (1.17) 0.25 (0.15)

CNRM-CM6.1 4.72 0.96 (1.02) 20.03 (0.02)

CNRM-ESM2.1 4.52 0.91 (1.02) 20.06 (0.01)

CanESM5 5.33 1.05 (1.04) 0.03 (0.03)

E3SM-1.0 4.91 1.1 (1.07) 0.06 (0.04)

EC-Earth3 3.87 1.09 (1.1) 0.08 (0.09)

EC-Earth3-Veg 3.91 1.08 (1.09) 0.07 (0.08)

GFDL-CM4 3.16 1.12 (1.14) 0.13 (0.16)

GFDL-ESM4 2.55 0.88 (0.98) 20.2 (20.02)

GISS-E2.1-G 2.57 1 (1.03) 0 (0.04)

GISS-E2.1-H 2.95 0.99 (1.02) 20.01 (0.03)

HadGEM3-GC31-LL 5.24 1.08 (1.05) 0.06 (0.04)

INM-CM4.8 1.74 1.05 (1.04) 0.09 (0.07)

INM-CM5.0 1.84 1 (1.02) 0 (0.04)

IPSL-CM6A-LR 4.31 1.01 (1.02) 0.01 (0.02)

MIROC-ES2L 2.62 0.88 (1.02) 20.23 (20.04)

MIROC6 2.37 0.95 (1.03) 20.09 (0.05)

MPI-ESM1.2-HR 2.63 1.18 (1.11) 0.23 (0.15)

MRI-ESM2.0 2.68 1.09 (1.11) 0.11 (0.13)

NESM3 4.78 0.91 (0.96) 20.08 (20.04)

NorESM2-LM 1.88 1.1 (1.16) 0.22 (0.34)

SAM0-UNICON 3.38 1.05 (1.06) 0.06 (0.06)

UKESM1.0-LL 5.12 1.06 (1.04) 0.05 (0.03)

CMIP6 mean 3.46 1.07 (1.07) 0.06 (0.07)

CMIP6 std 1.08 0.13 (0.06) 0.13 (0.08)

CMIP5 mean 2.807 1.095 (1.073) 0.092 (0.086)

CMIP5 std 0.59 0.134 (0.063) 0.141 (0.069)
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fact that the dominant contribution to the ensemble-

mean Dl comes from the net cloud component (DlCLD),
followed by the sum of lapse rate (DlLR) and water

vapor (DlWV) components. Both CMIP5 and CMIP6

have a large spread in the net Dl, primarily owing to the

spread in DlCLD. However, the (positive) ensemble-

mean net Dl is slightly smaller in CMIP6, primarily due

to a smaller surface-albedo feedback change (DlALB),

particularly from the Northern Hemisphere (NH).

We next show the spatial patterns of ensemble-mean

feedbacks for the CMIP5 and CMIP6 models (Figs. 3

and 4). The feedback patterns are first calculated for

each model by regressing the corresponding local N

against global-mean T over the two separate time pe-

riods, and then averaging across models. The patterns

of local contributions to the net feedback change are

qualitatively consistent between the two ensemblemeans

(Figs. 3 and 4, first row). That is, the positive changes in

the net feedback primarily come from the tropical eastern

Pacific. This is a region where a cool ocean and a strong

capping inversion promote ubiquitous low clouds in the

climatology. Because warmer surface temperatures and

weaker low-level stability in this region both reduce low

cloud cover, delayed warming in this region will yield

a less-negative feedback during the approach toward

equilibrium (Zhou et al. 2016; Ceppi and Gregory 2017).

Indeed, among all individual components, cloud feed-

back and lapse-rate feedback contribute the most to the

positive change in the net feedback over this region in

both CMIP5 and CMIP6. The major difference between

the two ensembles lies in the Arctic, where positive

surface-albedo feedback strengthens with time in the

CMIP5 models (Fig. 3, bottom row) but weakens over

time in the CMIP6 models (Fig. 4, bottom row), consis-

tent with the regional attribution results in Fig. 2.

Changes in the strength of the surface-albedo feed-

back may arise from changes in the sensitivity of local

albedo to local surface temperature (a nonlinear state

dependence; e.g., Goosse et al. 2018), or from differ-

ences in surface warming patterns acting on constant

local surface-albedo feedbacks (e.g., Armour et al.

2013), or from a combination of these two factors. The

state dependence can be identified through changes in

the local surface-albedo feedback, which is defined by

regressing local N onto local T (rather than global T),

assuming that the local surface-albedo feedback is in-

dependent of the pattern of surface warming. We found

that the local surface-albedo feedback over the Arctic

slightly strengthens over time in both ensembles, indicating

a nonlinear state dependence, but that the change in

local surface-albedo feedback from fast to slow time

scale is nearly identical in the CMIP5 and CMIP6 mul-

timodel means. Moreover, while this nonlinear state

dependence–induced strengthening of the local surface-

albedo feedback over time may enhance the strength-

ening of the Arctic surface-albedo feedback within

CMIP5 (Fig. 3, bottom row), it opposes to the weaken-

ing of the Arctic surface-albedo feedback within CMIP6

(Fig. 4, bottom row), suggesting that DlALB is primarily

governed by changing warming patterns rather than by

local state dependence. Indeed, the relative warming in

the Arctic over the first 20 years is stronger in CMIP6

than CMIP5 (Fig. 5c), but it becomes weaker over the

following decades in CMIP6 relative to CMIP5 (Fig. 5f).

As a result of this change in the rate of Arctic warming,

the Arctic surface-albedo feedback on average weakens

over time (i.e., negative DlALB) within CMIP6 models

(Fig. 4), which overcomes the positive DlALB arising

from enhanced warming of the Southern Ocean on

the slow time scale (Fig. 4 bottom row), leading to a

slightly negative value of global-mean DlALB and an

overall smaller value of global-mean Dl in CMIP6

models (Fig. 2).

4. The source of the intermodel spread in Dl across
CMIP5 and CMIP6

We next move away from the multimodel mean per-

spective, to consider why individual models have dif-

ferent values of Dl. We find it conceptually helpful to

consider that radiative feedbacks and their changes may

be influenced by both atmospheric model physics and

SST patterns. To separate the two factors, we make use

of radiative feedback ‘‘Green’s functions’’ (Zhou et al.

2017; Dong et al. 2019), which will be introduced in

FIG. 2. The Dl for each individual CMIP5 models (blue circles),

CMIP6 models (orange circles), and their multimodel means

(black circles), decomposed into contributions of (from left to

right) Planck (PL), surface albedo (ALB), the sum of lapse rate

(LR) andwater vapor (WV), net cloud (CLD), and residual (RES),

respectively. The DlALB is further broken down into contributions

fromNorthernHemisphere (ALB_NH) and SouthernHemisphere

(ALB_SH). The differences between CMIP5 means and CMIP6

means are printed at the bottom, with red numbers highlighting

multimodel means that are significantly different (p , 0.05).
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FIG. 3. CMIP5 ensemble-mean spatial patterns of the local radiative feedback components (calculated by regressing the localN against

global-mean T). Shown from top to bottom are net feedback, net cloud feedback, lapse-rate feedback, water-vapor feedback, Planck

feedback, and surface-albedo feedback, on time scales of (left) years 1–20 and (center) years 21–150, and (right) the change (late

minus early).
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FIG. 4. As in Fig. 3, but for CMIP6 ensemble means.
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section 4a. In sections 4b and 4c, we investigate the

major source of the intermodel spread in Dl across the

CMIP5 and CMIP6 models, respectively.

a. Green’s functions

To separate the effect of SST patterns and the effect

of model physics, we use radiative feedback Green’s

functions, as they predict the radiative response based

solely on SST anomaly patterns, given the atmospheric

physics of the parent model from which they were de-

rived. The basis of a Green’s function is a Jacobian

matrix, representing the sensitivity of any regional re-

sponse to regional SST anomalies, which consists of both

local and nonlocal effects of changes in SST. The full

Jacobian is calculated from a series of prescribed-SST

simulations within an AGCM, each with a single patch

of SST anomalies on the top of climatological SSTs.

Then, convolving the Jacobianwith a global SST anomaly

pattern can predict the global response to the given SST

pattern, based on the assumption of spatial linearity,

which has been shown to be a good approximation (Zhou

et al. 2017;Dong et al. 2019).Hence, applying theGreen’s

functions linearly separates the differences in SST pat-

terns and the differences in the sensitivity of radiative

feedbacks on SST patterns.

Here we employ two Green’s functions: one derived

from the Community Atmosphere Model version 5

(CAM5) by Zhou et al. (2017), and one derived from

CAM4 by Dong et al. (2019). The major difference be-

tween CAM4 and CAM5 Green’s functions lies in the

representation of cloud properties within the twomodels,

which are reported to be more realistic in CAM5 (Kay

et al. 2012), although both models exhibit large biases in

the subtropical marine boundary layer cloud regimes.

Throughout this study, we use the two-dimensional

global-mean Jacobians (denoted as J X , the sensitivity

FIG. 5. Spatial patterns of SST changes (SST*) over (top) years 1–20 and (middle) years 21–150, and (bottom) their changes (late minus

early), for (a)–(c) CMIP5 multimodel mean, (d)–(f) CMIP6 multimodel mean, and (g)–(i) the difference (CMIP6 minus CMIP5). The

values of SST* are calculated as the regression slope of local SST changes against global-mean SST changes, such that the global mean of

(a), (b), (d), and (e) is one by construction. Note that the color scales in the left two columns and in the right column are different.
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of a global-mean response X to each grid of SST

anomalies) for computational efficiency because our

focus is on global-mean quantities. To compute feed-

back parameters from the Green’s functions, we first

reconstruct annual global-mean net TOA radiative re-

sponse R and surface air temperature response T by

convolving the Green’s functions J X with each model’s

annual-mean global SST change [SST(r)],

X5J
X
� SST(r) , (5)

where X can be any response (e.g., R, T), and SST(r)

denotes the global pattern of SST anomalies. Then l1–20,

l21–150, and Dl are calculated following the same re-

gressions used to process model outputs. Note that the

Green’s function can only predict the TOA radiative

response R (5 lT), which is different from the net TOA

radiation imbalance N in fully coupled GCMs, because

the latter includes the effective radiative forcing of CO2

quadrupling F43: N 5 F43 1 R. Indeed, the effective

radiative forcing also varies slightly across models; but

it is abruptly imposed and held constant over time.

Therefore, while radiative forcingmatters for ECS itself,

its absence does not cause any inconsistency in the es-

timates of feedbacks (defined as the regression slope in

Gregory plots) betweenGreen’s functions and theGCM

simulations.

b. Intermodel spread in Dl across CMIP5 models

We first show the comparison of feedbacks from

CMIP5 GCMs and those reconstructed by the CAM4/

CAM5 Green’s functions (Fig. 6). Both Green’s func-

tions poorly capture l1–20 but approximately reproduce

GCM values of Dl, suggesting that l1–20 and Dl are

governed by different processes. The failure of the

Green’s functions in reconstructing l1–20 may come

from several factors; for example, the Green’s func-

tions fail to account for the radiative response to land

warming which emerges generally on fast time scales.

However, we favor the interpretation that the spread

in l1–20 is primarily determined by each model’s at-

mospheric physics (e.g., cloud parameterizations).

Therefore, the radiative responses from each model

cannot be captured by Green’s functions derived from

either CAM4 or CAM5, which have distinct atmo-

spheric physics. On the other hand, the fact that both

Green’s functions more accurately reproduce Dl, even
though they are built from different models, suggests

that the spread in Dl arises primarily from the changes

in SST patterns and is largely insensitive to model

physics.

We next investigate what regions of SSTs drive the

intermodel spread in Dl across the CMIP5 models.

Previous studies have pointed out the importance of

tropical warming through changing cloud and lapse-rate

feedbacks. Zhou et al. (2016) proposed the role of the

tropical eastern Pacific, where relative cooling in recent

decades is thought to be responsible for driving an in-

crease in local low cloud and a more-negative cloud

feedback. Andrews andWebb (2018) further established a

mechanism associated with east–west tropical Pacific SST

gradient that governs the change in tropospheric sta-

bility, and therefore the change in low clouds and lapse

rate. Silvers et al. (2018) highlighted changes in low

clouds throughout the tropics beyond the traditional

stratocumulus regimes in driving decadal variability of

feedbacks over the historical period. Recently, Dong

et al. (2019) proposed that Dl tracks the ratio of

warming in the west Pacific warm-pool (WP) regions

relative to warming in the rest of global ocean areas g.

Here we test this mechanism by examining the correla-

tion of Dl against the proposed WP warming ratio

change Dg across models.

To calculate Dg for all CMIP5 and CMIP6 models, we

defineWP regions in this study as grid cells within 308S–
308N, 308E–1608W that have an upward vertical velocity

at 500 hPa (v500) in the piControl simulation. Unlike the

fixed rectangular area in the west Pacific used in Dong

et al. (2019), this updated metric takes into account

mean-state biases, ensuring that in each model the WP

regions capture the radiative responses in regions of

deep convection. Note that results using the fixed region

inDong et al. (2019) are similar to those shown here.We

also simplify g to be the WP SST warming relative to

global-mean surface air temperature changes, calcu-

lated as the regression slope of the averaged SST over

the selectedWP regions against global-mean T, over the

two time periods used throughout this study (years 1–20

for g1–20, years 21–150 for g21–150, and Dg 5g21–150 2
g1–20).

Figure 7a shows that Dl is well correlated with Dg for

CMIP5 models (with r2 5 0.63). Although many ap-

proximations are made in the derivation (Dong et al.

2019), the simple metric Dg, which includes no infor-

mation about radiative response, explains over 60% of

the variance in CMIP5 Dl. The physical mechanism, as

discussed in Dong et al. (2019), is the preeminent impact

of WP warming on global TOA radiation change via

deep convection. Over the WP regions, where the sur-

face is tightly coupled to the free troposphere by deep

convection, surface warming directly enhances upper

tropospheric warming. This leads to a stronger negative

lapse-rate feedback and amore-negative cloud feedback

over low-cloud regions caused by increased lower tro-

pospheric stability, which together promotes a more

efficient radiative damping at TOA. On the other hand,
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the weaker coupling between surface and upper tropo-

sphere in all other regions results in a weak TOA radi-

ation response to surface warming. This leads to a weaker

negative lapse-rate feedback, and a more-positive low-

cloud feedback, hence, resulting in an inefficient radia-

tive damping (see Dong et al. 2019, their Figs. 4 and 5).

The key importance of warm pool warming for TOA

radiation changes is also supported by observational

evidence (Zhou et al. 2016; Ceppi and Gregory 2017;

Fueglistaler 2019).

To further demonstrate the proposed mechanism, we

select three representative models that have large posi-

tive Dl (GISS-E2-R), small positive Dl (IPSL-CM5B-

LR), and small negative Dl (CNRM-CM5), respectively.

The term Dl is demonstrated as the degree of curvature

in the Gregory plots for each model (Figs. 8a–c). We

then show their SST warming patterns defined as local

SST changes regressed against global-mean SST changes,

denoted by SST* (Figs. 8d–l). In this context, values

above 1 (in red) indicate local warming exceeding the

global-mean warming in the given period, and values

below 1 (in blue) indicate local warming weaker than the

global-mean warming. In GISS-E2-R, the warm-pool

regions warm up relatively quickly during the first 20

years, but warming in the warm pool does not keep pace

with warming in other oceans (e.g., the SouthernOcean)

over the last 130 years. This sharp transition of surface

warming from tropical ascent regions to all other regions

FIG. 6. Comparison of (top) l1–20 and (bottom) Dl from CMIP5 models and those from the (a),(c) CAM4 and

(b),(d) CAM5Green’s function, respectively. Gray lines are the y5 x reference line. Variance explained is noted in

the bottom-right corner of each panel.
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is responsible for the large Dl. In IPSL-CM5B-LR, the

WP region does not warm substantially faster than the

global average warming on the fast time scale, so that

the change in the relative warming over WP regions is

weaker, leading to a smaller Dl. In CNRM-CM5, the

WP region warms relatively fast on the longer time

scales, leading to a nearly zero change in WP region in

contrast to the other two models, driving a negative Dl.
This comparison shows that the CMIP5 values of Dl can

be well characterized by the ratio of warm-pool to

global-mean warming (Fig. 7a), suggesting an important

role of tropical convective regions in modulating the

strength of radiative feedbacks in CMIP5.

c. Intermodel spread in Dl across CMIP6 models

For CMIP6 models, we first repeat the analysis ap-

plying the WP warming ratio. Interestingly, the above

theory does not seem to hold as well for CMIP6 models

(Fig. 7b), suggesting that the Dl spread in the latest

models may not directly trace to relative warm-pool

warming. One may ask whether this is because the deep

convection in other regions (e.g., Atlantic Ocean warm-

pool regions) carry more weight in the CMIP6 ensem-

ble. To identify the key regions for driving feedback

changes, we regress global-mean Dl onto local DSST*
(the change in the relative warming rate from fast to slow

time scale) across CMIP5 and CMIP6 models, respec-

tively, and evaluate the local correlation coefficient

(r). Note that SST* is calculated as the local SST

change relative to global-mean SST change, and D is

defined as the late period (years 21–150) minus the early

period (years 1–20).

The resulting correlation maps (r) are shown in Fig. 9.

The positive correlation indicates that models that have

stronger positive global-mean Dl tend to show a locally

delayed warming as approaching to equilibrium, whereas

the negative correlation indicates that models that have

stronger positive global-mean Dl tend to show a local

warming predominately on the fast time scale. The

magnitude of correlation coefficient illustrates the de-

gree to which the intermodel spread in Dl correlates

with the differences in local warming rates. For example,

Fig. 9a shows a strong negative correlation over Indo-

Pacific deep convective regions, which indicates that in

the CMIP5 models, Dl is primarily governed by the

difference in the relative warming in the west Pacific

warm-pool regions where greater warming on the fast

time scale gives rise to a stronger positive Dl. This is

achieved mostly through DlCLD (Fig. 9c) and DlLR
(Fig. 9g). However, the results from the CMIP6 models

highlight the tropical Indian Ocean, the equatorial

eastern Pacific, and the SHmidlatitudes (Fig. 9b), which

are mostly reflected in the pattern of DlCLD (Fig. 9d).

This comparison suggests that the CMIP5 values of

Dl may be primarily dominated by surface warming in

the broad tropical convective regions, whereas the

CMIP6 values of Dl may be influenced more by surface

warming in the tropical subsidence regions and extratropics.

FIG. 7. The relation between the change in net feedback (Dl) and the change in the west Pacific warm-pool

warming ratio (Dg), for (a) CMIP5models and (b) CMIP6models. The linear fit for CMIP5models is plotted as the

black line in (a) and the gray dashed line in (b). Variance explained is noted in the bottom-left corner of each panel.
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Indeed, we found that about half of the variance in Dl in

CMIP5 ensemble can be explained by the change in the

estimated inversion strength (EIS) per unit of global

warming, whereas the variance in Dl explained by the

EIS change in CMIP6 ensemble is slightly decreased

(r25 0.4).Moreover, we found that bothGreen’s functions

fail to reproduce CMIP6 Dl (not shown), even though

they largely capture Dl in CMIP5 models (Figs. 6c,d).

Multiple factors may contribute to the inability of

the CAM4/CAM5 Green’s functions to capture the

behavior of CMIP6 models, and we consider two of

them here.

First, we consider the possibility that the CAM4/

CAM5 Green’s functions cannot capture feedback

changes in the CMIP6 models, even assuming that the

radiative response to SST patterns remain linear

(section 4a). That is, the CMIP6 models may be

systematically different from the CMIP5 models from

which the Green’s functions are built. One example

is the modifications made to extratropical clouds in

CMIP6 models, whose feedbacks have strengthened in

CMIP6 owing to changes in their sensitivities to local

environmental conditions (Zelinka et al. 2020). These

changes may give rise to a different dependence of cloud

feedbacks on SST pattern, presumably with stronger

cloud radiative response to Southern Ocean warming.

In this case, the global TOA radiation change may no

longer be dominated by the tropical warm-pool warming

as seen in CAM4 Green’s function for example (see

Dong et al. 2019, their Fig. 11), but could instead also be

strongly influenced by the Southern Ocean warming.

As a result, the delayed SouthernOcean warming would

yield a stronger pattern effect on the cloud feedback

(i.e., a greater positive DlCLD). Indeed, the Southern

FIG. 8. (a)–(c) Gregory plots and (d)–(l) patterns of SST changes for (left) GISS-E2-R, (center) IPSL-CM5B-LR, and (right) CNRM-

CM5. Colored lines in (a)–(c) show regression fits for years 1–20 (blue) and for years 21–150 (red). Also shown are the regression slopes of

local SST changes against global-mean SST changes over years 1–20 in (d)–(f) and years 21–150 in (g)–(i), and the change between the two

time periods (later minus early) in (j)–(l). The hatchings highlight the warm-pool ascent regions in each model.
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FIG. 9. Correlation coefficients (r) for local regression of global-meanDl against localDSST*

(local SST warming rate relative to global-mean SST change) across (left) CMIP5 models and

(right) CMIP6 models for (a),(b) net Dl, (c),(d) cloud Dl, (e),(f) surface-albedo Dl, (g),(h)
lapse rate Dl, and (i),(j) water vapor feedback. Hatching marks grids where correlations are

significant (i.e., p , 0.05).
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Ocean is highlighted in the CMIP6’s result in Fig. 9d

with a stronger positive correlation, suggesting a stron-

ger sensitivity of cloud feedback on the Southern Ocean

warming rate. If this is the case, new Green’s functions

with up-to-date GCMs may better capture the causes of

feedback changes in CMIP6 models.

Apart from extratropical clouds, changes in CMIP6

models may also yield a different radiative response to

the equatorial eastern Pacific, where delayed warming

seems to drive a negative Dl corresponding to a strength-

ening of global-mean (negative) feedback over time

(Fig. 9b). However, there also remains a possibility

that the correlation between the equatorial eastern

Pacific warming and Dl is not causal but comes about

through correlations between the eastern Pacific and

SH extratropical warming rates, for instance. Specific

mechanisms need to be further uncovered.

A second possibility comes from the potential non-

linear state dependence of feedbacks in the CMIP6

models, in which case the Green’s functions can no

longer apply as they rely on linear estimation. In par-

ticular, we consider a well-documented nonlinearity

in the extratropical mixed-phase cloud feedback. The

negative mixed-phase cloud feedback arises from the

brightening of the clouds as they become increasingly

composed of liquid droplets with warming. Therefore, it

depends on the mean-state of ice/liquid fraction of the

clouds, with more ice in the initial state leading to a

stronger negative-feedback with warming (Tsushima

et al. 2006; Storelvmo et al. 2015; McCoy et al. 2015).

Many CMIP6 models now have higher climatological

cloud liquid water fractions, in better agreement with

observations (Bodas-Salcedo et al. 2019; Gettelman

et al. 2019; Zelinka et al. 2020). Bjordal et al. (2020,

manuscript submitted to Nat. Geosci.) shows that in

CESM2, with the inclusion of a new mixed-phase ice

nucleation scheme, the negative mixed-phase cloud

feedback weakens with warming from the first 15 years

to the last 15 years of abrupt43CO2 simulation, par-

ticularly over the Southern Ocean, as the amount of ice

decreases allowing for no further phase change to hap-

pen (see their Fig. 3). This weakening toward longer

time scales in their simulations leads to a positive DlCLD
over the Southern Ocean, which is primarily driven by

the nonlinear state dependence rather than by the pat-

tern effect. If this case holds more generally across the

CMIP6 models, the nonlinear state dependence of

DlCLD on the Southern Ocean warming may never be

captured by anyGreen’s functions, as themethod relies

on linear estimation.

In summary, we found the CMIP5 and CMIP6 en-

sembles on average highlight different regions where

surface warming can influence the magnitude of global-

mean Dl (Fig. 9). In CMIP5, intermodel differences in

Dl are overall driven by intermodel differences in the

surface warming rates over the west Pacific warm-pool

region, where surface warming has strong remote impact

on global TOA radiation changes (Dong et al. 2019). In

CMIP6, intermodel differences in Dl (and the cloud

component DlCLD in particular) appear to have more

contributions from SH extratropical warming and

tropical eastern Pacific warming. Specific physical

mechanisms are under investigation. Here we speculate

that the stronger sensitivity of feedbacks on the delayed

extratropical warming may result either from a stronger

pattern effect (stronger cloud radiative response to sur-

face warming in this region) or from a nonlinear state

dependence of extratropical cloud feedback on the mean

state of the liquid fraction in the clouds.

5. Conclusions

In this study, we investigated the changes in radiative

feedbacks over time and their contributions to climate

sensitivity from abrupt43CO2 simulations within 24

CMIP5 GCMs and 29 CMIP6 models. Comprehensive

comparisons were made between the two CMIP gener-

ations and between individual models. To examine the

time variation of feedbacks, we derived feedback pa-

rameters from the Gregory regressions between the net

TOA radiation imbalance and surface air temperature

change over years 1–20 as l1–20 and years 21–150 as l21–150,

and use Dl (5 l21–1502 l1–20) to represent the feedback

changes over time.

We found that on average the effective ECS derived

from the regression is higher andDl is smaller in CMIP6

relative to CMIP5. We then evaluated the correlation

between ECS21–150 (derived from years 21–150; featur-

ing long-term response) and ECS1–20 (derived from

years 1–20; featuring fast response governed primarily

by l1–20). The correlation (r2) is 0.69 for CMIP5 and 0.70

for CMIP6, suggesting that the variance in ECS (as es-

timated by ECS21–150) is dominated by the differences in

radiative response on the fast time scale, rather than the

differences in Dl. This also explains the fact that a

greater Dl generally leads to a greater effective ECS

within individual climate models, yet the higher effec-

tive ECS in the CMIP6 models occurs despite smaller

Dl. We also compared the ECS-to-ECShist ratio be-

tween CMIP5 and CMIP6, where ECShist is estimated

fromyears 2–50 of abrupt43CO2 simulations as an analog

for historical warming. We found the difference in feed-

back estimates between the short-term abrupt43CO2

(as the proxy for historical energy budget) and the long-

term abrupt43CO2 (as the proxy for equilibrium state)

is on average smaller in CMIP6, and the CMIP6-mean
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ECS-to-ECShist ratio is also slightly reduced, on average,

relative to CMIP5, suggesting a weaker forced pattern

effect in CMIP6 abrupt43CO2 simulations. Further

work employing fully coupled historical simulation and

RFMIP simulations are expected to provide a more

accurate estimate on historical energy budget and the

role of unforced pattern effect by internal variability

over the historical period.

Although the spread in Dl contributes less to the

spread in ECS than does atmospheric model physics,

understanding the magnitude of Dl and the pattern ef-

fect is still of a great importance to constrain ECS on

longer time scales. By comparing the multimodel mean

Dl in the CMIP5 and CMIP6 models, we see great

similarities in the spatial patterns of Dl, highlighting the
cold tongue regions with delayed warming. An overall

smaller ensemble-mean Dl in the CMIP6 models is pri-

marily due to the difference in surface-albedo feedback

over the Arctic. While the positive Arctic surface-albedo

feedback generally strengthens with time in CMIP5, it

weakens over time in CMIP6, compensating the global-

mean change in surface-albedo feedback. This is caused

primarily by changes in surface warming patterns in

CMIP6, which feature rapid Arctic warming on the fast

time scale followed by slow Arctic warming on the slow

time scale. But we caution that the differences between

ensemble-mean Dl are not statistically significant given

the large spread across models, and the results may be

subject to change as more models come in.

Because both model physics and surface warming

patterns are important for drivingDl, we employGreen’s

functions to isolate their contributions and investigate

why individualmodels produce differentDl. TheGreen’s

functions used in this study are derived from two GCMs,

which intrinsically represent the given model physics of

CAM4 or CAM5 but can be independently applied to

different SST anomaly patterns. When applied to the

CMIP5 models, the Green’s functions reproduce Dl well

but cannot capture l1–20, suggesting that Dl is primarily

set by the differences in warming patterns, while l1–20 is

presumably determined by the differences in model

physics. Building upon Dong et al. (2019), the spread in

Dl is found to be well correlated with the change in the

warm-pool warming ratio, defined as the relative ocean

warming from warm-pool ascent regions to global-mean

surface air warming. Across CMIP5 models, this simple

metric is able to explain over 60%variance ofDl. Models

showing greater Dl generally have west Pacific warm-

pool regions warming up more quickly than the rest of

world oceans on the fast time scale, but more slowly on

longer time scales. This transition, on the other hand,

is less significant in models that produce smaller Dl.
Regression of global-mean Dl against local warming

rates also highlights thewest Pacific warm-pool regions as

the dominant control driving Dl variance across CMIP5

models, consistent with recent observations identifying

the warm-pool as a key region controlling global radia-

tion (e.g., Fueglistaler 2019).

However, the correlation analysis across CMIP6models

show a different spatial distribution, with SH extra-

tropics and equatorial eastern Pacific being highlighted

in addition to the west Pacific warm-pool regions, sug-

gesting that the CMIP6 values of Dl may not be domi-

nated by tropical warm-pool warming. The specific

mechanism needs to be further uncovered; we speculate

here that it may be partly attributable to a stronger

sensitivity of extratropical clouds to surface warming.

Future studies employing Green’s function approach

built from the CMIP6 models may bring more insights

on investigating the pattern effect within the latest

generation of GCMs, but will have limitations in the

case that nonlinear state dependence of feedbacks also

contributes to the changes in feedbacks with time.
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