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Abstract. The Bayesian formulation of inverse problems is attractive for three primary reasons: it provides a clear
modelling framework; it allows for principled learning of hyperparameters; and it can provide uncertainty quantifi-
cation. The posterior distribution may in principle be sampled by means of MCMC or SMC methods, but for many
problems it is computationally infeasible to do so. In this situation maximum a posteriori (MAP) estimators are
often sought. Whilst these are relatively cheap to compute, and have an attractive variational formulation, a key
drawback is their lack of invariance under change of parameterization; it is important to study MAP estimators,
however, because they provide a link with classical optimization approaches to inverse problems and the Bayesian
link may be used to improve upon classical optimization approaches. The lack of invariance of MAP estimators
under change of parameterization is a particularly significant issue when hierarchical priors are employed to learn
hyperparameters. In this paper we study the effect of the choice of parameterization on MAP estimators when
a conditionally Gaussian hierarchical prior distribution is employed. Specifically we consider the centred param-
eterization, the natural parameterization in which the unknown state is solved for directly, and the noncentred
parameterization, which works with a whitened Gaussian as the unknown state variable, and arises naturally when
considering dimension-robust MCMC algorithms; MAP estimation is well-defined in the nonparametric setting only
for the noncentred parameterization. However, we show that MAP estimates based on the noncentred parameter-
ization are not consistent as estimators of hyperparameters; conversely, we show that limits of finite-dimensional
centred MAP estimators are consistent as the dimension tends to infinity. We also consider empirical Bayesian
hyperparameter estimation, show consistency of these estimates, and demonstrate that they are more robust with
respect to noise than centred MAP estimates. An underpinning concept throughout is that hyperparameters may
only be recovered up to measure equivalence, a well-known phenomenon in the context of the Ornstein–Uhlenbeck
process. The applicability of the results is demonstrated concretely with the study of hierarchical Whittle–Matérn
and ARD priors.

2010 Mathematics Subject Classification. 62G05, 62C10, 62G20, 45Q05.
Keywords. Bayesian inverse problems, hierarchical Bayesian, MAP estimation, optimization, nonparamet-
ric inference, hyperparameter inference, consistency of estimators.

1. Introduction

Let X,Y be separable Hilbert spaces, and let A : X → Y be a linear map. We consider the problem
of recovering a state u ∈ X from observations y ∈ Y given by

y = Au+ η, η ∼ N(0, Γ) (1.1)
where η is random noise corrupting the observations. This is an example of a linear inverse problem,
with the mapping u 7→ Au being the corresponding forward problem. In the applications we consider,
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X is typically an infinite-dimensional space of functions, and Y a finite-dimensional Euclidean space
RJ .

Our focus in this paper is on the Bayesian approach to this inverse problem. We view y, u, η as
random variables, assume that u and η are a priori independent with known distributions P(du) and
P(dη), and seek the posterior distribution P(du|y). Bayes’ theorem then states that

P(du|y) ∝ P(y|u)P(du).

In the hierarchical Bayesian approach the prior depends on hyperparameters θ which are appended
to the state u to form the unknown. The prior on (u, θ) is factored as P(du, dθ) = P(du|θ)P(dθ) and
Bayes’ theorem states that

P(du, dθ|y) ∝ P(y|u)P(du|θ)P(dθ).
In this paper we study conditionally Gaussian priors in which P(du|θ) is a Gaussian measure for every
fixed θ.

Centred methods work directly with (u, θ) as unknowns, whilst noncentred methods work with
(ξ, θ) where u =

√
C(θ)ξ and ξ is, a priori, a Gaussian white noise; thus C(θ) is the covariance of u|θ.

In the context of MCMC methods the use of noncentred variables has been demonstrated to confer
considerable advantages. However the key message of this paper is that, when studying maximum
a posteriori (MAP) estimation, and in particular consistency of learning hyperparameters θ in the
data-rich limit, centred parameterization is preferable to noncentred parameterization.

1.1. Literature Review

The Bayesian approach is a fundamental and underpinning framework for statistical inference [7]. In
the last decade it has started to become a practical computational tool for large scale inverse prob-
lems [24], realizing an approach to ill-posed inverse problems introduced in the 1970 paper [18]. The
subject has developing mathematical foundations and attendant stability and approximation theo-
ries [16, 29, 30, 45, 40]. Furthermore, the subject of Bayesian posterior consistency is being systemat-
ically developed [4, 6, 36, 38, 28, 27, 42, 21, 20]. Furthermore, the paper [26] was the first to establish
consistency in the context of hyperparameter learning, as we do here, and in doing so demonstrates
that Bayesian methods have comparable capabilities to frequentist methods, regarding adaptation to
smoothness, whilst also quantifying uncertainty. We comment further on the relationship of our work
to [26] in more detail later in the paper, once the needed framework has been established.

For some problems it is still beyond reach to perform posterior sampling via MCMC or SMC meth-
ods. For this reason maximum a posterior (MAP) estimation, which provides a point estimator of the
unknown and has a variational formulation, remains an important practical computational tool [24].
Furthermore MAP estimation links Bayesian inference with optimization approaches to inversion, and
allows for the possibility of new optimization methods informed by the Bayesian perspective. As a
consequence there is also a developing mathematical theory around MAP estimation for Bayesian
ill-posed inverse problems, relating to both how to define a MAP estimator in the infinite dimensional
setting [2, 12, 15, 22, 23], and to the subject of posterior consistency of MAP estimators [5, 3, 15, 37, 39].

The focus of this paper is hierarchical Bayesian inversion with Gaussian priors such as the Whittle–
Matérn and ARD priors. See [44, 34] for references to the literature in this area. In this context the
question of centred versus noncentred parameterization is important in defining the problem [41].
This choice also has significant ramifications for algorithms: there are many examples of settings in
which the noncentred approach is preferable to the centred approach within the context of Gibbs-
based MCMC sampling [1, 17, 43, 48] and even non-Bayesian methods such as ensemble Kalman
inversion [10]. Nonetheless, in the context of MAP estimation, we demonstrate in this paper that the
message is rather different: centred methods are preferable.
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1.2. Our Contribution

The primary contributions of this paper are as follows:

• We demonstrate that, for MAP estimation, centred parameterizations are preferable to non-
centred parameterizations when a goal of the inference is recovery of the hyperparameters θ.
We provide conditions on the data model and prior distribution that lead to theorems describ-
ing the recovery, or lack of recovery, of the true hyperparameters in the simultaneous large
data/small noise limit.

• We extend the theory to empirical Bayesian estimation of hyperparameters; we also demon-
strate additional robustness that this method has over the centred parameterization.

• We demonstrate the precise sense in which hyperparameter recovery holds only up to measure
equivalence.

In Section 2 we introduce the Bayesian setting in which we work, emphasizing hierarchical Gaussian
priors and describing the centred and noncentred formulations. In Section 3 we review the concept
of MAP estimation in a general setting, describing issues associated with working directly in infinite
dimensions, and discussing different choices of parameterization. Section 4 contains the theoretical
results concerning consistency of hyperparemeter estimation, setting up the data-rich scenario, and
studying the properties of hyperparameter estimators for the centred, noncentred and empirical Bayes
settings; we show in particular the applicability of the theory to the case of hierarchical Whittle–
Matérn priors and Automatic Relevance Determination (ARD) priors. In Section 5 numerical results
are given which illustrate the foregoing theory. In Section 6 we conclude. Some lemmas required in
the analysis are given in an appendix.

2. Bayesian Inverse Problems

In this section we introduce the Bayesian hierarchical approach to the solution of inverse problems of
the form considered in the introduction. In Section 2.1 we describe examples of Gaussian distributions
motivating the hierarchical modelling in subsequent sections. Subsection 2.2 is devoted to a brief
discussion of Bayesian inversion, hierarchical priors, centred versus noncentred parameterization and
sampling methods associated with the different choice of hierarchical parameterization; this sets the
context for our results comparing MAP estimation with centred and noncentred parameterizations.

2.1. Gaussian Random Process Priors

In this paper we focus on the case where the prior is (in the hierarchical case, conditionally,) Gaussian.
Recall that probability measure µ0 on X is a Gaussian measure if1 `]µ0 is a Gaussian measure on R
for any bounded linear functional ` : X → R; equivalently, µ0 is a Gaussian measure if u ∼ µ0 implies
that `(u) is a Gaussian random variable on R for any such `. If X is a space of functions on a domain
D ⊆ Rd, a random variable u on X with law µ0 is referred to as a Gaussian process on D.2 Such a
Gaussian process is characterized completely by its mean function m : D → R and covariance function
c : D ×D → R:

m(x) = Eµ0(u(x)) for all x ∈ D,
c(x, x′) = Eµ0(u(x)−m(x))(u(x′)−m(x′)) for all x, x′ ∈ D.

1Given a measure µ on X and a measurable map T : X → X ′, T ]µ0 denotes the pushforward measure on X ′, defined
by (T ]µ)(A) = µ(T−1(A)) for all measurable A ⊆ X ′.

2Also sometimes termed a Gaussian random field.
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Figure 2.1. Three sample paths each from Gaussian processes on [0, 1] with (left)
Ornstein–Uhlenbeck, (middle) squared exponential, and (right) Matern (ν = 3/2) co-
variance functions.

Equivalently, it is characterized by its mean m ∈ X and covariance operator C : X → X,
m = Eµ0(u), C = Eµ0(u−m)⊗ (u−m).

When X = L2(D), the covariance function is related to the covariance operator by

(Cϕ)(x) =
∫
D
c(x, x′)ϕ(x′) dx′ for all ϕ ∈ X,x ∈ D,

that is, C is the integral operator with kernel c. In particular, if C is the inverse of a differential
operator, c is the Green’s function for that operator. We now detail a number of Gaussian processes
that arise as examples throughout the paper.

Example 2.1 (Ornstein–Uhlenbeck). Let D = [0, 1]. Given σ, ` > 0, define the covariance function

cOU (t, t′;σ, `) = σ2 exp
(
−|t− t

′|
`

)
.

This is the covariance associated with the stationary Ornstein–Uhlenbeck process on [0, 1] defined by

dut = −ut/` dt+
√

2σ2/` dWt, u0 ∼ N(0, σ2),

where σ2 is the variance and ` the length scale. The sample paths of this process are almost surely
Hölder with any exponent less than one half, everywhere in D.

Given observation of ut over any interval I ⊆ D, the diffusion coefficient σ2/` may be found exactly
by, for example, looking at quadratic variation. To see this, we rewrite in terms of (σ, β) = (σ, σ2/`),
instead of treating (σ, `) as the hyperparameters. With this parameterization we obtain

dut = − β

σ2ut dt+
√

2βdWt, u0 ∼ N(0, σ2).

By Girsanov’s theorem, the law of u is equivalent to that for
√

2βWt for any choice of σ2. Almost
sure properties are shared between equivalent measures and for this reason it is possible to recover
β from observation of ut over any interval I ⊆ D, as it is from observation of

√
2βWt [43]. However

joint recovery of β and σ2 requires more data, such as observation of a sample path on [0,∞); see the
discussion in [47].

Note also that the covariance function underlying this construction can be generalized to more
general D ⊆ Rd, using | · | to denote the Euclidean norm on Rd – it is then typically referred to as the
exponential covariance function.

Example 2.2 (Squared Exponential). Let D ⊆ Rd. Given σ, ` > 0, define the covariance function

cSE(x, x′;σ, `) = σ2 exp
(
−|x− x

′|2

2`2

)
.
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Then the corresponding Gaussian process has samples which are almost surely infinitely differentiable
everywhere; the parameters σ2, ` represent variance and length-scale as for the Ornstein–Uhlenbeck
covariance.

Example 2.3 (Whittle–Matérn). Let D ⊆ Rd. The Matérn (or Whittle–Matérn) covariance func-
tion provides an interpolation between the previous two examples in terms of sample regularity. The
parameters σ2, ` > 0 have the same meaning as in the previous two examples and, additionally, we
introduce the regularity parameter ν > 0. Define the covariance function3

cWM (x, x′;σ, `, ν) = σ2 21−ν

Γ(ν)

( |x− x′|
`

)ν
Kν

( |x− x′|
`

)
where Kν is the modified Bessel function of the second kind of order ν. Then the corresponding
Gaussian process has samples which possess up to ν (fractional) weak derivatives almost surely; if the
domain D is suitably regular they also possess up to ν Hölder derivatives almost surely. Note that we
have

cWM (x, x′;σ, `/
√

2ν, ν)→
{
cOU (x, x′;σ, `) as ν → 1/2
cSE(x, x′;σ, `) as ν →∞.

If D = Rd, the covariance function cWM (x, x′;σ, `, ν) is the Green’s function for the fractional differ-
ential operator given by

L(σ, `, ν) = Γ(ν)
σ2`dΓ(ν + d/2)(4π)d/2

(I − `2∆)ν+d/2. (2.1)

This is the precision operator for the Gaussian measure. The corresponding covariance operator is
given by C(σ, `, ν) = L(σ, `, ν)−1. On more general domains D ⊆ Rd, boundary conditions must
be imposed on the Laplacian in order to ensure the invertibility of L(σ, `, ν); this generally affects
the stationarity of samples, however conditions may be chosen such that stationarity of samples is
(approximately) preserved [14, 25].

Finally, observe that if −∆ on a bounded domain D, subject to appropriate boundary conditions,
diagonalizes with eigenbasis {ϕj} and corresponding eigenvalues {λj}, then C(σ, `, ν) diagonalizes in
the same basis with eigenvalues {µj(σ, `, ν)},

µj(σ, `, ν) = σ2`dΓ(ν + d/2)(4π)d/2

Γ(ν) (1 + `2λj)−ν−d/2. (2.2)

This is used later when considering consistency of point estimates.

2.2. Hierarchical Inversion

In this section we describe algorithmic issues arising from how we choose to parametrize the resulting
Bayesian inverse problem. To facilitate this we first introduce the likelihood, and resulting posterior,
arising from application of Bayes’ theorem.

2.2.1. Likelihood

Using the model eq. (1.1), assuming η ⊥ u, we have y|u ∼ N(Au, Γ) and so
P(y|u) ∝ exp(−Φ(u; y)), (2.3a)

Φ(u; y) = 1
2‖Au− y‖

2
Γ, (2.3b)

3Some authors may include a factor
√

2ν before the distances |x − x′|. We omit it here for consistency with works
such as [32, 44], which are key to the application of results in this paper.
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where we have introduced the notation
‖z‖2T := 〈z,T−1z〉

for strictly positive-definite matrix or operator T on Hilbert space with inner-product 〈·, ·〉; here we use
the Euclidean inner-product on Y = RJ . Other data models, such as those involving multiplicative
or non-Gaussian noise, may lead to more complicated likelihood functions – we focus on Gaussian
additive noise in this article for both clarity of presentation and analytical tractability.

2.2.2. Natural Parametrization of the Posterior

The posterior distribution is the law of the unknown state u given the data y, that is, the law P(u|y).
Bayes’ theorem shows how to construct the posterior in terms of the prior and likelihood. If the
prior µ0 = N(0,C0) is Gaussian, the posterior, given the likelihood described in subsection 2.2.1, is
a Gaussian distribution in this conjugate setting: the posterior probability measure µy = N(m,C)
satisfies

m = C0A
∗(Γ +AC0A

∗)−1y, C = C0 − C0A
∗(Γ +AC0A

∗)−1AC0. (2.4)
Notice that in infinite dimensions justification of these formulae requires careful specification of the
functional analytic setting [31].

In more general cases, such as when the forward map is non-linear or the prior is only conditionally
Gaussian, sampling typically cannot be performed directly, and methods such as MCMC or SMC must
be used instead to sample the posterior. We note here that when the prior is Gaussian, MCMC and
SMC methods are available for sampling the posterior that are well-defined on function space and
possess dimension-independent convergence properties [9, 13, 8].

In any setting where a Gaussian prior is consistent with prior knowledge, it is often the case that
choice of a particular Gaussian with fixed parameters may be too restrictive in practice. For example,
if a Whittle–Matérn Gaussian distribution is chosen, good prior estimates of the regularity parameter
ν or length-scale ` may not be known, and differing choices of these parameters can lead to very
different estimates under the posterior [35]. In the Bayesian paradigm we may treat these parameters
as unknown random variables and place a prior distribution upon them.

We denote the hyperparameters by θ ∈ Θ, and assume Θ is finite-dimensional. Denoting ρ0 the
Lebesgue density of the prior on θ, we define the conditionally Gaussian prior distribution on (u, θ) ∈
X ×Θ by

µ0(du, dθ) = ν0(du; θ)ρ0(θ) dθ (2.5)
where ν0(du; θ) = N(0,C(θ)). Bayes’ theorem is applied as above, and the posterior is now a measure
on the product space Z = X ×Θ:

µy(du, dθ) ∝ exp(−Φ(u; y))µ0(du, dθ). (2.6)
As in the non-hierarchical setting, it is desirable to produce samples from the posterior in order to
perform inference. The posterior is no longer Gaussian even when the forward map is linear, and so
we cannot sample it directly. We can however take advantage of the conditional Gaussianity of the
prior and the existence of dimension-robust MCMC sampling algorithms, as outlined in algorithm 1.

However, even though the update u(k) 7→ u(k+1) uses a dimension-robust algorithm, the update
θ(k) 7→ θ(k+1) can be problematic even though it is only targeting a finite-dimensional distribution.
The acceptance probability for a proposed update θ(k) 7→ θ′ involves the Radon–Nikodym derivative
between the Gaussian distributions ν0(·; θ(k)) and ν0(·; θ′). Such a derivative does not exist in general
– by the Feldman–Hajèk theorem Gaussian measures in infinite dimensions are either equivalent or
singular, and the restrictive conditions required for equivalence mean that in many naturally occurring
situations, two Gaussian measures corresponding to different values of θ are singular. In practice this
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Algorithm 1 Centred Metropolis-within-Gibbs
Choose u(1) ∈ X, θ(1) ∈ Θ.
for k = 1 : K do

Generate u(k) 7→ u(k+1) with a dimension-robust MCMC algorithm sampling u|y, θ(k).
Generate θ(k) 7→ θ(k+1) with an MCMC algorithm targeting θ|y, u(k+1).

end for
return {(u(k), θ(k))}Kk=1.

means that, for algorithm 1, any updates to θ have vanishingly small acceptance probability with
respect to increasingly fine discretization of X; see [43] for a seminal analysis of this phenomenon. In the
next subsubsection we discuss how this problem can be circumvented by means of a reparameterization.

2.2.3. Reparameterization

In the natural or centred parameterization [41], we treat the input u to the forward map as an unknown
in the problem. However, the conditional nature of the prior on the pair (u, θ) leads to sampling prob-
lems related to measure singularity as described above. We therefore look for a way of parameterizing
the prior that avoids this. We first make the observation that if ξ ∼ N(0, I), then for any fixed θ ∈ Θ
we have

C(θ)1/2ξ ∼ N(0,C(θ)) = ν0(du; θ).
Therefore, if we choose ξ ∼ N(0, I) and θ ∼ ρ0 independently, we have

(C(θ)1/2ξ, θ) ∼ ν0(du; θ)ρ0(dθ) = µ0(du, dθ).
We can hence write a sample from µ0 as a deterministic transform of a sample from the product
measure N(0, I) × ρ0 – this reparameterization is referred to as noncentering in the literature [41].
It has the advantage that we may pass it to the posterior distribution by sampling an appropriate
surrogate distribution instead of directly targeting the posterior.

We now make the preceding statement precise. Let X̄ be a space of distributions that white noise
samples ξ ∼ N(0, I) belong to almost surely, and define the product spaces Z = X ×Θ, Z̄ = X̄ ×Θ.
Define the mapping T : Z̄ → Z by T (ξ, θ) = (C(θ)1/2ξ, θ). Then we have the following.
Proposition 2.4 (Noncentering). Let µy denote the hierarchical posterior eq. (2.6) on Z with prior
µ0. Define the measures µ̄0, µ̄

y on Z̄ by µ̄0 = N(0, I)× ρ0 and4

µ̄y(dξ, dθ) ∝ exp
(
− Φ(T (ξ, θ))

)
µ̄0(dξ, dθ).

Then µ0 = T ]µ̄0 and µy = T ]µ̄y.
Proof. The first equality follows from the preceding discussion, and the second from a standard
property of pushforward measures:∫

f(x) (T ]µ)(dx) =
∫
f(T (y))µ(dy).

The key consequence of this proposition is that if we sample (ξ, θ) ∼ µ̄y, we have T (ξ, θ) ∼ µy. We
therefore use MCMC to target µ̄y instead of µy – since the field ξ and hyperparameter θ are independent
under the prior, the previous measure singularity issues disappear. This leads us to algorithm 2.

Making the choice of noncentred variables over centred variables leads, in the context of Gibbs-
based MCMC, to significant improvement in algorithmic performance, as detailed in a number of

4Here we have implicitly extended Φ : X → R to Φ : Z → R via projection: Φ(u, θ) ≡ Φ(u).

75



M. M. Dunlop, T. Helin, et al.

Algorithm 2 Noncentred Metropolis-within-Gibbs
Choose ξ(1) ∈ X̄, θ(1) ∈ Θ.
for k = 1 : K do

Generate ξ(k) 7→ ξ(k+1) with a dimension-robust MCMC algorithm targeting ξ|y, θ(k).
Generate θ(k) 7→ θ(k+1) with an MCMC algorithm targeting θ|y, ξ(k+1).

end for
return {T (ξ(k), θ(k))}Kk=1.

papers [43, 41, 48, 1, 11]. However, as we demonstrate in the remainder of this paper, for MAP
estimation different considerations come in to play, and centred methods are preferable.

3. Point Estimation

Sampling of the posterior distribution, for example using MCMCmethods as mentioned in the previous
section, or SMC methods as in [8], may be prohibitively expensive computationally if a large number
of samples are required. It is then desirable to find a point estimate for the solution to the problem, as
opposed to the full posterior distribution. The conditional mean is one such point estimate, but this
typically requires samples in order to be computed. Two alternative point estimates that we study in
this paper, and define in this section, are the MAP estimate and the empirical Bayes (EB) estimate,
both of which can be computed through optimization procedures. The former can be interpreted as
the mode of the posterior distribution, and the latter as a compromise between the mean and the
mode. In Section 3.1 we introduce the basic MAP estimator and discuss its properties under change of
variables. In Section 3.2 we generalize to centred and noncentred hierarchical formulations; mapping
from one formulation to the other may be viewed as a hyperparameter dependent change of variables.
In Section 3.3 we define the empirical Bayes estimator.

3.1. MAP Estimation and its dependence on parameterization

Suppose first that X = Rn and the posterior admits a Lebesgue density:
µy(du) ∝ πy(u) du

A MAP estimate, or mode of the posterior distribution, is then any point u ∈ X that maximizes πy.
Equivalently, it is any point that minimizes − log πy, which is usually more stable to deal with numer-
ically. The existence of a Lebesgue density is central to this definition of MAP estimate. We, however,
are primarily interested in the case that X is infinite-dimensional and a more general definition is
therefore required. Dashti et al. [15] introduced such a generalization as follows.

Definition 3.1. Let µ be a Borel probability measure on a Banach space X , and denote by Bδ(u) the
ball of radius δ centred at u ∈ X . A point u∗ ∈ X is said to be a MAP estimator for the measure µ if

lim
δ→0

(
µ(Bδ(u∗))

max
u∈X

µ(Bδ(u))

)
= 1.

More general definitions have subsequently been introduced [22, 12], but for the measures considered
in this article they are equivalent to the definition above. If a Gaussian prior ν0 = N(0,C0) is chosen
and the data model eq. (1.1), eq. (2.3) is used, then it is known [15] that a point u is a MAP estimator
if and only if it minimizes the Onsager-Machlup functional given by

I(u) = Φ(u; y) + 1
2‖u‖

2
C0 . (3.1)
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The quadratic penalty term is the Cameron-Martin norm associated to the Gaussian measure on
Hilbert space X. Note that, as distinct from the finite-dimensional case, the quadratic term in I(u) is
infinite at almost every point of the space X: µ0({u ∈ X | ‖u‖2C0

<∞}) = 0. Although we have framed
this discussion for the linear inverse problem eq. (1.1) subject to additive Gaussian noise, it applies to
the nonlinear setting, with Gaussian priors, and Φ is simply the negative log-likelihood; however for
this paper we consider only linear inverse problems with additive Gaussian noise and Φ is given by
eq. (2.3b).

Let us now point out that MAP estimation makes a deep connection to classical applied mathemat-
ics approaches to inversion via optimization and for this reason it has an important place in the theory
of Bayesian inversion. However an often-cited criticism of MAP estimation within the statistics com-
munity is that the methodology depends on the choice of parameterization of the model. To see this,
assume again that X = Rn and that the posterior admits a Lebesgue density πy(u), so that the MAP
estimator maximizes πy. Suppose that we have a (smooth) bijective map T : X → X, and instead
write the unknown as u = T (ξ) for some new coordinates ξ. Then the posterior in the coordinates ξ
is given by

π̄y(ξ) = πy(T (ξ))× | det(∇T (ξ))|,
that is, for any bounded measurable f : X → R we have∫

X
f(u)πy(u) du =

∫
X
f(T (ξ))π̄y(ξ) dξ.

Due to the presence of this Jacobian determinant, the MAP estimators using the two coordinates
generally differ. If there was no determinant term, we would have equivalence of the MAP estimators
in the following sense, which is straightforward to verify.

Proposition 3.2. Assume | det(∇T (ξ))| ≡ 1. It holds that ξ∗ ∈ arg max π̄y(·) if and only if T (ξ∗) ∈
arg max πy(·).

It is natural to study how this issue of reparameterization affects MAP estimators for hierarchical
problems. In the previous section we chose a reparameterization motivated by the need to enable
robust sampling of the posterior distribution. We show, however, that this reparameterization has
undesirable effects on MAP estimation for hyperparameters.

3.2. Hierarchical MAP Estimation

In this subsection we extend the definition of a MAP estimator to the centred and noncentred hierar-
chical parameterization introduced in the previous section.

3.2.1. Centred Hierarchical MAP Estimation

We are interested in the case where µ0 on Z = X × Θ is given by eq. (2.5). The dependence of the
covariance operator on the hyperparameter θ means that we cannot directly apply the above result
for Gaussian measures to write down the Onsager-Machlup functional, as the normalization factor
for the measure ν0(du; θ) depends on θ. If X = Rn is finite dimensional, we may write down the
Onsager-Machlup functional as

IC(u, θ) = Φ(u; y) + 1
2‖u‖

2
C(θ) + 1

2 log det C(θ)− log ρ0(θ).

Now consider the case where n → ∞ and Rn represents approximation of an infinite dimensional
space X. Since the limiting operator C(θ) is symmetric and compact, then the determinant of finite
dimensional approximations tends to zero as n → ∞. Additionally, the set of points for which the
quadratic term is finite may depend on the hyperparameter θ – in particular such sets for different
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values of θ may intersect only at the origin. As an example of this latter phenomenon, consider the
Whittle–Matérn process with precision operator L given by eq. (2.1). The quadratic penalty term is
〈u, Lu〉X and, for different values of ν these correspond to different Sobolev space penalizations. In
summary, both the definition and optimization of the functional IC may be problematic in infinite
dimensions; we show in what follows that this is also true for sequences of finite dimensional problems
which approach the infinite dimensional limit.

Assuming now X = Rn, if we fix θ ∈ Θ, then we can optimize IC(·, θ) to find u(θ) ∈ X such that

JC(θ) := IC(u(θ), θ) ≤ IC(u, θ) for all u ∈ X.

In the linear setting eq. (1.1) that is our focus, using eq. (2.4), we have

u(θ) = C(θ)A∗(Γ +AC(θ)A∗)−1y. (3.2)

We may then optimize JC(·) to find θ∗ ∈ Θ such that

JC(θ∗) = IC(u(θ∗), θ∗) ≤ IC(u(θ), θ) ≤ IC(u, θ) for all u ∈ X, θ ∈ Θ.

The task of optimizing IC is hence reduced to that of optimizing JC. In the next section we study the
behaviour of minimizers of JC as the quality of the data increases.

3.2.2. Noncentred Hierarchical MAP Estimation

If we work with the noncentred coordinates introduced in the previous section, the joint prior measure
is the independent product of a Gaussian measure on X̄ and with the hyperprior on Θ. MAP estimators
can hence be seen to be well-defined on the infinite-dimensional space Z̄ = X̄×Θ, and to be equivalent
to minimizers of the Onsager-Machlup functional

INC(ξ, θ) = Φ(C(θ)1/2ξ; y) + 1
2‖ξ‖

2
I − log ρ0(θ).

Note that if we reverse the transformation and write (ξ, θ) = T−1(u, θ) = (C(θ)−1/2u, θ), we could
equivalently define INC on Z = X ×Θ by

INC(u, θ) = Φ(u; y) + 1
2‖u‖

2
C(θ) − log ρ0(θ),

in view of Proposition 3.2. This is IC, with the problematic log-determinant term subtracted.
As in the centred case, we can now fix θ and optimize INC(·, θ) over to find ξ(θ) ∈ X̄ such that

JNC(θ) := INC(ξ(θ), θ) ≤ INC(ξ, θ) for all ξ ∈ X̄.

Again, in the linear setting eq. (1.1), using eq. (2.4), we have that ξ(θ) is given by

ξ(θ) = C(θ)1/2A∗(Γ +AC(θ)A∗)−1y.

Note that u(θ) = C(θ)1/2ξ(θ), which is consistent with Proposition 3.2. However, note that JC 6= JNC:
only the former has the log-determinant term, and so the MAP estimate for the hyperparameters
typically differs between the two parameterizations.

Remark 3.3. To understand that the difference between JC and JNC is related to the volume term
arising from change of parameterization, consider the case X = Rn. We start with the measure

µ(du, dθ) ∝ exp(−IC(u, θ))du dθ

= exp
(
−Φ(u; y)− 1

2‖u‖
2
C(θ) −

1
2 log det C(θ) + log ρ0(θ)

)
du dθ

=: f(u, θ) du dθ.
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We make the transformation (u, θ) = T (ξ, θ) = (C(θ)1/2ξ, θ). The density in these new coordinates is
now given by

h(ξ, θ) = f(T (ξ, θ))× | det(∇T (ξ, θ))|.
The Jacobian determinant may be calculated as

det(∇T (ξ, θ)) = det(∇ξT1(ξ, θ)) det(∇θT2(ξ, θ)) = det(C(θ)1/2) det(I) = det(C(θ))1/2.

The log determinant terms hence cancel, giving

h(ξ, θ) ∝ exp
(
−Φ(C(θ)1/2ξ; y)− 1

2‖ξ‖
2
I + log ρ0(θ)

)
= exp(−INC(ξ, θ)).

3.3. Empirical Bayesian Estimation

Instead of jointly optimizing over the state u and hyperparameters θ, we may integrate out the state
to obtain a measure just on θ. In this case, one considers finding the mode of the marginal measure

P(dθ|y) =
∫
X
µy(du, dθ) =

( 1
P(y)

∫
X

exp(−Φ(u; y)) ν0(du; θ)
)
ρ0(θ) dθ.

The corresponding functional we wish to optimize to find θ is hence given by

JE(θ) = − log
(∫

X
exp(−Φ(u; y)) ν0(du; θ)

)
− log ρ0(θ). (3.3)

In general the above functional cannot be written down more explicitly due to the intractability of the
integral. When X = Rn is finite-dimensional, the integral may be approximated using a Monte Carlo
average over samples {uj}Mj=1 ∼ exp(−Φ(u; y)) ν0(du; θ′) for any fixed θ′ ∈ Θ:

JE(θ) = − log
(∫

X

ν0(u; θ)
ν0(u; θ′) exp(−Φ(u; y)) ν0(du; θ′)

)
− log ρ0(θ)

≈ − log
M∑
j=1

exp
(1

2‖uj‖
2
C(θ′) −

1
2‖uj‖

2
C(θ) + 1

2 log det C(θ′)C(θ)−1
)
− log ρ0(θ)

=: JE(θ; θ′, {uj}),

where the log-sum-exp trick may be used numerically to avoid underflow [33, §3.5.3]. One may then
aim to approximately optimize JE via algorithm 3, which alternates approximating the integral above
via samples from the conditional posterior given the current hyperparameter values, and optimizing
over the hyperparameters given these samples, a form of expectation-maximization (EM) algorithm.
The sampling in each step is typically performed using a dimension-robust MCMC algorithm, such
as the pCN algorithm; the resulting random sequence {θ(k)} can then be averaged, for example, to
produce a single hyperparameter estimate.

Algorithm 3 EM Algorithm
Choose initial estimate θ(1) for the hyperparameter.
for k = 1 : K do

Sample {u(k)
j }Mj=1 ∼ exp(−Φ(u; y)) ν0(du; θ(k)).

θ(k+1) ← argmin
θ∈Θ

JE(θ; θ(k), {u(k)
j }).

end for

79



M. M. Dunlop, T. Helin, et al.

In the linear setting eq. (1.1), the integral in eq. (3.3) can be computed analytically using Gaussian
structure. Rather than calculate the integral above directly, we note that we may rewrite the data in
noncentred coordinates as

y = AC(θ)1/2ξ + η, η ∼ N(0, Γ)
where ξ ∼ N(0, I); from this it can be seen that P(y|θ) = N(0, Γ+AC(θ)A∗). Thus, by Bayes’ theorem,

P(dθ|y) ∝ 1√
det(Γ +AC(θ)A∗)

exp
(
−1

2‖y‖
2
Γ+AC(θ)A∗

)
ρ0(θ) dθ.

Modes of this marginal measure are then given by minimizers of the functional

JE(θ) = 1
2‖y‖

2
Γ+AC(θ)A∗ + 1

2 log det(Γ +AC(θ)A∗)− log ρ0(θ).

Despite involving norms and determinants on the data space rather than the state space, the form of
JE is actually very similar to that of JC, as is shown in the following section.

Remark 3.4. In the spirit of this paper, we later consider the mode of P(dθ|y) as the empirical
estimator for θ. Such a choice can also be considered as a regularized maximum likelihood estimator,
where the hyperparameter density acts as a regularizer.

4. Consistency of Point Estimators

In the previous section we derived three different functionals, JC, JNC and JE. Optimizing each of
these functionals leads to different estimates of the hyperparameters of the same underlying statistical
model. In this section we study the behaviour of these estimates in a data-rich scenario. In Section 4.1
we spell out the precise data model that we use; it corresponds to a finite dimension N truncation
of the linear inverse problem eq. (1.1), and since subsequent limit theorems focus on the situation in
which the observational noise standard deviation γ is small, we write the resulting functionals to be
optimized as JN,γC , JN,γNC and JN,γE . Proposition 4.3 gives the exact form for the resulting functionals and
demonstrates the similar form taken by JN,γC and JN,γE , whilst also showing that JN,γNC is substantially
different. Subsection 4.2 contains the limit theorems which characterize the three different estimators
in the data-rich limit. Theorem 4.6 shows that the centred and empirical Bayes approaches recover the
true parameter value whilst the noncentred approach does not. In Section 4.3 we discuss examples.

4.1. The Data Model

In order to analyse the behaviour of these minimizers, we work in the simplified setup where the
forward map A is linear, and A∗A is simultaneously diagonalizable with the family of covariance
operators. Specifically, we make the following assumptions.

Assumptions 1. We assume in what follows that:

(i) The map A∗A and family of prior covariance operators {C(θ)}θ∈Θ are strictly positive and
simultaneously diagonalizable with orthonormal eigenbasis {ϕj}, and we have

A∗Aϕj = a2
jϕj , C(θ)ϕj = µj(θ)ϕj for all j ∈ N, θ ∈ Θ.

(ii) The noise covariance Γ = γ2I is white.

Remark 4.1. The second assumption is essentially equivalent to assuming that the noise covariance
Γ is non-degenerate: we may work with the transformed data Γ−1/2y and redefine A as Γ−1/2A. We
could hence equivalently replace A∗A with A∗Γ−1A in the first assumption.
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We choose the basis {ψj} for Y given by ψj = Aϕj/‖Aϕj‖ = Aϕj/aj ; it can readily be checked that
this is an orthonormal basis. Assume that the true state u† that generates the data is drawn from the
distribution N(0,C(θ†)) for some θ† ∈ Θ. We define the data yγ ∈ Y by

yγ = Au† + γη, η ∼ N(0, I),

where we have made the dependence of the data on γ explicit. We define individual observations
yγj ∈ R of the data yγ ∈ Y as

yγj := 〈yγ , ψj〉

= 1
aj
〈Au†, Aϕj〉+ γ〈η, ψj〉

= 1
aj
〈u†, A∗Aϕj〉+ γ〈η, ψj〉

= aju
†
j + γηj , ηj

iid∼ N(0, 1), j ∈ N, (4.1)

where u†j := 〈u†, ϕj〉. It is convenient to note that we have the equality in distribution with the
noncentred-type representation

yγj
d=
√
a2
jµj(θ†) + γ2ξ†j , ξ†j

iid∼ N(0, 1), j ∈ N. (4.2)

As we establish results regarding convergence of minimizers in probability, there is no loss in generality
in assuming that the data is given by eq. (4.2) instead of eq. (4.1).

The infinite collection of scalar problems eq. (4.1) is equivalent to the full infinite-dimensional
problem. We consider a sequence of finite-dimensional problems arising from taking the first N of
these observations, so that data provided for the N th problem is given by

yγj = aju
†
j + γηj , ηj

iid∼ N(0, 1), j = 1, . . . , N. (4.3)

We take the prior distribution for these problems to be the projection of the full prior onto the span
of the first N eigenfunctions {ϕj}Nj=1, so that both the state and the data are finite-dimensional. To
motivate why we use this projection of the prior distribution, we look at the structure of the likelihood.
Writing yγ1:N for the vector of observations (yγ1 , . . . , y

γ
N ) ∈ RN , the negative log-likelihood of yγ1:N given

u takes the form

Φγ(u; yγ1:N ) = 1
2γ2

N∑
j=1
|〈Au− yγ , ψj〉|2

= 1
2γ2

N∑
j=1

∣∣∣∣∣ 1
aj
〈A∗Au,ϕj〉 − 〈yγ , ψj〉

∣∣∣∣∣
2

= 1
2γ2

N∑
j=1
|ajuj − yγj |

2

where uj := 〈u, ϕj〉. The posterior on uj for j > N is hence uninformed by the observations and
remains the same as the prior. To be more explicit, for the N th problem we choose the conditional
prior distribution νN0 (·; θ) = P ]Nν0(·; θ), where PN : X → RN is given by (PNu)j = uj for j = 1, . . . , N .
Since ν0(·; θ) = N(0,C(θ)) is Gaussian on X, this is equivalent to saying νN0 (·; θ) = N(0, PNC(θ)P ∗N )
is Gaussian on RN .

We denote by JN,γC , JN,γNC and JN,γE the functionals JC, JNC and JE respectively constructed for these
finite dimensional problems. We study the convergence of estimates of the hyperparameter θ to its
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true value θ† in the simultaneous limit of the number of observations yγ1 , . . . , y
γ
N going to infinity and

the noise level γ going to zero.

Remark 4.2. The above truncation has no effect on the forms of the functionals JN,γNC and JN,γE ;
JN,γC however does change. Nonetheless, if the non-truncated prior is used to write down JN,γC , poor
estimates for hyperparameters are obtained as the prior then dominates over the observations, see
Section 5.2 for an illustration.

For brevity, in what follows we use the notation f(θ) ∝ g(θ) to mean that f(θ) = αg(θ) + β for
some constants α, β – note that f and g then have the same minimizers.

Proposition 4.3. Define sγj (θ) = a2
jµj(θ) + γ2. Then we have

JN,γC (θ) ∝ 1
2N

N∑
j=1

[
(yγj )2

sγj (θ) − log µj(θ
†)

µj(θ)

]
− 1
N

log ρ0(θ), (4.4)

JN,γNC (θ) ∝ 1
2N

N∑
j=1

(yγj )2

sγj (θ) −
1
N

log ρ0(θ), (4.5)

JN,γE (θ) ∝ 1
2N

N∑
j=1

[
(yγj )2

sγj (θ) − log
sγj (θ†)
sγj (θ)

]
− 1
N

log ρ0(θ). (4.6)

Remark 4.4. We have made the shifts

JN,γC (θ) 7→ JN,γC (θ)− 1
2

N∑
j=1

logµj(θ†), JN,γE (θ) 7→ JN,γE (θ)− 1
2

N∑
j=1

log sγj (θ†).

These do not affect minimizers, as the shifts are constant in θ. These transformations are useful in the
next section in the derivation of a limiting functional as N →∞ and γ → 0.

Proof. Here, let us write CN (θ) = PNC(θ)P ∗N ∈ RN×N for the projected prior covariance. Instead of
the expression for u(θ) given by eq. (3.2), we use the alternative expression

u(θ) = (A∗Γ−1A+ CN (θ)−1)−1A∗Γ−1y = 1
γ2

( 1
γ2A

∗A+ CN (θ)−1
)−1

A∗y

which follows from the Sherman–Morrison–Woodbury formula. Using the simultaneous diagonalizabil-
ity, we then have that

uj(θ) := 〈u(θ), ϕj〉 = 1
γ2

(
a2
j

γ2 + 1
µj(θ)

)−1

〈A∗y, ϕj〉 = ajµj(θ)
sγj (θ) yγj .

Now consider the functional

JN,γ0 (θ) := Φγ(u; θ) + 1
2‖u‖

2
CN (θ).

We may calculate

JN,γ0 (θ) = 1
2γ2

N∑
j=1

(ajuj(θ)− yγj )2 + 1
2

N∑
j=1

uj(θ)2

µj(θ)

= 1
2

N∑
j=1

(yγj )2

 1
γ2

(
a2
jµj(θ)
sγj (θ) − 1

)2

+
a2
jµj(θ)
sγj (θ)2
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= 1
2

N∑
j=1

(yγj )2

sγj (θ)2

[ 1
γ2

(
a2
jµj(θ)− s

γ
j (θ)

)2
+ a2

jµj(θ)
]

= 1
2

N∑
j=1

(yγj )2

sγj (θ) .

The expression for JN,γNC then follows. For JN,γC , we note that
1
2 log det CN (θ) = 1

2

N∑
j=1

logµj(θ) ∝ −
1
2

N∑
j=1

log µj(θ
†)

µj(θ)

from which the result follows. Finally we deal with the empirical Bayes case JN,γE . Observe that
1
2‖y

γ‖2Γ+ACN (θ)A∗ = 1
2

N∑
i,j=1

yγi y
γ
j 〈ψi, (Γ +ACN (θ)A∗)−1ψj〉

= 1
2

N∑
i,j=1

yγi y
γ
j ·

1
aiaj
〈ϕi, A∗(Γ +ACN (θ)A∗)−1Aϕj〉.

the Sherman–Morrison–Woodbury identity again, we may write
A∗(Γ +ACN (θ)A∗)−1A = A∗Γ−1A−A∗Γ−1A(A∗Γ−1A+ CN (θ)−1)−1A∗Γ−1A

= 1
γ2A

∗A− 1
γ2A

∗A

( 1
γ2A

∗A+ CN (θ)−1
)−1 1

γ2A
∗A,

and so by the simultaneous diagonalizability, and orthonormality of {ϕj},

1
2‖y‖

2
Γ+ACN (θ)A∗ = 1

2

N∑
j=1

(yγi )2

a2
j

a2
j

γ2 −
a2
j

γ2

(
a2
j

γ2 −
1

µj(θ)

)−1
a2
j

γ2


= 1

2

N∑
j=1

(yγi )2

γ2

[
1−

a2
jµj(θ)
sγj (θ)

]

= 1
2

N∑
j=1

(yγi )2

sγj (θ) .

To deal with the log-determinant term, we use Lemma A.1 to see that
1
2 log det(Γ +ACN (θ)A∗) = 1

2 log det(A∗ΓA+A∗ACN (θ)A∗A)− 1
2 log det(AA∗).

Since {ϕj} is an orthonormal basis for X, the first determinant may be calculated as
1
2 log det(A∗ΓA+A∗ACN (θ)A∗A) = 1

2

N∑
j=1

log(a2
jγ

2 + a4
jµj(θ)) = 1

2

N∑
j=1

log(a2
js
γ
j (θ))

and so

1
2 log det(Γ +ACN (θ)A∗) ∝ −1

2

N∑
j=1

log
sγj (θ†)
sγj (θ)

from which the result follows.
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4.2. Convergence of Minimizers

We study convergence of the minimizers of the random functionals JN,γC , JN,γNC and JN,γE in the simul-
taneous limit N →∞ and γ → 0. We establish that, if the noise level decays sufficiently fast relative
to the smallest value of the product of the singular values and the prior covariance, for the truncated
problem, then the true hyperparameter is recovered in the cases of the centred MAP and empirical
Bayes estimates. We also establish that it is not recovered in the case of the noncentred MAP estimate.

Let γN > 0 denote the noise level when N observations are taken. We define sγNj (θ) = a2
jµj(θ)+γN 2

as in Proposition 4.3, and define

bNj (θ) =
sγNj (θ†)
sγNj (θ) .

In order to establish the convergence, we make the following assumptions.

Assumptions 2. We assume in what follows that:

(i) Θ ⊆ Rk is compact.

(ii) min
j=1,...,N

a2
jµj(θ)/γ2

N →∞ as N →∞ for all θ ∈ Θ.

(iii) g(θ, θ†) := lim
j→∞

µj(θ†)
µj(θ) exists for all θ ∈ Θ, and the map θ 7→ g(θ, θ†) − log g(θ, θ†) is lower

semicontinuous.

(iv) If g(θ, θ†) = 1, then θ = θ†.

(v) The maps θ 7→ logµj(θ) are Lipschitz on Θ for each j ∈ N, with Lipschitz constants uniformly
bounded in j.

(vi) The maps θ 7→ bNj (θ) are Lipschitz on Θ for each j = 1, . . . , N , N ∈ N, with Lipschitz constants
uniformly bounded in j,N .

(vii) The map θ 7→ log ρ0(θ) is Lipschitz on Θ.

Assumption (i) is made to avoid complications with hyperparameter estimates potentially diverging.
Assumption (ii) gives the rate at which the noise must decay relative to the decay of the singular values
of the (whitened) forward map – the more ill-posed the problem is, and the weaker the prior is, the
faster the noise must vanish. Assumption (iii) allows a limiting functional to be identified, and (iv) is
an identifiability assumption which allows us to identify the true hyperparameter. Assumptions (v)-
(vii) are made to ensure the functionals JN,γNC , JN,γNNC , JN,γNE are also Lipschitz with Lipschitz constants
(almost surely) uniformly bounded in N ; note that when combined with the assumed compactness of
Θ, we thus obtain existence of minimizers of these functionals over Θ.

Remark 4.5. Instead of having the noise level γN a function of the number of observations, we could
also consider having the number of observations Nγ as a function of the noise level – this may be more
appropriate in practice as one may not have control over the noise level. In this case, one would need
to replace Assumption (ii) with

min
j=1,...,Nγ

a2
jµj(θ)/γ →∞ as γ → 0 (4.7)

in order to obtain analogous results. We work with γN to make the arguments clearer: our sequences
of functionals are indexed by a discrete rather than continuous parameter.
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Theorem 4.6. Let Assumptions 2 hold, and let {θNC }, {θNE }, {θNNC} denote sequences of minimizers
over Θ of {JN,γNC }, {JN,γNE }, {JN,γNNC } respectively.

(i) θNC , θNE → θ† in probability as N →∞.

(ii) Assume further that g(·, θ†) has a unique minimizer θ∗. Then θNNC → θ∗ in probability as
N →∞.

Remark 4.7. The identification of hierarchical parameters such as the smoothness of a Gaussian
distribution has been widely studied in regression problems. See e.g. example 2.1 and the work by
Gloter and Hoffmann [19] on estimation of Hurst parameter and their discussion therein. In terms
of inverse problems, Knapik et al. [26] recently studied consistency of empirical maximum likelihood
estimators for linear diagonalizable problem. However, the key difference in these previous studies is
the data generating distribution: we assume the data to be generated according to P(y|θ†), whereas
Knapik et al. consider P(y|u†) to be the data generating distribution, and the true regularity θ† is
defined implicitly from the function u†.

The difference of the two observational models can be highlighted by considering repeated samples.
In our model the variable u will vary in each data sample whereas for the other approach u† remains
fixed. In this work, we consider consistency properties in terms of vanishing noise which makes the
difference less transparent and it requires further work to study how identifiability of θ† from u† in
previous studies and our assumptions are related.

In the setting employed in [26] the authors are able to take their analysis further: their main results
in [26, Thm. 1 and 2] show convergence rates of the empirical estimator, like us in probability, and
they use this to deduce that the empirical posterior on u contracts around the ground truth at an
optimal rate.

Remark 4.8. In general it is the case that θ∗ 6= θ†, and so the result concerning the convergence of
{θNNC} is a negative result: the true hyperparameter is not recovered.

Proof. [Proof of Theorem 4.6] We establish the result in full for JN,γNC , and note the small modifications
required to establish the results for JN,γNE and JN,γNNC . We start by proving item (i). We have

JN,γNC (θ) = 1
2N

N∑
j=1

[
(yγNj )2

sγNj (θ) − log µj(θ
†)

µj(θ)

]
− 1
N

log ρ0(θ).

We rewrite yγNj using the representation eq. (4.2):

yγNj
d=
√
sγNj (θ†)ζj , ζj

iid∼ N(0, 1),
and so

JN,γNC (θ) d= 1
2N

N∑
j=1

[
bNj (θ)ζ2

j − log µj(θ
†)

µj(θ)

]
− 1
N

log ρ0(θ).

We can see formally from the assumptions that, for each θ ∈ Θ, bNj (θ) → g(θ, θ†) as j,N → ∞, and
so the strong law of large numbers suggests that

JN,γNC (θ)→ JC(θ) := 1
2g(θ, θ†)− 1

2 log g(θ, θ†) (4.8)

almost surely. Observe that JC is minimized if and only if g(θ, θ†) = 1, which by Assumptions 2(iv)
occurs if and only if θ = θ†. We hence wish to establish convergence of the minimizers of JN,γNC to that
of JC. In order to show this convergence, we use the approach of [46]. Specifically we use the result of
Exercise 3.2.3, which follows from Corollary 3.2.3(ii) and the Arzelà-Ascoli theorem. We must establish
that:
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(a) JN,γNC converges pointwise in probability to JC;

(b) the maps θ 7→ JN,γNC (θ) are Lipschitz on Θ for each N , with (random) Lipschitz coefficients
uniformly bounded in N almost surely;

(c) JC is lower semicontinuous with a unique minimum at θ†; and

(d) θNC = OP (1).

The point (c) is true by assumption, and (d) follows since Θ is compact. To establish that point (a)
holds, we note that it suffices to show that, in probability, for each θ ∈ Θ,∣∣∣∣ 1

2N

N∑
j=1

bNj (θ)(ζ2
j − 1)

∣∣∣∣→ 0 (4.9)

∣∣∣∣ 1
2N

N∑
j=1

(
bNj (θ)− log µj(θ

†)
µj(θ)

)
− 1
N

log ρ(θ)− JC(θ)
∣∣∣∣→ 0. (4.10)

Note that the expression eq. (4.10) is deterministic. Define the map

GN (θ) = 1
2N

N∑
j=1

bNj (θ)(ζ2
j − 1).

We show that GN (θ)→ 0 weakly for all θ ∈ Θ; since the limit is constant, the convergence then also
occurs in probability. Combining Lemma A.2 with Assumptions 2(ii),(iii), we see that

1
N

N∑
j=1

bNj (θ)→ g(θ, θ†) (4.11)

for each θ ∈ Θ. The proof of Lemma A.2 implies, in particular, that the sequence {bNj (θ)}j,N is
uniformly bounded for each θ. Since ζ2

j
iid∼ χ2

1, we have that the characteristic function of GN (θ)
satisfies5

E
(

exp
(
itGN (θ)

))
=

N∏
j=1

E
(

exp
(
it · 1

2N bNj (θ)(ζ2
j − 1)

))

=
N∏
j=1

(
1−

bNj (θ)it
N

)− 1
2

exp
(
−it · 1

2N bNj (θ)
)

= exp

−1
2

N∑
j=1

[
log

(
1−

bNj (θ)it
N

)
+
bNj (θ)it
N

]
= exp

−1
2

N∑
j=1

−bNj (θ)it
N

− 1
2

(
bNj (θ)it
N

)2

−O(N−3) +
bNj (θ)it
N


= exp

−1
4

N∑
j=1

[
bNj (θ)2t2

N2 −O(N−3)
] .

From the boundedness of {bNj (θ)}j,N , we deduce that the sum in the exponent tends to zero as N →∞.
It follows that

E (exp (itGN (θ)))→ exp(0) = EZ∼δ0 (exp(itZ))
5Here log refers to the principal branch of the complex logarithm – note that we are bounded away from the branch

cut since the argument always has real part 1.
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and soGN (θ)→ 0 weakly; the convergence eq. (4.9) follows. We now rewrite the expression in eq. (4.10)
as

1
2N

N∑
j=1

(
bNj (θ)− log µj(θ

†)
µj(θ)

)
− 1
N

log ρ0(θ)− JC(θ)

= 1
2N

N∑
j=1

(
bNj (θ)− g(θ, θ†)

)
− 1

2N

N∑
j=1

(
log µj(θ

†)
µj(θ)

− log g(θ, θ†)
)
− 1
N

log ρ0(θ).

The first sum vanishes as N → ∞ due to the convergence eq. (4.11), the second vanishes due to
Assumptions 2(ii), and third clearly vanishes. The convergence eq. (4.10) follows, and hence so does
the pointwise convergence in probability JN,γNC → JC. It remains to show the Lipschitz condition (b).
We have, for any θ1, θ2 ∈ Θ,

|JN,γNC (θ1)− JN,γNC (θ2)| ≤ 1
2N

N∑
j=1
|bNj (θ1)− bNj (θ2)|ζ2

j

+ 1
2N

N∑
j=1
| logµj(θ1)− logµj(θ2)|+ 1

2 | log ρ0(θ1)− log ρ0(θ2)|.

By Assumptions 2(v)-(vii) the Lipschitz property follows. The almost sure boundedness of the Lipschitz
constants follows from the strong law of large numbers, since the i.i.d. random variables ζ2

j have finite
second moments.
In the case of JN,γNE , the limiting functional is the same: JE = JC. The proof for convergence of
minimizers differs only in the expression eq. (4.10), wherein the logarithmic term in the sum is replaced
by log bNj (θ); this does not affect the convergence of the expression.
We now study (ii). The functional JN,γNNC differs from JN,γNC only in the absence of the logarithmic term
– it is easy to see that the limiting functional is then given by

JN,γNC (θ) := 1
2g(θ, θ†),

and that the required conditions (a)–(d) above are satisfied, since existence of a unique minimizer θ∗
of g(·, θ†) is assumed. The same result from [46] may then be used to obtain the stated result.

Remark 4.9. An important implication of this result is that the hyperparameters can only be de-
termined up to measure equivalence. By the Feldman–Hájek theorem, the measures N(0,C(θ†)) and
N(0,C(θ)) are equivalent if and only if

∞∑
j=1

(
µj(θ†)
µj(θ)

− 1
)2

<∞

which in particular implies that the limit g(θ, θ†) is identically 1. The limiting functional JC in equa-
tion (4.8) is hence minimized by any θ that gives rise to an equivalent measure.

Remark 4.10. In some situations the limiting functional g(θ, θ†) is infinite whenever θ 6= θ†. Even
though this limit clearly identifies the true hyperparameters, Theorem 4.6 does not directly apply,
since, for example, Assumptions 2(iii),(vii) cannot hold. One approach to avoid this is to replace the
objective functional JN,γNC (θ) by JN,γNC (θ)εN for some positive sequence εN → 0 – note that this does
not affect the sequence of minimizers since t 7→ tεN is strictly increasing for all N . Such a sequence
{εN} may be chosen in practice to be such that (µN (θ†)/µN (θ))εN converges to a finite value for each
θ as N → ∞. Examples of situations where these infinite limits occur, and appropriate choices of
sequences {εN} to obtain finite limits, are discussed in what follows.
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4.3. Examples

We now provide examples which elucidate Theorem 4.6.

Example 4.11 (Whittle–Matérn). Consider the case where the conditional Gaussian priors are
Whittle–Matérn distributions on a bounded domain D ⊆ Rd. As mentioned in example 2.3, the
covariance operators diagonalize in the eigenbasis {ϕj} of the Laplacian on D. Since D is bounded
we simply define the Whittle–Matern process to have covariance given by the inverse of (2.1), and
where we equip the Laplacian with Dirichlet, Neumann or periodic boundary conditions; we note that
for all three such sets of boundary conditions, the eigenvalues λj of the negative Laplacian tend to
infinity. We first consider the case where we are hierarchical about the standard deviation σ and the
length-scale `, and denote θ = (σ, `) ∈ Θ. Fixing the regularity parameter ν > 0, the eigenvalues are
given by

µj(θ) = κ(ν)σ2`d(1 + `2λj)−ν−d/2

= κ(ν)σ2`−2ν(`−2 + λj)−ν−d/2

for some constant κ(ν). We may then calculate

g(θ, θ†) = lim
j→∞

(
σ†

σ

)2 (
`

`†

)2ν (
1 + `−2 − (`†)−2

(`†)−2 + λj

)ν
=
(
σ†

σ

)2 (
`

`†

)2ν
.

We then see that g(θ, θ†) = 1 if and only if6 σ`−ν = σ†(`†)−ν . This equality is satisfied by infinitely
many pairs (σ, `). In order to apply Theorem 4.6 we require that the equality is only satisfied by the
true hyperparameters. Therefore, instead of attempting to infer the pair (σ, `), we attempt to infer
the pair (σ, β) := (σ, σ`−ν); this is closely related to the discussion around the Ornstein–Uhlenbeck
process in example 2.1. We then have

µj(θ) = κ(ν)β2
((

β

σ

)2/ν
+ λj

)−ν−d/2
which leads to

g(θ, θ†) =
(
β†

β

)2

.

When σ is fixed, by applying Theorem 4.6, we can deduce that the parameter β is identifiable using the
centred MAP and empirical Bayesian methods; the proof that the requisite assumptions are satisfied
under appropriate conditions is provided in Lemma A.3. In particular, assuming the algebraic decay
aj � j−a and γN � N−w, Assumptions 2(ii) is equivalent to

w > a+ ν

d
+ 1

2 . (4.12)

We also see that the parameter β is not identifiable via the noncentred MAP method, since g(·; θ) is
minimized by taking β as large as possible.

In the case where we are hierarchical about the regularity parameter ν, the assumptions of Theo-
rem 4.6 do not hold. Nonetheless, the limiting functional can still be formally calculated as

JC(ν) =
{
∞ ν 6= ν†

1 ν = ν†

which is clearly minimized if and only if ν = ν†. As discussed in Remark 4.10, we can rescale to obtain
a finite limiting functional; in this case making the choice εN = 1/ log(1 + λN ) achieves this.

6This condition is slightly weaker than that required for measure equivalence – for the measures to be equivalent we
require in addition that d ≤ 3, see for example Theorem 1 in [17].
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Example 4.12 (Automatic Relevance Determination). The Automatic Relevance Determination
(ARD) kernel is typically defined by

c(x, x′; θ) = σ2 exp
(
−1

2

d∑
k=1

(
xk − x′k
θk

)2)
.

This is the Green’s function for the anisotropic heat equation at time t = 1:

∂u

∂t
(t, x) =

d∑
k=1

θ2
k

∂u2

∂x2
k

(t, x), u(0, x) = σ2ξ(x).

The corresponding covariance operator is hence given by

C(θ) = σ2 exp(∆θ) := σ2 exp
(
−

d∑
k=1

θ2
k

∂2

∂x2
k

)
.

On rectangular domains this family of operators is simultaneously diagonalizable under the Laplacian
eigenbasis. For example, if D = (0, 1)d and we impose Dirichlet boundary conditions on the Laplacian,
then the eigenvalues are given by

µi1,...,id(θ) = σ2 exp
(
−π2

d∑
k=1

θ2
ki

2
k

)
.

The results we have concerning consistency are given in terms of eigenvalues indexed by a single index
j rather than a multi-index (i1, . . . , id). Rather than consider a particular enumeration of the multi-
indices, we instead aim to infer each hyperparameter θk individually by only sending ik → ∞ – this
amounts to taking a subset of the observations. The problem of inferring each θk is then essentially
equivalent to inference of the length-scale parameter of squared exponential prior with d = 1.

Note that Theorem 4.6 does not apply in this case – the limiting functional JC is infinite everywhere
except for the true hyperparameter, as was the case when inferring the parameter ν in the previous
example. Again, following Remark 4.10, we can rescale to obtain a finite objective function; in this
case making the choice εN = 1/N2 suffices. ARD versions of general Whittle–Matérn covariances can
also be obtained by replacing the negative Laplacian −∆ with its anistropic analogue −∆θ within the
precision operator. It can be verified that the requisite assumptions for Theorem 4.6 are satisfied in
this case when ν < ∞; the proof is almost identical to that of Lemma A.3 and is hence omitted for
brevity.

5. Numerical Experiments

In this section we present a number of numerical experiments in order to both validate the theory
presented, and illustrate how the theory may extend beyond what has been proven. Subsection 5.1
introduces a diagonalizable deblurring problem which is considered in the subsequent subsections.
Subsection 5.2 looks at the behaviour of minimizers of JN,γC with and without the prior truncation, as
discussed in Remark 4.2. Subsection 5.3 looks at the traces of the errors between the hyperparameter
estimates, comparing the convergence rates between the different functionals. Subsection 5.4 considers
the setup of example 4.11, wherein the variance and length-scale parameters are to be jointly inferred;
the minimizers are confirmed numerically to lie on the curve of hyperparameters which give rise
to equivalent measures. Finally, Section 5.5 considers settings that enable us to test whether the
assumptions of the theory are sharp – in particular we see that they appear sharp only for the centred
MAP approach, with the empirical Bayes estimates appearing to be more robust with respect to noise.
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5.1. Deblurring Problem

In this subsection we consider the case that the forward map is given by a linear blurring operator.
Let {ϕj}∞j=0 denote the cosine Fourier basis on D = (0, 1),

ϕj(x) =
√

2 cos(πjx),

and define A : L2(D)→ L2(D) by

〈Au,ϕj〉 =
{
j−2〈u, ϕj〉 j ≥ 1
0 j = 0.

Then the map A may be viewed as the solution operator f 7→ u for the problem

−∆u(x) = π2f(x) for x ∈ D, u′(0) = u′(1) = 0,
∫ 1

0
u(x) dx = 0. (5.1)

It could equivalently viewed as a convolution operator, writing

(Au)(x) =
∫ 1

0
G(x, x′)u(x′) dx′

where G(x, x′) is the Green’s function for the system eq. (5.1). This choice of forward operator is
convenient as it diaganalizes in the same basis as the Whittle–Matérn covariance operators on D,
which are what we use throughout this subsection. In fig. 5.1 we show the true state u† that we fix
throughout this subsection, and its image Au† under A. It is drawn from aWhittle–Matérn distribution
with parameters σ† = `† = 1, ν† = 3/2. To be explicit, in the notation of Section 4, we have

aj = 1/j2, µj(θ) = σ2`−2ν(π2j2 + `−2)−ν .

5.2. Prior Truncation

We first provide some numerical justification for the truncation of the prior at the same level as the
observations when using the centred parameterization, as discussed in Remark 4.2. We fix a maximum
discretization level Nmax = 105, and look at the behaviour of minimizers of the two functionals

JN,γNC (θ) ∝ 1
2

N∑
j=1

(yγj )2

sγj (θ) −
1
2

N∑
j=1

log µj(θ
†)

µj(θ)
− log ρ0(θ),

J̃N,γNC (θ) ∝ 1
2

N∑
j=1

(yγj )2

sγj (θ) −
1
2

Nmax∑
j=1

log µj(θ
†)

µj(θ)
− log ρ0(θ),

as N is increased. We consider a conditional Whittle–Matérn prior, treating the inverse length-scale
θ = `−1 as a hyperparameter, and set γN = 1/N5 so that eq. (4.12) is satisfied. In fig. 5.2 we show
how the errors between the estimated inverse length-scales and the truth compare between the two
functionals as N increases. It can be seen that the error for the truncated prior is bounded above by
that for the full prior, as expected.

5.3. Centred, Noncentred and Empirical Bayes

We now compare numerically the behaviour of optimizers of the three functionals JN,γNC , JN,γNNC and
JN,γNE , and verify that the conclusions of Theorem 4.6 hold. As above, we consider a conditional
Whittle–Matérn prior with the inverse length-scale θ = `−1 as a hyperparameter, and set γN = 1/N5.
In fig. 5.3 we show how the errors between the three sequences of minimizers and the truth compare
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as N increases. We see that the noncentred MAP error diverges, as expected: the limiting functional
is given by

JNC(θ) = 1
2

(
`

`†

)3
,

which is minimized as `−1 →∞. The empirical Bayes and centred MAP errors both generally decrease
as N is increased, again as expected, with the empirical Bayes estimate slightly outperforming the
centred MAP estimate for moderate N ; the noncentred MAP estimator fails to converge.

Also in fig. 5.3 we show the same errors averaged over 1000 independent realizations of the truth
u† ∼ N(0,C(θ†)) and noise η ∼ N(0, I), and the same behaviour is observed. A reason for the empirical
Bayes estimate outperforming the noncentred MAP estimate for moderate N may be that the terms
in the summation in the functional eq. (4.6) taking the form xj − log xj , rather than xj − log xεj for
some xεj ≈ xj as in eq. (4.4), which is minimized by xj = 1. For larger N there is very little difference
between the two functionals, since γN → 0.

5.4. Equivalent Families of Measures

We now consider the same setup as the previous subsubsection, but treat both the inverse length-scale
`−1 and the standard deviation σ as hyperparameters: θ = (σ, `−1). The resulting family of condi-
tional prior measures are then equivalent along any curve {(σ, `−1) |σ`−ν = constant}, as discussed in
example 4.11, and so the hyperparameters cannot be identified beyond this curve. This is illustrated
in fig. 5.4. In the top row we plot the functional JN,γNC (σ, `) for (σ, `−1) ∈ (0, 5)2, with N increasing
from left to right. In the bottom row we plot the sets{

(σ, `−1)
∣∣∣∣ ` ∈ arg min

`−1∈(0,5)
JN,γNC (σ, `)

}
,

{
(σ, `−1)

∣∣∣∣σ ∈ arg min
σ∈(0,5)

JN,γNC (σ, `)
}
,

along with the curve σ`−ν = σ†(`†)−ν , i.e. g(·, θ†)−1(1); the global minimizer (i.e. the intersection of
these sets) is also shown as a green dot. We see that the sets of minimizers concentrate on the limiting
curve g(·, θ†)−1(1) as N is increased.

For reference, we also consider the same experiments, but working with the reparameterization
θ = (σ, β) introduced in example 4.11 so that β should be identifiable. In fig. 5.5 we see that this is
indeed the case, with the curves now concentrating on the line β = σ†(`†)−ν = 1 as N is increased.

5.5. Noise Decay Rate

We choose here now to be hierarchical about just the inverse length-scale θ = `−1. In the theory we
made the assumption Assumptions 2(ii) concerning the decay rate of the forward map and covariance
singular values versus the decay of the noise level. For Whittle–Matérn priors, assuming the algebraic
decay aj � j−a and γN � N−w, the required condition on w for Assumptions 2(ii) to hold is given
by eq. (4.12). In the setup considered here, this translates to w > 4. We now investigate numerically
whether this condition is sharp, making the three choices γN = N−w for w = 3.5, 4, 4.5. The resulting
error traces are shown in fig. 5.6 for the centred MAP and empirical Bayesian methods. It appears
that the condition is likely to be sharp for the centred optimization, given that convergence fails at
the borderline case. However. For the empirical Bayesian optimization the condition does not appear
to be necessary, with convergence occurring in all cases, suggesting it is a more stable estimator than
the MAP.

In light of Remark 4.5, we also consider the same setup, but with a fixed noise level and increasing
N . Making the choice Nγ = γ−1/w, the condition on w, equivalent to eq. (4.7), is the same as before.
In fig. 5.7 we show the errors for the choices w = 3.5.4, 4.5, and the same trends are observed as for
fig. 5.6.
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Figure 5.1. The true state u† used throughout Section 5.1, and its image Au† under
the blurring operator A.
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Figure 5.2. The trace of the errors between the minimizers of JN,γNNC and J̃N,γNNC and
the true hyperparameter, as defined in Section 5.2, as N is increased.

6. Conclusions

Learning hyperparameters in Bayesian hierarchical inference is important in two main contexts: when
the hyperparameters themselves are the primary object of inference, and the underlying quantity which
depends on them a priori is viewed as a nuisance parameter; when the hyperparameters themselves
are not of direct interest, but choosing them carefully aids in inferring the underlying quantity which
depends on them a priori. In both settings it is of interest to understand when hyperparameters can be
accurately inferred from data. In this paper we have studied this question within the context of MAP
estimation. Our work suggests the benefits of using the centred parameterization over the noncentred
one, and also supports the use of empirical Bayes procedures. This is interesting because the relative
merits of centering and noncentering in this context differ from what is found for sampling methods
such as MCMC.

The theorem is confined to a straightforward situation, concerning linear inverse problems, in which
the relevant operators are simultaneously diagonalizable. It also imposes conditions on the parame-
ters defining the problem; numerical experiments indicate that these are sharp for the centred MAP
estimator, but not for the empirical Bayes estimator, demonstrating that the latter is preferable. It
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Figure 5.3. Comparison of the errors between the minimizers of the three functionals
JN,γNE , JN,γNC , JN,γNNC and the true hyperparameter, as N is increased. The left figure
shows the error traces for a single realization of the truth and the noise, and the right
figure shows the errors averaged over 1000 such realizations.

Figure 5.4. (Top) The objective function JN,γNC (σ, `) for N = 1, 10, 100, 1000. (Bot-
tom) The locations of the minimizers of each JN,γNC (σ, `) across each row and column of
the computed approximations (blue), the curve of parameters that produce equivalent
measures to the true parameter (black), and the global optimizer (yellow).
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Figure 5.5. (Top) The objective function JN,γNC (σ, β) for N = 1, 10, 100, 1000. (Bot-
tom) The locations of the minimizers of each JN,γNC (σ, β) across each row and column of
the computed approximations (blue), the curve of parameters that produce equivalent
measures to the true parameter (black), and the global optimizer (yellow).
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Figure 5.6. Traces of the errors between optimizers of JN,γNC (θ) (left), JN,γNE (θ) (right)
and the true hyperparameter, as N is increased. Here the noise level γN is taken as
γN = N−w for w = 3.5, 4, 4.5.
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Figure 5.7. Traces of the errors between optimizers of JNγ ,γC (θ) (left), JNγ ,γE (θ) (right)
and the true hyperparameter, as γ is decreased. Here the number of observations Nγ

is taken as Nγ = γ−1/w for w = 3.5, 4, 4.5.

would also be of interest to push the boundaries of the theory outside this regime to the non-diagonal
setting and even into nonlinear inverse problems. It would also be of interest to study fully Bayesian
posterior inference for the hyperparameters, and Bernstein-von Mises theorems; this may be related
the re-scalings needed at the end of examples 4.11 and 4.12.
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Appendix A. Supporting Lemmas

In this appendix we provide a number of lemmas that are used during proofs and examples in the
main text.

Lemma A.1. Let m ≥ n, A ∈ Rm×n and Q ∈ Rm×m. Then

det(A∗QA) = det(Q) det(AA∗).

Proof. Let A = UΣV ∗ be the singular value decomposition of A, with U ∈ Rm×m, V ∈ Rn×n unitary,
and Σ ∈ Rm×n. Then we have

det(A∗QA) = det(V Σ∗U∗QUΣV ∗) = det(Σ∗U∗QUΣ) det(V ∗V ) = det(Σ∗U∗QUΣ).
We have that

(Σ∗U∗QUΣ)ij =
{

Σii(U∗QU)ijΣjj i, j ≤ m
0 i > m or j > m

= (Σ̂U∗QU Σ̂)ij
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where Σ̂ ∈ Rm×m is given by Σ̂ij = Σij . Since all matrices are now square, we see that
det(Σ∗U∗QUΣ) = det(Σ̂U∗QU Σ̂)

= det(Q) det(U∗U) det(Σ̂2)
= det(Q) det(ΣΣ∗)
= det(Q) det(AA∗).

Lemma A.2. Let {aj}, {µj}, {µ̄j} and {γj} be positive sequences with µ̄j/µj → g ≥ 0. Then if

min
j=1,...,N

a2
jµj

γ2
N

→∞ as N →∞

we have
1
N

N∑
j=1

a2
j µ̄j + γ2

N

a2
jµj + γ2

N

→ g as N →∞.

Proof. We write
a2
j µ̄j + γ2

N

a2
jµj + γ2

N

=
µ̄j + γ2

N/a
2
j

µj + γ2
N/a

2
j

= µ̄j
µj

+
(
µ̄j + γ2

N/a
2
j

µj + γ2
N/a

2
j

− µ̄j
µj

)

= µ̄j
µj

+
γ2
N/a

2
j (µj − µ̄j)

µ2
j + γ2

N/a
2
jµj

= µ̄j
µj

+ 1
a2
jµj/γ

2
N + 1

(
1− µ̄j

µj

)
.

Now observe that∣∣∣∣∣∣ 1
N

N∑
j=1

a2
j µ̄j + γ2

N

a2
jµj + γ2

N

− g

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1
N

N∑
j=1

(
a2
j µ̄j + γ2

N

a2
jµj + γ2

N

− µ̄j
µj

)∣∣∣∣∣∣+
∣∣∣∣∣∣ 1
N

N∑
j=1

µ̄j
µj
− g

∣∣∣∣∣∣ .
The second term on the right hand side tends to zero by the assumed convergence. From the above,
the first term is equal to∣∣∣∣∣∣ 1

N

N∑
j=1

1
a2
jµj/γ

2
N + 1

(
1− µ̄j

µj

)∣∣∣∣∣∣ ≤ max
j=1,...,N

1
a2
jµj/γ

2
N + 1

∣∣∣∣∣1− µ̄j
µj

∣∣∣∣∣
≤ C

(
min

j=1,...,N
a2
jµj/γ

2
N + 1

)−1

again using the assumed convergence of the ratio µ̄j/µj ; the result follows.

In the following, given two sequence {aj}, {bj}, we write aj � bj if there exist constants c1, c2 > 0
such that c1aj ≤ bj ≤ c2aj for all j.

Lemma A.3. Let Θ = [β−, β+] ⊆ (0,∞). Given ν, σ > 0, d ∈ N and a positive sequence λj � j2/d

define

µj(β) = β2
((

β

σ

)2/ν
+ λj

)−ν−d/2
.
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Assume that aj � j−a and γN � N−w, where w, a > 0 are such that

w > a+ ν

d
+ 1

2 .

Then Assumptions 2(i)-(vi) hold.
Proof.

(i) This is true by assumption.

(ii) We assume without loss of generality that aj , λj are monotonically decreasing. Then

min
j=1,...,N

a2
jµj(β)
γ2
N

= a2
NµN (β)
γ2
N

.

We may bound the right hand side as
a2
NµN (β)
γ2
N

� N2(w−a)β2
((

β

σ

)2/ν
+ λN

)−ν−d/2
� N2(w−a−ν/d−1/2),

which diverges given the assumption on the parameters.

(iii) In example 4.11 it is demonstrated that

g(β, β†) = lim
j→∞

µj(β†)
µj(β) =

(
β†

β

)2

for all β ∈ Θ. The map g(β, β†)− log g(β, β†) is clearly continuous on Θ, and so in particular
lower semicontinuous.

(iv) This is clearly true.

(v) We have that

logµj(β) = 2 log β −
(
ν + d

2

)
log

((
β

σ

)2/ν
+ λj

)
which is smooth on Θ, and so∣∣∣∣ d

dβ logµj(β)
∣∣∣∣ =

∣∣∣∣∣∣ 2β −
(
ν + d

2

) 2
ν

(
β

σ

)2/ν−1((β
σ

)2/ν
+ λj

)−1
∣∣∣∣∣∣

≤ 2
β−

+
(
ν + d

2

) 2
ν

σ

β−
.

It follows that logµj(β) is Lipschitz with Lipschitz constants bounded in j.

(vi) The map bNj (β) is smooth on Θ, and we have that

|(bNj )′(β)| =
∣∣∣∣∣bNj (β)

µ′j(β)
µj(β) + γ2

N/a
2
j

∣∣∣∣∣ ≤ ∣∣∣bNj (β)
∣∣∣ ∣∣∣∣∣µ
′
j(β)
µj(β)

∣∣∣∣∣ =
∣∣∣bNj (β)

∣∣∣ ∣∣∣∣ d
dβ logµj(β)

∣∣∣∣ ,
and the final term on the right hand side is uniformly bounded by part (v). Finally observe
that

|bNj (θ)| ≤ µj(β†)
µj(β) + γ2

N

a2
jµj(β)

.

The first term can be seen to be uniformly bounded by noting that β− > 0, and the second term
by using part (ii). The map βNj (β) is hence Lipschitz with Lipschitz constants bounded in j,N .

97



M. M. Dunlop, T. Helin, et al.

References

[1] Sergios Agapiou, Johnathan M. Bardsley, Omiros Papaspiliopoulos, and Andrew M. Stuart. Analysis of the
Gibbs sampler for hierarchical inverse problems. SIAM/ASA J. Uncertain. Quantif., 2(1):511–544, 2014.

[2] Sergios Agapiou, Martin Burger, Masoumeh Dashti, and Tapio Helin. Sparsity-promoting and edge-
preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems. Inverse Probl.,
34(4), 2018.

[3] Sergios Agapiou, Masoumeh Dashti, and Tapio Helin. Rates of contraction of posterior distributions based
on p-exponential priors. https://arxiv.org/abs/1811.12244, 2018.

[4] Sergios Agapiou, Stig Larsson, and Andrew M. Stuart. Posterior contraction rates for the Bayesian approach
to linear ill-posed inverse problems. Stochastic Processes Appl., 123(10):3828–3860, 2013.

[5] Sergios Agapiou and Peter Mathé. Posterior Contraction in Bayesian Inverse Problems Under Gaussian
Priors. In New Trends in Parameter Identification for Mathematical Models, pages 1–29. Springer, 2018.

[6] Sergios Agapiou, Andrew M. Stuart, and Yuan-Xiang Zhang. Bayesian posterior contraction rates for linear
severely ill-posed inverse problems. J. Inverse Ill-Posed Probl., 22(3):297–321, 2014.

[7] James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer, 2013.

[8] Alexandros Beskos, Ajay Jasra, Ege A. Muzaffer, and Andrew M. Stuart. Sequential Monte Carlo methods
for Bayesian elliptic inverse problems. Stat. Comput., 25(4):727–737, 2015.

[9] Alexandros Beskos, Gareth Roberts, Andrew M. Stuart, and Jochen Voss. MCMC methods for diffusion
bridges. Stoch. Dyn., 8(03):319–350, 2008.

[10] Neil K. Chada, Marco A. Iglesias, Lassi Roininen, and Andrew M. Stuart. Parameterizations for ensemble
Kalman inversion. Inverse Probl., 34(5), 2018.

[11] Victor Chen, Matthew M. Dunlop, Omiros Papaspiliopoulos, and Andrew M. Stuart. Dimension-Robust
MCMC in Bayesian Inverse Problems. https://arxiv.org/abs/1806.00519, 2018.

[12] Christian Clason, Tapio Helin, Remo Kretschmann, and Petteri Piiroinen. Generalized modes in Bayesian
inverse problems. SIAM/ASA J. Uncertain. Quantif., 7(2):652–684, 2019.

[13] Simon L. Cotter, Gareth Roberts, Andrew M. Stuart, and David White. MCMC methods for functions:
modifying old algorithms to make them faster. Stat. Sci., 28(3):424–446, 2013.

[14] Yair Daon and Georg Stadler. Mitigating the Influence of the Boundary on PDE-based Covariance Oper-
ators. Inverse Probl. Imaging, 12(5):1083–1102, 2018.

[15] Masoumeh Dashti, Kody JH Law, Andrew M. Stuart, and Jochen Voss. MAP estimators and their consis-
tency in Bayesian nonparametric inverse problems. Inverse Probl., 29(9), 2013.

[16] Masoumeh Dashti and Andrew M. Stuart. The Bayesian approach to inverse problems, pages 311–428.
Springer, 2017.

[17] Matthew M. Dunlop, Marco A. Iglesias, and Andrew M. Stuart. Hierarchical Bayesian level set inversion.
Stat. Comput., pages 1–30, 2016.

[18] Joel N. Franklin. Well-posed stochastic extensions of ill-posed linear problems. J. Math. Anal. Appl.,
31(3):682–716, 1970.

[19] Arnaud Gloter, Marc Hoffmann, et al. Estimation of the Hurst parameter from discrete noisy data. Ann.
Stat., 35(5):1947–1974, 2007.

[20] Shota Gugushvili, Aad W. van der Vaart, and Dong Yan. Bayesian inverse problems with partial observa-
tions. Trans. A. Razmadze Math. Inst., 172(3):388–403, 2018.

[21] Shota Gugushvili, Aad W. van der Vaart, and Dong Yan. Bayesian linear inverse problems in regularity
scales. https://arxiv.org/abs/1802.08992, 2018.

98

https://arxiv.org/abs/1811.12244
https://arxiv.org/abs/1806.00519
https://arxiv.org/abs/1802.08992


Hyperparameter Estimation in Bayesian Inverse Problems

[22] Tapio Helin and Martin Burger. Maximum a posteriori probability estimates in infinite-dimensional
Bayesian inverse problems. Inverse Probl., 31(8), 2015.

[23] Tapio Helin and Matti Lassas. Hierarchical models in statistical inverse problems and the Mumford–Shah
functional. Inverse Probl., 27(1), 2010.

[24] Jari Kaipio and Erkki Somersalo. Statistical and Computational Inverse Problems, volume 160. Springer,
2006.

[25] Ustim Khristenko, Laura Scarabosio, Piotr Swierczynski, Elisabeth Ullmann, and Barbara Wohlmuth.
Analysis of boundary effects on PDE-based sampling of Whittle-Matérn random fields. SIAM/ASA J.
Uncertain. Quantif., 7(3):948–974, 2019.

[26] Bartek T Knapik, Botond T. Szabó, Aad W. van der Vaart, and J. Harry van Zanten. Bayes procedures
for adaptive inference in inverse problems for the white noise model. Probab. Theory Relat. Fields, 164(3-
4):771–813, 2016.

[27] Bartek T Knapik, Aad W. van der Vaart, and J. Harry van Zanten. Bayesian recovery of the initial condition
for the heat equation. Commun. Stat., Theory Methods, 42(7):1294–1313, 2013.

[28] Bartek T Knapik, Aad W. van der Vaart, J. Harry van Zanten, et al. Bayesian inverse problems with
Gaussian priors. Ann. Stat., 39(5):2626–2657, 2011.

[29] Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Probl.
Imaging, 6(2):215–266, 2012.

[30] Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated
unknowns. Inverse Probl. Imaging, 6(2):267–287, 2012.

[31] Markku S. Lehtinen, Lassi Paivarinta, and Erkki Somersalo. Linear inverse problems for generalised random
variables. Inverse Probl., 5(4):599–612, 1989.

[32] Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between Gaussian fields and Gaussian
Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc., Ser. B, Stat.
Methodol., 73(4):423–498, 2011.

[33] Kevin P Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
[34] Radford M. Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1995.
[35] Radford M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian regression and

classification. https://arxiv.org/abs/physics/9701026, 1997.
[36] Richard Nickl. Bernstein-von Mises theorems for statistical inverse problems I: Schrödinger equation.

https://arxiv.org/abs/1707.01764, 2017.
[37] Richard Nickl and Kolyan Ray. Nonparametric statistical inference for drift vector fields of multi-

dimensional diffusions. https://arxiv.org/abs/1810.01702, 2018.
[38] Richard Nickl and Jakob Söhl. Bernstein-von Mises theorems for statistical inverse problems II: compound

Poisson processes. Electron. J. Stat., 13(2):3513–3571, 2019.
[39] Richard Nickl, Sara van de Geer, and Sven Wang. Convergence rates for Penalised Least Squares Estimators

in PDE-constrained regression problems. https://arxiv.org/abs/1809.08818, 2018.
[40] Houman Owhadi, Clint Scovel, and Tim Sullivan. On the brittleness of Bayesian inference. SIAM Rev.,

57(4):566–582, 2015.
[41] Omiros Papaspiliopoulos, Gareth Roberts, and Martin Sköld. A general framework for the parametrization

of hierarchical models. Stat. Sci., pages 59–73, 2007.
[42] Kolyan Ray. Bayesian inverse problems with non-conjugate priors. Electron. J. Stat., 7:2516–2549, 2013.
[43] Gareth Roberts and Osnat Stramer. On inference for partially observed nonlinear diffusion models using

the Metropolis–Hastings algorithm. Biometrika, 88(3):603–621, 2001.

99

https://arxiv.org/abs/physics/9701026
https://arxiv.org/abs/1707.01764
https://arxiv.org/abs/1810.01702
https://arxiv.org/abs/1809.08818


M. M. Dunlop, T. Helin, et al.

[44] Lassi Roininen, Janne M. J. Huttunen, and Sari Lasanen. Whittle-Matérn priors for Bayesian statistical
inversion with applications in electrical impedance tomography. Inverse Probl. Imaging, 8(2):561–586, 2014.

[45] Andrew M. Stuart. Inverse problems: a Bayesian perspective. In Acta Numerica, volume 19, pages 451–559.
Cambridge University Press, 2010.

[46] Aad W. van der Vaart and Jon A. Wellner. Weak convergence. In Weak convergence and empirical processes,
pages 16–28. Springer, 1996.

[47] J. Harry van Zanten. A Note on Consistent Estimation of Multivariate Parameters in Ergodic Diffusion
Models. Scand. J. Stat., 28(4):617–623, 2001.

[48] Yaming Yu and Xiao-Li Meng. To center or not to center: that is not the question – an Ancillarity–
Sufficiency Interweaving Strategy (ASIS) for boosting MCMC efficiency. J. Comput. Graph. Stat.,
20(3):531–570, 2011.

100


	1. Introduction
	1.1. Literature Review
	1.2. Our Contribution

	2. Bayesian Inverse Problems
	2.1. Gaussian Random Process Priors
	2.2. Hierarchical Inversion
	2.2.1. Likelihood
	2.2.2. Natural Parametrization of the Posterior
	2.2.3. Reparameterization


	3. Point Estimation
	3.1. MAP Estimation and its dependence on parameterization
	3.2. Hierarchical MAP Estimation
	3.2.1. Centred Hierarchical MAP Estimation
	3.2.2. Noncentred Hierarchical MAP Estimation

	3.3. Empirical Bayesian Estimation

	4. Consistency of Point Estimators
	4.1. The Data Model
	4.2. Convergence of Minimizers
	4.3. Examples

	5. Numerical Experiments
	5.1. Deblurring Problem
	5.2. Prior Truncation
	5.3. Centred, Noncentred and Empirical Bayes
	5.4. Equivalent Families of Measures
	5.5. Noise Decay Rate

	6. Conclusions
	Acknowledgements
	Appendix A. Supporting Lemmas
	References

