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ABSTRACT. We examine the spectrum of a family of Sturm-Liouville operators with regularly
spaced delta function potentials parametrized by increasing strength. The limiting behavior of
the eigenvalues under this spectral flow was described in [BCM19], where it was used to study the
nodal deficiency of Laplacian eigenfunctions. Here we consider the eigenfunctions of these operators.
In particular, we give explicit formulas for the limiting eigenfunctions, and also characterize the
eigenfunctions and eigenvalues for all values for the spectral flow parameter (not just in the limit).
We also develop spectrally accurate numerical tools for comparison and visualization.

Nous étudions le spectre d’une famille d’opérateurs de Sturm-Liouville dont le potentiel est une
somme de fonctions delta réguliérement espacées qui sont paramétrée par intensité croissante. Le
comportement limite des valeurs propres sous ce flux spectral a été décrit dans [BCM19], ot il a été
utilisé pour étudier 'indice de défaut nodal des fonctions propres du laplacien. Nous considérons ici
les fonctions propres de ces opérateurs. En particulier, nous donnons des formules explicites pour
les fonctions propres limites, et déterminons également les fonctions propres et les valeurs propres
pour toutes les valeurs du paramétre de flux spectral (et non seulement dans la limite). Enfin nous
développons des outils numériques spectralement précis pour la comparaison et la visualisation.

1. INTRODUCTION

It is well known that the n-th eigenfunction of a regular Sturm—Liouville problem, with separable
boundary conditions on a finite interval, has precisely n — 1 interior zeros. Put differently, it has
exactly n nodal domains, where the nodal domains of u are defined to be the connected components
of the set {z : u(x) # 0}.

In higher dimensions one has the Courant nodal domain theorem, which says the nth eigenfunc-
tion of the Laplacian, or more generally the Schrodinger operator —A + V| has at most n nodal
domains. Unlike the one-dimensional case, this is generally a strict inequality: While Courant’s
theorem says that v(n) < n for all n, where v(n) denotes the number of nodal domains for the n-th
eigenfunction, for any dimension greater than one it was shown by Pleijel [Ple56] that the equality
v(n) = n can only hold for finitely many values of n.

An eigenfunction for which v(n) = n is said to be Courant sharp. For some relative simple
domains, such as squares, balls, equilateral triangles and tori, it is possible to completely deter-
mine the Courant sharp eigenfunctions. See, for instance, [BHK20, HS16, BH16, BNH17, Lén15,
HHOT10, HHOT09] among many others. In general this is a very challenging problem, and there
is much that is not known.

The extent to which an eigenfunction is not Courant sharp is measured by its nodal deficiency,

o(n) :=n—v(n). (1)

The first explicit formula for the nodal deficiency that we are aware of was given in [BKS12], in
terms of the Morse index of an energy function defined on the space of equipartitions. A second
formula, in terms of Dirichlet-to-Neumann maps on the nodal set, was obtained in [CJM17] using
infinite-dimensional symplectic methods.
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The starting point of the current work is [BCM19], in which the nodal deficiency formula of
[CIM17] was reinterpreted (and reproved) using a spectral flow approach. The benefit of this ap-
proach is that it identifies an explicit mechanism by which low energy eigenfunctions can contribute
to the nodal deficiency.

The idea is as follows:

(1) Fix an eigenfunction u,, with eigenvalue \,,, and define the nodal set Z = {x : u,(z) = 0};

(2) Define the family of operators L(c) = —A+0dz for o > 0 for 6z a delta-function potential
supported on the nodal set Z;

(3) Write the eigenvalues of L(o) in analytic branches A, (o) such that A,,(0) are the eigenvalues

of L(0) = —A.
It is not hard to show that the eigenvalue curves A, (o) are non-decreasing. In particular, A\, (o)
remains constant, whereas A\1(0),..., A\,—1(0) are strictly increasing. Of these first n eigenvalue

curves, precisely v(n) of them will converge to A, as ¢ — oo, while the remaining n — v(n) will
converge to values larger than \,,. Therefore, the nodal deficiency of u, is equal to the number of
etgenvalue curves that pass through X\, as o ranges from 0 to oo.

The advantage of this approach to nodal deficiency is that it identifies a mechanism by which
eigenfunctions corresponding to eigenvalues below \,, to (or do not) contribute to the nodal defi-
ciency of u,. That is, rather than just computing the nodal deficiency, it shows where it comes
from.

In [BCM19] this spectral flow was analyzed for a Schrodinger operator with separable potential
on a rectangular domain, assuming the eigenfunction u,, of interest is separable. These assumptions
reduce the problem to a one-dimensional one, where the analysis is easier. The main simplification
is due to the fact that in one dimension the eigenvalues must be simple, and so the eigenvalue
curves cannot intersect as o changes. (In particular, this implies that in one dimension the nodal
deficiency is always zero, reproducing the classic result of Sturm.)

While the analysis of [BCM19] completely describes the limiting behavior of the eigenvalues in
the separable case, the corresponding eigenfunctions were not studied, as they were not needed to
determine the nodal deficiency. The current paper addresses this issue.

One motivation for this is our desire to study small perturbations of separable eigenfunctions,
for an eigenvalue of multiplicity at least two. For instance, the explicit calculation of the spectral
flow in [BCM19] applies to the Laplacian eigenfunction sin(37z) sin(27y) on the unit square, but
not to the eigenfunction sin(3wx) sin(27y) + esin(27x) sin(37wy); see Figure 1. In the first case the
nodal set is a union of horizontal and vertical lines, so the operator L(o) is separable, while in the
latter case the nodal set is more complicated, and a similar ODE reduction is not possible. It is
possible to study the spectral flow for such a nonseparable eigenfunction by viewing it as a small
perturbation of the separable case; knowing how the eigenvalues change under the perturbation will
give the resulting change in nodal deficiency. However, to determine which eigenvalue curves have
led to the increase in nodal deficiency (i.e. which eigenfunctions they originated from at o = 0)
requires knowledge of the limiting eigenfunctions in the separable case.

Our motivation, however, extends well beyond this example. An advantage of the spectral flow
approach in [BCM19] is that it is always applicable, and does not require any special assumptions
on the geometry of the domain or the nodal set of u,, (except that it be Lipschitz continuous). We
expect that fully understanding the spectral flow in the separable case (and small perturbations
thereof) will lead to additional insight into the general case, and the mechanism by which an
eigenfunction wu,, with eigenvalue \,,, < A, does (or does not) contribute to the nodal deficiency of
Up,.

In order to state our results, we first recall the one-dimensional spectral flow from [BCM19].
Consider the Sturm—Liouville eigenvalue problem

—u"(z) + V(z)u = du(x), u(0) =u(l) = 0. (2)
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FIGURE 1. Nodal domains of the eigenfunctions sin(37wz)sin(27y) and
sin(3wz) sin(27wy) + esin(27z)sin(37y) on the unit square, for ¢ = 0.01. For
€ = 0 there are six eigenvalue curves converging to A7 = 1372; for 0 < € < 1 there
are only four, so the remaining two must converge to strictly larger values.

Given the n-th eigenfunction u, of (2), the nodal set {z € (0,1) : u,(z) = 0} consists of n — 1
points, and hence can be written as {xk}z;ll For a fixed n > 1, the spectral flow is defined by the
eigenvalue problem

n—1

—u"(x) + V(x)u(x) + ou(x) Z d(z — ) = Mo)u(x), u(0) =u(1) =0, (3)
k=1

parameterized by o € [0,00). Here the potential V' has been shifted by adding delta functions of
strength o at the zeros of wu,,.

An equivalent formulation, without reference to delta functions, is that u(z) solves the differential
equation (2) on each open subinterval (z;_1,z)) (letting 29 = 0 and z,, = 1 for convenience) with
the boundary conditions u(0) = u(1) = 0 and

u(zf) =u(zy),  u'(xf) —d(z;) = ouly) (4)
for 1 < k < n —1, where £ superscripts denote right- and left-hand limits, respectively. These
boundary conditions ensure that the eigenfunctions are continuous at xj, but have a jump in their
derivatives whenever ¢ > 0 and u(xy) # 0.

Denoting the eigenfunctions under the spectral flow by w,,(z;0), it is known that for each
1 < m < n, the limiting eigenfunction u,,(x;00) = Uli_}n&j um (z;0) is proportional to u,(z) on each

of the intervals I, = [zp_1,xk]. Therefore, u,,(x;00) is completely determined by the o = oo limits
of the integrals

Fk,m(g) = /I um(a:; U)un(x) dx (5)

forl1 <k<n.
The one-dimensional analysis in [BCM19] shows that the eigenvalues A\, (o) of (3) depend ana-
lytically on o, with

lim A\, (0) = Ay, 1<m<mn,
ag—00
and
lim A\, (o) > Ay, m > n.
T—r00

This result holds for any continuous potential V', and does not rely on explicit formulas for the
eigenvalues, which are only available for special choices of V. However, it gives no information
about the eigenvalues for intermediate values of o, or about the eigenfunctions for any values of o
other than 0.
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In this paper we completely solve this problem for the case V(x) = 0. That is, we give implicit
formulas for the first n eigenvalues and eigenfunctions for any o > 0 (Theorem 1.1), which we then
use to give explicit formulas for the limiting eigenfunctions (Corollary 1.3).

To that end, we consider the eigenvalue problem

—u"(z) = Mu(z), u(0)=u(l)=0. (6)

The eigenfunctions are given by u,(z) = Cy, sin(nrz), where C,, is a constant, with corresponding
positive eigenvalues A\, = n’m?, for each n € N.

We fix n > 2, and impose the boundary conditions (4) at the zeros of the eigenfunction w,,(z)
= sin(nmx). The zeros of u, occur at zj = %, where 0 < k < n, k € Z. At the interior zeros, the

boundary conditions from (4) therefore become

w(E) =u(g),  W(E)

SIS

) = ou(z) (7)
for1<k<n-—1.

For each o > 0, we want to examine the behavior of the eigenvalues A,,(0) and eigenfunctions
um(z;0) of the equation and boundary conditions given in (6) and (7). In this notation A,,(0) =
m2m?, um(x;0) = sin(mmz), and the eigenvalues A, (o) are simple for any finite o. Since u,(z) =
sin(nmx) vanishes at the interior nodes zy, the n-th eigenvalue is constant, \,(c) = n?z? for all o,
and we can also take u,(z;0) to be independent of 0. However, the same is not true for \,,(c )
and uy,(x;0) for 1 < m < n—1. Our main theorem provides a description of these eigenvalues and
eigenfunctions for all o > 0.

Theorem 1.1. For each 0 > 0 and 1 < m < n — 1, the eigenvalues A\ () = Ym(0)? satisfy the
implicit equation

cos (%) — cos (%”(U))

n

Ym (o) )

n

o = 29 (0) (8)

sin(
Set I, = [xp_1,xk|, with xp = % Then, for each 0 > 0 and 1 < m < n —1, up to an overall

normalization factor, the eigenfunctions um(a: o) are given by

U (z;0) = sin ( )+ ZAJm sin (ym(o)(z — z;))  for x € I, (9)

where the coefficients A;j (o) are determmed in terms of the eigenvalue A\, (o) via

A (o) = 2cos (X)) — 2cos (7’"T(“))7

kmm 10
MAlm@) for2<k<n-1 (10)
Sln(mw) »

To obtain the limiting eigenfunctions, which we denote by

Ak,m(0> =

um(ZL‘,OO) :Jh_{Ioloum(l’,G'), (11)

one can use the fact that v,,(0) — nm for 1 < m < n to obtain
k—
U (25 00) Z 17 A | sin(nmx)  for x € I

from (9), where the coeflicients A; ,, = limg%oo Ajm(0) are given by (10). An alternate approach is
given below in Corollary 1.3. Along the way we obtain more information about the eigenfunctions,
which leads directly to an explicit formula for u,,(x; ), see (13) and (14).

As o increases, the derivatives of u,,(x;0) remain bounded, and so to ensure that the interior
condition in (7) continues to hold, the values wu,, (zx; o) must converge to 0 as o converges to infinity.
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Our first corollary of Theorem 1.1 is that these values converge to 0 at the same rate for each node
T

Corollary 1.1. Up to an overall normalization factor, for each 0 > 0 and 1 < m < n — 1, the
values of the eigenfunctions un,(x;0) at the interior nodes xy are given by

gy ST ey sin ()
Um(.fl:k,O') = W S (T) = Wum(l‘k,())

For the case V(z) = 0, the quantity F}, ,, defined in (5) becomes
Fim/(0) :/ Um (x5 0) sin(nmzx) dz. (12)
Iy

Using Theorem 1.1, we can carefully control its dependence on o.
Corollary 1.2. For each 0 >0 and 1 <m < n — 1, the integrals F}, (o) are equal to

fot1 Um (213 0) + U (Tp—15 0)
n?m? — A\p(0)

In particular, choosing a normalization of um(x;0) so that Fi (o) = 1, the integrals Fy, (o) are
then independent of o for 1 < k < n.

Fk;,m(a) = nﬂ-(_l)

Finally, we examine the behavior of the eigenfunctions as the parameter o approaches infinity.
As shown in [BCM19), the eigenvalues A, (o) for 1 < m < n all converge to A\, = nn? as o tends
to infinity. (Note that this is consistent with our implicit expression for the eigenvalues A, (o) from
Theorem 1.1.) From Corollary 1.1, this ensures that u,,(zg; o) converges to zero as o tends to
infinity. This means that wu,,(x;00) (defined in (11)) is proportional to sin(nmz) on each interval
Iy, so it can be represented by a vector with n entries, where the kth entry of the vector is the
coefficient of sin(nmz) on Ix. Our final corollary of Theorem 1.1 gives an explicit expression for

these vectors.

Corollary 1.3. For each m, 1 < m < mn, up to an overall normalizing factor, the limiting eigen-
functions up,(x; 00) are given by

Um(x;00) = By m sin(nmz)  for x € Iy, (13)

where
(2k — V)mm

Bjym = (—1)" s

(14)
For instance, when n = 2 we have
1 1
(Bi,1,B21) = <ﬁa—ﬁ)
(Bi2,Ba2) = (1,1)
corresponding to the left and right sides of Figure 2, respectively. Similarly, for n = 3 we have
(Bi1, B2, Bs1) = (3, -1, 3)
(Bi,2, Ba2, Bs2) = (§> ,—§)
(B1,3, Ba;g, Bsg) = (1,1,1)

as shown in Figure 3. Further examples, up to n = 6, are shown in Section 5. In general, we see
from (14) that B.,, = (1,...,1) for any value of n, consistent with the fact that u,(z;0) = sin(nnz)
for all x € [0,1] and all o > 0.
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FIGURE 2. For n = 2, the limiting eigenfunctions u; (z; 00) (left) and wua(x; 00) (right)

AVNANEAWA

/
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F1cure 3. For n = 3, the limiting eigenfunctions wu;(x; 00), ua(z; 00) and ug(x; 0o)

Remark 1.1. Our method of proof also applies to the Neumann problem, where we instead consider

the boundary conditions u'(0) = u'(1) = 0, with again V(x) = 0. In this case, denote by xp = *5—=

the zeros of the Neumann eigenfunction cos(nmx), and set xog = 0, xp+1 = 1. The eigenfunctions
um(z;0) under the corresponding spectral flow are then given by

Um (z;0) = cos (ym(o “FZA]m sin (Y (o) (z — x5))

for x € Iy, = [x)_1, )], with
2cos (X) — 2 cos (Wm(a))

n
: ,Y"L(o-) ’
2sin (T)

Mized Dirichlet—-Neumann boundary conditions can also be treated similarly.

(2k—1)ymm
COS —an

)

ALm(O’) = Ak,m(a) = )Al,m(a)'

COS (

Outline of Paper. We first give the proof of Theorem 1.1 in Section 2, and then prove Corollaries
1.1, 1.2 and 1.3 in Section 3. Next, we provide in Section 4 examples showing that the main
theorem and corollaries may fail for non-constant potentials. Lastly, in Section 5 we demonstrate
the construction of spectrally accurate numerical methods for the spectral flow, which can be used
to verify the results of Theorem 1.1 for a large range of n, and use these methods to demonstrate
the behavior of the eigenfunctions for 1 < n < 6. We end with a short appendix describing our
construction by hand of quantum graph versions of the methods in the Chebfun package developed
in [DBTO8].
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2. PROOF OF THEOREM 1.1

To prove the theorem, we first show that the eigenfunctions are given by

k—1
Um (z;0) = sin (ym(0)z) + Z Ajm(o)sin (ym(0)(z — z5)), (15)
j=1
for z € [wp_1,24) = [£1, ], and with A; (o) as in the statement of the theorem. Here we have

written v, (0) = \/Am (o). The function in (15) clearly satisfies the differential equation
um (z50) = =M (0)up (75 0)

in (zx_1, k), and so it remains to check the boundary conditions at z = 0, x = 1, and = = xj. By
construction, u,,(0;0) = 0, and w,,(x; o) is continuous at x = xj. Therefore, we are left to choose
the coefficients Aj,, (o) so that wu,,(z;0) satisfies the Dirichlet condition at the right end-point
x = 1, and the derivative jump conditions at = x for each 1 < kK < n — 1. The jump in the
derivative at x = xy, is given by

1i0)

u;n(xk y0) — u;n(xga U) = Ak,m(a)’)/m(o')a

and up, (zx; o) is equal to

n n n

U (2g; 0) = sin (7k7m(a)> + Ay (o) sin (7(/%—1)%1(0)) + - 4 Ap_1m(0)sin (77’”(0)) )
Therefore, to ensure that u, (z};0) — ul, (2} ;0) = cwm(zk; o) and uy,(1;0) = 0, we require ,,,(0)
and A, (o) to satisfy

Agm(0)ym(o) = (16)
o [Sin (M) + Ap (o) sin (M) 4o+ Ap_im(0)sin (%(o)ﬂ

n n n

for 1 <k<n-—1, and

sin (Ym(0)) + A1m (o) sin (%) +--+ A1 m(o)sin (M> =0. (17)

n

Our strategy to solve the n — 1 equations (16) and equation (17) is as follows. Using (16) with
k =1 to solve for o, the remaining n — 2 equations in (16) can be written as

Apm(0) sin <7’”T(0)> =
Ay (o) [sin (M) + Ay (o) sin (M) + -+ Ap_1m(o)sin (7’”7(0))} (18)

n n

for 2 < k < n — 1. Therefore, for fixed o, we first will find the Ay (o) (in terms of 7,,(0)) that
solve (17) and the n — 2 equations in (18). We finally ensure that (16) holds for k = 1 by specifying
Ym(0) in terms of o.



8 T. BECK, I. BORS, G. CONTE, G. COX, AND J.L. MARZUOLA

Claim: Given v,,(0), the coefficients

Ai (o) = 2cos(6y,) — 2 cos (Wm(0)> 7

sin(j6,)
sin(6,,)

solve the equations (17) and (18) for 2 < k <n — 1. Here 0,, = ™F.

Ajm(o) = Aipm(o) for2<j<n-1

Proof of Claim: For ease of notation, we omit the dependence on o. We will first prove by
induction on £ that this choice of A; ,, satisfies (18) for 2 < k < n —1. For the base case k = 2, we
have

sin(26,,)

sin(6,,) A SN (Y /1) = 2 08(0m) A1 m Sin (Y /1)

A2,m Sin(”)’m/") =

and
Aq oy [sIn(29 /1) + A1 sin(ypm /1)
= A1 [SIn(27vm /1) + 2 cos(0y,) sin(ym /1) — 2 cos(Ym /1) sin(Yem /1))
= 241, cos(bp,) sin(ym/n).

Therefore, (18) holds for £ = 2. We next assume that (18) holds for 2 < j < k. Then, using the
formula for Ay ,, we have

Ak,m Sin(’}’m/n)

= Al,m [Sin(kﬁ)/m/n) + Al,m Sin((k - I)Vm/n) +o T+ Akfl,m Sin(’)/m/n)}

= 2c08(0,) [sin(kym/n) + A1 msin((k — 1)ym/n) + -+ - + Ap—1,m sin(ym/n)]

-2 COS(’Ym/n) [Sin(k’)/m/n) + Al,m Siﬂ((k - 1)77%/”) + o+ Akfl,m Sin(’}’m/n)] .
By the inductive hypothesis (with j = k) this implies that

k,m

A
Ap o sin(ym /n) = 2 cos(6p,) I sin(Ym/n)

1,m

= 2c08(ym /1) [sin(kym/n) + Avm sin((k = 1)ym/n) + -+ Ap—1m sin(ym/n)] -
Using
2 cos(ym/n) sin(jym/n) = sin((j + 1)ym/n) + sin((j = 1)ym/n),
we can rewrite the above as

Ak,m
Ap o sin(ym /n) = 2 cos(Gm)AL sin(y, /n)

1,m
— [sin((k + 1)ym/n) + At sin(kym/n) + - - + Ag—1 m sin(2ym /n)]
— [sin((k — 1)ym/n) + A1 msin((k — 2)ym/n) + -+ - + Ap—2,m sin(ym/n)] .

Again by the inductive hypothesis (with j = k — 1), we can rewrite this equation as
sin((k + 1)ym/n) + Ay msin(kym/n) + -+ + Ap—1,m sin(2ym /1) + Agm sin(ym/n)

cos(0y,) sin(yp, /1) — Aj;inm sin(vym /n). (19)

)

_ 2Ak:,m
ALm




LIMITING EIGENFUNCTIONS OF A SPECTRAL FLOW 9
Using the formulae for A;,,/A1, with j =k —1 and j = k, the right hand side of (19) is equal to

sin(k6,,) o B
sin(6,,,) (6rn)

_osin((k+1)0,) . ~ Apiim
- sin(f,) sin(ym/n) = Al

)

sin((k — 1)60.,)

S0 (0, cos(Op) | sin(ym/n)

sin(ym/n).

This completes the proof of the inductive step, and so (18) holds for all 2 < k < n—1. To complete
the proof of the claim, we finally need to show that the Dirichlet condition in (17) is satisfied. To
do this, we apply (19) with £ =n — 1. This gives

sin(ym) + A1 msin((n — 1)ym/n) + - -+ + Ap—1,m sin(ym/n)

_ g An-im cos(0) sin(ym/n) — An—2m sin(ym/n)

Al,m Al,m
_sin(nbp,) . _ sin(mm) | B
= () sin(vyp,/n) = S0 (0 sin(ym/n) =0

as required.

To complete the proof of the theorem, we need to find ~,,(0) in terms of o to ensure that (16)
holds for k£ = 1, that is

A m(0)ym (o) = osin (77”750)) .

Recalling the definition of A; ,,(0) and the notation v,,(c) = y/Am(0), this is precisely the implicit
equation for A\, (o) given in the statement of the theorem
cos () — cos (2z2)
o = 29m(0) ) (U)( 2" (20)
sin (15,%2)

The right-hand side of (20) is a strictly increasing function of 7,,(¢) on the interval [mm, nr).
Moreover, it vanishes when ~,,(c) = mm and becomes unbounded as ~,,(c) approaches nm, and
hence gives a bijection from [mm, nm) to [0,00). Therefore, for each o > 0 there is a unique solution
¥m(c). This solution guarantees that (16) and (17) both hold, and so gives the desired eigenvalue
Am(0) and eigenfunction u,,(z; o).

3. PROOFS OF COROLLARIES 1.1, 1.2 AND 1.3
3.1. Proof of Corollary 1.1. From our formula for the eigenfunction w,,(x; o) from (15) we have

n

U (Tg; 0) = sin (’”’"T(U)> + Ay (o) sin (W) 44 Ap_im(0) sin (M) _

Using (18), this simplifies to

Ak,m() n(
A1 ()

The corollary then follows immediately from the formula for Ay ,,(0)/A1,m (o) in Theorem 1.1.

um(l‘k; U) =
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3.2. Proof of Corollary 1.2. Multiplying the eigenfunction equation
—ult (x50) = A (0)um(x; 0)
by sin(nmz) and integrating by parts twice, we have

(o) /Ik o (: &) sin(nz) da = / W (@:.0) sin(nrz) da

I
= [uy, (z; 0) sin(nwx) — nrum (z; 0) cos(nw;z;)]i;1

- n27r2/1 U (25 0) sin(nmx) dz.
k
Since sin(n7x) vanishes at the nodes z;_1 and xg, while cos(nmz;) = (—1)7, this simplifies to
MAn(0) Fim (0) = =0 (= 1) up (x5 0) + n(— 1) L (2315 0) — n* 7% Fym(0).
Rearranging this gives the equality in the corollary. Moreover, if F} ,,,(0) = 1, then
T3 0) + Um(Tp—1;0)
U (21; 0) )

U
Fimlo) = (1)1t
By Corollary 1.1, this simplifies to

Fm(0) = (=1)F! U (25 0) + Uy (2—13 0)

um($1; 0)

)

which is independent of o.

3.3. Proof of Corollary 1.3. At o = 0, we have the eigenfunction u,,(x;0) = sin(mnx), and this
leads to

Fim(0) :/ sin(mmx) sin(nrx) dx
Iy,

= (_1>k+1 2n sin (2k — Ljm cos -~
m(n—m)(n+m) 2n 2n

Using Corollary 1.2, we choose a normalization of u,(x;0) for o > 0 so that Fj, (o) is constant
in 0. As o tends to 00, U (z;0) tends to By, sin(nmz) on I, for some By, ,,,. This constant By,
must therefore satisfy

Fym(0) = Uli_}H;O Fym(o) = Bkm/l sin?(nrz) de.
k

Solving for By, ,, and rescaling by a factor that does not depend on k proves the corollary.

4. FAILURE UNDER MODIFICATIONS OF THE ASSUMPTIONS

In this section we demonstrate that the results in Theorem 1.1 and Corollaries 1.1, 1.2 and 1.3
are particular to the spectral flow for the Laplacian (i.e. the case V = 0) on an interval. For a
general potential V', we have the quantity

Fim(o) = / U (2 0)up (2) dz,
Iy

defined in (5), where u,, is the n-th eigenfunction of (2) and u,,(z; o) the m-th eigenfunction of the

associated spectral flow in (3). In this case, we integrate over the interval I = [xj_1, 2], where

x are the zeros of u,. Following the integration by parts calculation in the proof of Corollary 1.2,

we obtain

— U (zg; o)l () + U (Tp—1; 0 )ul, (Tg—1)

An — Am(0)

Fym(o) =
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However, unlike the case V' = 0, for non-zero potentials the quantities Fj,,, (o) will in general not
be independent of o for any normalization of u,,(z;0). This is because up, (zk; 0)/um (x1;0) is not
in general independent of ¢ for V' # 0.

We will prove this for a generic small perturbation of the potential from V = 0, and also give a
numerical demonstration below.

Let V = eV, where W is a continuous function on [0, 1], and € > 0 is a small constant. Denoting
by un () the eigenfunctions of

—u"(x) + eWu(z) = Mu(z), u(0) =u(1)=0

we set n = 3, and let x1(€), z2(€) be the interior zeros of us(z). We then consider the spectral
flow

—u"(z) + eWu(z) + o [6(z — z1(€)) + 6 (z — w2(e)) Ju(x) = 0, u(0) =u(1) =0.
Letting A\, (e,0) and u,,(z;€,0) denote the eigenvalues and eigenfunctions of this spectral flow,

with m = 1,2, we set

Fim(€,0) —/ um(z; €, 0)us (x) de
I (e)

_ —um(xk(e); € 0)us (2k(€) + um(zh-1(e); € 0)us (wx-1(€)) (21)
B )\3(67 O) - )\m(ev U) .
Here Ij(e) = [zk—1(€), zx(€)] for 1 < k < 3, where we have set z9(e) = 0, z3(¢) = 1. When € = 0,
all these quantities reduce to those in Theorem 1.1 and Corollary 1.2.

Theorem 4.1. Suppose that

1
cw = /0 W (t)sin(mm(1 —t)) dt # 0.

Then, there exists a constant €9 = € (cw, [|W||10c) > 0 such that for all 0 < € < €, no normaliza-
tion of the eigenfunctions um,(x;€,0) can ensure that the quantities Fy, ., (e,0) are simultaneously
independent of o for 1 < k < 3.

Proof of Theorem 4.1: Suppose that for € > 0 fixed we choose a normalization of the eigenfunctions
Um(z;€,0) for ¢ > 0 so that Fy (e, 0) is independent of o. Then, from (21), F5 (e, 0) will be
independent of o precisely when the quantity w,,(x2;€,0)/um(z1;€,0) is independent of 0. We
show that this does not hold for ¢ and o sufficiently small. To see this, we first note that the
equivalent ansatz to (15) in the proof of Theorem 1.1 is to write

k—1

um (x5 €,0) = wom(z) + Z Ajm(e,0)wjm(x —xj(€))
j=1

for x € Ij(e) = [zx—1(€), z(€)]. Here the functions wy, y,(z;€, o) satisfy
—wgym(:z; €,0) + eW(x + xi(€))wim(x;€,0) = A€, 0) Wi m (5 €, 0), (22)

wim(05€,0) =0, w§€7m(0; €,0) = Ym(€,0)

with v, (€,0) = /Am(€,0). In particular, we have
‘xl(e)—g‘—i—’m( |—|—‘wkm(ﬂc €,0) —sin (Y (o ’—

We use the O notation to denote a constant depending only on the L°°-norm of W (but independent
of e and o). Suppose for contradiction that wu,,(z1(€); €, o) /um(x2(€); €, 0) is independent of o. Then,
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Aq (e, 0) must satisfy

Ap e )wl,m(m(E) —x1(€);€6,0)  wom(w2(e);e,0) wO,m(J;Q(G);G,O)'

(
wo,m(21(€); €,0) wom(21(€);€,0)  wom(z1(e);e,0)
In particular, Aj ,(€,0) = A1 m(0)+0(eo), with Aj (o) = A1 (0,0) = O(0) as in the statement
t

of Theorem 1.1. To ensure that the jump conditions at = x;(€) and x = z2(e) hold, analogously
to (16), Az (€, 0) must then satisfy

Ao (€, 0)wom(x1(€);€,0) = Ay (€, 0) [wom(x2(€); €,0) + A1 m(€, 0)wi m(z2(€);€,0)].

This again ensures that Ag ,,(€,0) = A2,,(0)+0(eo). Finally, to ensure that the Dirichlet condition
um(1;€,0) = 0 holds, we require that

wo.m(1;€,0) + A1 m (€, 0)wim(l — x1(€)) + Ag (€, 0)wam (1 — x2(€)) = 0. (23)
From Theorem 1.1 we know that (23) holds when € = 0, and so we can rewrite it as
wo.m(l;€,0) —wom(1;0,0) + O(eo) = 0. (24)

Also, from (22) the function wo ., (z;€, o) satisfies
wo,m(1;€,0) = sin (ym(0)(1)) + € /01 W (t) sin(,(0)(1 — t)) dt + O(eo + €%)
= wo,m(1;0,0) + 6/01 W (t) sin(mm(1 — t)) dt + O(eo + €).
Therefore, (24) becomes
6/01 W (t)sin(mm(1 —t)) dt + O(eo + €2) = 0.

Since it was assumed that this integral does not vanish, we obtain at a contradiction for all € and
o sufficiently small. Therefore, u,,(x2;€,0)/um(z1;€,0) is not independent of o, and this ensures
that F}, (e, 0) cannot be independent of ¢ for k = 1 and k = 2 simultaneously. O

We now illustrate the dependence of the quantities Fj ,,(0) on o numerically. Using computa-
tional methods described in [Gool9], we numerically compute the spectrum and the corresponding
eigenfunctions the operators Hy = —8% and Hy = —8% + 20X (0,1/2) on [0, 1] where X(0,1/2) is the
characteristic function that takes values 1 for 0 < x < 1/2 and 0 otherwise. By computing the
third eigenfunction of these operators with a very densely defined grid (768 points on the interval)
and using linear interpolation to compute the approximate zeros and set the spectral flow bound-
ary conditions accordingly, we construct the corresponding spectral flow based upon the computed
nodal set. The results are plotted in Figure 4, where it is shown that for the spectral flow gener-
ated by the nodal set of the third eigenfunction, the ratios of u,,(z1;0)/um(z2;0) for m = 1,2 are
independent of ¢ in our computation for Hp, but depend upon o in a nonlinear (and in particular
nonconstant) fashion for Hj.

5. NUMERICAL METHODS AND RESULTS

We use a numerical method in MATLAB to approximate the eigenfunctions of (6) and (7). In
the following section we describe the method in detail and display results for different values of n.
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FIGURE 4. The ratio of u,,(21;0)/um(x2;0) for the spectral flow acting on eigen-
functions of the operators Hy = —82 (left) and H; = —97 + 20X (g1 /2) (right)

5.1. Chebyshev Discretization Method. The method used to approximate the eigenfunctions
is based on a Chebyshev discretization using rectangular differentiation matrices [XH16]. Tradition-
ally, spectral collocation methods have involved the deletion and replacement of rows of a square
matrix in order to impose boundary conditions; the rectangular collocation method employed here
instead uses a resampling of the interpolating polynomials to produce rectangular matrices without
needing to delete any rows [DH16].

In our method, the differentiation matrix is applied on a quantum graph. A quantum graph
is a metric graph, i.e. a set of vertices and edges, where each edge connects two vertices and is
assigned a positive length. An operator can then be defined on the edges, and boundary conditions
imposed at the vertices (see [Ber17] for an introduction to quantum graphs). Here our graph has n
edges connecting n + 1 vertices (nodes). We first build a quantum graph with the desired number
of nodes, subinterval lengths, and boundary conditions, then apply the operator and solve the
eigenvalue problem on the graph using a Chebychev generalization of a quantum graph package
developed by R. Goodman; more on this package can be found in [Gool9].

Finally, we write a function to obtain a matrix containing the amplitudes of each eigenfunction
on each subinterval, normalize this matrix, and find the maximum difference between the values
of this matrix and the matrix of the eigenvectors from Corollary 1.3. We also find the difference
between the first and n-th eigenvalues for each n. If small enough, these values will imply the
convergence of the eigenvalues and an agreement with Theorem 1.1.

5.2. Results. For small values of n we display the progression of eigenvalues as ¢ increases, as
well as plots of the eigenfunctions when o = 107. The amplitudes of the eigenfunctions at o = oo
from Corollary 1.3 are given by the matrix M;yy,. The entry Mynmli, j] represents the coefficient
of sin(nmz) on the j-th sub-interval of the i-th eigenfunction, with 1 <i¢<n—-1land 1<j <n.
The matrix Myerm consists of the normalized vectors produced using the Chebyshev method. We
give the maximum difference between the numerically observed and actual matrices Myorm and
Mihm for each n, which we will refer to as diffye., and the difference between the first and n-th
eigenvalues, which we will call diff,,;.

(n = 2). The following table shows the first two eigenvalues, A\; and Ay, with increasing o:

oc=0 oc=10 c=10° [oc=10° [o =107
A\ 9.8696 22.6699 |[39.1645 |39.4753 |39.4784
Ao 39.4784 |39.4784 |39.4784 |39.4784 | 39.4784
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Observe that (o) is strictly increasing while A\2(0) is constant, as expected. The vector cor-
responding to the first eigenfunction is given by My, = (0.7071, —0.7071), while the normalized
vector obtained using the Chebyshev method with o = 107 is Myorm = (0.7071,—0.7071). Based
on these two matrices, we obtain the following for the values of diffye. and diffy,:
diffy diffyec
8.0000 x 107 1.6106 * 10~°

The eigenfunctions u o(x;0) and ug2(7;0) at 0 = 107 are displayed in Figure 5.

FIGURE 5. (Left) 'LLLQ({L'), )\1 = 39.4784. (Right) 'LL272(.7J), )\2 = 39.4784.

(n = 3). For the case of three subintervals, the first three eigenvalues are given in the following
table:

c=0 c=10 [o=10° [c=10° [o =107
A1 9.8696 32.6297 | 87.2491 |88.8105 | 88.8263
Ao 39.4784 | 59.8161 | 88.2959 |88.8211 | 88.8264
A3 88.8264 | 88.8264 | 88.8264 | 88.8264 | 88.8264

As expected, we see that A1 (o) and A\y(0) are strictly increasing and A3(o) is constant. The matrices
Minm and Myorm for n = 3 with o = 107 are then

Mo — 0.5000 —1.0000 0.5000
thm = 0.8660 —0.0000 —0.8660
and
Y _(0.5000 —1.0000  0.5000
norm =1 0.8660  0.0000 —0.8660)/
From these matrices, we obtain the following;:
diﬁval diﬁvec
1.8000 x 10— 8.2734 % 1077

The plots of the first three eigenfunctions uy 3(), us3(z), and us3(z) at o = 107 are displayed in
Figure 6.

(n =4). For n = 4, we obtain the following eigenvalues:

c=0 o =10 c=10° [oc=10° [o =107
A\ 9.8696 42.4846 | 153.6882 | 157.8705 | 157.9132
Ao 39.4784 | 70.9891 | 155.4176 | 157.8884 | 157.9134
A3 88.8264 | 1116.7243| 157.1763 | 157.9063 | 157.9136
A\ 157.9137 | 157.9137 | 157.9137 | 157.9137 | 157.9137

Based on the eigenvalues above and the Mipm and Myporm matrices for n = 4, we obtain at o = 107

the values:
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FIGURE 6. (Left) ujs(z), A\, = 88.8263. (Center) ugs(z), Ay = 88.8264. (Right)
uz3(x), A3 = 88.8264.

diﬁval diﬁvec
2.7314 % 1076 2.7492 x 107

with the eigenfunctions at o = 107 pictured in Figure 7.

FIGURE 7. (Top Left) uy4(z), A; = 157.9132. (Top Right) up4(x), Ao = 157.9134.
(Bottom Left) ug4(z), A3 = 157.9136. (Bottom Right) w4 4(z), A4 = 157.9137.

(n =5). The eigenvalues for five subintervals with increasing o are:

o=0 c=10 [o=10° [0=10° [0 =107

A1 9.8696 52.3588 | 238.0524 | 246.6509 | 246.7392
Ao 39.4784 | 81.3093 | 240.4072 | 246.6755 | 246.7395
A3 88.8264 | 129.0663 | 243.3661 | 246.7060 | 246.7398
A4 157.9137 | 193.3869 | 245.8004 | 246.7307 | 246.7400
A5 246.7401 | 246.7401 | 246.7401 | 246.7401 | 246.7401

The corresponding values for diffye. and diffy,; are given by
diﬁval diﬁvec
3.6180 x 107© 1.5143 % 1076

and the graphs of the first five eigenfunctions at ¢ = 107 are pictured in Figure 8.
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FIGURE 8. (Top Left) uy 5(z), A1 = 246.7392. (Top Center) ug 5(x), Ao = 246.7395.
(Top Right) u3 5(x), A3 = 246.7398. (Bottom Left) us5(x), Ay = 246.7400. (Bottom
Right) us.5(z), As = 246.7401.

(n = 6). For six subintervals, we obtain the eigenfunctions displayed in Figure 9, with the following
and diff,, and diff,e. values when o = 107:

diffy diffvec

4.4784 %1079 1.6547 x 10°

0
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F1GURE 9. (Top Left) uy 6(z), A1 = 355.3042. (Top Center) ugg(x), A2 = 355.3045.
(Top Right) us (), A3 = 355.3049. (Bottom Left) uyg6(z), A4 = 355.3053. (Bottom
Center) us (), As = 355.3056. (Bottom Right) uge(x), A¢ = 355.3058.
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APPENDIX A. COMPARISON TO CHEBFUN METHOD

An additional method for finding the eigenvalues and eigenfunctions as o approaches oo was
implemented using the MATLAB package Chebfun. The Chebfun system allows one to solve
differential equations in one dimension using simple operations; more information on Chebfun can
be found in [DBTO8].

This method was implemented for two and three subintervals on [0,1]. The general strategy
is to define an operator as a vector of n second-order differential operators, one on each of the
n subintervals, one vector for the left-side boundary conditions, and one vector for the right-side
boundary conditions. The eigenvalues of the operator are then calculated using the eigs command.

A.1l. Results.
(n = 2). For two subintervals, we write the eigenfunction u(z) as

() = {w(x), z€[0,1/2]
v(l—2x), ze€][1/2,1].

Here we halve the interval and define the eigenfunction u(z) via the two functions w(z) and v(x), in
order to apply the boundary conditions at the interior node in addition to the Dirchlet conditions
at the endpoints. Specifically, to use Chebfun’s L.1bc and L.rbc, we must reflect v(x) across
the vertical axis in order for x = 0 to correspond to the left boundary and = 1/2 to the right
boundary of both w(z) and v(z).

As expected, when o = 0, the Chebfun version of the eigs operation returns the eigenvalues of
(6), \1 =9.8696 and A2 = 39.4784. As o is increased, the first eigenvalue converges to the value of
the constant second eigenvalue. For example, for increasing values of o, eigenvalues returns the
values in the following table:

o0 =500 |o=1000 |o=>5000
A1 38.8544 | 39.1645 39.4153
A2 39.4784 | 39.4784 39.4784

The vector corresponding to the o = oo limit of the first eigenfunction (see Corollary 1.3) consists
of the coefficients of sin(27z) on each of the two subintervals. This eigenvector can be determined
by finding the value of the function at the midpoints of each subinterval.

The signed maxima on each subinterval can then be compared to the eigenvector from Corol-
lary 1.3 as o becomes large. When o = 5000, the computation returns the vector (1.4136,1.4136)
for the corresponding maxima. The eigenfunction sin(27z) is positive on (0,1/2) and negative on
(1/2,1). Thus, normalizing the eigenvector, we can see that it is close to (1, —1), which is consistent
with Corollary 1.3 and also with the solution constructed above in Section 5.

(n = 3). For three subintervals, we follow a similar process as for n = 2, where u(x) is defined as

w(z), x €10,1/3]
u(z) =qv(2/3—x), x€[1/3,2/3]
z(x —2/3), x€][2/3,1].

One can then define the operator and boundary conditions appropriately on the interval [0,1/3],
taking care with regards to sign orientation of the derivative on each interval. Note that the
interval of interest is now [0,1/3]; in general, for n subintervals, the operator is applied to the
interval [0,1/n].

As in the n = 2 case, the first three eigenvalues at ¢ = 0 are within machine precision of 72, 472
and 972. We then obtain the following for the first three eigenvalues of L with increasing o:
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o0 =500 |o=1000 |o=>5000
A1 85.7146 | 87.2491 88.5075
A2 87.7703 | 88.2959 88.7199
A3 88.8264 | 88.8264 88.8264

To find the vectors of the amplitudes of the first and second eigenfunctions, we construct the
eigenfunctions as above and return the amplitudes on each interval.

We obtain the vector (1, —2, 1) for the first eigenfunction and the vector (1,0, —1) for the second
eigenfunction, which are consistent with the vectors in Corollary 1.3, and also matches nicely with
our computations in Section 5.
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