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Abstract

We study the first Dirichlet eigenfunction of the Laplacian in a n-dimensional convex domain.
For domains of a fixed inner radius, estimates of Chiti [11], [12], imply that the ratio of the L

2-
norm and L

∞-norm of the eigenfunction is minimized when the domain is a ball. However, when
the eccentricity of the domain is large the eigenfunction should spread out at a certain scale and
this ratio should increase. We make this precise by obtaining a lower bound on the L

2-norm of the
eigenfunction and show that the eigenfunction cannot localize to too small a subset of the domain.
As a consequence, we settle a conjecture of van den Berg, [4], in the general n-dimensional case. The
main feature of the proof is to obtain sufficiently sharp estimates on the first eigenvalue in order to
estimate the first derivatives of the eigenfunction.

1 Introduction and statement of results

Let Ω ⇢ R
n be a bounded convex domain and let λ be the first eigenvalue of the Dirichlet Laplacian on

Ω. We denote the corresponding eigenfunction by u so that
(

(∆+ λ)u = 0 in Ω

u = 0 on ∂Ω.

This first eigenfunction is of one sign, and we choose it so that u(x) > 0 in Ω. Our starting point for
studying the behaviour of u and its level sets is that the convexity of Ω ensures that u is log-concave,
[8]. In particular the superlevel sets

{x 2 Ω : u(x) > c}

are convex subsets of Ω. It is natural to study the shape of the level sets of u and how they depend
on the geometry of Ω and the level under consideration. The quantity |u(x)|2 can be interpreted as an
(unnormalized) density for a free quantum particle in the domain Ω. The shape and location of the
superlevel sets where u is comparable to its maximum value therefore correspond to the parts of Ω where
the particle is most likely to be found. In this paper, we will obtain a lower bound on the L2(Ω)-norm
of u in terms of its L1(Ω)-norm and length scales coming from the shape of Ω (see Theorem 1.1 below).
The regions of Ω where Laplace eigenfunctions are of large magnitude relative to the rest of the domain,
has received recent attention. For example, the torsion function has been used as a landscape function for
predicting these regions of Ω, [13], [1], [22]. In [5], an upper bound on the efficiency ratio is given for a class
of horn-shaped domains. This efficiency ratio is a weighted measure of the ratio of the L1 and L1 norms
of the first eigenfunction, and they then use this upper bound to provide sequences of domains Ωm where
the first eigenfunction um localizes to a small subset of the domain. That is, they demonstrate a sequence
of domains Ωm, and measurable sets Am ⇢ Ωm, such that limm!1 |Am|/|Ωm| = 0, kumkL2(Ωm) = 1,
and

lim
m!1

Z

Am

|um|2 = 1. (1)

While in general the first eigenfunction can localize to a small subset of Ω relative to Ω itself, in the above
sense, our result will place a restriction on how small this region can be. We will do this by studying
lower bounds on the L2(Ω)-norm of the eigenfunction.
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In [11], [12], Chiti provides a lower bound on the L2(Ω)-norm of u of the form

kukL2(Ω) � c⇤n inrad(Ω)n/2 kukL1(Ω) (2)

Here inrad(Ω) is the inner radius of Ω. In [10], a lower bound on the Ln(Ω)-norm of the eigenfunction in
its contact set is also given in terms of its L1(Ω)-norm, which is then used to show that the maximum
of the eigenfunction is in the heart of the convex domain. See also [9] for further properties of the heart
of a convex domain. The constant c⇤n > 0 in (2) depends only on the dimension, and is explicitly given
in terms of Bessel functions (and their zeros). (In fact, this bound holds for any bounded, connected
domain Ω.) Moreover, the constant c⇤n cannot be improved since equality in (2) holds when Ω is a ball.
However, for Ω convex and when the diameter of Ω is large compared to its inner radius, one expects
the eigenfunction to spread out along the diameter of Ω, and for the L2(Ω)-norm to increase relative to
the L1(Ω)-norm. In terms of the estimate in (2), the question is then whether an estimate of the form

kukL2(Ω) � cn (diam(Ω)/inrad(Ω))
↵
inrad(Ω)n/2 kukL1(Ω) (3)

holds for all convex Ω, and some uniform α > 0. Repeated applications of the Harnack inequality in
overlapping balls is not sufficient to establish (3) for any α > 0, and so any improvement of (2) must
use the fact that u is an eigenfunction in a fundamental way. Kröger, [20], in two dimensions, and van
den Berg, [4], in higher dimensions studied the first eigenfunction of a thin sector. Via a separation of
variables in polar coordinates, and the properties of the resulting Bessel function in the radial variable,
this example of the sector ensures that the maximal value of α for which (3) could hold is α = 1

6 . Based
on the intuition that the sector should be the convex domain for which the eigenfunction spreads out the
least, van den Berg made the following conjecture:

Conjecture 1 ([4]) There exists a constant cn > 0, depending only on the dimension n, such that

kukL2(Ω) � cn (diam(Ω)/inrad(Ω))
1/6

inrad(Ω)n/2 kukL1(Ω) .

The two dimensional case of this conjecture has been established in [15]. Their proof uses an eigenvalue
bound for the first eigenvalue of a class of one dimensional Schrödinger operators, and the work of Grieser
and Jerison, [18], [17], on the first eigenfunction of a convex, planar domain.

In this paper, we bound kukL2(Ω) from below in the general n-dimensional case. We call K a John
ellipsoid associated to Ω ⇢ R

n if K is an open ellipsoid contained within Ω and any other ellipsoid
contained within Ω has volume at most that of K. John’s lemma [19] ensures that such an ellipsoid K
exists, is unique, and the dilation of K about its centre with scaling factor n contains Ω. We now fix the
John ellipsoid K and define Nj to be the lengths of the axes of K with

N1 � N2 � · · · � Nn.

Our main theorem provides a lower bound on the scale at which the eigenfunction can localize by
establishing a lower bound on the L2(Ω)-norm of u in terms of its L1(Ω)-norm, and the length scales
Nj .

Theorem 1.1 There exists a constant cn > 0, depending only on the dimension n, such that

kukL2(Ω) � cnN
n/2
n

n�1
Y

j=1

(Nj/Nn)
1/6

kukL1(Ω) .

In particular,
Qn�1

j=1 (Nj/Nn)
1/6

� (N1/Nn)
1/6, and by the properties of the John ellipsoid,

N1  diam(Ω)  nN1, Nn  inrad(Ω)  nNn.

Therefore, Theorem 1.1 settles Conjecture 1. In two dimensions, our methods can obtain an explicit
constant for c2 (see Theorem 1.2 below).
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Remark 1.1 Let M1 � M2 � · · · � Mn be the lengths of the axes of a John ellipsoid for the su-
perlevel set {x 2 Ω : u(x) > 1

2 maxΩ u}. In the course of proving Theorem 1.1 we will show that

Mj � cn(Nj/Nn)
1/3Nn for some constant cn > 0. In terms of the localization statement in (1), this

theorem places a restriction on how small the sets Am where the eigenfunctions localize can be.

To prove Theorem 1.1 we first obtain an upper bound on the directional derivatives of u in terms of the
length scales Nj . After a rotation we will assume that the axes of K lie along the coordinate axes.

Theorem 1.2 For each j, 1  j  n, there exists a constant Cj,n, depending only on j and the dimension
n, such that the derivative ∂xj

u(x) satisfies

�

�∂xj
u
�

�

L2(Ω)
 Cj,nN

�1
n (Nj/Nn)

�1/3
kukL2(Ω) .

In two dimensions, the constants C1,2, C2,2 have the explicit upper bounds

C1,2  (33)1/2π, C2,2  α0,1,

where α0,1 is the first zero of the Bessel function J0(r). For n = 2, the constant c2 appearing in Theorem
1.1 has an explicit lower bound in terms of C1,2 and C2,2 of

c2 � 1
96 · 1

162C
�1/4
1,2 C

�1/4
2,2 .

Remark 1.2 If we denote um to be the m-th Dirichlet eigenfunction of Ω, then the estimate in Theorem
1.2 continues to hold, with a constant Cj,n replaced by a constant Cm,j,n depending only on m, j, and n.

Via a dilation we can also assume that Nn = 1 when proving these theorems, and by taking a constant
multiple of u, we also assume that maxΩ u = 1. To prove Theorem 1.2 we will begin by using the
eigenfunction equation to write

Z

Ω

|ru|
2
dx = λ

Z

Ω

|u|2 dx,

and we will also use the variational formulation of the first eigenvalue,

λ = inf

(

R

Ω
|rv|

2
dx

R

Ω
|v|2 dx

: v 2 H1
0 (Ω), v 6= 0

)

.

We combine these to prove an upper bound on the eigenvalue λ in terms of the eigenvalues of the cross-
sections of Ω (see Proposition 2.2 for the precise statement). This then reduces the proof of Theorem
1.2 to obtaining sufficiently sharp upper bounds on the eigenvalues of (n� j)-dimensional cross-sections
of Ω. We prove the desired eigenvalue bounds by induction on j, and will carry out the proof in Section
2. To prove Theorem 1.1, we will also use in a crucial way the log concavity of the eigenfunction u, [8].
In particular, this will allow us to reduce estimating the L2(Ω)-norm of u to estimating the lengths of
the axes of a John ellipsoid associated to the superlevel set

Ω1/2 =
�

x 2 Ω : u(x) > 1
2

 

.

The desired estimate follows from using the derivative bounds in Theorem 1.2, and we will prove Theorem
1.1 in Section 3. Finally, in Section 4 we discuss known estimates in the two dimensional case, and future
directions in higher dimensions. In [18], Jerison introduces a length scale L depending on the geometry
of the convex, planar domain, and together with Grieser uses it to study the shape of the first (and
second) eigenfunction, [17], [16]. In particular, their results imply comparable upper and lower bounds
on kukL2(Ω) in terms of this length scale L. It is natural to ask how to construct analogous length scales
controlling the shape of the first eigenfunction in higher dimensions, and in Section 4 we discuss this in
more detail.

Remark 1.3 Throughout, constants which we will denote by C,C1, c1 etc, are constants which depend
only on the dimension. We also say that two quantities are comparable (and write as ⇠) if they can be
bounded in terms of each other up to a constant depending only on n.
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2 Gradient bounds for the eigenfunction

In this section we prove Theorem 1.2. The key step in the proof is to obtain appropriate upper bounds
on the eigenvalue λ. In fact, we will carry out an inductive step, which will require estimates on the
first Dirichlet eigenvalue of (n � k)-dimensional cross-sections of Ω for 0  k  n � 1. To write down
the eigenvalue bounds that we will establish, we first introduce the following notation: Given i, with
1  i  n� k � 1, and a point x 2 R

n�k, we write

x = (x1, x2, . . . , xn�k) = (Xi, X
0
n�k�i) 2 R

n�k,

with Xi 2 R
i, X 0

n�k�i 2 R
n�k�i. Now let W be a (n�k)-dimensional convex domain. For each Yi 2 R

i,
we denote the (n� k � i)-dimensional cross-sections of W by

W (Yi) =
�

x = (Xi, X
0
n�k�i) 2 W : Xi = Yi

 

⇢ R
n�k.

For us, W will either be the original convex domain Ω (with k = 0) or a (n�k)-dimensional cross-section
of Ω, for some 1  k  n � 1. The sets W (Yi) can also be viewed as (n � k � i)-dimensional convex
domains in R

n�k�i, and this is how we will view them below in order to study the Dirichlet eigenvalue
problem on W (Yi).

Definition 2.1 For a (n� k)-dimensional convex domain W , let λ(W ) be its first Dirichlet eigenvalue.
For i, with 1  i  n � k � 1, and Yi 2 R

i, let µ(Yi;W ) be the first Dirichlet eigenvalue of W (Yi), and
define µ⇤

i (W ) by

µ⇤
i (W ) = min

Yi

µ(Yi;W ). (4)

We also formally define µ⇤
n�k(W ) = 0, and then for 1  i  n� k set

δi(W ) = λ(W )� µ⇤
i (W ).

We can obtain gradient bounds on the first Dirichlet eigenfunction of W in terms of δi(W ) via the
following proposition.

Proposition 2.2 Let uW (x) be the first Dirichlet eigenfunction of W . Then, for each 1  i  n � k,
with δi(W ) as in Definition 2.1, the gradient bounds

i
X

`=1

Z

W

|∂x`
uW (x)|

2
dx  δi(W )

Z

W

|uW (x)|
2
dx

hold. In particular, δi(W ) � 0 for all i.

Proof of Proposition 2.2: Since uW is a Dirichlet eigenfunction with eigenvalue λ(W ) we have
Z

W

|ruW (x)|
2
dx = λ(W )

Z

W

|uW (x)|2 dx. (5)

For i = n� k, we have δn�k(W ) = λ(W ) and then the estimate holds (with equality) immediately. We
now fix i with 1  i < n� k. For each Xi 2 R

i such that W (Xi) is non-empty, the function uW (Xi, ·) is
an admissible test function for the first eigenvalue on W (Xi). Therefore,

n�k
X

`=i+1

Z

W (Xi)

�

�∂x`
uW (Xi, X

0
n�k�i)

�

�

2
dX 0

n�k�i � µ(Xi;W )

Z

W (Xi)

�

�uW (Xi, X
0
n�k�i)

�

�

2
dX 0

n�k�i

� µ⇤
i (W )

Z

W (Xi)

�

�uW (Xi, X
0
n�k�i)

�

�

2
dX 0

n�k�i.
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Since this holds for each Xi, we integrate in Xi and then use it in (5) to get

µ⇤
i (W )

Z

W

|uW (x)|
2
dx+

i
X

`=1

Z

W

|∂x`
uW (x)|

2
dx  λ(W )

Z

W

|uW (x)|2 dx.

The estimate in the proposition then follows from the definition of δi(W ). ⇤

As before, we set u(x) = uΩ(x), λ = λ(Ω), and for ease of notation, we write µ(Yi;Ω) = µ(Yi), µ
⇤
i = µ⇤

i (Ω).
Using Proposition 2.2, in order to prove Theorem 1.2 it is sufficient to establish the following eigenvalue
bounds.

Proposition 2.3 For all j, 1  j  n, there exists a constant Cj,n such that

µ⇤
j  λ  µ⇤

j + C2
j,nN

�2/3
j .

From Proposition 2.2 we have λ � µ⇤
j � 0, and so we only need to prove the upper bound. Since

µ⇤
n = 0, and Ω has inner radius comparable to Nn = 1, the estimate in the proposition certainly holds

for j = n. This is because the Dirichlet eigenvalues are monotonic with respect to inclusion. We will
prove Proposition 2.3 by induction on j (starting with j = n as the base case, and then decreasing j). To
establish the inductive step we will use the variational formulation of the first Dirichlet eigenvalue. We
will construct an appropriate test function involving the eigenfunctions corresponding to the minimal
eigenvalue µ⇤

j of the j-dimensional cross-sections of Ω. To demonstrate the method let us first use it to
prove the proposition in the two dimensional case. In two dimensions, the estimate in Proposition 2.3 is
also contained in the work of Jerison [18] and Grieser-Jerison [17]. The estimate in Proposition 2.3 for
j = n� 1 is also given in [6] (see the proof of Theorem 1.5 and in particular equation (4.8)) and [7] (see
the proof of Theorem 1.1 and in particular equation (2.2)). There, explicit eigenvalue bounds are found
using the monotonicity of Dirichlet eigenvalues with respect to inclusion.

Proof of Proposition 2.3 in two dimensions: In the two dimensional case, we just need to consider j = 1.
After a translation along the x1-axis, we may assume that the minimal value µ⇤

1 = µ1(Y1) is attained at
Y1 = 0. (Note that this point is at a point where the height of the domain Ω in the x2-direction is largest.)
Let ψ(x2) be the corresponding L2(Ω(0))-normalized first Dirichlet eigenfunction of the interval Ω(0),
extended to be zero outside of Ω(0). By the properties of the John ellipsoid of Ω, we can find a point
x = (x1, x2) 2 Ω with |x1| = N1, and so without loss of generality, we assume that x⇤ = (N1, x

⇤
2) 2 Ω for

some x⇤
2. By translating in the x2-direction we may assume that x⇤

2 = 0, and after this translation there
still exists a constant C such that |x2|  C on the support of ψ(x2).

We now define a test function that we can use in the variational formulation of the first eigenvalue
λ: We set v(x1, x2) to be the function

v(x1, x2) = χ(x1)ψ (x2N1/(N1 � x1)) . (6)

Here χ(x1) � 0 is a smooth cut-off function, such that

χ(x1) = 1 for 1
2N

1/3
1  x1  N

1/3
1 ,

χ(x1) = 0 for x1 � 2N
1/3
1 , x1  1

4N
1/3
1 .

The function χ(x1) can in particular be chosen so that |χ0(x1)|  CN
�1/3
1 . The domain Ω contains

the interval Ω(0) and the point x⇤ = (N1, 0), and so also contains the convex hull of these two sets.
Therefore, for each x1 2 [0, N1], the cross-section Ω(x1) contains the interval N1�x1

N1
Ω(0). In particular,

this ensures that v(x1, x2) is equal to zero on the complement of Ω, and we can use it in the variational
formulation of the first eigenvalue λ. That is,

λ 

R

Ω
|rv(x)|

2
dx

R

Ω
|v(x)|2 dx

. (7)
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We can write the right hand side of (7) as

R

Ω
χ(x1)

2 N2
1

(N1�x1)2
|ψ0 (x2N1/(N1 � x1))|

2
dx

R

Ω
χ(x1)2 |ψ (x2N1/(N1 � x1))|

2
dx

+

R

Ω
|∂x1

v(x)|
2
dx

R

Ω
|v(x)|2 dx

,

and on the support of χ(x1) we have

�

�

�

�

N1

N1 � x1
� 1

�

�

�

�

 CN
�2/3
1 . (8)

Therefore, since ψ(x2) is an eigenfunction on Ω(0) with eigenvalue µ⇤
1, we have

λ  µ⇤
1 + CN

�2/3
1 +

R

Ω
|∂x1

v(x)|
2
dx

R

Ω
|v(x)|2 dx

. (9)

The x1-derivative of v is given by

∂x1
v(x1, x2) = χ0(x1)ψ (x2N1/(N1 � x1))� χ(x1)

x2N1

(N1 � x1)2
ψ0 (x2N1/(N1 � x1)) . (10)

We have |χ0(x1)|  CN
�1/3
1 , |ψ0 (x2N1/(N1 � x1)) |  C, and |x2|  C on the support of ψ. Combining

this with the estimate N1/(N1 � x1)
2  CN�1

1 on the support of χ(x1), from (9) we obtain

λ  µ⇤
1 + CN

�2/3
1 ,

as required. ⇤

Remark 2.1 In the above proof, we could have chosen the cut-off function to have been adapted to an
interval of length N↵

1 for any 0 < α < 1. A larger value of α improves the estimate in (10), while a
smaller value of α improves the estimate in (8). The exponent α = 1

3 is chosen to optimize the total
overall error from these two estimates.

Remark 2.2 In the 2 dimensional case, it is straightforward to obtain an explicit estimate on the con-
stants Cj,n given in the statement of Theorem 1.2: For j = 2, since Ω contains a disc of radius 1, which
has first eigenvalue given by the square of the first zero α0,1 of the Bessel function J0(r), we can set
C2,2 = α0,1. To get an explicit estimate for j = 1, we first note that Ω contains an isosceles triangle with

base of length π (µ⇤
1)

�1/2
� 1 and height 1

4N1. Within this triangle is a rectangle of dimensions N
1/3
1

and π (µ⇤
1)

�1/2
⇣

1� 4N
�2/3
1

⌘

, which has an explicit first Dirichlet eigenvalue leading to

λ  µ⇤
1

⇣

1� 4N
�2/3
1

⌘�2

+ π2N
�2/3
1

 µ⇤
1 +

 

8µ⇤
1

(1� 4N
�2/3
1 )2

+ π2

!

N
�2/3
1 .

Since µ⇤
1  π2, this gives an explicit estimate for C1,2 of

C2
1,2 

8π2

(1/2)2
+ π2 = 33π2.

whenever N
2/3
1 � 8. If N

2/3
1 < 8, then we can use the estimate λ  α2

0,1  33π2N
�2/3
1 to obtain the

same estimate for C1,2.

We now prove the general case.
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Proof of Proposition 2.3: We first recall that the estimate in the proposition holds for j = n, and that
the lower bound holds for all j. We will prove the upper bound by induction on j, using j = n as the
base case. Our inductive hypothesis is that there exists constants Cj such that

λ  µ⇤
j + CjN

�2/3
j (11)

for k + 1  j  n, and we will prove that there exists a constant Ck such that (11) holds for j = k.
Analogously to the two dimensional case, we will prove this estimate by using an appropriate test function
in the variational formulation for λ. The minimal value µ⇤

k is given by µ(Yk) for some Yk 2 R
k, and

we let ψ(X 0
n�k) be the L2(Ω(Yk))-normalized first Dirichlet eigenfunction of the (n � k)-dimensional

cross-section Ω(Yk), and extended to be zero outside Ω(Yk). (We recall that in our notation X 0
n�k =

(xk+1, xk+2, . . . , xn).) Our test function will involve this eigenfunction, and we first use Proposition 2.2
to establish bounds on the components of the gradient of ψ(X 0

n�k), under the inductive hypothesis.

Lemma 2.4 Assuming that the estimate in (11) holds for j satisfying k + 1  j  n, there exists a
constant C (depending on the constants Cj) so that for each such j in this range,

Z

Ω(Yk)

�

�∂xj
ψ(X 0

n�k)
�

�

2
dX 0

n�k  CN
�2/3
j

Z

Ω(Yk)

�

�ψ(X 0
n�k)

�

�

2
dX 0

n�k = CN
�2/3
j .

Proof of Lemma 2.4: The eigenfunction ψ(X 0
n�k) on Ω(Yk) has eigenvalue µ⇤

k, and analogously to Defi-
nition 2.1, for k + 1  j  n, we define µ⇤

k,j to be the minimum eigenvalue over all (n� j)-dimensional
cross-sections of Ω(Yk) in the X 0

n�j variables. Since Ω(Yk) ⇢ Ω, by the definitions of the minima µ⇤
k,j

and µ⇤
j we automatically have

µ⇤
j  µ⇤

k,j .

Combining this with the inductive hypothesis in (11), for each k + 1  j  n we obtain

µ⇤
k  λ  µ⇤

j + CjN
�2/3
j  µ⇤

k,j + CjN
�2/3
j . (12)

Therefore, setting W to be the (n� k)-dimensional convex domain Ω(Yk), and using the notation from
Definition 2.1 we have

δi(W ) = λ(W )� µ⇤
i (W ) = µ⇤

k � µ⇤
k,i+k  Ci+kN

�2/3
i+k .

for 1  i  n � k. The gradient bounds in the statement of the lemma then immediately follow from
Proposition 2.2, using that ψ(X 0

n�k) is L
2(Ω(Yk))-normalized. ⇤

We now define the test function that we will use to bound λ. We first translate the domain Ω in the
Xk-variables so that the point Yk with µ(Yk) = µ⇤

k is at the origin, which we denote by 0k. Then, using
the above notation, ψ(X 0

n�k) is the first Dirichlet eigenfunction of the (n� k)-dimensional cross-section
Ω(0k). By the properties of the John ellipsoid of Ω, there exists a k-dimensional parallelepiped P of
dimensions comparable to N1 ⇥ N2 ⇥ · · · ⇥ Nk contained in the intersection of Ω with a k-dimensional
plane {X 0

n�k = constant}. By translating Ω in theX 0
n�k variables we will assume that this k-dimensional

plane is {X 0
n�k = 00n�k}. Note that after this translation, there exists a constant C such that

projj(Ω(0k)) ⇢ {|xj |  CNj} (13)

for k + 1  j  n. Here projj(Ω(0k)) is the projection of Ω(0k) onto the xj-axis. Since Ω contains the
above parallelepiped P , there exists a (k � 1)-dimensional sphere contained in {X 0

n�k = 00n�k}, centred
at the origin 0k in the Xk-variables, of radius R1 with R1 ⇠ N1, and with the following property: There
exists a direction e in the Xk-variables and number θk, with θk ⇠ Nk/N1, such that the subset, Sk, of
the sphere making an angle at most θk with e, is contained within Ω. (Note that in the case of k = 1, the
sphere is 0-dimensional, and the above reduces to the existence of a point in Ω at a distance comparable
to N1 from the (n� 1)-dimensional cross-section Ω(01).)
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We now let Γk be the k-dimensional cone in the Xk-variables generated by the set Sk, with vertex

at the origin 0k. This cone Γk contains a k-dimensional cube of side length comparable to N
1/3
k , at

a distance comparable to N1N
�2/3
k from the origin. We can therefore define a cut-off function χ(Xk)

adapted to this cube (so that χ(Xk) = 1 in the middle half of the cube, and 0 outside the cube), with

|rχ(Xk)|  CN
�1/3
k . Our test function is then

w(x) = w(Xk, X
0
n�k) = χ(Xk)ψ

�

X 0
n�kR1/(R1 � rk)

�

. (14)

Here rk = (x2
1 + x2

2 + · · ·+ x2
k)

1/2 is the distance to the origin 0k in the Xk-plane. Since Ω is convex, it
contains the convex hull of the (n� k)-dimensional cross-section Ω(0k) and the set Sk. Therefore, given
Xk 2 Sk, s 2 [0, 1], the (n� k)-dimensional cross-section of Ω at sXk 2 Γk contains the set

✓

R1 � |sXk|

R1

◆

Ω(0k) = (1� s)Ω(0k).

Thus, the test function w(x) vanishes outside of Ω, and so can be used to obtain an upper bound on λ.
We therefore have

λ 

R

Ω
|rXk

w(x)|
2
dx

R

Ω
|w(x)|

2
dx

+

R

Ω

�

�

�
rX0

n�k
w(x)

�

�

�

2

dx
R

Ω
|w(x)|

2
dx

, (15)

and we deal with each term separately. We can write the second term in (15) as

R

Ω

R2
1

(R1�rk)2
|χ(Xk)|

2
�

�

�

⇣

rX0

n�k
ψ
⌘

�

X 0
n�kR1/(R1 � rk)

�

�

�

�

2

dx
R

Ω
|χ(Xk)|

2 �
�ψ
�

X 0
n�kR1/(R1 � rk)

�
�

�

2
dx

, (16)

and on the support of χ(Xk) we have
�

�

�

�

R1

R1 � rk
� 1

�

�

�

�

 CN
�2/3
k . (17)

Therefore, since ψ(X 0
n�k) has eigenvalue µ

⇤
k on Ω(0), we can bound the quantity in (16) by µ⇤

k+CN
�2/3
k .

We now turn to the first term in (15). We can bound the magnitude of rXk
w(x) by

�

�(rχ(Xk))ψ
�

X 0
n�kR1/(R1 � rk)

��

�+

�

�

�

�

χ(Xk)
R1

(R1 � rk)2
X 0

n�k ·
⇣

rX0

n�k
ψ
⌘

�

X 0
n�kR1/(R1 � rk)

�

�

�

�

�

. (18)

Since |rχ(Xk)|  CN
�1/3
k , the contribution from the first term in (18) leads to a contribution of size

CN
�2/3
k to (15). Using |R1 � rk| � cN1, together with the lengths of the projections of Ω(0) onto each

axis from (13), we can bound the second term in (18) by

CN�1
1

n
X

j=k+1

Nj

�

�

�

∂xjψ
� �

X 0
n�kR1/(R1 � rk)

��

� .

Therefore, by Lemma 2.4, we can bound the contribution to (15) from the second term in (18) by

CN�2
1

n
X

j=k+1

N2
j N

�2/3
j = CN�2

1

n
X

j=k+1

N
4/3
j .

Since N1 � N2 � · · · � Nn, this can be bounded by CN�2
1 N

4/3
k+1  CN

�2/3
k . Putting everything together,

we obtain

λ  µ⇤
k + CN

�2/3
k .

This is precisely the inductive step, and so completes the proof of the proposition. ⇤
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Remark 2.3 Denoting λm to be the m-th Dirichlet eigenvalue of Ω, a small modification of the proof of
Proposition 2.3 ensures the existence of a constant Cj,m,n such that

µ⇤
j  λm  µ⇤

j + Cj,m,nN
�2/3
j . (19)

The only change is that in place of χ(Xk), we require m functions χm(Xk), with |rχm(Xk)|  CmN
�1/3
k ,

chosen such that

wm(x) = χm(Xk)ψ(X
0
n�kR1/(R1 � rk))

are orthogonal. The estimate in (19) in particular ensures that if um is the corresponding m-th eigen-
function, then it also satisfies the derivative estimates in Theorem 1.2 with a constant Cj,m,n.

3 A lower bound on the L
2(Ω)-norm of the eigenfunction

In this section we prove Theorem 1.1 by combining the derivative estimates from Theorem 1.2 with the
log concavity of the eigenfunction. Since u is log concave, the superlevel set Ω1/2 is a convex subset of
Ω. In particular, we can associate the John ellipsoid E1/2 to Ω1/2. Let vj be the unit directions along
which the axes of E1/2 lie, and let Mj be the corresponding lengths of the axes. We also let ej be the
unit directions along the cartesian coordinate axes. The first step is to show that Ω1/2 determines the
L2(Ω)-norm of u.

Lemma 3.1 There exist constants C1, c1 > 0 such that

c1

n
Y

j=1

Mj 

Z

Ω

|u(x)|2 dx  C1

n
Y

j=1

Mj .

Proof of Lemma 3.1: The lower bound follows immediately from the definitions of Mj and the properties
of the John ellipsoid. To obtain the upper bound we use the log concavity of u: The projection of the
superlevel set Ω1/2 onto each vj axis is comparable to Mj . The function log(u) is concave and attains a
maximum of 0 in Ω. Therefore, the projection of the sets

Ω2�m = {x 2 Ω : u(x) � 2�m} = {x 2 Ω : |log(u(x))|  m |log(1/2)|}

onto each vj axis is at most a constant multiplied by mMj . Therefore,

Z

Ω

|u(x)|2 dx =

1
X

m=1

Z

Ω
2�m\Ω

2�m+1

|u(x)|2 dx  C

n
Y

j=1

Mj

1
X

m=1

mn2�2(m�1),

and this gives the desired upper bound in the lemma. ⇤

Remark 3.1 In the two dimensional case, the constants c1 and C1 can be given explicitly by

c1 =
π

16
, C1 = 8π

1
X

m=1

m22�2(m�1) = 96π.

We now reorder the directions vj to ensure that M1 � M2 � · · · � Mn, and from the lower bound in
Lemma 3.1 to prove Theorem 1.1 it is sufficient to prove the following lower bound on each Mj .

Proposition 3.2 There exists a constant c > 0 such that for each j, 1  j  n, the axis length Mj

satisfies the lower bound Mj � cN
1/3
j .

Proof of Proposition 3.2: Since Ω has inner radius comparable to 1, the point where u attains its maximum
is at a distance at least c > 0 from the boundary (see Theorem 1 in [21] in two dimensions, and Theorem
1.6 in [14] in higher dimensions). Therefore, by interior elliptic estimates, Mn is certainly comparable to
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1. Given k, with 1  k  n� 1, let wk be a unit direction in R
n which lies in the projection of Rn onto

the first k coordinates. That is, wk is a linear combination of ej for 1  j  k. We then consider the
cross-sections of Ω

Ωwk
(t) = {x 2 Ω : x · wk = t},

which as t varies give the (n� 1)-dimensional slices of Ω which are orthogonal to wk. For each t, we can
consider the L2(Ωwk

(t))-norm squared of u,
Z

Ωwk
(t)

|u(x)|2 dσn�1(x;wk), (20)

where dσn�1(x;wk) is the flat (n�1)-dimensional surface measure on Ωwk
(t). Suppose that the expression

in (20) is maximized when t = t⇤, and set

B⇤
k =

Z

Ωwk
(t⇤)

|u(x)|2 dσn�1(x;wk).

We can now use Theorem 1.2 to obtain a lower bound on the L2-norm of u in terms of B⇤
k .

Lemma 3.3 With Ck,n as in the statement of Theorem 1.2, for each k, 1  k  n, and any such
direction wk,

Z

Ω

|u(x)|2 dx � 1
4 (Ck,n)

�1/2B⇤
kN

1/3
k .

Proof of Lemma 3.3: Fix a point xt⇤ 2 Ωwk
(t⇤) and for each s choose xs such that (xt⇤ �xs) ·wk = t⇤�s

and |xt⇤ � xs| = |t⇤ � s|. Then, extending u by zero outside Ω, for any t we can write

u(xt) = u(xt⇤) +

Z t

t⇤
∂wk

u(xs) ds,

where ∂wk
u is the directional derivative wk ·ru. This implies that

|u(xt)|
2 � 1

2 |u(xt⇤)|
2 �

✓
Z t

t⇤
∂wk

u(xs) ds

◆2

� 1
2 |u(xt⇤)|

2 � |t� t⇤|

�

�

�

�

Z t

t⇤
|∂wk

u(xs)|
2
ds

�

�

�

�

.

We now integrate over the (n� 1) variables orthogonal to wk. Since wk lies in the projection of Rn onto
the first k coordinates, we can use Theorem 1.2 with j = k to bound ∂wk

u. We therefore have
Z

Ωwk
(t)

|u(x)|2 dσn�1(x;wk) �
1
2

Z

Ωwk
(t⇤)

|u(x)|2 dσn�1(x;wk)� Ck,n|t� t⇤|N
�2/3
k

Z

Ω

|u(x)|2 dx. (21)

In particular, for

|t� t⇤|  1
4C

�1
k,nN

2/3
k

✓
Z

Ω

|u(x)|2 dx

◆�1 Z

Ωwk
(t⇤)

|u(x)|2 dσn�1(x;wk),

the estimate in (21) implies that
Z

Ωwk
(t)

|u(x)|2 dσn�1(x;wk) �
1
4

Z

Ωwk
(t⇤)

|u(x)|2 dσn�1(x;wk) =
1
4B

⇤
k .

Therefore,

Z

Ω

|u(x)|2 dx � 1
16C

�1
k,nN

2/3
k

✓
Z

Ω

|u(x)|2 dx

◆�1

(B⇤
k)

2
,

and rearranging implies the estimate in the lemma. ⇤
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The final step is to show that for each k, 1  k  n, we can choose such a unit direction wk lying in
k-dimensional space spanned by e1, e2, . . . , ek, such that

B⇤
k � c3

n
Y

j=1,j 6=k

Mj . (22)

Inserting this in Lemma 3.3 and using the upper bound in Lemma 3.1 implies that

C1

n
Y

j=1

Mj �

Z

Ω

|u(x)|2 dx � 1
4c3C

�1/2
k,n N

1/3
k

n
Y

j=1,j 6=k

Mj . (23)

Thus (22) implies that Mk is bounded from below by a multiple of N
1/3
k .

To prove Proposition 3.2 (and hence also Theorem 1.1), we are thus left to prove (22), and we first
consider k = 1: Consider the (n� 1)-dimensional cross-sections of Ω1/2 perpendicular to w1 = e1. Since
Ω1/2 has volume comparable to

Qn
j=1 Mj and diameter comparable to M1, the volume of one of these

cross-sections must be at least comparable to
Qn

j=2 Mj . In particular, this ensures thatB⇤
1 � 1

4c
Qn

j=2 Mj .

For k � 2, we first choose a unit direction wk in the intersection of the k-dimensional plane spanned
by e1, e2, . . . , ek and the (n� k + 1)-dimensional plane spanned by vk, vk+1, . . . , vn. Taking the (n� 1)-
dimensional cross-sections of Ω1/2 perpendicular to wk, the volume of one of these cross-sections must
be at least c

Qn
j=1,j 6=k Mj . To see this, we first note that there is a (n� k+ 1)-dimensional cross-section

of Ω1/2 which is perpendicular to v1, v2, . . . , vk�1 and contains a (n�k+1)-dimensional ellipsoid E with
axes of lengths Mk,Mk+1, . . . ,Mn. In particular, the volume of one of the (n � k)-dimensional cross-
sections of E which is perpendicular to wk must be at least c

Qn
j=k+1 Mj . But wk is also perpendicular to

v1, v2, . . . , vk�1, and the projection of Ω1/2 onto the vj-direction is comparable to Mj . Therefore, there
exists a (n� k) + (k � 1) = (n� 1)-dimensional cross-section of Ω1/2 perpendicular to wk of volume at

least c
⇣

Qk�1
j=1 Mj

⌘⇣

Qn
j=k+1 Mj

⌘

. This ensures that B⇤
k � 1

4c
Qn

j=1,j 6=k Mj , and (22) holds. ⇤

Remark 3.2 In the two dimensional case, the above argument can give an explicit lower bound on M1

and M2, and hence on the constant appearing in Theorem 1.1: When k = 1, a cross-section of Ω1/2

perpendicular to w1 = e1 must have length at least ⇡

16M2, and the argument above leads to the explicit
lower bound on B⇤

1 of B⇤
1 � ⇡

64M2. Inserting this lower bound for B⇤
1 in the estimate in Lemma 3.3 as

in (23), and using the bounds in Remark 3.1, we obtain

96πM1M2 � 1
4C

�1/2
1,2

�

⇡

64M2

�

N
1/3
1 ,

and so

M1 � 1
96 · 1

256C
�1/2
1,2 N

1/3
1 .

When k = 2, a cross-section of Ω1/2 perpendicular to w2 = v2 must have length at least M1, and this

leads to a lower bound on B⇤
2 of B⇤

2 � 1
4M1. This then leads to the lower bound on M2 of

M2 � 1
96⇡ · 1

16C
�1/2
2,2 N

1/3
2 .

From Lemma 3.1 and Remark 3.1, we have the lower bound

kukL2(Ω) �
⇡
1/2

4 M
1/2
1 M

1/2
2 .

Therefore, the above estimates on M1 and M2 lead to the explicit lower bound

c2 � 1
96 · 1

162C
�1/4
1,2 C

�1/4
2,2

given in the statement of Theorem 1.2. Inserting these lower bounds for B⇤
1 and B⇤

2 in the estimate in
Lemma 3.3 as in (23), and using the bounds in Remark 3.1, then gives an explicit lower bound on M1

and M2 in terms of the constants Cj,n appearing in Proposition 2.3 and Remark 2.2.
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Remark 3.3 The estimate in Theorem 1.1 will not hold for all non-convex domains, even for those with
volume comparable to its diameter. For example, consider the dumbbell domain where N1 � 1 unit balls
are joined in a line to a ball of radius 2 by a series of thin necks. As the widths of the necks tends to 0,
the first Dirichlet eigenfunction also tends to zero in all but the ball of radius 2. Therefore, an estimate
on the L2-norm as in Theorem 1.1 for these domains cannot hold uniformly as the width of the necks
decrease.

However, there are many non-convex domains for which the estimates in Theorem 1.2 will still hold.
As seen in the proof of Proposition 2.3, the convexity of the domain Ω is only used at those parts of Ω

within a distance N
1/3
k of the slices Yk leading to the minimal eigenvalues µ⇤

k. In the two dimensional
case, estimates on the location of these slices within the domain are known ([18], [17]). It would be very
interesting to establish the analogous estimates in higher dimensions (see Section 4 for further details
and questions). To convert the estimates in Theorem 1.2 to prove Theorem 1.1, we use in particular the
convexity of the superlevel set Ω1/2 in order to estimate the volume of various k-dimensional slices of
Ω1/2, which should also hold for domains which are suitably close to a convex set.

4 The two-dimensional case

Theorem 1.1 provides a lower bound on the L2(Ω)-norm of u. In two dimensions, Jerison and Grieser
have given a precise characterization of the shape of u in terms of the geometry of Ω. To state this, we
first rotate so that the projection of the planar domain onto the x2-axis is the smallest and dilate so that
this projection is of length 1. Then, we can write Ω as

Ω = {(x1, x2) 2 R
2 : a  x1  b, f1(x1)  x2  f2(x1)}.

Here b � a is comparable to N1, f1, f2 are convex, concave functions respectively, and 0  h(x) =
f2(x1)� f1(x1) is a concave function, attaining a maximum of 1.

Definition 4.1 ([18]) Define L to be the largest value such that 1� L�2  h(x1)  1 on an interval I
of length L.

Since h(x1) is concave, the value of L satisfies cN
1/3
1  L  CN1, and L ⇠ N1, L ⇠ N

1/3
1 is attained

when Ω is a rectangle, circular sector respectively. Any intermediate value of L can be obtained by, for
example, forming the trapezoid of a rectangle of diameter L attached to a right angled triangle. In [18],
[16], [17], Grieser and Jerison obtain estimates on the first and second Dirichlet eigenfunction in terms of
this length scale L. Their approach is to perform an approximate separation of variables in Ω. Since the

cross-section of Ω at x1 has eigenvalue ⇡
2

h(x1)2
, a separation of variables leads to the ordinary differential

operator

L = �
d2

dx2
1

+
π2

h(x1)2

on the interval [a, b]. Grieser and Jerison approximate λ and u in terms of the first eigenvalue and
eigenfunction of L, and the approximation becomes stronger as the diameter of Ω increases. As a
consequence of their work, the following L2(Ω) bound holds in this planar case.

Theorem 4.2 (Grieser-Jerison, [17]) There exists an absolute constant C such that the superlevel set
{u > 1

2 maxΩ u} has diameter bounded between C�1L and CL, and

C�1L1/2 kukL1(Ω)  kukL2(Ω)  CL1/2 kukL1(Ω) .

Using the definition of L from Definition 4.1 to compare the estimate in Theorem 4.2 with the lower

bound in Theorem 1.1 in two dimensions, we note the following. When L is comparable to N
1/3
1 , such as

for a circular sector or right angled triangle, the bounds in the two theorems agree and in particular the

lower bound in Theorem 1.1 is sharp. However, for L � N
1/3
1 Theorem 4.2 says that the eigenfunction

12



u has spread out by more than N
1/3
1 in the x1-direction and so the L2(Ω)-norm of u is larger than that

given in Theorem 1.1.
In higher dimensions, we can begin an analogous discussion. Consider the thin sector in R

n of the
form

{(r, θ) : 0 < r < N1, θ 2 Dn�1},

where Dn�1 is a geodesic disc of radius 1 in Sn�1. As shown in [4], for this domain, the lower bound
given in Theorem 1.1 is sharp. If the domain Ω is instead a parallelepiped, then the superlevel set
{u > 1

2 maxΩ u} takes up a uniform portion of the whole domain. For a parallelepiped, this leads to the
estimate

kukL2(Ω) ⇠ Volume(Ω)1/2 kukL1(Ω) ⇠

n
Y

j=1

N
1/2
j kukL1(Ω) .

Therefore, in dimensions higher than two it is natural to ask whether one can define analogous length
scales to that of L from Definition 4.1 which govern the shape of the first eigenfunction.

Question 4.3 Fix c, with 0 < c < 1. Can we use the geometry of Ω to determine n length scales
M1 � M2 � · · · � Mn, and n directions v1, v2, . . . , vn in R

n such that the John ellipsoid of

{x 2 Ω : u(x) > cmax
Ω

u}

has axes along the directions vj and of lengths comparable to Mj?

This question is open in any dimension higher than two. Let us normalize Ω ⇢ R
n so that it has inner

radius equal to 1, and its projection onto the xn-axis is of length comparable to 1. Then, we can certainly
choose vn to point in the xn-direction and take Mn ⇠ 1. The question is then to determine the remaining
n� 1 length scales and orientation. The results of this paper show that the lengths Mj must satisfy the

lower bound Mj � cN
1/3
j . In [2], another preliminary step towards answering this question has been

carried out: Consider the operator

�∆x1,x2
+

π2

h(x1, x2)2
, (24)

with Dirichlet boundary conditions on a two dimensional convex domain D. Here h(x1, x2) is a concave
function on D, attaining a minimum of 1. The first eigenfunction of this operator still has convex
superlevel sets and in [2], length scales L1, L2 and an orientation of the domain D are found in terms of
D and h, which govern the intermediate level sets of this first eigenfunction. In particular, the L2(D)-

norm is comparable to L
1/2
1 L

1/2
2 multiplied by the L1(D)-norm of the eigenfunction.

The operator in (24) can be used to make progress of answering the question in the three dimensional
case. For three dimensional domains of the form

Ω = {(x1, x2, x3) 2 R
3 : (x1, x2) 2 D, 0  x3  h(x1, x2)},

an approximate separation of variables into (x1, x2) and x3-variables leads to the operator in (24). It

is shown in [3] that when L1 and L2 are sufficiently close in size (L1  L
3/2��

2 for any fixed δ > 0),
this separation of variables provides a good approximation to the first eigenfunction of Ω. In particular,
referring back to Question 4.3, in this case we can set M1 = L1, M2 = L2, M3 = 1, and the orientation
of D also governs the behaviour of the first Dirichlet eigenfunction of Ω. To make further progress
towards fully answering Question 4.3, even in the three dimensional case, a key step is to determine the
orientation of the superlevel sets of u, as in general it will not be the same as that of Ω itself. Especially
as the dimension of Ω increases, it is unclear how to determine this orientation.
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[8] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prekopa Leindler

theorems, including inequalities for log concave functions, and with an application to the diffusion
equation, J. Funct. Anal. 22 (1976), 366–389.

[9] L. Brasco and R. Magnanini, The heart of a convex body, in Geometric properties for parabolic and
elliptic PDEs, 49–66, Springer, Milan, 2013.

[10] L. Brasco, R. Magnanini, and P. Salani, The location of the hot spot in a grounded convex conductor,
Indiana Univ. Math. J. 60 no. 2 (2011), 633–659.
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