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Abstract

We study the first Dirichlet eigenfunction of the Laplacian in a n-dimensional convex domain.
For domains of a fixed inner radius, estimates of Chiti [I1], [I2], imply that the ratio of the L*-
norm and L°°-norm of the eigenfunction is minimized when the domain is a ball. However, when
the eccentricity of the domain is large the eigenfunction should spread out at a certain scale and
this ratio should increase. We make this precise by obtaining a lower bound on the L?-norm of the
eigenfunction and show that the eigenfunction cannot localize to too small a subset of the domain.
As a consequence, we settle a conjecture of van den Berg, (4], in the general n-dimensional case. The
main feature of the proof is to obtain sufficiently sharp estimates on the first eigenvalue in order to
estimate the first derivatives of the eigenfunction.

1 Introduction and statement of results

Let 2 C R™ be a bounded convex domain and let A be the first eigenvalue of the Dirichlet Laplacian on
Q). We denote the corresponding eigenfunction by u so that

(A+Xu=01inQ
u = 0 on 0f).

This first eigenfunction is of one sign, and we choose it so that u(xz) > 0 in . Our starting point for
studying the behaviour of u and its level sets is that the convexity of ) ensures that u is log-concave,
[8]. In particular the superlevel sets

{r e Q:u(x) >c}

are convex subsets of 2. It is natural to study the shape of the level sets of u and how they depend
on the geometry of  and the level under consideration. The quantity |u(x)|? can be interpreted as an
(unnormalized) density for a free quantum particle in the domain Q. The shape and location of the
superlevel sets where u is comparable to its maximum value therefore correspond to the parts of £ where
the particle is most likely to be found. In this paper, we will obtain a lower bound on the L?(2)-norm
of u in terms of its L°°(2)-norm and length scales coming from the shape of Q (see Theorem below).
The regions of 2 where Laplace eigenfunctions are of large magnitude relative to the rest of the domain,
has received recent attention. For example, the torsion function has been used as a landscape function for
predicting these regions of 2, [13], [1], [22]. In [5], an upper bound on the efficiency ratio is given for a class
of horn-shaped domains. This efficiency ratio is a weighted measure of the ratio of the L' and L> norms
of the first eigenfunction, and they then use this upper bound to provide sequences of domains €2,,, where
the first eigenfunction u,, localizes to a small subset of the domain. That is, they demonstrate a sequence

of domains €2,,, and measurable sets A,, C €, such that lim,, o [Am|/|Qm| = 0, ||um||L2(Qm) =1,
and
. 2
'nll—{noo ‘um| =1 (1)
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While in general the first eigenfunction can localize to a small subset of ) relative to € itself, in the above
sense, our result will place a restriction on how small this region can be. We will do this by studying
lower bounds on the L?(2)-norm of the eigenfunction.



In [11], [12], Chiti provides a lower bound on the L?(Q2)-norm of u of the form
2y = €, inrad(2)"? |fu] o (g (2)

Here inrad(2) is the inner radius of Q. In [10], a lower bound on the L™(2)-norm of the eigenfunction in
its contact set is also given in terms of its L>°(€)-norm, which is then used to show that the maximum
of the eigenfunction is in the heart of the convex domain. See also [9] for further properties of the heart
of a convex domain. The constant ¢}, > 0 in depends only on the dimension, and is explicitly given
in terms of Bessel functions (and their zeros). (In fact, this bound holds for any bounded, connected
domain ©.) Moreover, the constant c;, cannot be improved since equality in (2) holds when € is a ball.
However, for 2 convex and when the diameter of €) is large compared to its inner radius, one expects
the eigenfunction to spread out along the diameter of Q, and for the L?(2)-norm to increase relative to
the L>°(Q)-norm. In terms of the estimate in , the question is then whether an estimate of the form

ull p2(q) > cn (diam(€2)/inrad(€2)) inrad(2)™/? ||ul| L g (3)

holds for all convex €2, and some uniform a > 0. Repeated applications of the Harnack inequality in
overlapping balls is not sufficient to establish for any o > 0, and so any improvement of must
use the fact that u is an eigenfunction in a fundamental way. Kroger, |20, in two dimensions, and van
den Berg, |4], in higher dimensions studied the first eigenfunction of a thin sector. Via a separation of
variables in polar coordinates, and the properties of the resulting Bessel function in the radial variable,
this example of the sector ensures that the maximal value of « for which could hold is o = % Based
on the intuition that the sector should be the convex domain for which the eigenfunction spreads out the
least, van den Berg made the following conjecture:

Conjecture 1 ([4]) There exists a constant ¢, > 0, depending only on the dimension n, such that
HUHL2(Q) 2 cn (diam(ﬂ)/inrad(ﬂ))1/6 inrad(Q)"/? HU‘HLOO(Q) :

The two dimensional case of this conjecture has been established in [15]. Their proof uses an eigenvalue
bound for the first eigenvalue of a class of one dimensional Schrédinger operators, and the work of Grieser
and Jerison, [18], [I7], on the first eigenfunction of a convex, planar domain.

In this paper, we bound ||ul| L2(0) from below in the general n-dimensional case. We call K a John
ellipsoid associated to 0 C R™ if K is an open ellipsoid contained within £ and any other ellipsoid
contained within © has volume at most that of K. John’s lemma [19] ensures that such an ellipsoid K
exists, is unique, and the dilation of K about its centre with scaling factor n contains 2. We now fix the
John ellipsoid K and define N; to be the lengths of the axes of K with

Ny >Ny >--- > N,.

Our main theorem provides a lower bound on the scale at which the eigenfunction can localize by
establishing a lower bound on the L?(Q)-norm of u in terms of its L°°(Q)-norm, and the length scales
N;.
Theorem 1.1 There exists a constant ¢, > 0, depending only on the dimension n, such that

n—1

n 1/6
lull oy = en N/ TT (NG /N il ooy -

j=1

In particular, H;:ll (N]»/Nn)l/6 > (N1 /N,,)'/6, and by the properties of the John ellipsoid,
N; < diam(Q2) < niNq, N, <inrad(Q) < nN,.

Therefore, Theorem settles Conjecture In two dimensions, our methods can obtain an explicit
constant for ¢y (see Theorembelow).



Remark 1.1 Let My > My > --- > M, be the lengths of the axes of a John ellipsoid for the su-
perlevel set {x € Q : u(z) > Fmaxqu}. In the course of proving Theorem we will show that
M; > cn(Nj/Nn)l/?’Nn for some constant ¢, > 0. In terms of the localization statement in , this

theorem places a restriction on how small the sets A,, where the eigenfunctions localize can be.

To prove Theorem we first obtain an upper bound on the directional derivatives of v in terms of the
length scales N;. After a rotation we will assume that the axes of K lie along the coordinate axes.

Theorem 1.2 Foreach j, 1 < j < n, there exists a constant C; ,, depending only on j and the dimension
n, such that the derivative O, u(x) satisfies

_ -1/3
Haﬂ«‘juHLz(Q) < CjnN, (N /Ny) / Hu||L2(Q) :
In two dimensions, the constants Ci 2, Ca 2 have the explicit upper bounds
Cip < (33)1/27T, Cr2 < a1,

where a1 is the first zero of the Bessel function Jo(r). Forn =2, the constant ca appearing in Theorem
has an explicit lower bound in terms of C1 2 and Ca2 of

1 0_1/40_1/4.
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Remark 1.2 If we denote u,, to be the m-th Dirichlet eigenfunction of 2, then the estimate in Theorem
continues to hold, with a constant C;,, replaced by a constant Cy, ;. depending only on m, j, and n.

Via a dilation we can also assume that N, = 1 when proving these theorems, and by taking a constant
multiple of u, we also assume that maxgu = 1. To prove Theorem we will begin by using the

eigenfunction equation to write
/ |Vu|® dz = )\/ lu|? de,
Q Q
and we will also use the variational formulation of the first eigenvalue,

2
d
A= int ] oVl do
Jo [v]? da

We combine these to prove an upper bound on the eigenvalue \ in terms of the eigenvalues of the cross-
sections of € (see Proposition for the precise statement). This then reduces the proof of Theorem
nto obtaining sufficiently sharp upper bounds on the eigenvalues of (n — j)-dimensional cross-sections
of Q2. We prove the desired eigenvalue bounds by induction on j, and will carry out the proof in Section
To prove Theorem we will also use in a crucial way the log concavity of the eigenfunction u, [8].
In particular, this will allow us to reduce estimating the L?(Q)-norm of u to estimating the lengths of
the axes of a John ellipsoid associated to the superlevel set

:UGHS(Q),W#O}.

Qip={zeQ:ul) >3}.

The desired estimate follows from using the derivative bounds in Theorem and we will prove Theorem
in Section Finally, in Sectionwe discuss known estimates in the two dimensional case, and future
directions in higher dimensions. In [18], Jerison introduces a length scale L depending on the geometry
of the convex, planar domain, and together with Grieser uses it to study the shape of the first (and
second) eigenfunction, |17], [16]. In particular, their results imply comparable upper and lower bounds
on ||lull L2(q) 10 terms of this length scale L. It is natural to ask how to construct analogous length scales
controlling the shape of the first eigenfunction in higher dimensions, and in Section We discuss this in
more detail.

Remark 1.3 Throughout, constants which we will denote by C,Cq,cy etc, are constants which depend
only on the dimension. We also say that two quantities are comparable (and write as ~) if they can be
bounded in terms of each other up to a constant depending only on n.
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2 Gradient bounds for the eigenfunction

In this section we prove Theorem (1.2} The key step in the proof is to obtain appropriate upper bounds
on the eigenvalue \. In fact, we w111 carry out an inductive step, which will require estimates on the
first Dirichlet eigenvalue of (n — k)-dimensional cross-sections of 2 for 0 < k < n — 1. To write down
the eigenvalue bounds that we will establish, we first introduce the following notation: Given 4, with
1<i<n—k—1,and a point z € R"*, we write

xr = ($1,x2,--~,xn—k) (leXn k— z) Rnik’

with X; € RY, X! , . € R"*~ Now let W be a (n — k)-dimensional convex domain. For each Y; € R?,
we denote the (n —k —1)- d1mens1ona1 cross-sections of W by

W) ={z=(Xi,X, ;) eW:X;=Y;} CR""

For us, W will either be the original convex domain Q (with & = 0) or a (n— k)-dimensional cross-section
of Q, for some 1 < k < n — 1. The sets W(Y;) can also be viewed as (n — k — i)-dimensional convex
domains in R?~*~¢ and this is how we will view them below in order to study the Dirichlet eigenvalue
problem on W(Y;).

Definition 2.1 For a (n — k)-dimensional convexr domain W, let \(W) be its first Dirichlet eigenvalue.
Fori, with1 <i<n—k—1, and Y; € R, let u(Y;; W) be the first Dirichlet eigenvalue of W(Y;), and
define it (W) by

pi (W) = min p(Yi; W). (4)
We also formally define p’, . (W) =0, and then for 1 <i<n—Fk set

5;(W) = A(W) — i (W).

We can obtain gradient bounds on the first Dirichlet eigenfunction of W in terms of §;(W) via the
following proposition.

Proposition 2.2 Let uy (z) be the first Dirichlet eigenfunction of W. Then, for each 1 < i < n —k,
with §;(W) as in Deﬁnition the gradient bounds

> /W B, iy () e < 6,(W) /W fu ()2 da

hold. In particular, §;(W) > 0 for all i.

Proof of Proposition ' Since up is a Dirichlet eigenfunction with eigenvalue A(W) we have

/ [V &) do = AW) [ o () (5)

For i = n — k, we have d,_,(W) = A(W) and then the estimate holds (with equality) immediately. We
now fix ¢ with 1 <i <n—k. For each X; € R’ such that W (X;) is non-empty, the function uw (X;,-) is
an admissible test function for the first eigenvalue on W(X;). Therefore,

Z / |81£UW Xl’Xn k— z)‘2 dX’;lfkfi > M(X“W)/ ”U’W X’L’Xn k— z)|2 er/Lfkrfi
l=i+1 W(Xs)

> i (W) |UW(XiaX;L—k—i)} dX;,_;_
W(X;)
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Since this holds for each X;, we integrate in X; and then use it in to get

* 2 : 2 2
iz (W) /W @) de+ 3 /W|awuw<sc>| dz < A(W) /W fu ()2 do.

The estimate in the proposition then follows from the definition of é;(W). g

As before, we set u(x) = uq(z), A = M), and for ease of notation, we write u(Y;; Q) = u(Y;), puf = pi(9).
Using Proposition in order to prove Theorem it is sufficient to establish the following eigenvalue
bounds.

Proposition 2.3 For all j, 1 < j < n, there exists a constant C;,, such that
Hy SN wg+ LN,

From Proposition we have A — uj > 0, and so we only need to prove the upper bound. Since
wy =0, and € has Tnner radius comparable to N,, = 1, the estimate in the proposition certainly holds
for j = n. This is because the Dirichlet eigenvalues are monotonic with respect to inclusion. We will
prove Proposition by induction on j (starting with j = n as the base case, and then decreasing j). To
establish the inductive step we will use the variational formulation of the first Dirichlet eigenvalue. We
will construct an appropriate test function involving the eigenfunctions corresponding to the minimal
eigenvalue 7 of the j-dimensional cross-sections of (2. To demonstrate the method let us first use it to
prove the proposition in the two dimensional case. In two dimensions, the estimate in Proposition is
also contained in the work of Jerison [18] and Grieser-Jerison [17]. The estimate in Proposition for
j=mn—11is also given in [6] (see the proof of Theorem 1.5 and in particular equation (4.8)) and |7] (see
the proof of Theorem 1.1 and in particular equation (2.2)). There, explicit eigenvalue bounds are found
using the monotonicity of Dirichlet eigenvalues with respect to inclusion.

Proof of Proposition in two dimensions: In the two dimensional case, we just need to consider j = 1.
After a translation along the x;-axis, we may assume that the minimal value pf = p1(Y7) is attained at
Y7 = 0. (Note that this point is at a point where the height of the domain € in the xo-direction is largest.)
Let 1 (z2) be the corresponding L?(£2(0))-normalized first Dirichlet eigenfunction of the interval Q(0),
extended to be zero outside of €2(0). By the properties of the John ellipsoid of €2, we can find a point
z = (x1,22) € Q with |x1| = N1, and so without loss of generality, we assume that z* = (N1, 23) € Q for
some x5. By translating in the xs-direction we may assume that x5 = 0, and after this translation there
still exists a constant C' such that |z2] < C on the support of ¥ (z3).

We now define a test function that we can use in the variational formulation of the first eigenvalue
A: We set v(z1,22) to be the function

v(w1,72) = X(21)Y (22N1/(N1 — 21)) . (6)

Here x(x1) > 0 is a smooth cut-off function, such that

x(z1) =1 for %Nll/s <z < Nll/?’,

x(z1) =0 for zy > 2N11/3, r1 < iNll/?’.
The function x(z1) can in particular be chosen so that |x/(z1)] < C’Nl_l/?’. The domain Q contains
the interval ©(0) and the point z* = (N7,0), and so also contains the convex hull of these two sets.
Therefore, for each z1 € [0, N1], the cross-section Q(x1) contains the interval NlT_lle(O) In particular,
this ensures that v(x1,z2) is equal to zero on the complement of €2, and we can use it in the variational
formulation of the first eigenvalue A. That is,

) < fQ |Vv(:v)|2 dz

= o lv(x))2de (™)



We can write the right hand side of as

Jo X s [0 (22 N0/ (Ny = 20)P dx [ [0, 0(2)[? da
Jo x(21)2 [ (22N1 /(N1 — 1)) d Jo lv(@)Pde

and on the support of x(z1) we have

Ny

1 1l <ongE
’N1—$1 ’—Cl (8)

Therefore, since 1(x2) is an eigenfunction on ©(0) with eigenvalue pj, we have

o 102, 0(2)]? da

A< i+ CONYB 4
1 I fQ |v(2)|? dz

The z1-derivative of v is given by

O v(@1,22) = X' (21)Y (22N1/ (N1 — 21)) — x(21) 2 s¥ (22N1/(N1 = 21)) - (10)

(N1 — 1)

We have |x/(x1)| < C’Nfl/?’, [ (xaN1 /(N1 —21))| < C, and |z2| < C on the support of ¢». Combining
this with the estimate Ny /(Ny —x1)? < C’Nl_1 on the support of x(x1), from @) we obtain

X< i+ ON;P,

as required. 0

Remark 2.1 In the above proof, we could have chosen the cut-off function to have been adapted to an
interval of length Ny for any 0 < a < 1. A larger value of o improves the estimate in , while a

smaller value of o improves the estimate in . The exponent o = + is chosen to optimize the total

3
overall error from these two estimates.

Remark 2.2 In the 2 dimensional case, it is straightforward to obtain an explicit estimate on the con-
stants Cj , given in the statement of Theorem' For j =2, since Q contains a disc of radius 1, which
has first eigenvalue given by the square of the first zero ag1 of the Bessel function Jo(r), we can set
Ca2 = ag,1. To get an explicit estimate for j =1, we first note that 2 contains an isosceles triangle with

base of length m (uf)_l/Q > 1 and height %Nl. Within this triangle is a rectangle of dimensions ]\711/3
and T (,u*l‘)_l/2 (1 — 4Nf2/3), which has an explicit first Dirichlet eigenvalue leading to

-2
A<t (1= aNTP) TN

8l 2| Ar-2/3
<pi+ | ——+ 7w N
1 ((1 — 4N, Py '

Since ui < w2, this gives an explicit estimate for Cy o of

82
2 2 _ 99 2
Cis < (1/2)° + 1" = 337°.

whenever N?/3 >8. 1 N3 < 8, then we can use the estimate A < a2, < 337r2N_2/3 to obtain the
1 1 ) 0,1 1

same estimate for C 2.

We now prove the general case.



Proof of Proposition ' We first recall that the estimate in the proposition holds for j = n, and that
the lower bound holds for all j. We will prove the upper bound by induction on j, using j = n as the
base case. Our inductive hypothesis is that there exists constants C; such that

A< i+ O NP (11)

for k+1 < j < n, and we will prove that there exists a constant Cy such that (11) holds for j = k.
Analogously to the two dimensional case, we will prove this estimate by using an appropriate test function
in the variational formulation for A\. The minimal value pj is given by p(Y%) for some Y; € R*, and
we let (X! _,) be the L%(Q(Y)))-normalized first Dirichlet eigenfunction of the (n — k)-dimensional
cross-section Q(Y}), and extended to be zero outside Q(Y%). (We recall that in our notation X/ _, =
(Tht1, Thp2, - -+ Tn).) Our test function will involve this eigenfunction, and we first use Proposition|2.2
to establish bounds on the components of the gradient of (X ), under the inductive hypothesis.

Lemma 2.4 Assuming that the estimate in holds for j satisfying k + 1 < 7 < n, there exists a
constant C (depending on the constants C;) so that for each such j in this range,

/ |0, (X, _y)|* XL, < C’Nj_2/3/ o(X)_)|" dX),_), = ON; /2,
Q(Yz) Q(Yx)

Proof of Lemma The eigenfunction (X! _,) on Q(Y%) has eigenvalue pj, and analogously to Defi-
nitionﬁ for k+1 < j < n, we define yj ; to be the minimum eigenvalue over all (n — j)-dimensional
cross-sections of (Yy) in the Xj,_; variables. Since Q(Y)) C €2, by the definitions of the minima yj
and pj we automatically have

i < pg -
Combining this with the inductive hypothesis in , for each k£ + 1 < j < n we obtain

* * —-2/3 * —-2/3
i SN+ N7 < iy + O (12)

Therefore, setting W to be the (n — k)-dimensional convex domain (Y}), and using the notation from
Definition we have

6:(W) = AW) = i (W) = i = i < CourN 3
for 1 < i < n —k. The gradient bounds in the statement of the lemma then immediately follow from
Proposition using that (X! _,) is L*(Q(Y%))-normalized. O

We now define the test function that we will use to bound A\. We first translate the domain Q in the
Xy-variables so that the point Y}, with u(Y)) = u} is at the origin, which we denote by 0j. Then, using
the above notation, (X ) is the first Dirichlet eigenfunction of the (n — k)-dimensional cross-section
Q(0x). By the properties of the John ellipsoid of 2, there exists a k-dimensional parallelepiped P of
dimensions comparable to N1 X Ny X --- X N contained in the intersection of 2 with a k-dimensional
plane {X/_, = constant}. By translating Q in the X _, variables we will assume that this k-dimensional
plane is {X/ _, =0/ _,}. Note that after this translation, there exists a constant C' such that

proj; (22(0x)) C {|z;[ < ON;} (13)

for k+1 < j < n. Here proj;(£2(0x)) is the projection of ©(0y) onto the z;-axis. Since {2 contains the
above parallelepiped P, there exists a (k — 1)-dimensional sphere contained in {X/ , =0/ .}, centred
at the origin 0y in the Xjg-variables, of radius R; with R; ~ Nj, and with the following property: There
exists a direction e in the Xj-variables and number 6y, with 8, ~ Nj /N7, such that the subset, Sk, of
the sphere making an angle at most 0 with e, is contained within . (Note that in the case of k = 1, the
sphere is 0-dimensional, and the above reduces to the existence of a point in 2 at a distance comparable
to Ny from the (n — 1)-dimensional cross-section €2(01).)



We now let 'y be the k-dimensional cone in the Xj-variables generated by the set Sy, with vertex
at the origin O;. This cone I'y contains a k-dimensional cube of side length comparable to N,i/ 3, at

a distance comparable to NV, /3 from the origin. We can therefore define a cut-off function y(X})
adapted to this cube (so that x(Xx) = 1 in the middle half of the cube, and 0 outside the cube), with

[Vx(Xi)| < CNk_l/?’. Our test function is then
w(z) = w(Xe, X5, _x) = X(X)¥ (Xp_ R/ (Ry —12)) - (14)

Here rj, = (27 + 22 + --- 4+ 27)/2 is the distance to the origin Oy in the Xj-plane. Since ( is convex, it
contains the convex hull of the (n — k)-dimensional cross-section Q(0;) and the set Si. Therefore, given
Xk € Sk, s € [0,1], the (n — k)-dimensional cross-section of Q at sXj, € I'y, contains the set

Thus, the test function w(x) vanishes outside of €, and so can be used to obtain an upper bound on A.
We therefore have

2
Jo IV x,w(z)]* da Jo ‘VX;_kw(x)’ dz

A< 5 5 , (15)
and we deal with each term separately. We can write the second term in as
Rf 2 1 2
Jo e X2 (T ) (X B/ (By = )| de o
2 ’
Joo XX [ (X7, Ba/(Ry = 7)) | da
and on the support of x(X}) we have
Ry —-2/3
— 1| < CN, . 17
‘Rl — 7y ‘ — k ( )

Therefore, since ¥(X/,_,) has eigenvalue p} on ©(0), we can bound the quantity in by i —i—C’Nk_z/?’.
We now turn to the first term in . We can bound the magnitude of Vx, w(x) by

R’

[(VX(X3) ¢ (X, R /(R —mx)) | + ‘X(Xk)(Rl—rk)?

X (Vo 0) (X /(Ry =) |- (18)

Since |Vx(Xg)| < CN,;I/B, the contribution from the first term in (18) leads to a contribution of size

C’N,;w3 to (15). Using |Ry — 7| > ¢Ny, together with the lengths of the projections of €(0) onto each
axis from (13), we can bound the second term in by

ONyt D Nj|(0a,9) (X0 R/ (Ry =)
=kt

Therefore, by Lemma we can bound the contribution to from the second term in by

CN;2 > NAN;PP=cony? 3T N
j=k+1 j=k+1

Since N7 > Ny > --- > N, this can be bounded by C’Nl_2N,ffl < C’N,;2/3. Putting everything together,
we obtain

A< pp+CN23,

This is precisely the inductive step, and so completes the proof of the proposition. O



Remark 2.3 Denoting N\, to be the m-th Dirichlet eigenvalue of Q, a small modification of the proof of
Proposz'tion ensures the existence of a constant Cj p, n such that

23
W< A < 5+ Cymn Ny (19)

The only change is that in place of x(X}), we require m functions Xm(Xx), with |Vxm(Xg)| < C’me_l/g,
chosen such that

Wi (2) = X (X)) (X5, By /(Ry — 1k))

are orthogonal. The estimate in in particular ensures that if uy, is the corresponding m-th eigen-
function, then it also satisfies the derivative estimates in Theorem with a constant Cj m p.

3 A lower bound on the L?(Q2)-norm of the eigenfunction

In this section we prove Theoremby combining the derivative estimates from Theoremwith the
log concavity of the eigenfunction. Since w is log concave, the superlevel set 1, /5 is a convex subset of
(2. In particular, we can associate the John ellipsoid Fy /5 to €y/5. Let v; be the unit directions along
which the axes of Ey/; lie, and let M; be the corresponding lengths of the axes. We also let e; be the
unit directions along the cartesian coordinate axes. The first step is to show that €/, determines the
L?(Q)-norm of u.

Lemma 3.1 There exist constants Cy, ¢; > 0 such that

n n
C1HMj S/ |u(a:)|2da:§C’1HMj.
j=1 @ j=1

Proof of Lemma ' The lower bound follows immediately from the definitions of M; and the properties
of the John ellipsoid. To obtain the upper bound we use the log concavity of u: The projection of the
superlevel set €2 /5 onto each v; axis is comparable to M;. The function log(u) is concave and attains a
maximum of 0 in 2. Therefore, the projection of the sets

Qo-m ={zeQ:ulx)>2""}={zecQ:|log(u(x))| <mllog(1l/2)|}

onto each v; axis is at most a constant multiplied by mMj. Therefore,

n 0
/ |u |2 de — Z / (l‘)|2 dz < CHMj Z mn272(m71),
Qy—m \Qy—m+1 j=1 m=1

and this gives the desired upper bound in the lemma. O

Remark 3.1 In the two dimensional case, the constants ¢y and Cy can be given explicitly by

T _
Cl:ﬁ’ Cl—SWZm _9671'
m=1
We now reorder the directions v; to ensure that Ay > My > --- > M, and from the lower bound in

Lemma, to prove Theoremit is sufficient to prove the following lower bound on each M;.

Proposition 3.2 There exists a constant ¢ > 0 such that for each j, 1 < j < n, the axis length M;
satisfies the lower bound M; > ch/3

Proof of Pmposition Since 2 has inner radius comparable to 1, the point where u attains its maximum
is at a distance at least ¢ > 0 from the boundary (see Theorem 1 in [21] in two dimensions, and Theorem
1.6 in [14] in higher dimensions). Therefore, by interior elliptic estimates, M, is certainly comparable to



1. Given k, with 1 < k <n — 1, let wg be a unit direction in R™ which lies in the projection of R™ onto
the first k coordinates. That is, wy is a linear combination of e; for 1 < j < k. We then consider the
cross-sections of ()

Qu, () ={x € Q:z- w, =1},

which as ¢ varies give the (n — 1)-dimensional slices of {2 which are orthogonal to wy. For each ¢, we can
consider the L2(£2,, (t))-norm squared of u,

[ u@P o), (20)
Qay, (t)

where do,_1(x; wy) is the flat (n—1)-dimensional surface measure on £, (t). Suppose that the expression
in is maximized when t = t*, and set

By :/ |u(30)|2 dop,—1(z;wy).
Qu (%)

We can now use Theorem to obtain a lower bound on the L%-norm of % in terms of B;.

Lemma 3.3 With Cy,, as in the statement of Theorem for each k, 1 < k < n, and any such
direction wy,

/ u(z)[? dz > L(Cr) "2 BEN,”.
Q

Proof of Lemma|3.3 Fix a point x4 € Qy, (t*) and for each s choose x; such that (24 —x,)-wp =t* —s
and |xg« — x5| = [t* — s|. Then, extending u by zero outside €2, for any ¢ we can write

u(zy) = u(zp) + /t* Ow, u(zs) ds,

where Oy, u is the directional derivative wy - Vu. This implies that

t 2
2 (/ 8wku(ws)ds>
”
t
/ | Oy, u(5)]* ds] .
o

We now integrate over the (n — 1) variables orthogonal to wy. Since wy lies in the projection of R™ onto
the first k£ coordinates, we can use Theorem with j = k to bound 0,,, u. We therefore have

() > §lu(z-)

> lu(we)* = [t -t

[ @R = [ @) doe) - Cunlt— 1N [ u@)P e @)
L (0 Dy (t4) o

In particular, for

—1
-l <0 ([ @Par) [ )P, o)
Q Qu, ()

the estimate in implies that

/ ()2 don 1 (23 wp) > i/ fu(@)[? oy (3 wy) = 1 BE.
(1) (1)
Therefore,
—1
_ 2/3 *
[ @R > e vy ([ uwpas) @,

Q Q

and rearranging implies the estimate in the lemma. U
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The final step is to show that for each k, 1 < k < mn, we can choose such a unit direction wy lying in
k-dimensional space spanned by eq, es, ..., e, such that

Bi>es [ M (22)
J=1,j#k

Inserting this in Lemma and using the upper bound in Lemmaimplies that

4 HMj 2/ lu(z)|* dz > ic;),C,;Tll/ZN,i/S H M;. (23)
j=1 @ j=1,j#k

Thus implies that M}, is bounded from below by a multiple of N,i/ 2,

To prove Proposition (and hence also Theorem [1.1), we are thus left to prove , and we first
consider k£ = 1: Consider the (n — 1)-dimensional cross-sections of €2/, perpendicular to w; = e;. Since
(212 has volume comparable to H?Zl M; and diameter comparable to My, the volume of one of these

cross-sections must be at least comparable to H?:z M;. In particular, this ensures that B} > %c H;.L=2 M;.

For k > 2, we first choose a unit direction wy in the intersection of the k-dimensional plane spanned
by e1,ea,...,e, and the (n — k + 1)-dimensional plane spanned by v, Vg1, ..., v,. Taking the (n — 1)-
dimensional cross-sections of 21,5 perpendicular to wg, the volume of one of these cross-sections must
be at least CH?=1,]‘¢/§ M;. To see this, we first note that there is a (n — k + 1)-dimensional cross-section
of Q4 /5 which is perpendicular to vy, v, ..., vx—1 and contains a (n — k + 1)-dimensional ellipsoid £ with
axes of lengths My, Myg11,...,M,. In particular, the volume of one of the (n — k)-dimensional cross-
sections of F which is perpendicular to wy must be at least CH?: k1 Mj. But wy is also perpendicular to
v1,v2,...,Vk—1, and the projection of €2, /5 onto the v;-direction is comparable to M;. Therefore, there
exists a (n — k) + (k — 1) = (n — 1)-dimensional cross-section of €2; /o perpendicular to wy of volume at

least ¢ (Hj:ll Mj> (H?:kﬂ Mj>. This ensures that By > jc[[/_, ;. Mj, and holds. O

Remark 3.2 In the two dimensional case, the above argument can give an explicit lower bound on M,
and Ms, and hence on the constant appearing in Theorem ' When k = 1, a cross-section of §/;
perpendicular to wy = ex must have length at least {5 Ma, and the argument above leads to the explicit

lower bound on BY of Bf > ¢iMa. Inserting this lower bound for BY in the estimate in Lemma as

m , and using the bounds in Remark we obtain

967 M, My > L0737 (& M) N2,

and so

1 1 —1/2 571/3
My > g5 - 356C12 N

When k = 2, a cross-section of 5 perpendicular to wy = vo must have length at least My, and this
leads to a lower bound on B3 of B3 > iMl. This then leads to the lower bound on Ms of

My >

1 1 ~—1/2,71/3
= 96ﬂ’T602,2 Ny

From Lemma and Remark we have the lower bound
7l/2 5 1/2 0 01/2
lull o) = =5 M1 "0,
Therefore, the above estimates on M1 and My lead to the explicit lower bound
2> g 2Oy 0yt

given in the statement of Theorem Inserting these lower bounds for BY and B3 in the estimate in
Lemma as in , and using the bounds in Remark then gives an explicit lower bound on M;
and My in terms of the constants C; ., appearing in Proposition and Remark

11



Remark 3.3 The estimate in Theorem will not hold for all non-conver domains, even for those with
volume comparable to its diameter. For example, consider the dumbbell domain where N1 — 1 unit balls
are joined in a line to a ball of radius 2 by a series of thin necks. As the widths of the necks tends to 0,
the first Dirichlet eigenfunction also tends to zero in all but the ball of radius 2. Therefore, an estimate
on the L?-norm as in Theoremfor these domains cannot hold uniformly as the width of the necks
decrease.

However, there are many non-convexr domains for which the estimates in Theorem will still hold.
As seen in the proof of Pmposition the convexity of the domain §2 is only used at those parts of €2
within a distance N,i/?’ of the slices Y}, leading to the minimal eigenvalues pj. In the two dimensional
case, estimates on the location of these slices within the domain are known ([18], [T7]). It would be very
interesting to establish the analogous estimates in higher dimensions (see Section for further details
and questions). To convert the estimates in Theorem to prove Theorem we use in particular the
convezity of the superlevel set )y, in order to estimate the volume of various k-dimensional slices of
/2, which should also hold for domains which are suitably close to a convex set.

4 The two-dimensional case

Theorem [1.1| provides a lower bound on the L%(Q)-norm of u. In two dimensions, Jerison and Grieser
have given a precise characterization of the shape of u in terms of the geometry of Q. To state this, we
first rotate so that the projection of the planar domain onto the zs-axis is the smallest and dilate so that
this projection is of length 1. Then, we can write () as

0= {(.’thirz) S R2 ra<xp < b, fl(xl) < a9 < fg(xl)}

Here b — a is comparable to Ny, fi, fo are convex, concave functions respectively, and 0 < h(z) =
fa(z1) — f1(z1) is a concave function, attaining a maximum of 1.

Definition 4.1 ([18]) Define L to be the largest value such that 1 — L=2 < h(x1) < 1 on an interval I
of length L.

Since h(x1) is concave, the value of L satisfies chl/3 <L<CNj,and L ~ Ny, L~ Nll/?’ is attained

when 2 is a rectangle, circular sector respectively. Any intermediate value of L can be obtained by, for

example, forming the trapezoid of a rectangle of diameter L attached to a right angled triangle. In [18],

[16], [17], Grieser and Jerison obtain estimates on the first and second Dirichlet eigenfunction in terms of

this length scale L. Their approach is to perform an approximate separation of variables in 2. Since the
s

cross-section of  at x; has eigenvalue Wﬁ)’“ a separation of variables leads to the ordinary differential
operator

d? w2
= a2 " )

on the interval [a,b]. Grieser and Jerison approximate A and v in terms of the first eigenvalue and
eigenfunction of £, and the approximation becomes stronger as the diameter of € increases. As a
consequence of their work, the following L?(£2) bound holds in this planar case.

Theorem 4.2 (Grieser-Jerison, [17]) There exists an absolute constant C' such that the superlevel set
{u >} maxqu} has diameter bounded between C~'L and CL, and

C—1L1/2 HUHLOO(Q) S ||uHL2(Q) S CL1/2 ||u||L°°(Q) .

Using the definition of L from Definition to compare the estimate in Theorem [4.2] with the lower
bound in Theorem !in two dimensions, we note the following. When L is comparable to V. 11 / 3, such as
for a circular sector or right angled triangle, the bounds in the two theorems agree and in particular the
lower bound in Theorem is sharp. However, for L > Nl1 /3 Theorem says that the eigenfunction

12



u has spread out by more than Nll/3 in the z;-direction and so the L?(Q)-norm of u is larger than that
given in Theorem (1.1

In higher dimensions, we can begin an analogous discussion. Consider the thin sector in R™ of the
form

{(r,0): 0 <r < N1,0 € D"},

where D"~! is a geodesic disc of radius 1 in S"~!. As shown in [4], for this domain, the lower bound
given in Theorem is sharp. If the domain € is instead a parallelepiped, then the superlevel set
{u > % maxqu} takes up a uniform portion of the whole domain. For a parallelepiped, this leads to the
estimate

n
1/2
il oy ~ Volume(€)'2 [lull gy ~ T N3 lull e -

j=1

Therefore, in dimensions higher than two it is natural to ask whether one can define analogous length
scales to that of L from Deﬁnitionwhich govern the shape of the first eigenfunction.

Question 4.3 Fiz ¢, with 0 < ¢ < 1. Can we use the geometry of 0 to determine n length scales
My > My > --- > M,, and n directions vy,va, ...,v, in R™ such that the John ellipsoid of

{z e Q:u(z) > cmgxu}

has azes along the directions v; and of lengths comparable to M;?

This question is open in any dimension higher than two. Let us normalize 2 C R™ so that it has inner
radius equal to 1, and its projection onto the x,-axis is of length comparable to 1. Then, we can certainly
choose v,, to point in the x,-direction and take M,, ~ 1. The question is then to determine the remaining
n — 1 length scales and orientation. The results of this paper show that the lengths M; must satisfy the
lower bound M; > cN jl/ ® In [2], another preliminary step towards answering this question has been
carried out: Consider the operator

2

—A —_—
T1,T2 + h(a:1, x2)2

(24)
with Dirichlet boundary conditions on a two dimensional convex domain D. Here h(x1,z2) is a concave
function on D, attaining a minimum of 1. The first eigenfunction of this operator still has convex
superlevel sets and in [2], length scales L1, Lo and an orientation of the domain D are found in terms of
D and h, which govern the intermediate level sets of this first eigenfunction. In particular, the L?(D)-
norm is comparable to Li/ QLé/ 2 multiplied by the L*(D)-norm of the eigenfunction.

The operator in can be used to make progress of answering the question in the three dimensional
case. For three dimensional domains of the form

Q ={(z1,29,23) € R?: (x1,22) € D,0 < 23 < h(x1,22)},

an approximate separation of variables into (z1,22) and zz-variables leads to the operator in (24). It
is shown in (3] that when Ly and L, are sufficiently close in size (L; < Lg/ 27 for any fixed § > 0),
this separation of variables provides a good approximation to the first eigenfunction of 2. In particular,
referring back to Question in this case we can set My = L1, My = Ly, M3 = 1, and the orientation
of D also governs the behaviour of the first Dirichlet eigenfunction of 2. To make further progress
towards fully answering Question[4.3] even in the three dimensional case, a key step is to determine the
orientation of the superlevel sets of u, as in general it will not be the same as that of (Q itself. Especially
as the dimension of €2 increases, it is unclear how to determine this orientation.
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