Deep Network Approximation Characterized by
Number of Neurons*

Zuowei Shen' Haizhao Yang? Shijun Zhang?$

Abstract

This paper quantitatively characterizes the approximation power of deep feed-
forward neural networks (FNNs) in terms of the number of neurons. It is shown
by construction that ReLU FNNs with width O(max{d|N?|, N + 1}) and depth
O(L) can approximate an arbitrary Holder continuous function of order « € (0,1]
on [0,1]% with a nearly tight approximation rate O(\/EN —2a/df 20/ d) measured
in LP-norm for any N,L € N* and p € [1,00]. More generally for an arbitrary
continuous function f on [0,1]¢ with a modulus of continuity w #(+), the construc-
tive approximation rate is (’)(\/wa(N -2/ dL_Z/d)). We also extend our analy-
sis to f on irregular domains or those localized in an e-neighborhood of a ds-
dimensional smooth manifold M ¢ [O,I]d with day < d. Especially, in the
case of an essentially low-dimensional domain, we show an approximation rate

O(wr(15\ /L +e) + \/wa((l_:s/)a\/d_&N_Q/d‘sL_Q/d‘s)) for ReLU FNNs to approxi-

mate f in the e-neighborhood, where ds = O(dMln(g#) for any 0 € (0,1) as a
relative error for a projection to approximate an isometry when projecting M to
a dg-dimensional domain.

Key words. Deep ReLLU Neural Networks, Holder Continuity, Modulus of Continuity,
Approximation Theory, Low-Dimensional Manifold, Parallel Computing.

1 Introduction

The approximation theory of neural networks has been an active research topic in the
past few decades. Previously, as a special kind of ridge function approximation, shallow
neural networks with one hidden layer and various activation functions (e.g., wavelets
pursuits [10,46], adaptive splines [19,55], radial basis functions [8, 18,25,53,65], sigmoid
functions [7,13-15,29,37,38,41,45]) were widely discussed and admit good approximation
properties, e.g., the universal approximation property [16,29, 30], lessening the curse
of dimensionality [4,21,22], and providing attractive approximation rate in nonlinear
approximation [10,18,19,25 46, 55,65].

*Submitted to the editors DATE.

"Department of Mathematics, National University of Singapore (matzuows@nus.edu.sg).
*Department of Mathematics, Purdue University (haizhao@purdue.edu).

$Department of Mathematics, National University of Singapore (zhangshijun@u.nus.edu).

mailto:matzuows@nus.edu.sg
mailto:haizhao@purdue.edu
mailto:zhangshijun@u.nus.edu

The introduction of deep networks with more than one hidden layers has made sig-
nificant impacts in many fields in computer science and engineering including computer
vision [35] and natural language processing [1]. New scientific computing tools based on
deep networks have also emerged and facilitated large-scale and high-dimensional prob-
lems that were impractical previously [20,24]. The design of deep ReLLU FNNs is the key
of such a revolution. These breakthroughs have stimulated broad research topics from
different points of views to study the power of deep ReLU FNNs, e.g. in terms of combi-
natorics [51], topology [6], Vapnik-Chervonenkis (VC) dimension [5,27,58], fat-shattering
dimension [2,34], information theory [54], classical approximation theory [4,16,30,62,67],
optimization [32,33,52] etc.

Particularly in approximation theory, non-quantitative and asymptotic approx-
imation rates of ReLU FNNs have been proposed for various types of functions. For
example, smooth functions [23,39,43,66], piecewise smooth functions [54], band-limited
functions [50], continuous functions [67], solutions to partial differential equations [31].
However, to the best of our knowledge, existing theories [17,23,39,43,48,50,54,63,66,67]
can only provide implicit formulas in the sense that the approximation error contains
an unknown prefactor, or work only for sufficiently large N and L larger than some
unknown numbers. For example, [67] estimated an approximation rate c(d)L=2*/? via a
narrow and deep ReLU FNN, where ¢(d) is an unknown number depending on d, and
L is required to be larger than a sufficiently large unknown number .. For another
example, given an approximation error e, [54] proved the existence of a ReLU FNN with
a constant but still unknown number of layers approximating a C# function within the
target error. These works can be divided into two cases: 1) FNNs with varying width
and only one hidden layer [18,25,40,65] (visualized by the region in @ in Figure 1); 2)
FNNs with a fixed width of O(d) and a varying depth larger than an unknown number
£ [44,67] (represented by the region in [in Figure 1).

As far as we know, the first quantitative and non-asymptotic approximation
rate of deep ReLU FNNs was obtained in [62]. Specifically, [62] identified an explicit
formulas of the approximation rate

2NN 2 when L>2 and d =1,
(1.1)

2(2V/d)*AN-20/4 when L >3 and d > 2,

for ReLU FNNs with an arbitrary width N € N* and a fixed depth L € N* to approximate
a Holder continuous function f of order o with a Holder constant A (visualized in the
region shown by @& in Figure 1). The approximation rate O(N-2%/4) is tight in terms
of N and increasing L cannot improve the approximation rate in N. The success of deep
FNNs in a broad range of applications has motivated a well-known conjecture that the
depth L has an important role in improving the approximation power of deep FNNs.
In particular, a very important question in practice would be, given an arbitrary L
and N, what is the explicit formula to characterize the approximation error so as to see
whether the network is large enough to meet the accuracy requirement. Due to the highly
nonlinear structure of deep FNNs, it is still a challenging open problem to characterize
N and L simultaneously in the approximation rate.

To answer the question just above, we establish the first framework that is able to
quantify the approximation power of deep ReLU FNNs essentially with arbitrary width

N and depth L, achieving a nearly optimal approximation rate, 19v/dw(N-2/d[-2/d),
for continuous functions f € C'([0,1]¢). Our result is based on new analysis techniques
merely based on the structure of FNNs and a modified bit extraction technique inspired
by [5], instead of designing FNNs to approximate traditional approximation basis like
polynomials and splines as in the existing literature [26,39,43,48,49,54,56,57,60,63, 66,
67]. The approximation rate obtained here admits an explicit formula to compute the
prefactor when wy(+) is known. For example, in the case of Hélder continuous functions of
order v with a Holder constant A (denoted as the class By(C([0,1]))), wy(r) < Are for
r > 0, resulting in the approximation rate 19v/d AN-20/4[~2/d a5 mentioned previously.
As a consequence, existing works for the function class C([0,1]¢) are special cases of our
result (see Figure 1 for a comparison).

width NV
§ 0(]\[—2/(1L—2/(Z)
9
=
O(d) S O(LY/%)
1 2 3 <z depth L

Figure 1: A summary of existing and our new results on the approximation rate of ReLLU
FNNs for continuous functions. Existing results [18,25, 40,44, 62,65, 67] are applicable
in the areas in), =], and []; our new result is suitable for almost all areas when
L>2.

Our key contributions can be summarized as follows.

1. Lower bound: We provide a quantitative and non-asymptotic approximation rate
19Vdwr(N-2/4L-2/7) in terms of width O(N) and depth O(L) for functions in
C([0,1]¢) in Theorem 1.1.

2. Upper bound: Through the nearly tight VC-dimension bounds of ReLU FNNs [27],
we show that the approximation rate 19v/dw;(N-20/4[,-22/?) in terms of N and L
is nearly optimal for By(C*([0,1]?)) in Theorem 2.3.

3. The approximation rate in terms of the width and depth in this paper is more
generic and useful than the one characterized by the number of nonzero parameters
denoted as W in the literature. First, the characterization in terms of width and
depth implies the one in terms of W, while it is not true the other way around.
Second, our theory can provide practical guidance for choosing network sizes in
realistic applications while theories in terms of W cannot tell how large a network
should be to guarantee a target accuracy, since there are too many networks of
different sizes sharing the same number of parameters but with different accuracies.

4. Finally, three aspects of neural networks in practice are discussed: 1) neural net-
work approximation in a high-dimensional irregular domain; 2) neural network
approximation in the case of a low-dimensional data structure; 3) the optimal
ReLLU FNN in parallel computation.

Our main result, Theorem 1.1 below, shows that ReLU FNNs with width O(N)
and depth O(L) can approximate f with an approximation rate 19v/dw;(N-2/4L-2/),
where wy(+) is the modulus of continuity of f defined via

wy(r) = sup {|f(:1:) ~f(y)|:z,ye[0,1]4, |z -y|: < 7’}, for any r > 0.

Theorem 1.1. Given f € C([0,1]%), for any L e N*, N e N*, and p € [1,00], there exists
a function ¢ implemented by a ReLU FNN with width C max {d[Nl/dJ, N+ 1} and depth
12L + Cy such that

1f = @l Loogey < 19V dw(NIL21),

where C1 =12 and Cy =14 if pe [1,00); C; =343 and Cy =14+ 2d if p = oo.

When Theorem 1.1 is applied to f € By\(C%([0,1]¢)), the approximation rate is
19V/d AN-20/d[=2e/d hecause wy(r) < Are for any 7 > 0. An immediate question following
the constructive approximation is how much we can improve the approximation rate. In
fact, the approximation rate of f € By(C([0,1]?%)) is asymptotically tight based on
V(C-dimension as we shall see later.

In most real applications of neural networks, though the target function f is defined
in a high-dimensional domain, e.g., [0,1]¢, where d could be tens of thousands or even
millions, only the approximation error of f in a neighborhood of a das-dimensional
manifold M with dy; < d is concerned. Hence, we extend Theorem 1.1 to the case
when the domain of f is localized in an e-neighborhood of a compact dj,-dimensional
Riemannian submanifold M ¢ [0,1]¢ having condition number 1/7, volume V', and
geodesic covering regularity R. The e-neighborhood is defined as

M, = {w e[0,1]¢:inf{|x - y|o:y e M} < 5}, for e € (0,1). (1.2)

Let ds = O (dM ln(d‘g;h_l(s_l)) = (’)(dMln(g#) be an integer for any ¢ € (0,1) such that
da < ds <d. We show an approximation rate

2 d 2Vd -2/ds 7 -2/d
2w (75 45 +2¢) + 19V dw (G5 N L72%)
for ReLU FNNs to pointwisely approximate f on M.. The key ideas of the proof is the
application of Theorem 3.1 in [3], which provides a nearly isometric projection A € Rds*4
that maps points in M ¢ [0,1]¢ to a ds-dimensional domain with

(1-0)|xy — @o| < |Amy — Amo| < (1 +0)|@y — o], for any @y, s € M,

and the application of Theorem 1.1 in this paper, which constructs the desired ReLLU
FNN with a size depending on ds instead of d to lessen the curse of dimensionality.
When 0 is closer to 1, ds is closer to dy, but the isometric property of the projection is
weakened; when ¢ is closer to 0, the isometric property becomes better but ds could be
larger than d, in which case we can simply enforce ds = d and choose the identity map
as the projection. Hence, § € (0,1) is a parameter to make a balance between isometry
and dimension reduction.

Theorem 1.2. Let f be a continuous function on [0,1]% and M c [0,1]¢ be a com-
pact dpq-dimensional Riemannian submanifold. For any N € N*, L € N* ¢ € (0,1),
and 0 € (0,1), there exists a function ¢ implemented by a ReLU FNN with width
3ds+3 max {ds| N4 |, N + 1} and depth 12L + 14 + 2d;s such that

() - o(@)] < 20y (25\/ & +2¢) + 19V/dwp (G204 N2/ 21, (1.3)

for any x € M., where M. is defined in Equation (1.2)

The approximation rate of deep neural networks for functions defined precisely on
low-dimensional smooth manifolds has been studied in [61] for C? functions and in [9, 11]
for Lipschitz continuous functions. Considering that it might be more reasonable to
assume data located in a small neighborhood of low-dimensional smooth manifold in
real applications, we introduce the e-neighborhood of the manifold M in Theorem 1.2.
In general, existing results are again asymptotic and they cannot be applied to estimate
the approximation accuracy of a ReLU FNN with arbitrarily given width N and depth L,
since there is no explicit formula without unknown constants to specify the exact error
bound. For example, [9] provides an approximation rate ¢; (N L)_c2/ % with unknown
constants (e.g., ¢; and ¢3) and requires N L greater than an unknown large number. The
demand of an explicit error estimation motivates Theorem 1.2 in this paper. When data
are concentrating around M, ¢ is very small and the dominant term of the approximation
error in (1.3) is 19v/d wi((1_2(;)/3% N~2/ds [=2/ds) implying that the approximation via deep
ReLU FNNs can lessen the curse of dimensionality.

The analysis above provides a general guide for selecting the width and depth of
ReLLU FNNs to approximate continuous functions, especially when the computation is
conducted with parallel computing, which is usually the case in real applications [12,59].
As we shall see later, when the approximation accuracy and the parallel computing
efficiency are considered together, very deep FNNs become less attractive than those
with O(1) depth.

The approximation theories in this paper assume that the target function f is fully
accessible, making it possible to estimate the approximation error and identify an asymp-
totically optimal ReLU FNN with a given budget of neurons to minimize the approx-
imation error. In real applications, usually only a limited number of possibly noisy
observations of f is available, resulting in a regression problem in statistics. In the latter
case, the problem is usually formulated in a stochastic setting with randomly generated
noisy observations and the regression error contains mainly two components: bias and
variance. The bias is the difference of the expectation of an estimated function and its
ground truth f. The approximation theories in this paper play an important role in
characterizing the power of neural networks when they are applied to solve regression
problems by providing a lower bound of the regression bias.

The rest of this paper is organized as follows. We first prove Theorem 1.1 and show
its optimality in Section 2 when assuming Theorem 2.1 is true. Next, Theorem 2.1 is
proved in Section 3. In Section 4, three aspects of neural networks in practice will be
discussed: 1) neural network approximation in a high-dimensional irregular domain; 2)
neural network approximation in the case of a low-dimensional data structure; 3) the
optimal ReLU FNN in parallel computation. Finally, Section 5 concludes this paper
with a short discussion.

2

Approximation of continuous functions

In this section, we prove Theorem 1.1 and discuss its optimality when assume The-

orem 2.1 is true. Notations throughout the proof will be summarized in Section 2.1.

2.1

Notations
Let us summarize all basic notations used in this paper as follows.

Matrices are denoted by bold uppercase letters. For instance, A € R™*" is a real

matrix of size m x n, and AT denotes the transpose of A. Vectors are denoted
(%1

as bold lowercase letters. For example, v =| * |=[vy, -, v4]7 € R? is a column
Vg

vector with v(i) = v; being the i-th element. Besides, “[” and “|” are used to

partition matrices (vectors) into blocks, e.g., A = [ﬁ; ﬁ;;]

For any p € [1,00), the p-norm of a vector @ = [x1, 22, -, 24]7 € R? is defined by

1
@], = (JeaP + [l + -+ zal?) 7"

Let u(+) be the Lebesgue measure.

Let 15 be the characteristic function on a set S, i.e., 15 is equal to 1 on S and 0
outside of S.

The set difference of two sets A and B is denoted by A\B:={z:xz € A, x ¢ B}.
For any { € R, let || :=max{i:i<¢& i€Z} and [§]:=min{i:i>¢, i€ Z}.

Assume n € N4, then f(n) = O(g(n)) means that there exists positive C' indepen-
dent of n, f, and g such that f(n) < Cg(n) when all entries of n go to +oo.

Let 0 : R - R denote the rectified linear unit (ReLU), i.e. o(z) = max{0,z}. With
max{0,x;}

the abuse of notations, we define o : R - R? as o(x) = : for any
max{0, x4}

x =[x1,,1q]" € R
Given K € N* and § € (0,), define a trifling region Q([0, 1], K,d) of [0,1]¢ as

Q([0,1]%, K, 6) = Ldj{a; = (21,22, wa]" 2y € U (£ -0, %)} (2.1)

=1
In particular, Q([0,1]4, K,¢) =@ if K = 1. See Figure 2 for two examples of trifling

regions.

Let C*([0,1]¢) be the set containing all Hélder continuous functions on [0, 1] of or-
der a € (0,1]. In particular, the A-ball in C*([0,1]¢) is denoted by B,(C([0,1]%))
for any A > 0.

Q0,1 K,6) for K=4,d=2

m— ()([0, 1](1,K,) for K=5d=1 1.00

0.:0 0.:2 0.:4 0.:6 O.:S 1.:0 000 025 050 075 100
(a) (b)
Figure 2: Two examples of trifling regions. (a) K =5,d=1. (b) K =4,d =2.

We will use NN to denote a function implemented by a ReLU FNN for short and use
Python-type notations to specify a class of functions implemented by ReLLU FNNs
with several conditions, e.g., NN (c1; ¢2; -+ ¢,,) is a set of functions implemented
by ReLU FNNs satisfying m conditions given by {c;}1<i<m, €ach of which may
specify the number of inputs (#input), the number of outputs (#output), the
total number of nodes in all hidden layers (#neuron), the number of hidden layers
(depth), the number of total parameters (#parameter), and the width in each
hidden layer (widthvec), the maximum width of all hidden layers (width), etc. For
example, if ¢ € NN (#input = 2; widthvec = [100,100]; #output = 1), then ¢ is a
functions satisfies

— ¢ maps from R? to R.

— ¢ can be implemented by a ReLU FNN with two hidden layers and the number
of nodes in each hidden layer is 100.

[n]F is short for [n,n,---,n] € NI, For example,
NN (#input = d; widthvec = [100,100]) = NN (Finput = d; widthvec = [100]?).
For a function ¢ € NN (#input = d; widthvec = [Ny, Ny, ---, Nz]; #output = 1), if

we set Ny =d and Np,; =1, then the architecture of the network implementing ¢
can be briefly described as follows:

Wi 1, bp
PR ——

~ Wp, by o 7 o 3+ Wi, bg
xr=hy——h;—h; - h,—h, ——hp, =¢(513)>

where W; € RNistxNi and b; € RVNi+1 are the weight matrix and the bias vector in
the ¢-th linear transform £; in ¢, respectively, i.e.,

hi.=W,; .ﬁi +b; = Li('ﬁi), fori=0,1,--, L,

and

hi=o(h;), fori=1,..., L.

In particular, ¢ can be represented in a form of function compositions as follows
(b:ﬁLoaoﬁLfloo'o oa’oﬁlo(joﬁo7

which has been illustrated in Figure 3.

7

O
OO
O——O
O——
B——

Wo, by ReLU (o) - W, by ReLU (o) ~ Wi by
h———h g g

‘e
5 =
|Q
'
S

(w1, 29) (1, 9)

Figure 3: An example of a ReLU network with width 5 and depth 2.

e The expression “an FNN with width N and depth L” means

— The maximum width of this FNN for all hidden layers is no more than N.
— The number of hidden layers of this FNN is no more than L.

e For 0 €[0,1), suppose its binary representation is 6 = Y72, 6,27¢ with 6, € {0,1}, we
introduce a special notation bin0.6,05---0;, to denote the L-term binary represen-
tation of 6, i.e., bin0.0,05---0;, := ZzL=1 0,2°¢.

2.2 Proof of Theorem 1.1

We essentially construct piecewise constant functions to approximate continuous
functions in the proof. However, it is impossible to construct a piecewise constant func-
tion via ReLU FNNs due to the continuity of ReLU FNNs. Thus, we introduce the
trifling region Q([0,1]¢, K,4), defined in Equation (2.1), and use ReLU FNNs to im-
plement piecewise constant functions outside of the trifling region. To prove Theorem
1.1, we first establish a theorem showing how to construct ReLU FNNs to pointwisely
approximate continuous functions except for the trifling region.

Theorem 2.1. Given f € C([0,1]9), for any L € N* and N € N*, there exists a function
¢ implemented by a ReLU FNN with width max {4d[N1/dJ +3d, 12N + 8} and depth

12L + 14 such that |¢| pe(may < |£(0)| +ws(Vd) and
|f (@) = ()| < 18Vdwp(N L), for any @ € [0,1]\Q([0,1)7, K,),

where K = |NY?|2|L4] and § is an arbitrary number in (0, 35].

With Theorem 2.1 that will be proved in Section 3, we can easily prove Theorem
1.1 for the case p € [1,00). In the early version of this paper, which focuses on contin-
uous functions as target functions, we only considered the case p € [1,00) since it was
challenging to control the approximation error in the trifling region. Later in [12] when
we considered smooth functions as target functions, we invented a technique that can
handle the error in the trifling region as in the lemma below. Therefore, we are now able
to control the approximation error for p = co. The results in this paper are for continuous
functions, to which the results in [42] are not applicable; the results in [42] characterize
how the smoothness of target functions helps to enhance the approximation capacity of

ReLLU FNNs, which is not addressed in this paper. It is interesting to point out that the
approximation rate O(N-2/¢[-2/4) for continuous functions in this paper is even better
than the rate O((25) (L)%/?) for functions in C*([0,1]?) in [42].

Lemma 2.2 (Theorem 2.1 of [42]). Given ¢ >0, N,L,K € N*, and 6 € (0, 55z], assume
feC([0,1]%) and & can be implemented by a ReLU FNN with width N and depth L. If

|f(x) - 5(:13)| <e, forany xe[0,1]9Q([0,1]% K,9),

then there exists a function ¢ implemented by a new ReLU FNN with width 3¢(N + 4)
and depth L + 2d such that

|f(x) - ¢(x)| <e+d-wp(d), forany ze[0,1]%

Now we are ready to prove Theorem 1.1 by assuming Theorem 2.1 is true, which
will be proved later in Section 3.2.

Proof of Theorem 1.1. Let us first consider the case p € [1,00). We may assume f is
not a constant function since it is a trivial case. Then wys(r) > 0 for any r > 0. Set
K = | NYd]2| L?/%| and choose a small § € (0, =] such that

13K
Kd5(|£(0)] +ws (V)" = [NV L*]d5(| £ (0)] +w; (V)"
< (wy (N-219L21)7,
By Theorem 2.1, there exists a function ¢ implemented by a ReLU FNN with width
max {4d| N'/?| +3d, 12N + 8} < 12max {d|N'/?|, N + 1}
and depth 12L + 14 such that
1f () - ¢(x)| < 18V dws(N~HIL2) for any « € [0,1]9\Q([0,1], K, 6),

It follows from p(2([0,1]¢, K,0)) < Kdd that

I =00 g000)= o gy @) - 0@+ [(@) - o) da

[0,1]N\([0,1]%,K,6)
< Kds([f(0)|+ws(Vd))" + (18Vdw (N 1L 27))"
< (wp(N-2L21)) 4 (18Vdw s (N-IL2))
< (19Vdws(N=HAL 24y,
Hence, | f = | 1r(jo17ay < 19V dwp(N-2/4L-2/7).
Next, let us discuss the case p = co. Set K = |NV¢|?|L?/?] and choose a small

d € (0, 3K] such that
d-wf(é) < u}f(N_Q/dL_Q/d).

By Theorem 2.1, there exists a function 5 implemented by a ReLU FNN with width
max {4d| N'/¢| + 3d, 12N + 8} and depth 12L + 14 such that

If () - ¢(x)| < 18Vdws(NHIL 2y = for & € [0,1]0Q([0,1]% K, 6),

9

By Lemma 2.2, there exists a function ¢ implemented by a ReLU FNN with width
39(max {4d| N') + 3d, 12N +8} +4) < 3% max {d N/?|, N +1}
and depth 12L + 14 + 2d such that
If(2) - p(x)| <e+d-wp(8) <19Vdws(NHIL2) for any x € [0,1]7.

So we finish the proof. O

2.3 Optimality of Theorem 1.1

This section will show that the approximation rate in Theorem 1.1 is nearly tight
and there is no room to improve for the function class B)(C*([0,1]¢)). Theorem 2.3
below shows that the approximation rate O(w;(N-(2/d+p) [-(/d+r))) for any p > 0 is
unachievable, implying the approximation rate in Theorem 1.1 is nearly tight for the
function class By(C([0,1]9)).

Theorem 2.3. Given any p >0 and C > 0, there exists f € By\(C*([0,1]%)) such that,
for any Jy >0, there exist N, L € N with NL > Jy satisfying

inf _ - > C)\N—(ro/d+p)L—(2a/d+p)'
¢e/\W(#input=d;13idthsN; depth<) H¢ fHL (019

In fact, we can show a stronger result than Theorem 2.3. Under the same con-
ditions as in Theorem 2.3, for any H € [0,1]¢ with pu(H) < 2-(@E“DK-d where K =
[(N L)?/d+rl(2) | "it can be proved that

inf — fl e > C\N~-Qa/d+p) [~Qafd+p), 2.2
(be/\ﬂ\/'(#input:d;lgidthsN; depth<L) ”¢ f”L ([0.1]\#) = ()

We will prove (2.2) by contradiction, then Theorem 2.3 holds as a consequence. Assuming
Equation (2.2) is false, we have the following claim.

Claim 2.4. There exist p > 0 and C > 0 such that given any f € By(C([0,1]%)),
there exists Jo = Jo(p,C, f) > 0 such that, for any N,L € N with NL > Jy, there exist
¢ € NN (#input = d; width < N; depth < L) and H € [0,1]¢ with p(H) < 2-(d+E+1) [-d
where K = |(NL)2/4+0/(20) | satisfying

|f = 0]l Lo (roayevagy S CAN-Ge/Ee) [-Caddre),
Now let us disprove this claim to show Theorem 2.3 and Equation (2.2) are true.

Disproof of Claim 2.4. Without the loss of generality, we assume A\ = 1; in the case of
A # 1, the proof is similar. We will disprove Claim 2.4 using the VC dimension. Recall
that the VC dimension of a class of functions is defined as the cardinality of the largest
set of points that this class of functions can shatter. Denote the VC dimension of a
function set .# by VCDim(.%). By [27] and the fact

NN (width < N; depth < L) € NV (#parameter < (LN +d +2)(N +1)),

10

there exists C; > 0 such that

VCDim(/\//\/(#input = d; width < N; depth < L))
<Cy(LN +d+2)(N+1)LIn((LN +d+2)(N +1)) (2.3)
=b,(N,L).

Then we will use Claim 2.4 to estimate a lower bound of
VCDim (AN (#input = d; width < N; depth < L)), (2.4)

and this lower bound is asymptotically larger than b,(N, L), which leads to a contradic-
tion.

More precisely, we will construct {f, : x € } € B;(C*([0,1]?)), which can shat-
ter by(N,L) = K? points, where % is a set defined later. Then by Claim 2.4, there
exists {¢, : x € A} such that this set can shatter by(N, L) points. Finally, by(N, L) =
K4 = |(NL)?d+r/2)|d ig asymptotically larger than b,(N,L) = C;(LN +d + 2)(N +
1)LIn ((LN +d+2)(N+ 1)), which leads to a contradiction. More details can be found
below.

Step 1: Construct {f, : x € B} € B;(C([0,1]?)) that scatters by(N, L) points.
Divide [0,1]¢ into K¢ non-overlapping sub-cubes {Qg}s as follows:
Qﬁ = {.’L‘ = [131,1'2, "'axd]T € [07 1]d ‘X € [ﬁi[;l) %]a L= 17 2a '"7d}a

for any index vector 3 = [, B2, -+, B4]T €{1,2,---, K }.

Let Q(xo,n) <€ [0,1]¢ be a hypercube, whose center and sidelength are xy and 7,
respectively. Then we define a function (g on [0,1]? corresponding to Q = Q(xy,n) €
[0,1]¢ such that:

* Co(®mo) = (n/2)/2;
e (o(x) =0 for any ¢ Q\0Q, where 0Q) is the boundary of Q;

® (¢ is linear on the line that connects oy and x, for any x € 9Q).

Define
B = {X : x is a map from {1,2,---, K}% to {-1, 1}}

For each x € #, we define
fX(ZB) = Z X(B)gQﬁ(m)v

:86{1727"'7K}d

where (g, () is the associated function introduced just above. It is easy to check that
{fx:x €A} c B (C([0,1]9)) can shatter b,(N, L) = K points.

Step 2: Construct {¢, : x € A} that scatters b,(N, L) points.

By Claim 2.4, there exist p >0 and C5 > 0 such that, for any f, € {f) : x € #} there
exists J, > 0 such that for all N,L € N with NL > J,, there exist ¢, € NN (#input =
d; width < N; depth < L) and H, with pu(#,) < 2-@+ED) K~d such that

|fx (@) = oy ()] < C’Q(NL)_O‘(z/d+p/a), for any «x € [0, l]d\%x.

11

Set H = UyerH, and J; = max,cz Jy. Then it holds that

(M) < 2K 9 (@K fod — (9)49, (2.5)
It follows that for all y € & and N, L € N with NL > J;, we have
£y () = by ()] < Co(N L) drelo) - for any @ € [0, 1]\ H. (2.6)

For each index vector 3 € {1,2,--, K}¢ and any x € 1Qg, where 1Qs denotes the
cube whose sidelength is half of that of () sharing the same center of (), since Q3 has
a sidelength 7 = [(N L)?®+0/(22) |-1 we have

[F(@) = [Caa(®)] 2 [Cas (Bu)I/2 = (35) /4 = g [(NL)H /G e (2.7)

where xq, is the center of QQg. For fixed d, a, and p, there exists J > 0 large enough
such that, for any N, L € N with NL > J;, we have

smm [(N L)/ F0lCe) 7o, Co (N L) Cldole), (2.8)
By Equation (2.5), for any 3 € {1,2,---, K }¢, we have
p(H) < (2K) 72 < (2K)™ = 1(3Qp),
which means (3Qg) n ([0,1]\#) is not empty. Therefore, there exists xg € (3Qg) N
([0,1]9\H) for each B € {1,2,---, K} such that
()| 2 [(N L)) |7 s Gy (N L) CHel) > | f (x5) - by ()],

for any N,L € N with NL > Jy = max{J;, o}, where the first, the second, and the
last inequalities come from (2.7), (2.8), and (2.6), respectively. In other words, for any
x€# and Be{l,2,--, K} f (xg) and ¢, (xg) have the same sign. Then {¢, : x € B}
shatters {:cg RS {1,2,--~,K}d} since {f, : x € #} shatters {:1:5 RS {1,2,~~,K}d} as
discussed in Step 1. Hence,

VCDIm({¢, : x € Z}) > K¢ = by(N, L), (2.9)
for any N, L e N with NL > Jy,

Step 3: Contradiction.
By Equation (2.3) and (2.9), for any N, L € N with NL > J,, we have
be(N, L) < VCDim({¢, : x € #})
< VCDim(ANN (#input = d; width < N; depth < L)) <b,(N, L),
implying that
[(NL)2lC) |4 < O (LN +d +2)(N + 1)LIn ((LN +d +2)(N + 1)),

which is a contradiction for sufficiently large N, L € N. So we finish the proof. m

By Theorem 2.3, for any p > 0, the approximation rate cannot be better than
O(N-Q@ald+p) [~(2/a+p)) " if we use FNNs in NN (#input = d; width < N; depth < L) to
approximate functions in By(C*([0,1]?)). By a similar argument, we can show that the
approximation rate cannot be O(N-20/d[,-(2/e+p)) nor O(N-(2a/d+p) [~2a/d) " Hence, the
approximation rate in Theorem 1.1 is nearly tight.

12

3 Proof of Theorem 2.1

In this section, we will prove Theorem 2.1. We first present the key ideas in Section
3.1. Based on two propositions in Section 3.1, the detailed proof is presented in Section
3.2. Finally, the proofs of two propositions in Section 3.1 can be found in Section 3.3
and 3.4.

3.1 Key ideas of proving Theorem 2.1

Iy
—
m— (g
0.5 (0,1, K, 6)
0.0 e —— k(25 f(25)
Qo §Q1 9 Q 1@4 Q> 1@6 3 Qo Qu @2 Qu: Q11 Q15
0.00 0.25 0.50 075 1.00

Figure 4: An illustration of f, f,, ¢, s, Qs, and the trifling region Q([0,1]%, K,9) in the
one-dimensional case for € {0,1,---, K —1}¢, where K = N2L? and d =1 with N =2 and
L =2. f is the target function; f, is the piecewise constant function approximating f; ¢
is a function, implemented by a ReLU FNN, approximating f; and zp is a representative
of Q5. The measure of the trifling region Q([0,1]¢, K,0) can be arbitrarily small as we
shall see in the proof of Theorem 1.1.

We will show that an almost piecewise constant function ¢ implemented by a ReLLU
FNN is enough to achieve the desired approximation rate in Theorem 1.1. Given an
arbitrary f e C'([0,1]?), we introduce a piecewise constant function f, ~ f serving as an
intermediate approximant in our construction in the sense that

fr~f,on[0,1]% and f,~¢ on [0,1]\Q([0,1]% K,).

The approximation in f ~ f, is a simple and standard technique in constructive approxi-
mation. For example, given arbitrary N and L, uniformly partition [0, 1]¢ into O(N?2L?)
pieces and define f, using this partition. Then the approximation error of f, ~» f scales
like O(N-2/4[~2/7). We will address the approximation in f, ~» ¢ with the same error
scaling and a limited budget of the FNN size, e.g., O(NL) neurons, based on the fact
that f, can be approximately implemented by a ReLU FNN in [0,1]4\Q([0,1]¢, K,),
where Q([0,1]9, K, ¢) is the trifling region near the discontinuous locations of f, with an
arbitrarily small Lebesgue measure (see Figure 4 for an illustration). The introduction
of the trifling region is to ease the construction of a deep ReLU FNN to implement the
desired ¢, which is a piecewise linear and continuous function, to approximate the dis-
continuous function f, by removing the difficulty near discontinuous points, essentially
smoothing f, by restricting the approximation domain in [0, 1]9\Q([0,1]%, K,).

Now let us discuss the detailed steps of construction. First, divide [0, 1]¢ into a union
of important regions {Qg}g and the trifling region ([0,1]¢, K,), where each Qg is

13

associated with a representative xg € Qg such that f(xg) = f,(xg) for each index vector
B€{0,1,...,K -—1}¢ where K = O(N?4L2/4) is the partition number per dimension
(see Figure 6 for examples for d = 1 and d = 2). Next, we design a vector function
®,(x) constructed via ®1(x) = [gzﬁl(xl),¢1(x2),~~,¢1(xd)]T to project the whole cube
R to a d-dimensional index @ for each @, where each one-dimensional function ¢; is
a step function implemented by a ReLU FNN. The final step is to solve a point fitting
problem. To be precise, we construct a function ¢, implemented by a ReLLU FNN to
map B approximately to f,(zg) = f(za). Then 6501 (z) = 6a(8) = f,(wg) = f(zp)
for any @ € Qg and each B, implying ¢ = ¢p0 ®; ~ f, » f on [0,1]N\Q2([0,1]¢, K,0).
We would like to point out that we only need to care about the values of ¢y at a set
of points {0,1,---, K = 1}% in the construction of ¢ according to our design ¢ = ¢y o ®;
as illustrated in Figure 5. Therefore, it is unnecessary to care about the values of ¢
sampled outside the set {0,1,---, K — 1}, which is a key point to ease the design of a
ReLU FNN to implement ¢, as we shall see later.

- | ®,(x)-p A set of $2(B)~f (zp) A set of function. values
f:> d-dimensional indices: =——> at representatives:
0,501 . for zeQp ﬂe{O,l,-",K—l}d {f(mg):ﬂe{O,l,-~~,K—1}d}

0.00¢ * x x * +
0.00 0.25 0.50 0.75 1.00

Figure 5: An illustration of the desired function ¢ = ¢ o ®;. Note that ¢ » f on
[0, 111Q([0, 114, K, 8), since 6(x) = gy 0 B, (@) = 65(8) = f(w) for any @ ¢ Qg and cach
Be{0,1,--- K -1}

Finally, we discuss how to implement ®; and ¢, by deep ReLU FNNs with width
O(N) and depth O(L) using two propositions as we shall prove in Section 3.3 and 3.4
later. We first construct a ReLU FNN with desired width and depth by Proposition 3.1
to implement a one-dimensional step function ¢;. Then ®; can be attained via defining

P (x) = [¢1(3?1)7¢1(372)7"'7¢1(33'd)]T, for any = = [95173727"'7$d]T e R%

Proposition 3.1. For any N,L,d € N* and § € (0, 5] with K = [NY4[2|L?/4], there
exists a one-dimensional function ¢ implemented by a ReLU FNN with width 4 NY/4|+3

and depth 4L +5 such that
(b(x) =]{Z, if ¢ e [%7% -9~ 1{k5£K—2}] for k = 071’...7K_ 1.

The construction of ¢ is a direct result of Proposition 3.2 below, the proof of which
relies on the bit extraction technique in [5].

Proposition 3.2. Given any € > 0 and arbitrary N, L, J € N* with J < N2L?, assume
{y; 20:5=0,1,---,J =1} is a sample set with |y; —y;_1| <e for j=1,2,---,J—-1. Then
there exists ¢ € NN (#input = 1; width < 12N + 8; depth < 4L +9; #output = 1) such
that

14

(Z) |¢(])_yj| <€ fO?”j 20717"'7J_1;.
(i) 0 < ¢p(z) <max{y;:7=0,1,---,J -1} for any x e R.

With the above propositions ready, let us prove Theorem 2.1 in Section 3.2. We
further assume that wy(r) > 0 for any r > 0, excluding a simple case when f is a constant
function.

3.2 Proof of Theorem 2.1

We essentially construct an almost piecewise constant function implemented by a
ReLU FNN with O(NL) neurons to approximate f. It is clear that |f(z) - f(0)| <

wr(Vd) for any x € [0,1]¢. Define f = f - f(0) + wp(v/d), then 0 < f(x) < 2ws(V/d)
for any x € [0,1]¢. Let M = N2L, K = |N'Y4]2| [?/?| and § be an arbitrary number in

(0, 5%]-
The proof can be divided into four steps as follows:

1. Divide [0,1]¢ into a union of sub-cubes {Qg}gef0,1,..k-13¢ and the trifling region
Q([0,1]¢, K,¢), and denote xg as the vertex of Qg with minimum | - ||; norm

2. Construct a sub-network to implement a vector function ®; projecting the whole
cube Qg to the d-dimensional index 3 for each 3, i.e., ®,(x) = 3 for all x € Qg;

3. Construct a sub-network to implement a function ¢, mapping the index 8 approx-
imately to f(xg). This core step can be further divided into three sub-steps:

3.1. Construct a sub-network to implement ¢/, bijectively mapping the index set
{0,1,---, K = 1}% to an auxiliary set A; C {2Kd j=0,1,- 2Kd} defined later
(see Flgure 7 for an illustration);

3.2. Determine a continuous piecewise linear function g with a set of breakpoints
A u Ay u {1} satisfying: 1) assign the values of g at breakpoints in .4; based
on {f(x)}s, i.e., goy(B) = f(xp); 2) assign the values of g at breakpoints
in Ay U {1} to reduce the variation of g for applying Proposition 3.2;

3.3. Apply Proposition 3.2 to construct a sub-network to implement a function 1,
approximating g well on A; U Ay U {1}. Then the desired function ¢, is given

by ¢ = by 09y satistying ¢a(8) =12 0 1 (B) » g o1 (B) = f($6)3

4. Construct the final target network to implement the desired function ¢ such that
$(x) = g2 0 @1 () + f(0) ~wp(Vd) » fzp) + f(0) ~w;(Vd) = f(zp) for & € Qp.

The details of these steps can be found below.
Step 1: Divide [0, 1]¢ into {Qg} ge(0,1,. -13¢ and Q([0,1]%, K,).
Define g = 3/K and

Qo= { = o1, 2] €[0,1) € [5, 52 =0 U parc o], i = 1,d)

15

for each d-dimensional index 8 = [y, -+, B4]T € {0, 1, -+, K-1}%. Recall that Q([0,1]¢, K, 9)
is the trifling region defined in Equation (2.1). Apparently, &g is the vertex of ()g with
minimum | - ||; norm and

[0,1]% = (UBe{0,1,-,K-1}d Qﬁ) uQ([0,1]%, K, 9),

see Figure 6 for illustrations.

- Q0,1 K.8) for K=4,d=2

— Q([O, 1}’17 K, 5) for K=5,d=1 Qs iulZe({ll.l_z_:Z))f

* wxgfor B e{0,1,2,3}

(g for B € {0,1,2,3,4} e R

* xgfor B€{0,1,2,3,4}

i B ot 5 5 i
R e
i Qo i Q i Q> i Q3 i Q4 i
OIO 0‘2 Ol‘l 0‘6 OI8 1‘0 l)l)l)mfl‘ZSWWUl')U 7(].‘73 l]ﬂ

(a) (b)

Figure 6: Illustrations of ([0,1]¢, K,0), Qg, and xg for B€{0,1,--, K -1}4. (a) K =5
and d=1. (b) K =4 and d = 2.

Step 2: Construct ®; mapping x € (s to 3.

By Proposition 3.1, there exists ¢; € NV (width < 4| NV/4| + 3; depth < 4L +5) such
that
pr(z) =L, ifwe[£,Bl-§ 1y o] for k=01, K-1.

It follows that gbl(l'l) = ﬁl if ¢ = [%1,1’2,"',1’03]71 € Qﬁ for each ﬂ = [ﬁl,ﬁg,“',ﬁd]T.
By defining

P (x) = [gbl(xl),gbl(xg), ---,gbl(xd)]T, for any @« = [x1, 29, -, 24]7 € RY,
we have ®;(x) =B if x e Qg for B {0,1,--, K - 1}%.

Step 3: Construct ¢» mapping 8 approximately to f(wﬁ)

The construction of the sub-network implementing ¢, is essentially based on Propo-
sition 3.2. To meet the requirements of applying Proposition 3.2, we first define two
auxiliary set A; and Aj as

Ay ={Zs+5E:i=0,1, K and k=0,1,-, K - 1}

and

Ay={ir+ g + 5o 11=0,1, K and k=0,1,-+, K - 1},
Clearly, A1 U Ay U {1} = {57 : j = 0,1,~+,2K9} and A; n Ay = @. See Figure 6 for an
illustration of A; and A,. Next, we further divide this step into three sub-steps.

Step 3.1: Construct ; bijectively mapping {0,1,--, K — 1}¢ to A;.

16

Figure 7: An illustration of Aj, Ay, {1}, and ¢ for d =2 and K =4.

Inspired by the binary representation, we define
d-1
V() =24 + Y 2 for any @ = [x1, 20, 24)" € R (3.1)
i=1

Then 1); is a linear function bijectively mapping the index set {0,1,---, K = 1}? to

d-1
{%4_2%:/@6{0717'“7[(_1}[1}
=1
= { e+ 5t 0= 0,1, K4 and k=0,1,-, K — 1} = A,.

Step 3.2: Construct g to satisfy g o11(8) = f(xg) and to meet the requirements of
applying Proposition 3.2.

~Let g:[0,1] = R be a continuous piecewise linear function with a set of breakpoints
{JW 15 =0, 1,---,2Kd} = A; u Ay U {1} and the values of g at these breakpoints satisfy
the following properties:

e The values of g at the breakpoints in A; are set as
9(%(5)) = }.v(wﬁ)7 for any /8 € {07 17"'7 K - 1}d’ (32)

e At the breakpoint 1, let g(1) = f(1), where 1 = [1,1,---,1]T e RY;

e The values of g at the breakpoints in Ay U {1} are assigned to reduce the variation
of g, which is a requirement of applying Proposition 3.2. Note that

) K+1 i . d-1
{77 — 350> vy SALU{L}, fori=1,2,- K7,

implying the values of g at #—% and ﬁ have been assigned fori = 1,2, -+, K1,
Thus, the values of g at the breakpoints in Ay can be successfully assigned by
letting ¢ linear on each interval [# - %, #] for 1+ = 1,2,---, K91 since
Ay € U [irr — S0 o).

Apparently, such a function g exists (see Figure 7 for an example) and satisfies
[9(st) ~ 9| < maxc {wy (), wr (V) /K } < wy(FE), for j=1,2, 2K,

17

and
0<g(55) < 2wp(Vd), for j=0,1,--2K%

Step 3.3: Construct v, approximating g well on A; U Ay U {1}.

Since 2K = 2([Nl/dJ2[L2/dJ)d < 2(N2L?) < N?I2, where L = 2L, by Proposition
3.2, there exists 1), € NNV (#input = 1; width < 12N +8; depth < 4L +9) = AN (#input =
1; width < 12N +38; depth < 8L +9) such that

[2(7) = 9(ga)| €y CF). - for j =0, 1, 2K~ 1,
and
0<o(z) < max{g(5%7):j=0,1,~,2K-1} < 2wp(Vd), for any xR,

By defining ¢ (z) = (2K %) for any z € R, we have 1, € NN (#input = 1; width <
12N +8; depth < 8L +9),

0 < 1hy(x) = Yo (2K%x) < 2w(Vd), for any z € R, (3.3)
and
[a(5h) = 9(58a)] = [6205) = 9(ha) <wy (), for j=0,1,2K =1 (34)

Let us end Step 3 by defining the desired function ¢ as ¢, = 15 01);. Note that 1 :
R? - R is a linear function and 1, € NN (#input = 1; width < 12N +8; depth < 8L +9).
Thus, ¢» € NN (#input = d; width < 12N +8; depth < 8L +9). By Equation (3.2) and
(3.4), we have

02(8) = Flap)| = [02(41(8)) - (w1 (B))| < ws (D), (3.5)
for any 3 €{0,1,--, K — 1}¢. Equation (3.3) and ¢y = 15 o 91 implies
0 < ¢o(x) < 2wp(Vd), for any e R% (3.6)

Step 4: Construct the final network to implement the desired function ¢.

Define ¢ = ¢ 0 ®; + £(0) — ws(V/d). Since ¢y € NNV (width < 4| NV4| + 3; depth <
4L +5]), we have ®; € NN (#input = d; width < 4d| NV/4|+3d; depth < 4L +5; #output =
d). Note that ¢y € NN (#input = d; width < 12N +8; depth < 8L +9). Thus, ¢ =
do 0@y + f(0) —ws(\/d) is in

AN (width < max{4d|N'/?] + 3d, 12N +8}; depth < (4L +5) + (8L +9) = 12L + 14).

Now let us estimate the approximation error. Note that f = f+ f(0) - wr(V/d). By
Equation (3.5), for any € Qg and B € {0,1,---, K — 1}4, we have

(@) = p()] = | F(z) - d2(®1(2))] = |F(z) - 62(B)]
<|f(z) - f(@p)| +|f(zp) - $2(8)|
<wi(M) + wp() < 2w (8VAN 1LY,

18

where the last inequality comes from the fact K = | NV/4|?| L?/4] > W for any N, L €
N*. Recall the fact ws(nr) < nwe(r) for any n € N* and r € [0,00). Therefore, for any
X € Ugeo 1, k-134@p € [0, 1]7\Q([0,1]4, K,0), we have
() - 6()] < 20y (SVAN 21214 < 28/ ooy (N-2HL 21
<18Vdwsp (N4 2y,

It remains to show the upper bound of ¢. By Equation (3.6) and ¢ = ¢o0®;+ f(0) -
wy(V/d), it holds that @] e (gay < |f(0)| +wy(v/d). Thus, we finish the proof.

3.3 Proof of Proposition 3.1

Lemma 3.3. For any Ny, Ny € N*, given Ni(No + 1) + 1 samples (z;,y;) € R? with
To < Ty < < Ty (Npe1) and y; 20 fori=0,1,--, Ny(No+1), there exists ¢ € NN (##input =
1; widthvec = [2N1,2N, + 1]; #output = 1) satisfying the following conditions.

(Z) ¢($Z) =Y fOT’ L= 07 17"'7N1(N2 +]-);
(ii) ¢ is linear on each interval [x;_q1,x;] for i ¢ {(No+1)j:5=1,2,--- Nq}.

In fact, Lemma 3.3 is a part of Lemma 2.2 in [62]. For the purpose of being self-
contained, we present it as follows.

Lemma (Lemma 2.2 of [62]). For any m,n € N*, given any m(n+1)+1 samples (x;,y;) €
R? with xg < &1 < T2 < =+ < Tip(nary and y; 2 0 for i = 0,1, m(n + 1), there exists
¢ € NN (#input = 1;widthvec = [2m,2n + 1]; F#output = 1) satisfying the following
conditions.

(i) ¢(z;) =y; fori=0,1,--- m(n+1);

(i1) ¢ is linear on each interval [x,_1,x;] fori¢{(n+1)j:7=1,2,--- m};

<3 . (1 + max{$j(n+l)+n_:cj(n+l)+k—1:j:O717"'7m_1})'
(i) sup |¢(z)[<3 max yi]l

min{z; -z, _1:7=0,1,---;m—1
xe[x()?xm(n-#l)] ,1,~-~,m(n+1)} kel { j(n+1)+k~Lj(n+1)+k-10 }

Lemma 3.4. Giwen any N, L,d e N*, it holds that

NN (#input = d; widthvec = [N, NL]; #output = 1)
c NN (#input = d; width < 2N +2; depth < L +1; #output = 1).

Proof. The key idea to prove Proposition 3.4 is to re-assemble O(L) sub-FNNs in the
shallower FNN in the left of Figure 8 to form a deeper one with width O(N) and depth
O(L) on the right of Figure 8.
For any ¢ € NN (#input = d; widthvec = [N, NL]; #output = 1), ¢ can be imple-
mented by a ReLU FNN described as
W, bg Wi, by

W2, b
T g h ¢(x),

e g

19

Figure 8: An illustration of the main idea to prove Lemma 3.4.

where g and h are the output of the first hidden layer and the second hidden layer,
respectively. Note that

g=c(Wy-x+by), h=0c(W;-g+by), and ¢(x)=W;y-h+b,. (3.7)

We can evenly divide h € RNEX1 b e RNEXL W, e RVNEXN and W, € RNL into L parts
as follows:

h, b1 Wi
h = h:/2) bl = b?Q) Wl = “/;172)
hy b1 Wi

and W2 = [WQJ, WQ,Q,"'7 W2,L], where hg € RNXI, bLg € RNXI, WLg € RNXN, and Wz,g €
RN for £=1,2, -, L.

Define ,
So = 0, and Sy = ZWQJ"’L]’, for€:1,2,---,L.
j=1
Then ¢(x) = Wy -h + by = sp, + by and
S¢=8i-1+Way-hy, forf=12-- L. (3.8)

Hence, it is easy to check that ¢ can also be implemented by the deep network shown
in Figure 9. It is clear that the network has the architecture of Figure 9 is with width
2N + 2 and depth L + 1. So, we finish the proof. O

With Lemma 3.3 and 3.4 in hand, we are ready to present the detailed proof of
Proposition 3.1.

Proof of Proposition 3.1. We divide the proof into two cases: d =1 and d > 2.

Case 1: d=1.

In this case, K = | NY/4]?|L?/4] = N2L?. Denote M = N2L and consider the sample
set

{(1,M-1), 2,0} u{(Zm):m=01,M-1}u{(ZL-6,m):m=0,1,-,M-2}.

Its size is 2M +1 =N - ((2NL— 1)+ 1) +1. By Lemma 3.3 (set N; = N and Ny =2NL-1
therein), there exists ¢; € NN (widthvec = [2N,2(2NL - 1) + 1]) = NN (widthvec =
[2N,4N L - 1]) such that

20

e e R o N
/- - (S)
Figure 9: A illustration of the desired network based on Equation (3.7) and (3.8), and

the fact x = o(z) —o(-z) for any x e R. We omit the activation function (o) if the input
is non-negative.

o di(M7) =¢1(1) =M -1 and ¢1(57) = i (%5 - 6) =m for m=0,1,-, M -2

e ¢ is linear on [22=2 1] and each interval [, 2 — §] for m =0,1,, M - 2.
Then
pr1(z)=m, ifxe[R 2§14, 0], form=0,1,- M-1 (3.9)

Now consider the another sample set

{GrL-1), 2.0} o{(Grz, 0 €=0,1,-+ L1} u{(57 = 6,0): (=0, 1, L -2},

Its size is 2L+1=1-((2L - 1)+ 1) + 1. By Lemma 3.3 (set N; = 1 and N, = 2L -1
therein), there exists ¢ € NN (widthvec = [2,2(2L-1) +1]) = NN (widthvec = [2,4L—-1])
such that

® Oy %)ng?(ﬁ): -1 and ¢2(ML) ¢2(Z+1 (5)=€f01‘€=071,--~7L—2;
L-1

e ¢, is linear on [£2, L] and each interval [+, £+ -] for £=0,1,-+, L - 2.

M ML> ML

L’
It follows that, for m=0,1,--- M -1 and /=0,1,---, L -1,

a(x - 3F) = 4, forxe[%,%—é-l{g@_z}]. (3.10)

The fact K = ML implies each k € {0,1,-, K — 1} can be unique represented by
k=mL+/{ form=0,1,---M-1and ¢£=0,1,---,L — 1. Then the desired function ¢ can
be implemented by a ReLU FNN shown in Figure 10. Clearly,

o(z) =k, fve[Z £-6 -1y 0] for kef{0,1,+ K -1}

K?

By Lemma 3.4, ¢, € NN (widthvec = [2N,4NL - 1]) ¢ NN (width < 4N +2; depth <
2L +1) and ¢9 € NN (widthvec = [2,4L — 1]) € NN (width < 6; depth < 2L + 1), implying
¢ € NN (width < max{4N+2+1,6+1} =4N+3; depth < (2L+1)+2+(2L+1)+1 =4L+5).
So we finish the proof for the case d =1

Case 2: d > 2.

Now we consider the case when d > 2. Consider the sample set

{(1LK-1),2,0)}u{(£,£): k=01, K-1} u{(BL-6,k): k=01, K -2},

21

Figure 10: An illustration of the ReLLU FNN implementing ¢ based on Equation (3.9)
and (3.10) with = € [£, £ = § Lipepony] = [t mblil 51 0 or r<r-2)], Where
k=mL+{form=0,1,--- M-1and ¢/=0,1,---,L—1. “¢;” and “¢,” near “—" represent
the respective ReLU FNN implementing itself. We omit the activation function ReLU if

the input of a neuron is non-negative.

whose size is 2K +1 = [NY4|((2| NY4|[L?/?]-1) +1) + 1. By Lemma 3.3 (set N; = [N'/4]
and Ny = 2| NY/4|| L?/4] — 1 therein), there exists ¢ in

NN (widthvec = [2| NY], 2(2| NY4|| L¥4] - 1) + 1])
c NV (widthvece = [2| NY4] 4| NY2|| L¥4] - 1])
such that
K-1Y _ _ kY _ 4fk+l _ _ :
® (b(T) —¢(1) —K—l, and Qb(?) —(b(? _5) =k for k—O,l,---,K—Q,
e ¢ is linear on [£1, 1] and each interval [£, £ —§] for k=0,1,--, K - 2.

Then
o(x)=Fk, ifwe[L Bl _§. 10, 0]fork=01,- K-1.
K’ K { }

By Lemma 3.4,

¢ € NNV (widthvec = [2| NV |, 4| NV4|| L24] - 1])
c NN (width < 4| NY4| +2; depth < 2|L¥?] + 1)
c NNV (width < 4| NY?| + 3; depth < 4L +5).

which means we finish the proof for the case d > 2. O]

3.4 Proof of Proposition 3.2

The proof of Proposition 3.2 is based on the bit extraction technique in [5,27]. In
fact, we modify this technique to extract the sum of many bits rather than one bit and
this modification can be summarized in Lemma 3.5 and 3.6 below.

Lemma 3.5. For any L € N*, there exists a function ¢ in
NN (#input = 2; width <7; depth < 2L + 1; #output =1)

such that, for any 6y,60y,--,07 € {0,1}, we have

4
¢(bin0.9192---9L, g) = Zej’ for ¢ = 1’2’ ’L

j=1

22

Proof. Given 6y,0,,---,01, €{0,1}, define
& = bin0.0;0;,10p, for j=1,2, L

and 1. 250
b m =)
()= {O, x < 0.

Then we have
0]=T(£]_1/2)7 fOI'j=1,2,"',L7

and
£j+1:2€j_6j fOI'j:1,2,"',L—1.

I would like to point out that, by above two iteration equations, we can iteratively get
£1,01,89,05,--- &1, 0 when & is given. Based on this iteration idea, the rest proof can be
divided into three steps.

Step 1: Simplify the iteration equations.
Note that T (z) = o(2/6+1)-0(2/) for any x ¢ (-6,0). By setting 6 = 1/2-%5,277 =
2L we have §; - 1/2 ¢ (-6,0) for all j, implying
0;=T(&-1/2) = 0((&-1/2)/6+1) - o((& - 1/2)/9)
=o(L(&) +1) -o(L(E)),

for j=1,2,---, L, where L is the linear map given by £(x) = (z—1/2)/0. It follows that,
forj=1,2,---,L -1,

(3.11)

Eir1 =26 -0; =26 - (L&) + 1) +o(L(§))). (3.12)

Step 2: Design a ReLU FNN to output Z§=1 0;.

It is easy to design a ReLU FNN to output 6y,60s,---,6; by Equation (3.11) and
(3.12) when using & = bin0.0,05---0;, as the input. However, it is highly non-trivial to
construct a ReLU FNN to output Z§:1 ¢; with another input ¢, since many operations
like multiplication and comparison are not allowed in designing ReLU FNNs.

Now let us establish a formula to represent Zle 0; in a form of a ReLU FNN as
follows:

The fact that z29 = o(x; + 29 — 1) for any x1, 25 € {0,1} implies

L

0= 30,7 (0=) = o6+ T(L-7) - 1)

4

7=1

<
]
—_

M=

o(0;+0(t-j+1)-o(t-j)-1),

j=1

for £=1,2,---, L, where the last equality comes from the fact 7(n) =o(n+ 1) —o(n) for
any integer n.
To simplify the notations, we define

zj=0(0;+0(l-j+1)-a(l-j)-1), (3.13)

23

Input 1 2 3)
D D D O
m)) ® .

\ z%z

oy ey e e ey

4
-

[Z] 12111 j= 191*0(51 D

JIZZJ m

Figure 11: A illustration of the target ReLU FNN implementing ¢ to output Zle Zj0 =
Z§=1 0; = ¢(&,0) given the input (&1,¢) = (bin0.6109--0;,¢) for ¢ € {1,2,--- L} and
01,05,---,01, € {0,1}. The construction is mainly based on Equation (3.11), (3.12), (3.13),
and (3.14). The numbers above the architecture indicate the order of hidden layers. It
builds a whole iteration step for every two layers. We output both (¢ - 7) and o(j -)
in the hidden layers for j = 1,2, L because of the fact z = o(z) - o(-x) for any z € R.
We omit the activation function (o) if the input of a neuron is non-negative. Note that
all parameters of this network are essentially determined by Equation (3.11) and (3.12),
which are valid no matter what 6y,6s,---,0; € {0,1} are. Thus, the desired function ¢
implemented by this network is independent of 0y, 6s,---, 0, € {0,1}.

24

for {=1,2,---,L and j=1,2,---, L. Then,
¢ L
> 0;=> 2, forl=12L. (3.14)
j=1 j=1

With Equation (3.11), (3.12), (3.13), and (3.14) in hand, it is easy to construct a
function ¢ implemented by a ReLU FNN with the desired width and depth outputting
Yi10; = Yiy 2y given the input (&5,0) = (bin0.610+0y,¢) for £ € {1,2,+ L} and
01,05,---,0;, € {0,1}. The details of construction are shown in Figure 11. Clearly, the
network in Figure 11 is with width 7 and depth 2L + 1, which implies

¢ € NN (#input = 2; width < 7; depth < 2L + 1; #output = 1).
So we finish the proof. O

Next, we introduce Lemma 3.6 as an advanced version of Lemma 3.5.

Lemma 3.6. For any N,L e N*, any 0,,,€{0,1} form=0,1,---,M-1and¢=0,1,---, L—
1, where M = N2L, there exists a function ¢ implemented by a ReLU FNN with width
AN + 3 and depth 3L + 3 such that

¢
o(m,0) = Zé’m,j, form=0,1,-M-1and £=0,1,---, L — 1.
=0

Proof. Define
Ym = bin0.9m709m71---9m7L_1, for m = 0, 1, e M -1.

Consider the sample set {(m,y,,) :m =0,1,---, M}, whose cardinality is M +1 = N((NL—
1)+ 1) +1. By Lemma 3.3 (set Ny = N and Ny = NL -1 therein), there exists

¢1 € NN (#input = 1; widthvec = [2N,2(NL-1) +1])
= NN (#input = 1; widthvec = [2N,2NL - 1])

such that
o1(m) =y, form=0,1,--- M-1.

By Lemma 3.5, there exists
¢ € NN (Finput = 2; width < 7; depth < 2L +1)

such that, for any &, &, -, &, € {0,1}, we have
¢
G2 (bin0.£1&s-Ep,) = Zﬁj, for (=1,2,--, L.
j=1
It follows that, for any &g, &1,-++, &1 € {0, 1}, we have

{
¢2(bin0'£0£1“'£[ﬁl7 0+ 1) = Z£J7 for £ = 07 17 7L -1
7=0

25

By [ea(ortm) 0+ 1) =31y 0n; = ofm. 1)
a o

Figure 12: A illustration of the network implementing the desired function ¢. “¢;” and
“0o” near “—" represent the respective ReLU FNN implementing itself. We omit the
activation function ReLU if the input of a neuron is non-negative.

Thus, for m=0,1,---,M -1 and £=0,1,---, L — 1, we have

¢
G2 (Pr1(m), € +1) = ¢ (ym, £ + 1) = ¢2(0.0m,00m,17Om -1, £ +1) = Y O 5.
3=0

Hence, the desired function function ¢ can be implemented by the network shown
in Figure 12. By Lemma 3.4, ¢; € NN (widthvec = [2N,2NL - 1]) € NN (width < 4N +
2; depth < L+1), implying the network in Figure 12 is with width max{(4N +2)+1,7} =
4N +3 and depth (2L +1)+1+ (L +1)=3L+3. So we finish the proof. O

Next, we apply Lemma 3.6 to prove Lemma 3.7 below, which is a key intermediate
conclusion to prove Proposition 3.2.

Lemma 3.7. For any € >0, L, N € N*, denote M = N2L and assume {yme > 0:m =
0,1,-M—-1and £=0,1,---,L -1} is a sample set with

Yt = Ymuo-1| <€, form=0,1,-- M—-1and £=1,2,--,L—1.
Then there exists ¢ € NN (#input = 2; width < 12N +8; depth < 3L +6) such that
(1) |p(m,€) = yme <&, form=0,1,- - M~-1and £=0,1,--- L-1;
(11) 0< p(x1,29) <max{yme:m=0,1,--. M-1and £=0,1,---, L-1}, for any x1, x5 € R.
Proof. Define
Ume = |Yme/e], form=0,1,-- M —-1and £=0,1,---, L -1.

We will construct a function implemented by a ReLU FNN to map the index (m,¢) to
A€ for m=0,1,- M -1and £=0,1,---,L - 1.

Define by, = 0 and by, ¢ = @y — @pe-q for m =0,1,-- M -1land ¢ =1,---,L - 1.
Since |[Ym.e — Ym-1] < € for all m and ¢, we have by, € {-1,0,1}. Hence, there exist ¢, ¢
and d, ¢ € {0,1} such that by, ¢ = ¢y — dpm e, which implies

4 4 4

Ame = Am0 + Z(am,j - am,j—l) =Aam,0 + Z bm,j =0am,0 + Z bm,j
j=1 j=1 =0

¢ ¢
= Am,0 + Zcm’j - ded.
=0 §=0
form=0,1,- M-1and /=1,---,L—1.

26

For the sample set {(m, apo):m=0,1,---, M -1} u{(M,0)}, whose size is M +1 =
N- ((NL— 1)+ 1) +1, by Lemma 3.3 (set Ny = N and Ny = NL -1 therein), there exists
Yy € NN (widthvec = [2N,2(NL - 1) + 1]) = NN (widthvec = [2N,2N L - 1]) such that

(M) = apmo, form=0,1,--- M -1.
By Lemma 3.6, there exist 1,3 € NNV (width < 4N + 3; depth < 3L + 3) such that

4 4
¢2(m,€) = ZCmJ and wg(m,f) = de,ju
=0 Jj=0

for m=0,1,---M-1and £=0,1,---, L — 1. Hence, it holds that

14 4
Ame = Qmo t Z Cm,j — Z dm,j = wl(m) + ¢2(m7€) - ¢3(m7€)7 (315)
=0 =0

fOI'm:O’l’...’M_l andﬂ:()’l’...’L_l‘
Define
Ymax = Max{ Y :m=0,1,-- M ~-1and £=0,1,-, L -1}

Then the desired function can be implemented by two sub-networks shown in Figure 13.

/{lnill {o(2), Ymax } = 472(-’))

(b) ¢2

Figure 13: Ilustrations of two sub-networks implementing the desired function
¢ = ¢y o ¢ based Equation (3.15) and the fact min{wy,ap} = ZE2lmzel

0’(1}1+:EQ)—O’(—:E1—m2)—0’(:ﬂl—$2)—0'(—$1+&?2)

5 . Ymax 18 given by max{y,,:m=0,1,--,M -1 and ¢ =
0,1, L =1}, “p” “y”, and “ib3” near “—” represent the respective ReLU FNN
implementing itself. We omit the activation function ReLU if the input of a neuron is
non-negative.

By Lemma 3.4, ¢, € NN (#input = 1; widthvec = [2N,2NL - 1]) ¢ NN (#input =
1; width < 4N +2;depth < L+1). Note that 19, 3 € NN (width < 4N +3; depth < 3L+3).
Thus, ¢; € NV (width < (4N +2) +2(4N +3) = 12N +8; depth < (3L +3) +1=3L +4)
as shown in Figure 13. And it is clear that ¢, € NN (width < 4; depth < 2), implying
¢ =Py 0Py € NN(width < 12N +8; depth < (3L +4) +2=3L +6).

Clearly, 0 < ¢(x1,%2) < Ymax fOr any z1, 29 € R, since ¢(x1,22) = ¢ 0 ¢1(x1,22) =
max{o(¢1(71,72)), Ymax } -

Note that 0 < eame = €|Ume/e] < Ymax- Then we have ¢(m,) = ¢g 0 ¢1(m,l) =
G2(am,) = max{o(€amr), Ymax} = Eam. Therefore,

|6(110,€) = Yo| = |am.e8 = Yt = [[Ym.c/€ € = Y| < e,
form=0,1,---M-1and £=0,1,---, L — 1. Hence, we finish the proof. O

27

Finally, we apply Lemma 3.7 to prove Proposition 3.2.

Proof of Proposition 3.2. Let M = N2L, then we may assume J = M L since we can set

Ys-1=Ys =Yge1 = =ymr if J <ML
For the sample set

{(mL,m):m=0,1,- Myu{(mL+L-1,m):m=0,1,---, M -1},

whose size is 2M +1 = N-((2NL-1)+1) + 1, by Lemma 3.3 (set N; = N and N, =
NL -1 therein), there exist ¢; € NN (#input = 1; widthvec = [2N,2(2NL - 1) + 1])
NN (#input = 1; widthvec = [2N,4NL - 1]) such that

e »1(ML)=M and ¢1(mL)=¢(mL+L-1)=m form=0,1,--- M -1,
e ¢y is linear on each interval [mL,mL+ L-1] for m=0,1,---, M —1.

It follows that
¢1(j)=m, and j-L¢1(j)=¥¢, where j=mL+/, (3.16)

form=0,1,- M -1and £=0,1,---, L —1.

Note that any number j in {0,1,...,J -1} can be uniquely indexed as j = mL + ¢
form=0,1,,M-1and £=0,1,---,L-1. So we can denote y; = Ymr+¢ aS Ym. Then by
Lemma 3.7, there exists ¢ € NNV (width < 12N +8; depth < 3L + 6) such that

|p2(m, €) =yl <e, form=0,1,M-1and £=0,1,---,L -1, (3.17)

and
0< ¢2($17$2) < Ymax; for any rp,rz € Ra (318)

where Ymax = max{yy,, : m = 0,1,- .M -1land ¢ = 0,1,---,L — 1} = max{y; : j =
0,1, ML-1}.

[@(]’) = 02(61(5).5 — Low() = ¢2(m.£) = $(3) = Ym,e = ,U]J

Figure 14: A illustration of the ReLU FNN implementing the desired function ¢ based
Equation (3.16). The index j € {0,1,---, M L — 1} is unique represented by j = mL + ¢ for
m=0,1,--- M-1and ¢=0,1,---,L-1. “¢;” and “¢,” near “—" represent the respective
ReLU FNN implementing itself. We omit the activation function ReLU if the input of a
neuron is non-negative.

Note that ¢; € NN (#input = 1; widthvec = [2N,4NL - 1]) € NN (#input =
1; width <8N +2;depth < L + 1) by Lemma 3.4 and ¢5 € NN (width < 12N + 8; depth <
3L+6). So ¢ e NN (width < 12N +8; depth < (L+1)+2+ (3L+6) =4L+9) as shown in
Figure 14.

Equation (3.18) implies

0< () € Ymax, for any z e R,

28

since ¢ is given by ¢(z) = gbg(qbl(m),x - Lgbl(x)).
Represent j € {0,1,---, ML-1} viaj =mL+¢form=0,1,--- M-1and £ =0,1,---, L-1,
then we have, by Equation (3.17),

0(5) =yl = 162(01(5), 7 = L1 (5)) = 93l = d2(m, £) = Yl < &
So we finish the proof. O

We would like to remark that the key idea in the proof of Proposition 3.2 is the bit
extraction technique in Lemma 3.5, which allows us to store L bits in a binary number
bin0.6105---0;, and extract each bit ;. The extraction operator can be efficiently carried
out via a deep ReLU neural network demonstrating the power of depth.

4 Neural networks approximation and evaluation in
practice

This section is concerned with neural networks approximation and evaluation in
practice, e.g., approximating functions defined on irregular domains or domains with a
low-dimensional structure, and neural network computation in parallel computing. In
the practical training of FNNs, the approximation rate in this paper can only be observed
if the global minimizers of neural network optimization can be identified. Since there is
no existing optimization algorithm guaranteeing a global minimizer, it is challenging to
observe the proved approximation rate currently. Developing optimization algorithms
for global minimizers is another interesting research topic as a future work.

4.1 Approximation on irregular domain

In this section, we consider approximating continuous functions defined on irregular
domains by deep ReLLU FNNs. The construction is through extending the target function
to a cubic domain, applying Theorem 1.1, and finally restricting the constructed FNN
back to the irregular domain.

Given any uniformly continuous and real-valued function f defined on a metric space
S with a metric dg(-,-), we define the (optimal) modulus of continuity of f on a subset
EcS as

wf(r) =sup{|f(x1) - f(x2)|:,ds(@1,T2) <7, ®1, 2 € E}, for any r > 0.

For the purpose of consistency and simplicity, w(-) is short of wj[co’l]d(-).

First, let us present two lemmas for (approximately) extending (almost) continuous
functions on F to (almost) continuous functions on S. These lemmas are similar to
the well-known results for extending Lipschitz or differentiable functions in [47,64]. We
generalize these results to a broader class of functions required in the proof of Theorem
4.3.

Lemma 4.1 (Approximate Extension of Almost-Continuous Functions). Assume S is a
metric space with a metric dg(-,-) and w:[0,00) - [0,00) is an increasing function with

w(ry+79) <w(ry) +w(ry), for any ry,re € [0, 00). (4.1)

29

Let f be a real-valued function defined on a subset E € S and satisfy
|f(®1) = [(@2)| <w(ds(@1,@2) + A), for any @1, @, € E, (4.2)

where A is a positive constant independent of f. Then there exists a function g defined
on S such that
0< f(x)—g(x) <w(Ad), forany xeFE

and
l9(x1) — g(x2)| S w(ds(®y,22)), for any @y, x5 € S.

In Lemma 4.1, g is an approximate extension of f defined on F to a new domain S
with an approximation error w(A). In a special case when A =0 and w(0) =0, g is an
exact extension of f.

Proof of Lemma 4.1. Define
9(w) :=sup (f(2) -w(ds(z, @) +A)).

By Equation (4.2), we have f(x1) — w(ds(@1,@2) + A) < f(xs) for any xy, x5 € E. Tt
holds that g(x) < f(x) for any x € E. Together with

g(x) = sup (f(2) -wlds(z,2) + A)) 2 f(z) - w(ds(z,x) + A) = f(2) -w(d),

for any @ € E, it follows that 0 < f(x) - g(x) < w(A) for any x € E. By Equation (4.1)
and the fact

sup f1(2) =sup fo(2) < sup ((2) = fa(2)), for any functions f1, f,
we have
9(@1) - g(@2) = sup (f(2) -w(ds(z,21))) - Szgg(ﬂz) ~w(ds(z,22)))
<sup (w(ds(z,21)) - w(ds(z,22)))

< Sugw(dS(za wl) - dS(z7 .’132))

< sugw(ds(a:l, T2)) = w(ds(x1,x2)),

for any @1, x5 € S. Similarly, we have g(x2) — g(21) < w(ds(x1,x2)), which implies
lg(x1) — g(@2)] < w(ds(z1, 22)).
So we finish the proof. n

Next, we introduce a lemma below for extending continuous functions defined on
FE c S to continuous functions defined on S preserving the modulus of continuity.

Lemma 4.2 (Extension of Continuous Functions). Suppose f is a uniformly continuous
function defined on a subset E €S, where S is a metric space with a metric ds(-,-), then
there exists a uniformly continuous function g on S such that f(x) = g(x) for x € E and
wf (r) =wi(r) for any r > 0.

30

Proof. By the application of Lemma 4.1 with w(r) = wf(r) for r >0 and A =0, we know
that there exists g : S - R such that

0< f(x)-g(x) <wf(A)=0, foranyxekE,
and
lg(21) = g(22)| S wf (ds(z1,22)), for any @y, 25 € S.

The equation above and the uniform continuity of f imply that g is uniformly continuous.
It also follows that

f(x)=g(x), forany xeFE, and wf(r) < w}]?(r), for any r > 0,

since w5 (+) is the optimal modulus of continuity of g. Note that wf () is the optimal
moduls of continuity of f and

[f(@1) = f(z2)| = |g(z1) = g(x2)| < Wf(d3(3317332))7 for any @, x; € .
Hence, wf (r) < wg(r) for all r > 0, which implies wf (r) = w;(r) since we have proved

that wy(r) <wf(r) for all 7 > 0. So we finish the proof. O

Now we are ready to introduce and prove the main theorem of this section, which
extends Theorem 1.1 to an irregular domain as follows.

Theorem 4.3. Let [be a uniformly continuous function defined on E ¢ [-R, R]¢. For
arbitrary L € N* and N € N*, there exists a function ¢ implemented by a ReLU FNN
with width 373 max {d|N'Y|, N + 1} and depth 12L + 14 +2d such that
Hf - ¢HL°°(E) < 19\/30.7?(2R\/3N72/d[f2/d).
Proof. By Lemma 4.2, f can be extended to R? such that
w;l?d(r) =wf(r), foranyr>0.
Define _
f(x) = f(2Rx - R), for any x ¢ R?.

It follows that))

w}{i (r) =w; (2Rr) =wf(2Rr), for any r>0. (4.3)
By Theorem 1.1, there exists a function 5 implemented by a ReLU FNN with width
343 max {d|N'/4|, N + 1} and depth 12L + 14 + 2d such that

7= 8l mogey < 19VAWLT (N-2L20) < 19V/d e (N2 L 21,
Define _
¢(x) = ¢(55x +3), for any = eR%
Then, by Equation (4.3), for any « € E ¢ [-R, R]¢, we have
(@) - d(@)| = [F(5z + 3) - 6(Fxe + DI < | F - &l L= (o))
<19VAWE (NL2) = 19Vdwf (RN /L7217,
which implies
|f = &l =k € 19VdwE (2RN-24L-2/4),

So we finish the proof. O

31

4.2 Approximation in a neighborhood of a low-dimensional man-
ifold

In this section, we study neural network approximation of functions defined in a
neighborhood of a low-dimensional manifold and prove Theorem 1.2 in this setting. Let
us first introduce Theorem 4.4 which is required to prove Theorem 1.2.

Theorem 4.4 (Theorem 3.1 of [3]). Let M be a compact dpq-dimensional Riemannian
submanifold of R? having condition number 1/7, volume V', and geodesic covering reg-

ularity R. Fix § € (0,1) and v € (0,1). Let A =\ /d%CD, where ® € R%*4 js a random
orthoprojector with

n T’l “In
ds :O(dMl (dvnﬂa)1 (1/~,)>‘

If ds < d, then with probability at least 1 — -y, the following statement holds: For every
Ty, € Ma
(1-9)|x — x| < |Axy — Az < (14 0) |2 — 24|

Theorem 4.4 shows the existence of a linear projector A € R%*? that maps a low-
dimensional manifold in a high-dimensional space to a low-dimensional space nearly
preserving distance. With this projection A available, we can prove Theorem 1.2 via
constructing a ReLU FNN defined in the low-dimensional space using Theorem 4.3 and
hence the curse of dimensionality is lessened. The ideas of the proof are summarized in
the following Table 1.

In Table 1 and the detailed proof later, we introduce a new notation SC(E) for any
compact set ' ¢ R? as the “smallest” element of E. Specifically, SC(E) is defined as the
unique point in n¢_ By, where

Ep={xeFEy1:xr=5c}, S:=inf {xk [y, 2, wq] T € Ek-1}, for k=1,2,---,d,

and Ey = E. The compactness of E ensures that n¢_, E} is in fact one point belong-
ing to F. The introduction of SL(-) uniquely formulates a low-dimensional function f
representing a high-dimensional function f defined on M. by

fy) = f(xy), where x, = SE({J: eM,: Az = y}), for any y € A(M.) c R%.

As we shall see later, such a definition of f is reasonable because {x e M. : Az = y}
is contained in a small ball of radius O(¢) for any y € A(M.). There are many other
alternative ways to define SL(-) as long as the definition ensures that SC(E) contains
only one element. For example, SL(E) can be defined as any arbitrary point in E. For
another example, y € A(M) cannot guarantee x, = SC({x € M. : Az = y}) € M in the
current definition, but in practice we can choose SE({:I: eM:Ax = y}) as &, to ensure
that x, € M, which might be beneficial for potential applications.
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Theorem 4.4, there exists a matrix A € R%*? such that

AAT = L1, (4.4)

32

Table 1: Main steps of the proof of Theorem 1.2. Step 1: dimension reduction via the
nearly isometric projection operator A provided by Theorem 4.4 to obtain an “equiva-
lent” function f of f in a low-dimensional domain using @, = S ({x € M. : Az = y}).
Step 2: construct a ReLU FNN to implement ¢ fby Theorem 4.3. Step 3: define a
ReLU FNN to implement ¢ in the original high-dimensional domain via the projection
A. Step 4: verify that the approximation error of ¢ ~ f satisfies our requirement.

f(z) for £ e M. c[0,1]¢ S‘wpv[_)'él o(x) = p(Ax) for x € M. c[0,1]¢
Steplﬂmy:SE({weMg:Am:y}) Step3ﬂy:Aw
Fw) = f(z,) for y € A(M.) € R S Fy) for y € A(M.) € R

where I, is an identity matrix of size ds x ds, and
(1-90)|xy — x| < |Axy — Axs| < (1 +)|y — 2|, for any @y, xo € M. (4.5)

Given any y € A(M.), then {x € M. : Az = y} is a nonzero compact set. Let
Xy = SE({w eEM,: Ax = y}), then we define f on A(M.) as f(y) = f(xy).

For any yi,y, € A(M.), let x; = SE({az eM,.: Ax = yi}), then x; e M, for i =1,2.
By the definition of M., there exist Z1,Zy € M such that |Z; — ;| < e for i = 1,2. Tt
follows that

1F(y1)-F(w2) = 1f (1)~ f (22)| < wp(|w1-Ta]) < wi(|F-Ta|+2¢) < wp(5| AT - ARs|+2¢),

where the last inequality comes from Equation (4.5). By the triangular inequality, we
have

1F(y1) - Flyo)| < wi(t5|Azy - Amo| + {5 |Ax) — ATy | + 5] Ao - AT| + 2¢)

<wi(ilAz) - Azo| + 5/ 5 + 2¢)
<wr(slyr — ol + 50/ & +2¢).

Set w(r) =ws(755r) for any r >0 and A = 2¢, /% +2¢(1-9), then

|f(y1) - f(yz)| <w(lyr —yo| + A), for any yi,ys € A(M.) SR%.
By Lemma 4.1, there exists § defined on R% such that

3(w) - Fw)| s w(A) = wy(25\/& +2¢), for any y e A(M.), (4.6)

and
[G(y1) - G(y2)| < w(lyr - y2|) = wr(5ly1 —v2l), for any yi,y, e R%.

It follows that
wg{d‘s (r) <ws(15), for any r>0. (4.7)

33

By Equation (4.4) and the definition of M. in Equation (1.2), it is easy to check

that
A(M:) € A([0,1]%) € [/ \[£1%.

By the application of Theorem 4.3 with E = [— /d%, \ /d%]dé, there exists a function

¢ implemented by a ReLU FNN with width 3ds+3 max {ds| N'/%], N + 1} and depth
12L + 14 + 2ds such that

|7 - Gll=(p) < 19VAWE (21 / L N2/ds [21ds) (4.8)

Define ¢ = go A, ie., d(x) = p(Ax) for any x € R?. Then ¢ is also a ReLU FNN
with width 39+3 max {ds| N'/% |, N + 1} and depth 12L + 14 + 2dj.

For any e M., set y = Az and =z, = SE({z eRY: Az = y}), there exist &, &, € M
such that |Z — x| < ¢ and |Z, — x,| < e. It follows from Equation (4.5) that

| — xy| < [T - Ty| + 26 < 5|AT - AZ| + 2e
< =(|AZ - Az| + |[Ax - Azy|+|Az, - AT,|) + 2 (4.9)
- 55 (lAZ - Ax|+ Az, - AT|) + 26 < 55\ /& + 2e.
In fact, the above equation implies that {x € M. : Az = y} is contained in a small ball

of radius O(¢) for y € A(M.) as we mentioned previously.
Together with Equation (4.6), (4.7), (4.8), and (4.9), we have, for any x € M.,

() = o(@)| <|f () - fy)| + | (2y) - ol)]
<w(E5\ /4 +2¢) +[T(w) - 3(w)
<wp(Z5\ /L +2) + [F(w) - T(w)| + [7w) - 5(v)|
<wp(Z\/L +2e) +wp(5[+2¢) + 19VAWE (2 L N2 [2145)
<2 (2—5\/;+28)+19¢8wf((125)f¢_N 2/ds [-2/ds),
Hence, we have finished the proof of this theorem. O

It is worth emphasizing that the approximation error

O(ws(O(e)) +wp(O(N 20 [-2/0s)))

in Theorem 1.2 is equal to O(wf((’)(Nﬂ/d&L*?/ds))) when e = O(N~2/ds [,-2/ds),

The application of Theorem 4.4 and the proof of Theorem 1.2 in fact inspire an
efficient two-step algorithm for high-dimensional learning problems: in the first step,
high-dimensional data are projected to a low-dimensional space via a random projection;
in the second step, a deep learning algorithm is applied to learn from the low-dimensional
data. By Theorem 4.4 and 1.2, the deep learning algorithm in the low-dimensional space
can still provide good results with a high probability.

34

4.3 Optimal ReLU FNN structure in parallel computing

In this section, we show how to select the best ReLU FNN to approximate functions
in By(C*([0,1]%)) on a d-dimensional cube, if the approximation error € and the number
of parallel computing cores (processors) p are given. We choose the best ReLU FNN by
minimizing the time complexity in each training iteration. The analysis in this section
is valid up to a constant prefactor.

Assume ¢g € NN (#input = d; widthvec = [N]%; #output = 1), N, L € N*, where 0 is
the vector including all parameters of ¢g. By the basic knowledge of parallel computing
(see [36] for more details), we have the following Table 2.

Table 2: Time complexity of one training iteration for an FNN of width N and depth L.

Time Complexit
Number of cores p pIexILy

Evaluating ¢g(x) Evaluating ad)g—ém)
pell,N] O(N2L/p) O(N2L/p)
pe(N.N?] O(L(N*fp+n%)) O(L(N*/p+In))
pe (N2, o0) O(LInN) O(LInN)

For the sake of simplicity, we assume that the training batch size is O(1). Denote
the time complexity of each training iteration as T'(n, L), then

O(N2L/p), pe[l,N],
T(N,L) =3 O(L(N?/p+In%)), pe(N,N?],
O(LInN), pe (N2 o0).

Theorem 1.1 and 2.3 imply that the approximation error ¢ is essentially O((N L)~2%/4).
Hence, we can get the optimal size of ReLU FNNs via the optimization problem below:

(Nopt, Lopt) = argmin T (N, L)
N, L
e=0O((NL)2/4), (4.10)
subject to
N,L,pe N*.

To simplify the discussion, we have the following assumptions:

e Dropping the notation O(-) sometimes while assuming asymptotic analysis with
the abuse of notations.

e N, L, and p are allowed to be real numbers.

e We denote ¢ = (NL)~2%/4 since the approximation rate O((NL)‘QO‘/d) is both at-
tainable and nearly optimal.

35

With € = (NL)29/4 we have

N2L[p pe[l,N],
T(N,L)={ L(N’/p+In %), pe(N,N?]
L(1+InN), pe[N? 00),

4.11

NS_d/(2a)/p, N e [paoo)a ()
= NedCo)[p 1 Le=d/CO I 2 N e[, /p,p),
Lo N o—d(20), N e[1,/p).

Then we get T(N, L) = O(T(N, L)). Therefore, the optimization problem in Equation
(4.10) can be simplified to

(Nopt, Lopt) = argmin T(N, L)
N, L

e=(NL)20/d, (4.12)

subject to
N,L,pe[l,00).

By Equation (4.11), T(N, L) is independent of L on the condition that e = (N L)=2¢/d,
Therefore, we may denote T(N,L) by T(N). Now we consider two cases: the case
p=0(1) and the case p > O(1).

Case 1: The case p= O(1).

It is clear that T'(N) is increasing in N when N € [p, o) by Equation (4.11).
Together with p = O(1), then O(\/p) = O(p) = O(1). Therefore, Ny = O(1) and
Lopt = O(e74(2)) . Note that we regard d as a constant (O(1)) in above analysis, Nop
should be O(d) in fact.

Case 2: The case p > O(1).

Since € = (NL)72%/4, we have N < e#/(®). We only need to consider the monotonic-
ity of T(N) on [1,e~#%()]. Together with Equation (4.11), this case can be divided into
two sub-cases: the sub-case \/p < e and the sub-case \/p > ¢4/,

Case 2.1: The sub-case /p > =42,

VP > ¥ implies [1,e7%()] c [1,,/p]. Hence, T(N) is decreasing in N on
[1,e~4/)], Tt follows that Nyp = O(e=¥(2)) and that Loy = O(1).

Case 2.2: The sub-case /p < e~4(2).

For this sub-case, Nop and N, are hard to estimate. However, we can give a
rough range of Ny Since T(N) is decreasing in N on [1,./p] and increasing in N on
[p, o), the minimum of T(N) is achieved on [\/p,p]. Hence, Noy € [O(/D),O(p)] N
[O(\/P), O(=¥))] and Loy, = O(e7% (2 [Ny).

5 Conclusion and future work

This paper aims at a quantitative and optimal approximation rate of ReLU FNNs
in terms of both width and depth simultaneously to approximate continuous functions.

36

It was shown that ReLU FNNs with width O(N) and depth O(L) can approximate
an arbitrary continuous function on a d-dimensional cube with an approximation rate
19V dw;(N-2/4L-2/2). Tn particular, when f is a Holder continuous function of order a
with a Holder constant X, the approximation rate is 19v/d AN-20/4[-22/d and it is nearly
asymptotically tight. We also extended our analysis to the case when the domain of
f is irregular and showed the same approximation rate. In practical applications, it is
usually believed that real data are sampled from an e-neighborhood of a ds-dimensional
smooth manifold M ¢ [0,1]¢ with dy << d. In the case of an essentially low-dimensional
domain, we show an approximation rate

2 (25 +22) + 19V d oy (2Ll N2 L2/
for ReLU FNNs to approximate f in the e-neighborhood, ds = O(d M 1n((;12/ 5)) for any given
d€(0,1).

Besides, we studied how to select the best ReLU FNN to approximate continuous
function in parallel computing. In particular, ReLLU FNNs with depth O(1) are the best
choices if the number of parallel computing cores p is sufficiently large. ReLLU FNNs
with width O(d) are best choices if p = O(1). The width of best ReLU FNNs is between
O(\/p) and O(p) if p is moderate.

We would like to remark that our analysis was based on the fully connected feed-
forward neural networks and the ReLLU activation function. It would be very interesting
to generalize our conclusions to neural networks with other types of architectures (e.g.,
convolutional neural networks) and activation functions (e.g., tanh and sigmoid func-
tions). Besides, if identity maps are allowed in the construction of neural networks as in
the residual networks [28], the size of FNNs in our construction can be further optimized.
Finally, the proposed analysis could be generalized to other function spaces with explicit
formulas to characterize the approximation error. These will be left as future work.

Acknowledgments

Z. Shen is supported by Tan Chin Tuan Centennial Professorship. H. Yang was
partially supported by the US National Science Foundation under award DMS-1945029.

References

[1] O. ABDEL-HAMID, A. MOHAMED, H. JiANG, L. DENG, G. PENN, AND D. YU,

Convolutional neural networks for speech recognition, IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 22 (2014), pp. 1533-1545.

[2] M. ANTHONY AND P. L. BARTLETT, Neural Network Learning: Theoretical Foun-
dations, Cambridge University Press, New York, NY, USA, 1st ed., 2009.

3] R. G. BARANIUK AND M. B. WAKIN, Random projections of smooth manifolds,
Foundations of Computational Mathematics, 9 (2009), pp. 51-77.

37

[4]

[5]

[6]

[10]

[11]

[12]

A. R. BARRON, Universal approzimation bounds for superpositions of a sigmoidal
function, IEEE Transactions on Information Theory, 39 (1993), pp. 930-945.

P. BARTLETT, V. MAIOROV, AND R. MEIR, Almost linear VC dimension bounds
for piecewise polynomial networks, Neural Computation, 10 (1998), pp. 217-3.

M. BIANCHINI AND F'. SCARSELLI, On the complezilty of neural network classifiers:
A comparison between shallow and deep architectures, IEEE Transactions on Neural

Networks and Learning Systems, 25 (2014), pp. 1553-1565.

E. K. BLum AND L. K. L1, Approzimation theory and feedforward networks, Neural
Networks, 4 (1991), pp. 511 — 515.

D. S. BROOMHEAD AND D. LOWE, Multivariable Functional Interpolation and
Adaptive Networks, Complex Systems 2, (1988), pp. 321-355.

J. Ca1, D. L1, J. SuN, AND K. WANG, Enhanced expressive power and fast training
of neural networks by random projections, CoRR, abs/1811.09054 (2018).

S. CHEN AND D. DONOHO, Basis pursuit, in Proceedings of 1994 28th Asilomar
Conference on Signals, Systems and Computers, vol. 1, Oct 1994, pp. 41-44 vol.1.

C. K. Cuul, S.-B. LIN, AND D.-X. ZHOU, Construction of neural networks for re-

alization of localized deep learning, Frontiers in Applied Mathematics and Statistics,
4 (2018), p. 14.

D. C. CiresaN, U. MEIER, J. Mascr, L. M. GAMBARDELLA, AND J. SCHMID-
HUBER, Flexible, high performance convolutional neural networks for image clas-
sification, in Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence - Volume Volume Two, IJCAI’11, AAAI Press, 2011, pp. 1237—
1242.

D. COSTARELLI AND A. R. SAMBUCINI, Saturation classes for maz-product neu-
ral network operators activated by sigmoidal functions, Results in Mathematics, 72

(2017), pp. 1555 — 1569.

D. CosTARELLI AND G. VINTI, Convergence for a family of neural network oper-
ators in orlicz spaces, Mathematische Nachrichten, 290 (2017), pp. 226-235.

—, Approximation results in orlicz spaces for sequences of kantorovich max-
product neural network operators, Results in Mathematics, 73 (2018), pp. 1 — 15.

G. CYBENKO, Approximation by superpositions of a sigmoidal function, MCSS, 2
(1989), pp. 303-314.

[. DAuBECHIES, R. DEVORE, S. FOUCART, B. HANIN, AND G. PETROVA, Non-
linear approximation and (deep) relu networks, vol. abs/1905.02199, 2019.

R. DEVORE AND A. RON, Approzimation using scattered shifts of a multivariate
function, Transactions of the American Mathematical Society, 362 (2010), pp. 6205—
6229.

38

[19] R. A. DEVORE, Nonlinear approzimation, Acta Numerica, 7 (1998), p. 51150.

[20] W. E, J. HAN, AND A. JENTZEN, Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differ-

ential equations, Communications in Mathematics and Statistics, 5 (2017), pp. 349
380.

[21] W. E, C. MA, AND Q. WANG, A priori estimates of the population risk for residual
networks, ArXiv, abs/1903.02154 (2019).

[22] W. E, C. MA, AND L. Wu, A priori estimates of the population risk for two-layer

neural networks, Communications in Mathematical Sciences, 17 (2019), pp. 1407 —
1425.

23] W. E AND Q. WANG, Ezponential convergence of the deep neural network approx-
imation for analytic functions, CoRR, abs/1807.00297 (2018).

[24] J. HAN, A. JENTZEN, AND W. E, Solving high-dimensional partial differential

equations using deep learning, Proceedings of the National Academy of Sciences,
115 (2018), pp. 8505-8510.

[25] T. HANGELBROEK AND A. RON, Nonlinear approximation using gaussian kernels,
Journal of Functional Analysis, 259 (2010), pp. 203 — 219.

[26] B. HANIN AND M. SELLKE, Approzimating continuous functions by ReLU nets of
minimal width, (2017).

[27] N. HARVEY, C. Liaw, AND A. MEHRABIAN, Nearly-tight VC-dimension bounds
for precewise linear neural networks, in Proceedings of the 2017 Conference on Learn-
ing Theory, S. Kale and O. Shamir, eds., vol. 65 of Proceedings of Machine Learning
Research, Amsterdam, Netherlands, 07-10 Jul 2017, PMLR, pp. 1064-1068.

28] K. HE, X. ZHANG, S. REN, AND J. SUN, Deep residual learning for image recog-
nition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016, pp. 770-778.

[29] K. HORNIK, Approzimation capabilities of multilayer feedforward networks, Neural
Networks, 4 (1991), pp. 251 — 257.

[30] K. HORNIK, M. STINCHCOMBE, AND H. WHITE, Multilayer feedforward networks
are universal approzimators, Neural Networks, 2 (1989), pp. 359 — 366.

[31] M. HUTZENTHALER, A. JENTZEN, T. KRUSE, AND T. A. NGUYEN, A proof that
rectified deep neural networks overcome the curse of dimensionality in the numerical
approximation of semilinear heat equations, SN Partial Differential Equations and

Applications, (2020).

[32] K. KAWAGUCHI, Deep learning without poor local minima, in Advances in Neu-
ral Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, eds., Curran Associates, Inc., 2016, pp. 586—-594.

39

[33]

[34]

[35]

[39]

[40]

[44]

[45]

[46]

[47]

K. KAawAGUCHI AND Y. BENGIO, Depth with nonlinearity creates no bad local
minima in resnets, (2018).

M. J. KEARNS AND R. E. SCHAPIRE, Efficient distribution-free learning of prob-
abilistic concepts, J. Comput. Syst. Sci., 48 (1994), pp. 464-497.

A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with
deep convolutional neural networks, in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.,
Curran Associates, Inc., 2012, pp. 1097-1105.

V. KuMAR, Introduction to Parallel Computing, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2nd ed., 2002.

V. KURKOVA, Kolmogorov’s theorem and multilayer neural networks, Neural Net-
works, 5 (1992), pp. 501 — 506.

G. LEWICKI AND G. MARINO, Approximation of functions of finite variation by
superpositions of a sigmoidal function, Applied Mathematics Letters, 17 (2004),
pp. 1147 — 1152.

S. L1ANG AND R. SRIKANT, Why deep neural networks?, CoRR, abs/1610.04161
(2016).

S. LiNn, X. Liu, Y. RONG, AND Z. XU, Almost optimal estimates for approrima-
tion and learning by radial basis function networks, Machine Learning, 95 (2014),
pp. 147-164.

B. LLANAS AND F. SAINZ, Constructive approximate interpolation by neural net-
works, Journal of Computational and Applied Mathematics, 188 (2006), pp. 283 —
308.

J. Lu, Z. SHEN, H. YANG, AND S. ZHANG, Deep Network Approximation for
Smooth Functions, arXiv e-prints, (2020), p. arXiv:2001.03040.

Z. Lu, H. Pu, F. WANG, Z. Hu, AND L. WANG, The expressive power of neural

networks: A wview from the width, in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, eds., Curran Associates, Inc., 2017, pp. 6231-6239.

Z. Lu, H. Pu, F. WANG, Z. Hu, AND L. WANG, The expressive power of neural
networks: A view from the width, CoRR, abs/1709.02540 (2017).

V. MAIOROV AND A. PINKUS, Lower bounds for approximation by mlp neural
networks, Neurocomputing, 25 (1999), pp. 81 — 91.

S. G. MALLAT AND Z. ZHANG, Matching pursuits with time-frequency dictionaries,
IEEE Transactions on Signal Processing, 41 (1993), pp. 3397-3415.

E. J. MCSHANE, FEztension of range of functions, Bull. Amer. Math. Soc., 40
(1934), pp. 837-842.

40

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

H. MONTANELLI AND Q. Du, New error bounds for deep relu networks using sparse
grids, STAM Journal on Mathematics of Data Science, 1 (2019), pp. 78-92.

H. MoNTANELLI AND H. YANG, Error bounds for deep relu networks using the
kolmogorovarnold superposition theorem, Neural Networks, 129 (2020), pp. 1 — 6.

H. MoNTANELLI, H. YANG, AND Q. DU, Deep relu networks overcome the curse of
dimensionality for bandlimited functions, Journal of Computational Mathematics,
(to appear).

G. F. MONTUFAR, R. Pascanu, K. CHO, AND Y. BENGIO, On the number of
linear regions of deep neural networks, in Advances in Neural Information Processing
Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, eds., Curran Associates, Inc., 2014, pp. 2924-2932.

Q. N. NGUYEN AND M. HEIN, The loss surface of deep and wide neural networks,
CoRR, abs/1704.08045 (2017).

J. PARK AND I. W. SANDBERG, Universal approximation wusing radial-basis-
function networks, Neural Computation, 3 (1991), pp. 246-257.

P. PETERSEN AND F. VOIGTLAENDER, Optimal approximation of piecewise smooth
functions using deep ReLU neural networks, Neural Networks, 108 (2018), pp. 296
- 330.

P. PETRUSHEV, Multivariate n-term rational and piecewise polynomial approzima-
tion, Journal of Approximation Theory, 121 (2003), pp. 158 — 197.

D. RoLNICK AND M. TEGMARK, The power of deeper networks for expressing
natural functions, CoRR, abs/1705.05502 (2017).

[. SAFRAN AND O. SHAMIR, Depth-width tradeoffs in approrimating natural func-
tions with neural networks, in Proceedings of the 34th International Conference on
Machine Learning, D. Precup and Y. W. Teh, eds., vol. 70 of Proceedings of Machine
Learning Research, International Convention Centre, Sydney, Australia, 06-11 Aug
2017, PMLR, pp. 2979-2987.

A. SAKURAIL Tight bounds for the VC-dimension of piecewise polynomial networks,
in Advances in Neural Information Processing Systems, Neural information process-
ing systems foundation, 1999, pp. 323-329.

D. SCHERER, A. MULLER, AND S. BEHNKE, Evaluation of pooling operations in

convolutional architectures for object recognition, in Artificial Neural Networks —
ICANN 2010, K. Diamantaras, W. Duch, and L. S. Iliadis, eds., Berlin, Heidelberg,
2010, Springer Berlin Heidelberg, pp. 92-101.

J. ScHMIDT-HIEBER, Nonparametric regression using deep neural networks with
ReL U activation function, (2017).

41

[61]

[62]

[63]

[64]

[65]

[66]

[67]

U. SHAHAM, A. CLONINGER, AND R. R. COIFMAN, Provable approzimation prop-
erties for deep neural networks, Applied and Computational Harmonic Analysis, 44
(2018), pp. 537 — 557.

Z. SHEN, H. YANG, AND S. ZHANG, Nonlinear approximation via compositions,
Neural Networks, 119 (2019), pp. 74 — 84.

T. Suzuki, Adaptivity of deep reL U network for learning in besov and mixed smooth
besov spaces: optimal rate and curse of dimensionality, in International Conference
on Learning Representations, 2019.

H. WHITNEY, Analytic extensions of differentiable functions defined in closed sets,
Transactions of the American Mathematical Society, 36 (1934), pp. 63-89.

T. F. Xie AND F. L. CA0, The rate of approximation of gaussian radial basis
neural networks in continuous function space, Acta Mathematica Sinica, English
Series, 29 (2013), pp. 295-302.

D. YAROTSKY, Error bounds for approximations with deep ReL U networks, Neural
Networks, 94 (2017), pp. 103 — 114.

D. YAROTSKY, Optimal approzimation of continuous functions by very deep ReL U
networks, in Proceedings of the 31st Conference On Learning Theory, S. Bubeck,
V. Perchet, and P. Rigollet, eds., vol. 75 of Proceedings of Machine Learning Re-
search, PMLR, 06-09 Jul 2018, pp. 639-649.

42

	Introduction
	Approximation of continuous functions
	Notations
	Proof of Theorem 1.1
	Optimality of Theorem 1.1

	Proof of Theorem 2.1
	Key ideas of proving Theorem 2.1
	Proof of Theorem 2.1
	Proof of Proposition 3.1
	Proof of Proposition 3.2

	Neural networks blackapproximation and evaluation in practice
	Approximation on irregular domain
	Approximation in a neighborhood of a low-dimensional manifold
	Optimal ReLU FNN structure in parallel computing

	Conclusion and future work

