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Abstract

Motivation: Protein structure prediction remains as one of the most important problems in computa-
tional biology and biophysics. In the past few years, protein residue-residue contact prediction has
undergone substantial improvement, which has made it a critical driving force for successful protein
structure prediction. Boosting the accuracy of contact predictions has, therefore, become the forefront
of protein structure prediction.

Results: We show a novel contact map refinement method, ContactGAN, which uses Generative
Adversarial Networks (GAN). ContactGAN was able to make a significant improvement over predic-
tions made by recent contact prediction methods when tested on three datasets including protein
structure modeling targets in CASP13 and CASP14. We show improvement of precision in contact
prediction, which translated into improvement in the accuracy of protein tertiary structure models. On
the other hand, observed improvement over trRosetta was relatively small, reasons for which are
discussed. ContactGAN will be a valuable addition in the structure prediction pipeline to achieve an
extra gain in contact prediction accuracy.

Availability: https://github.com/kiharalab/ContactGAN

Contact: dkihara@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein structure prediction remains as one of the most important prob-
lems in biology, more specifically in bioinformatics, biophysics, and
structural biology. Tremendous efforts have been paid for determining
tertiary structures of proteins because the structures provide indispensa-
ble information for understanding the principle of how proteins carry out
biological functions, developing drug molecules, and artificial protein
design. To supplement experimental methods of structure determination,

computational protein structure prediction methods have been developed
over the last three decades.

As observed in the community-wide protein structure prediction
experiments, the Critical Assessment of techniques in protein Structure
Prediction (CASP) (Kryshtafovych, et al., 2019) the accuracy of predic-
tion methods has significantly improved in the past few years. The main
driver behind this accuracy boost is the improvement of residue-residue
contact or distance prediction, which is used effectively to guide the
construction of protein structure models. Residue contacts or distances of
a protein are predicted from a multiple sequence alignment (MSA) of the
protein. Predicting residue contacts from an MSA has over 20 years of
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effort by different research groups toward establishing accurate predic-
tion methods. In principle, evolutionary constraints for maintaining
residue-residue contacts in a protein structure leave a trace in the MSA
of the protein of interest and its homologous proteins. Earlier works
applied relatively simple statistical approaches to an MSA (Fariselli, et
al., 2001; Ortiz, et al., 1998). The accuracy of contact prediction was
substantially improved a few years ago when the so-called co-evolution
approaches, which use statistical inference based on the Potts model
(Ekeberg, et al., 2013), were introduced. The methods in this category
include CCMpred (Seemayer, et al., 2014), Gremlin (Kamisetty, et al.,
2013), EVFold (Marks, et al., 2011), plmDCA (Ekeberg, et al., 2013),
FreeContact (Jones, et al., 2015; Kajan, et al., 2014), and MetaPSICOV
(Jones, et al., 2015). Further improvement was observed more recently
when deep learning, Convolutional Neural Networks (CNN) and Residu-
al Networks (He, et al., 2016), were applied to the problem. The methods
in this category include DeepCov (Jones and Kandathil, 2018), RaptorX-
contact (Wang, et al., 2017), DeepContact (Liu, et al., 2018), and trRo-
setta (Yang, et al., 2020).

Although substantial improvement in contact prediction has been
observed, contact prediction is still far from perfect. Here, we propose
ContactGAN, a novel contact map denoising and refinement method
using Generative Adversarial Networks (GAN) (Goodfellow, et al.,
2014). GANs have been widely adopted for high-level generation tasks
in computer vision with applications including image-to-image transla-
tion (Zhu, et al., 2017), and image super resolution (Ledig, et al., 2017).
ContactGAN takes a contact map predicted by existing methods, which
is considered as an imperfect, noisy input, and outputs an improved map
that better captures correct residue-residue contacts compared to the
original map. ContactGAN was trained with predicted noisy contact
maps coupled with corresponding native contact maps, which the net-
works were guided to generate. We show that we gain a consistent and
substantial precision improvement over predicted maps by CCMpred,
DeepCov, and DeepContact, on the validation dataset, the CASP13, and
the CASP14 datasets. It was also demonstrated that combining multiple
predicted maps computed by different methods further improves the
accuracy of generated maps. On the other hand, the improvement over
trRosetta was relatively small. The potential reasons for that are exten-
sively discussed. ContactGAN can be the powerful last step of a contact
prediction pipeline to improve any existing contact prediction methods
as demonstrated through application to the four contact prediction meth-
ods.

2 Methods

2.1 Protein structure and contact map dataset

We prepared a dataset of 5263 non-redundant protein structures, for each
of which a contact map was computed by four existing contact map
prediction methods. The predicted contact maps, together with the native
(i.e. correct) contact maps, were used for training ContactGAN. A native
contact map we use contains binary values, 1 or 0, where 1 indicates that
the CB atom distance of the corresponding residue pair is 8 A or shorter.

The protein dataset was constructed based on the PISCES (Wang and
Dunbrack, 2005) protein dataset selected with a 25% sequence identity,
which was released before May 2018 (i.e. the beginning of CASP13). All
these proteins were solved by X-ray or Nuclear Magnetic Resonance
(NMR). From the PISCES dataset, proteins longer than 700 amino acid
residues or shorter than 25 amino acid residues were discarded. Proteins
were also excluded if they contain unknown amino acids in their se-

quence, have a knot in the structure that was checked by referring to the
KnotProt2.0 database (Dabrowski-Tumanski, et al., 2019), or have con-
secutive missing residues up to two residues in the structure. Structure
gaps up to two residues were filled with the Modeller (Eswar, et al.,
2006) automodel protocol. This step yielded 6640 protein structures. To
further ensure non-redundancy of structures, we filtered the remaining
proteins based on the CATH structural classification database (Knudsen
and Wiuf, 2010). We first removed proteins that are not in the latest
CATH-domain list and proteins in Class 6 (special structures), which
yielded 5263 proteins. We then split these proteins into training and
validation datasets such that there were no overlapping CATH codes up
to the topology (T) level. The split was also made to ensure that both
datasets have sufficient presence of all 4 CATH classes. The final counts
of proteins in the training and validation datasets were 4962 and 301,
respectively.

In addition to this dataset, we used all the 43 contact prediction
(RR) target domains in CASP13 and all the 49 RR targets in CASP14 as
independent test sets. They are listed in Supplementary Table S1.

2.2 Predicting contact maps with four existing methods

We used four existing prediction methods, CCMpred, DeepContact,
DeepCov, and trRosetta, to predict contact maps of the proteins in the
dataset described above. Input MSAs were generated using DeepMSA
(Zhang, et al., 2020). We used HHsuite (Steinegger, et al., 2019) version
3.2.0 and HMMER (Potter, et al., 2018) version 3.3 in DeepMSA. For
sequence databases, Uniclust30 database (Mirdita, et al., 2017) dated
October 2017, Uniref90 (Suzek, et al., 2015) dated April 2018, and Met-
aclust NR database (Steinegger and Soding, 2018) dated January 2018
were used. These database releases are before CASP13 has started.

CCMpred is a baseline contact prediction method, which uses the
Pseudo-Likelihood Maximization (PLM) of direct couplings between
pairs of amino acids in a MSA of the target protein (Seemayer, et al.,
2014). DeepContact is one of the deep learning-based contact prediction
methods (Liu, et al., 2018). We used the DeepContact code made availa-
ble at Github by the authors. DeepCov is another method that uses deep
learning (Jones and Kandathil, 2018). trRosetta uses the ResNet CNN
architecture (He, et al., 2016). It was shown that trRosetta had superior
performance to other existing methods on the CASP13 dataset. For trRo-
setta, we generated MSAs at three different E-values in the HHblits
search steps of the DeepMSA pipeline, 0.001, 0.1, and 1.0. Since trRo-
setta outputs predicted distance between residue pairs, we used a dis-
tance cutoff of 8A to decide if two residues are in contact. Since we ran
trRosetta with three MSAs of different E-value cutoffs, we obtained
three different contact predictions, which were considered as a 3-channel
input for ContactGAN.

2.3 Architecture of ContactGAN

ContactGAN takes a predicted contact map by four prediction methods
mentioned above as input and outputs a refined map. ContactGAN
adopts the GAN framework, where two networks, a generative and a
discriminative network, are trained with sets of predicted (noisy) and
corresponding native (i.e. correct) contact maps so that refined maps can
be generated by learning patterns from predicted and native maps. A
native contact map we use contains binary values, 1 or 0, where 1 indi-
cates that the CB atom distance of the corresponding residue pair is 8 A
or shorter.
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Figure 1. The architecture of ContactGAN. a, the overall structure that connects the
generator and the discriminator networks. b, the network structure of the generator net-
work. X is equal to 18 for handling maps from trRosetta and 9 for the other methods. ¢,

the detailed structure of the discriminator network. See text for more details.

Figure 1 shows the network structure of ContactGAN. Figure 1a
illustrates the overall architecture. The generator network, illustrated in
Figurelb, is a CNN consisting of a 2D convolution layer with 32 chan-
nels and a kernel size of 9, which is followed by 9 or 18 ResNet blocks, a
2D convolution layer, and finally by a sigmoid layer. 18 ResNet blocks
were used when refining contact maps generated by trRosetta and 9 for
all the other methods. The discriminator network (Figure 1c) is a fully
convolutional binary classifier. It takes a contact map output from the
generator and the corresponding native contact map and classifies the
two maps into classes, either native (correct) or predicted. The discrimi-
nator network consists of 4 units of the combined “Conv2d+IN" block
(pink) and “Conv2d+IN+Dropout” followed by one unit of Conv2d+IN
with 512 channels, conv2d with 512 channels, and a sigmoid layer. The
details of these blocks are shown in Supplementary Figure S1.

2.4 Parameter training for ContactGAN

A contact map predicted by a contact map prediction method (e.g.
CCMpred), which we hereby refer to as a noisy map, is an input to the
generator network of ContactGAN. The output map of the generator
network and the corresponding native contact map of the noisy map were
then used as inputs to the discriminator network. Out of 5263 pairs of
noisy and native contact maps, 4962 pairs were used for training and 301
were used for validation. ContactGAN was trained separately for each
contact prediction method using predicted maps and corresponding na-
tive contact maps. Note that protein sequence information and other
features, such as MSA and secondary structure prediction, were not used
in ContactGAN.

For training GANS, the generator and discriminator networks are
trained together with a min-max game-style objective function given by
equation (1):

[logD(x)] + E [log (1-D(2))] (M
z~P

)

majn max E
D
x~Py

where G and D are parameters of the generator and the discriminator
networks of ContactGAN, Py is the real (correct) data distribution, P, is
the generated (fake) data distribution, D(x) and D(z) are predicted prob-
abilities by the discriminator that the real (x) and fake data z are real.
The generator receives noisy data as input and generates denoised data.
The discriminator then classifies input data to denoised data or real data.
The minimax objective ensures that the generator generates good quality
denoised data that can fool the discriminator into classifying denoised
data as real data. Following the above common practice for general
GAN, the objective function for ContactGAN is formulated as shown in
Equation 2, which is a linear combination of a content loss and an adver-
sarial loss:

Loss = Losscontent + 1073 Lossadversarial s (2)
L L z
where Losscontent = i=0 Zj:o (Ti,j - (G(N))i'j) (3)
and LosSaaversariat = —D(G(N)) )

Here, L is the protein sequence length, T corresponds to the native
contact matrix (map), and N is the input predicted (noisy) contact matrix,
G(N) is the denoised matrix and D(G(N)) is the discriminator’s predic-
tion of the denoised map, which ranges between 0 to 1. We optimize the
negative of D(G(N)), as we want to fool the discriminator to consider
that the denoised map to be as good as the native map. The content loss
is defined by the Mean Squared Error (MSE) between the denoised map
and the native map. The adversarial loss is given as the negative softmax
probabilities of the discriminator predictions.

We employed the Two Time-scale Update Rule (TTUR) (Heusel,
et al., 2017) to use separate learning rates for the generator and the dis-
criminator for stable GAN training. We used learning rates of 0.0001 for
the generator and 0.0004 for the discriminator (Supplementary Note 1).
The batch size was set to 1 as contact maps (i.e. proteins in the dataset)
are of different sizes. ContactGAN was trained for 50 epochs (Supple-
mentary Figure 2). We choose the best performing model on the valida-
tion dataset for testing the CASP13 and CASP14 test datasets. The com-
putational time needed for training and inference are provided in Sup-
plementary Table 2.

2.5 Building structure models from a contact map

To build protein structure models from the predicted contact map, we
used the energy minimization protocol, MinMover, in pyRosetta
(Chaudhury, et al., 2010). Detailed procedure is explained in Supple-
mentary Note 2.

3 Reslults

ContactGAN was evaluated on three datasets, the validation set in the
non-redundant protein dataset as well as the CASP13 and CASP14 con-
tact prediction targets. We evaluated whether ContactGAN could im-
prove the quality of predicted contact maps by the four existing methods,
CCMpred, DeepContact, DeepCov, and trRosetta.

3.1 Contact map improvement with ContactGAN

In Table 1, we summarize ContactGAN’s performance in improving
residue contact map prediction on the validation set and the CASP13 set.
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In this table, we only showed precision considering predicted contacts
with the top L/1 highest probabilities (L is the length of the protein).
Results with more metrics are provided in Supplementary Table S3, S4,
and S5. Supplementary Figure S3 shows improvements of the preci-
sion of individual predicted contact maps on the validation and the
CASP13 datasets.

The first three rows in Table 1 show results for individual meth-
ods, CCMpred, DeepCov, and DeepContact. ContactGAN made substan-
tial improvements for these methods in all the metrics, which was con-
sistent between the validation set and the CASP13 set. Particularly, the
improvements were largest for CCMpred, which had the lowest original
precision among the three methods. For CCMpred, ContactGAN im-
proved L/1 Long precision on the validation set from 0.193 to 0.333, an
improvement of 72.5%. For the CASP13 set, the improvement for L/1
Long was slightly larger, 79.3% (from 0.121 to 0.217). The improvement
ranged from 71.8% to 79.3% for other metrics shown in Table 1 for
CCMpred. The improvement was also consistent for DeepCov and
DeepContact, but with smaller improvement margins than observed for
CCMpred. For DeepCov, ContactGAN showed an improvement of
3.43% and 8.23% for L/1 Long on the validation and the CASP13 sets,
respectively. The corresponding values for DeepContact were 6.55%,
and 5.99%, respectively.

Table 1. Improvement on L/1 prediction by ContactGAN.

Method Validation CASP13
Med+Lg " Lg Med+Lg Lg

CCMpred 0.245 0.193 0.164 0.121
0421 0.333 0.287 0.217
DeepCov 0.457 0.349 0.320 0.231
0.470 0.361 0.368 0.250
DeepContact 0.450 0.351 0.382 0.267
0.480 0.374 0.408 0.283
C+Dv® 0.457 0.349 0.320 0.231
0.523 0.410 0.402 0.284
C+Dt 0.450 0.351 0.382 0.267
0.514 0.405 0.420 0.299
Dv + Dt 0.450 0.351 0.382 0.267
0.521 0411 0.438 0.310
C+Dv+Dt 0.450 0.351 0.382 0.267
0.537 0.426 0.437 0.314
trRosetta 0.702 0.583 0.657 0.510
0.707 0.585 0.667 0.516
9 blocks? 0.696 0.580 0.650 0.512

Results shown are for top L/1 prediction. a) Results of two datasets are shown: On the
left, the validation set of 301 proteins in the non-redundant protein dataset; on the right,
the CASP13 dataset. b) The columns Lg consider only long-range contacts (residue pairs
separated by more than 23 residues) while Med+Lg columns consider medium- and long-
range contacts (residue pairs separated by more than 11 residues). ¢) Each result corre-
sponds to top L/1 contact predictions with the highest probabilities where L is the length
of the protein. Two values shown: up, original average precision by the existing method;
bottom, average precision of denoised contact maps by ContactGAN. In the middle rows,
contact maps of two or three methods were used as input: C, CCMpred; Dv, DeepCov;
Dt, DeepContact. When multiple maps were used as input, the highest precision among
the existing methods was shown as the original results. For trRosetta, three independent
contact predictions were combined, each of which used an MSA with different E-value

cutoffs, 0.001, 0.1, and 1.0. d) 9 blocks of ResNet were used in the generator.

The middle rows in Table 1 present ContactGAN performance us-
ing multiple channels, where a pairwise combination of the above three
methods and all three methods together were used as input channels. To
be able to take two or three contact maps as input, the network architec-
ture of ContactGAN was modified accordingly. The row with “C + Dv”
shows the precision values with CCMpred and DeepCov as two input
channels for ContactGAN. With these two channels, ContactGAN
showed substantial improvement in every evaluation category over the
two individual methods. It is interesting to note that the improvement
was achieved not only over CCMpred, the method with lower accuracy,
but also over the better method, DeepCov. We see similar improvements
when CCMpred-+DeepContact and DeepCov+DeepContact were used as
two-channel inputs. Then, we further extended the use of multi-channels
to three channel inputs with CCMpred, DeepCov, and DeepContact
altogether (C+Dv+Dt in the table), which resulted in a further improve-
ment over two channel inputs.
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Figure 2. Improvement of L/1 Long precision by using additional predicted contact
maps as input channels. Two sets of lines are shown for validation and CASP13 results
for each of CCMpred (solid gray line), DeepCov (dashed line), and DeepContact (dashed
and dotted line). Original indicates precision of the original contact maps, X-channel(s)
indicates predictions by GAN with X=1,2, and 3 channels as inputs. In the case of 2
channels, every method has 2 possible combinations of input. The order of the combina-
tions was as follows: For C: C+Dv, C+Dt. For Dv: C+Dv, Dv+Dt. For Dt: C+Dt, Dv+Dt.

Precision values plotted are taken from Table 1.

Improvements by combining additional method(s) are apparent in
Figure 2, where L/1 Long precision values of each individual method
and its combinations with other methods are compared. From originally
predicted contact maps predicted by a single method, ContactGAN im-
proved them with a large margin, which was further improved by using
additional contact maps predicted by different methods (2 input chan-
nels). Furthermore, an even higher precision was achieved by using three
methods as input.

In the last row of Table 1 we show the results of the application of
ContactGAN to trRosetta, a relatively new method which showed one of
the best performances among those published and available (Yang, et al.,
2020). Since the base accuracy of trRosetta is significantly better than
the other methods, we combined three different channels of trRosetta,
each using different MSAs generated with a sequence E-value cutoff of
0.001, 0.1, and 1.0, respectively, instead of combining with the other
methods. Compared with the best prediction among the results with the
three E-values, which is 0.001, ContactGAN made small but consistent
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improvements for all the metrics. For L/1 Long, ContactGAN improved
by 0.34% and 1.17%, for the validation set and the CASP13 set, respec-
tively. The performance gains seen on trRosetta are lower than for the
other methods, but these improvements in Table 1 have p-value < 0.05
by t-test. Supplementary Table S5 provides p-values of other metrics.
Supplementary Figure S3 shows change of the L/1 long precision
values of individual contact maps.

The generator for trRosetta used a deeper network (18 ResNet
blocks) than the networks for the other contact prediction methods (9
blocks) (Figure 1). We also trained a generator with 9 ResNet blocks
for trRosetta and applied, which is shown in the last row of Table 1. The
smaller generator showed a lower precision than the 18-block one, which
was still better on average than the best among the original trRosetta (i.e.
E-value of 0.001) for the CASP13 set (0.512). But for the validation set,
the result (0.580) was worse than the best trRosetta with an E-value of
0.001). We further tested the performance of the network when only
generator was trained without the discriminator. ContactGAN con-
sistenty showed better performance than the generator-only network
(Supplementary Table S5).

Table 2. Improvement of L/1 precision on the CASP14 dataset.

Method CASP14
L/5™ L1
Med+Lg" Lg Med+Lg Lg

CCMpred 0.275 0.247 0.157 0.128
0.379 0.314 0.255 0.201
DeepCov 0.496 0.417 0.322 0.253
0.527 0.407 0.345 0.257
DeepContact 0.531 0.434 0.329 0.243
0.551 0.445 0.352 0.252
C+Dv® 0.531 0.434 0.329 0.243
0.571 0.483 0.377 0.275
C+Dt 0.496 0.417 0.322 0.253
0.529 0.423 0.360 0.269
Dv + Dt 0.496 0.417 0.322 0.253
0.581 0.477 0.381 0.292
C+Dv +Dt 0.496 0.417 0.322 0.253
0.581 0.473 0.386 0.298
trRosetta 0.671 0.577 0.468 0.368
0.671 0.591 0.474 0.377
9 blocks 0.667 0.580 0.461 0.365

We were also curious if a GAN trained on maps generated by one
method was able to refine predicted maps by another method (Supple-
mentary Figure S4). As shown, overall ContactGAN could not improve
maps if it was trained on maps by a different method, which implies that
the trained GAN captured method-specific predicted contact patterns.
One exception was observed when the GAN trained on DeepContact
map was applied to DeepCov maps, where we see improvement on 22
maps out of 43 maps. Prediction accuracy of DeepCov and DeepContact
are similar but the opposite case, i.e. GAN trained on DeepCov did not
improve maps by DeepContact (Figure S4, panel b).

Next, we investigated which types of contacts were improved by
ContactGAN. Particularly, we examined contacts between residues in
secondary structure elements, a-helix and o-helix (denoted as o—o
below), B-strand and B-strand (B—B), and a-helix and B-strand (o—f). To
quantify the change made by ContactGAN, we compared the fraction of

correct contacts between secondary structure elements predicted among
the top L/1 long-range contacts before and after applying ContactGAN
(Supplementary Figure S5). For both validation and the CASP13 set,
all three types of correct secondary structure interactions increased. For
the validation set, particularly the fraction of B—f correct contacts in-
creased while correct a—o contact predictions were particularly in-
creased in the CASP13 set consistently across different prediction meth-
ods. Thus, the secondary structure preferences observed in the validation
set and the CASP13 set were not consistent.

3.2 CASP14 contact prediction dataset

We further tested ContactGAN on the 49 CASP14 contact predic-
tion targets. Table 2 shows the L/5 and L/1 precisions and Supplemen-
tary Table S6 provides results on the full metrics. Similar to the results
on the previous two datasets, consistent improvements were observed by
ContactGAN. The margin of the improvements on the L/1 long precision
was 1.58% (for DeepCov) to 57.0 % (for CCMpred). The improvement
for trRosetta was smaller, 2.45%, but the change of the distribution of
L/1 long precision was statistically significant (p-value < 0.05). T-test
results of other metrics are provided in Supplementary Table S6.
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Figure 3. Examples of contact maps before and after applying ContactGAN. For each
panel, the map on the left is the original one predicted by an existing method and the map
on the right is the refined map by ContactGAN. The color scale shows predicted probabil-
ity values of contacts, ranging from dark blue (0.0) to bright yellow (1.0). Contacts with
the residue itself along the diagonal line are removed. a, a contact map of Ribonucleotide-
Triphosphate Reductase in E-coli (PDB ID: 1HK8A; 561 amino acids (aa)) predicted by
CCMpred. The L/1 long precision improved from 0.357 to 0.633. b, Mg-ATPase Nucleo-
tide binding domain (PDB ID: 3GWIA, 164 aa). The two-channel ContactGAN with
CCMpred and DeepContact improved L/1 long precision from 0.396 (by DeepContact) to
0.622. ¢, A CASP13 target, enterococcal surface protein (CASP ID: T0987, PDB
ID:60RI; 405aa). Three-channel ContactGAN improved over DeepCov. L/1 long preci-
sion of domain DI, before: 0.405; after: 0.589. For domain D2, before: 0.367; after:
0.536. d, A CASP13 target protein. Filamentous haemagglutinin family protein (CASP
ID: T0968s1, PDB ID:6CP9; 126 aa). The original map was by trRosetta with E-value
0.001. L/1 long precision, before: 0.407; after: 0.466.

3.3 Examples of improved contact map predictions

In this section, we show four examples of pairs of contact maps before
and after applying ContactGAN. The first example (Figure 3a) is a
ContactGAN application to a map by CCMpred. For this large protein of
561 amino acids (PDB ID: 1HK8A), the original map by CCMpred is
covered by noisy predictions with low probability values. In contrast,
ContactGAN map denoised it into more distinct contact patterns, which
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yielded a 77.3% improvement in L/1 long-range precision from 0.357 to
0.633. The next example is the refinement on a DeepContact’s prediction
(Figure 3b). The right panel is from a two-channel ContactGAN with
DeepContact and CCMpred as input. ContactGAN was able to clean the
strong noise and improved the L/1 long precision from 0.396 to 0.622
over DeepContact. In Figure 3¢, a map predicted by DeepCov for a 405
residue-long protein in the CASP13 dataset was improved by the three-
channel ContactGAN. Similar to the previous two cases, the original
map suffered from high noisy probability values for medium and long-
range contacts, which were cleaned by ContactGAN. The last example
was a refinement for a contact map by trRosetta (MSA E-value: 107)
(Figure 3d). Compared to the previous cases, the improvements by
ContactGAN visually seem minor; however, they include enhancement
of critical very long-range contacts between residues 12-18 and 112-118.
These correct contacts were very weakly predicted by trRosetta with the
min, max, and the average values of 0.002, 0.143, and 0.03, respectively,
which were strengthened to 0.003, 0.794, and 0.213, respectively. The
precision improvement of L/1 long contacts was 14.5% overall. In Sup-
plementary Figure S6, more examples of improved maps over trRosetta
are provided where the improved margin was relatively large.

3.4 Effect of contact map improvement in str. modeling

We further examined how the improvement in contact map prediction
transfer to resulting protein structure models. Figure 5 shows GDT-TS
(Zemla, 2003) of models built for the 35 CASP13 targets using predicted
contact maps before and after applying refinement using ContactGAN.
In Figure 5, we showed results of a one-channel, a two-channel, the
three-channel ContactGAN, and ContactGAN for trRosetta. The rest of
the ContactGAN results are shown in Supplementary Figure S7. For
each target, 180 models were generated using pyRosetta as described in
the Supplementary Note 2. Dependency of the modeling results on the
probability cutoff of contact prediction and the folding protocols used are
provided in Supplementary Table S7. The left column in Figure 5
shows the largest GDT-TS among the generated models while in the
right column, the best energy models by the Rosetta score were consid-
ered. The improvements of the GDT-TS distribution by ContactGAN in
all the panels are statistically significant (p-value < 0.05).

Using a refined contact map by ContactGAN produced a higher
GDT-TS model for a majority of the targets (panel a, c, e, g). The actual
counts of improvements are provided in figure captions. This is also true
for trRosetta (panel g), where the improvement is observed for 22 targets
and 1 tie. When models selected by the Rosetta energy (the right column
of the figures) were considered, the margin between the number of im-
proved and worsened targets by ContactGAN shrank, but this is a scor-
ing problem where the Rosetta energy failed to select better quality mod-
els. Model selection would improve by some recently-developed model
quality assessment (QA) methods. Some examples of improved structure
models are provided in Supplementary Figure S8.

4 Discussion

In this work, we developed ContactGAN, which refines predicted con-
tact maps using a GAN architecture. Overall, ContactGAN made im-
provement to a majority of the contact maps in the three datasets tested.
The improvement of contact maps also led to better protein structure
models. The margin of the improvement observed was the largest for
CCMpred, where the original accuracy was relatively low, and the
smallest for trRosetta, which produced substantially more accurate maps

than the other prediction methods. The difficulty of improving trRosetta
maps may be attributed to three reasons: First, the original prediction has
already more accurate than other methods. Second, trRosetta uses CNN
as ContactGAN does. Third, since trRosetta is aimed for residue distance
prediction, it was trained on residue distance distribution data, which is
richer information than residue contacts information, which was used to
train ContactGAN. To increase the margin of the improvement over
trRosetta’s contact maps, increasing the depth of the networks and the
training dataset size would certainly help. More fundamentally, redesign-
ing the loss function used in training may be effective. Similar to Con-
tactGAN, we expect that GAN can also improve predicted residue dis-
tance maps, which is left for us as a future work.
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Figure 5. GDT-TS score of protein structure models generated with contact maps
before and after ContactGAN.

GDT-TS of structure models using predicted contact maps for the 35 CASP13 targets are
shown. Out of 180 models generated (see Supplementary Note 2) the best GDT-TS score
is shown in first column and values of the model with the best Rosetta score (the contact
constraint term was not included) is shown in second column. X-axis, models built with
original predicted contact maps; y-axis, with maps after applying ContactGAN. a, using
maps predicted by CCMpred. The best GDT-TS value among the pool was plotted for
each target. The number of targets where GDT-TS improved/tie/worsened after Con-
tactGAN is 29/0/6 (p-value < 0.0001), respectively. We show these three numbers in this
format for the rest of the panels. The number in the bracket indicates the P-value of the
significance test conducted. b, maps by CCMpred. GDT-TS of the best Rosetta score
models was plotted. 20/0/15 (0.009). ¢, the two-channel ContactGAN with DeepCov
(Dcv) and DeepContac (Dct). Circles, comparison against Dct; triangles, against Dv.
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Against Dct: 35/0/0 (< 0.0001); against Dcv: 27/0/8 (< 0.0001). d, the best Rosetta score
models for the 2-channel with Dcv and Dct. Against Det: 25/0/10 (0.003); against Dev:
20/1/14 (0.348). e, a three-channel with CCMpred, Dcv, and Dct. Crosses, CCMpred;
circles, Dct; triangles, Dcv. Against CCMpred: 34/1/0 (< 0.0001); against Dcv: 28/0/7
(0.000); against Dct: 34/0/1 (< 0.0001). f, GDT-TS of the best scoring models are plotted
for the three-channel ContactGAN. Against CCMpred: 29/0/6 (< 0.0001); against Dcv:
25/0/10 (0.002); against Dct: 30/1/4 (< 0.0001). g, trRosetta with the three E-value cut-
offs. compared to trRosetta with E-value 0.001 (which performed the best among the
three cutoffs): 22/1/12 (0.023). h, the channel for trRosetta. Against trRosetta (E-value:
0.001): 19/0/16 (0.049). Plots for the other contact prediction methods are provided in
Supplementary Figure S7.
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