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Abstract 
Motivation: Protein structure prediction remains as one of the most important problems in computa-
tional biology and biophysics. In the past few years, protein residue-residue contact prediction has 
undergone substantial improvement, which has made it a critical driving force for successful protein 
structure prediction. Boosting the accuracy of contact predictions has, therefore, become the forefront 
of protein structure prediction. 
Results: We show a novel contact map refinement method, ContactGAN, which uses Generative 
Adversarial Networks (GAN). ContactGAN was able to make a significant improvement over predic-
tions made by recent contact prediction methods when tested on three datasets including protein 
structure modeling targets in CASP13 and CASP14. We show improvement of precision in contact 
prediction, which translated into improvement in the accuracy of protein tertiary structure models. On 
the other hand, observed improvement over trRosetta was relatively small, reasons for which are 
discussed. ContactGAN will be a valuable addition in the structure prediction pipeline to achieve an 
extra gain in contact prediction accuracy. 
Availability: https://github.com/kiharalab/ContactGAN 
Contact: dkihara@purdue.edu 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Protein structure prediction remains as one of the most important prob-
lems in biology, more specifically in bioinformatics, biophysics, and 
structural biology. Tremendous efforts have been paid for determining 
tertiary structures of proteins because the structures provide indispensa-
ble information for understanding the principle of how proteins carry out 
biological functions, developing drug molecules, and artificial protein 
design. To supplement experimental methods of structure determination, 

computational protein structure prediction methods have been developed 
over the last three decades.  

As observed in the community-wide protein structure prediction 
experiments, the Critical Assessment of techniques in protein Structure 
Prediction (CASP) (Kryshtafovych, et al., 2019) the accuracy of predic-
tion methods has significantly improved in the past few years. The main 
driver behind this accuracy boost is the improvement of residue-residue 
contact or distance prediction, which is used effectively to guide the 
construction of protein structure models. Residue contacts or distances of 
a protein are predicted from a multiple sequence alignment (MSA) of the 
protein. Predicting residue contacts from an MSA has over 20 years of 

https://github.com/kiharalab/CPGAN
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effort by different research groups toward establishing accurate predic-
tion methods. In principle, evolutionary constraints for maintaining 
residue-residue contacts in a protein structure leave a trace in the MSA 
of the protein of interest and its homologous proteins. Earlier works 
applied relatively simple statistical approaches to an MSA (Fariselli, et 
al., 2001; Ortiz, et al., 1998). The accuracy of contact prediction was 
substantially improved a few years ago when the so-called co-evolution 
approaches, which use statistical inference based on the Potts model 
(Ekeberg, et al., 2013), were introduced. The methods in this category 
include CCMpred (Seemayer, et al., 2014), Gremlin (Kamisetty, et al., 
2013), EVFold (Marks, et al., 2011), plmDCA (Ekeberg, et al., 2013), 
FreeContact (Jones, et al., 2015; Kaján, et al., 2014), and MetaPSICOV 
(Jones, et al., 2015). Further improvement was observed more recently 
when deep learning, Convolutional Neural Networks (CNN) and Residu-
al Networks (He, et al., 2016), were applied to the problem. The methods 
in this category include DeepCov (Jones and Kandathil, 2018), RaptorX-
contact (Wang, et al., 2017), DeepContact (Liu, et al., 2018), and trRo-
setta (Yang, et al., 2020).  

Although substantial improvement in contact prediction has been 
observed, contact prediction is still far from perfect. Here, we propose 
ContactGAN, a novel contact map denoising and refinement method 
using Generative Adversarial Networks (GAN) (Goodfellow, et al., 
2014). GANs have been widely adopted for high-level generation tasks 
in computer vision with applications including image-to-image transla-
tion (Zhu, et al., 2017), and image super resolution (Ledig, et al., 2017). 
ContactGAN takes a contact map predicted by existing methods, which 
is considered as an imperfect, noisy input, and outputs an improved map 
that better captures correct residue-residue contacts compared to the 
original map. ContactGAN was trained with predicted noisy contact 
maps coupled with corresponding native contact maps, which the net-
works were guided to generate. We show that we gain a consistent and 
substantial precision improvement over predicted maps by CCMpred, 
DeepCov, and DeepContact, on the validation dataset, the CASP13, and 
the CASP14 datasets. It was also demonstrated that combining multiple 
predicted maps computed by different methods further improves the 
accuracy of generated maps. On the other hand, the improvement over 
trRosetta was relatively small. The potential reasons for that are exten-
sively discussed. ContactGAN can be the powerful last step of a contact 
prediction pipeline to improve any existing contact prediction methods 
as demonstrated through application to the four contact prediction meth-
ods. 

2 Methods 

2.1 Protein structure and contact map dataset 
We prepared a dataset of 5263 non-redundant protein structures, for each 
of which a contact map was computed by four existing contact map 
prediction methods. The predicted contact maps, together with the native 
(i.e. correct) contact maps, were used for training ContactGAN. A native 
contact map we use contains binary values, 1 or 0, where 1 indicates that 
the Cβ atom distance of the corresponding residue pair is 8 Å or shorter. 
The protein dataset was constructed based on the PISCES (Wang and 
Dunbrack, 2005) protein dataset selected with a 25% sequence identity, 
which was released before May 2018 (i.e. the beginning of CASP13). All 
these proteins were solved by X-ray or Nuclear Magnetic Resonance 
(NMR). From the PISCES dataset, proteins longer than 700 amino acid 
residues or shorter than 25 amino acid residues were discarded. Proteins 
were also excluded if they contain unknown amino acids in their se-

quence, have a knot in the structure that was checked by referring to the 
KnotProt2.0 database (Dabrowski-Tumanski, et al., 2019), or have con-
secutive missing residues up to two residues in the structure. Structure 
gaps up to two residues were filled with the Modeller (Eswar, et al., 
2006) automodel protocol. This step yielded 6640 protein structures. To 
further ensure non-redundancy of structures, we filtered the remaining 
proteins based on the CATH structural classification database (Knudsen 
and Wiuf, 2010). We first removed proteins that are not in the latest 
CATH-domain list and proteins in Class 6 (special structures), which 
yielded 5263 proteins. We then split these proteins into training and 
validation datasets such that there were no overlapping CATH codes up 
to the topology (T) level. The split was also made to ensure that both 
datasets have sufficient presence of all 4 CATH classes. The final counts 
of proteins in the training and validation datasets were 4962 and 301, 
respectively. 

In addition to this dataset, we used all the 43 contact prediction 
(RR) target domains in CASP13 and all the 49 RR targets in CASP14 as 
independent test sets. They are listed in Supplementary Table S1. 

2.2 Predicting contact maps with four existing methods 
We used four existing prediction methods, CCMpred, DeepContact, 
DeepCov, and trRosetta, to predict contact maps of the proteins in the 
dataset described above. Input MSAs were generated using DeepMSA 
(Zhang, et al., 2020). We used HHsuite (Steinegger, et al., 2019) version 
3.2.0 and HMMER (Potter, et al., 2018) version 3.3 in DeepMSA. For 
sequence databases, Uniclust30 database (Mirdita, et al., 2017) dated 
October 2017, Uniref90 (Suzek, et al., 2015) dated April 2018, and Met-
aclust_NR database (Steinegger and Söding, 2018) dated January 2018 
were used. These database releases are before CASP13 has started. 

CCMpred is a baseline contact prediction method, which uses the 
Pseudo-Likelihood Maximization (PLM) of direct couplings between 
pairs of amino acids in a MSA of the target protein (Seemayer, et al., 
2014). DeepContact is one of the deep learning-based contact prediction 
methods (Liu, et al., 2018). We used the DeepContact code made availa-
ble at Github by the authors. DeepCov is another method that uses deep 
learning (Jones and Kandathil, 2018). trRosetta uses the ResNet CNN 
architecture (He, et al., 2016). It was shown that trRosetta had superior 
performance to other existing methods on the CASP13 dataset. For trRo-
setta, we generated MSAs at three different E-values in the HHblits 
search steps of the DeepMSA pipeline, 0.001, 0.1, and 1.0. Since trRo-
setta outputs predicted distance between residue pairs, we used a dis-
tance cutoff of 8Å to decide if two residues are in contact. Since we ran 
trRosetta with three MSAs of different E-value cutoffs, we obtained 
three different contact predictions, which were considered as a 3-channel 
input for ContactGAN. 

2.3 Architecture of ContactGAN 
ContactGAN takes a predicted contact map by four prediction methods 
mentioned above as input and outputs a refined map. ContactGAN 
adopts the GAN framework, where two networks, a generative and a 
discriminative network, are trained with sets of predicted (noisy) and 
corresponding native (i.e. correct) contact maps so that refined maps can 
be generated by learning patterns from predicted and native maps. A 
native contact map we use contains binary values, 1 or 0, where 1 indi-
cates that the Cβ atom distance of the corresponding residue pair is 8 Å 
or shorter. 
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Figure 1. The architecture of ContactGAN. a, the overall structure that connects the 

generator and the discriminator networks. b, the network structure of the generator net-

work. X is equal to 18 for handling maps from trRosetta and 9 for the other methods. c, 

the detailed structure of the discriminator network. See text for more details. 
 

Figure 1 shows the network structure of ContactGAN. Figure 1a 
illustrates the overall architecture. The generator network, illustrated in 
Figure1b, is a CNN consisting of a 2D convolution layer with 32 chan-
nels and a kernel size of 9, which is followed by 9 or 18 ResNet blocks, a 
2D convolution layer, and finally by a sigmoid layer. 18 ResNet blocks 
were used when refining contact maps generated by trRosetta and 9 for 
all the other methods. The discriminator network (Figure 1c) is a fully 
convolutional binary classifier. It takes a contact map output from the 
generator and the corresponding native contact map and classifies the 
two maps into classes, either native (correct) or predicted. The discrimi-
nator network consists of 4 units of the combined “Conv2d+IN” block 
(pink) and “Conv2d+IN+Dropout” followed by one unit of Conv2d+IN 
with 512 channels, conv2d with 512 channels, and a sigmoid layer. The 
details of these blocks are shown in Supplementary Figure S1. 

2.4 Parameter training for ContactGAN 
A contact map predicted by a contact map prediction method (e.g. 
CCMpred), which we hereby refer to as a noisy map, is an input to the 
generator network of ContactGAN. The output map of the generator 
network and the corresponding native contact map of the noisy map were 
then used as inputs to the discriminator network. Out of 5263 pairs of 
noisy and native contact maps, 4962 pairs were used for training and 301 
were used for validation. ContactGAN was trained separately for each 
contact prediction method using predicted maps and corresponding na-
tive contact maps. Note that protein sequence information and other 
features, such as MSA and secondary structure prediction, were not used 
in ContactGAN. 

For training GANs, the generator and discriminator networks are 
trained together with a min-max game-style objective function given by 
equation (1): 

min 
𝐺𝐺 

max
𝐷𝐷

𝔼𝔼
𝑥𝑥 ~ ℙ𝑑𝑑

[log𝐷𝐷(𝑥𝑥)]   + 𝔼𝔼
𝑧𝑧 ~ ℙ𝑔𝑔

[log  (1− 𝐷𝐷(𝑧𝑧))]              (1) 

where G and D are parameters of the generator and the discriminator 
networks of ContactGAN,  ℙ𝑑𝑑 is the real (correct) data distribution, ℙ𝑔𝑔 is 
the generated (fake) data distribution, D(x) and D(z) are predicted prob-
abilities by the discriminator that the real (x) and fake data z are real. 
The generator receives noisy data as input and generates denoised data. 
The discriminator then classifies input data to denoised data or real data. 
The minimax objective ensures that the generator generates good quality 
denoised data that can fool the discriminator into classifying denoised 
data as real data. Following the above common practice for general 
GAN, the objective function for ContactGAN is formulated as shown in 
Equation 2, which is a linear combination of a content loss and an adver-
sarial loss: 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +   10−3 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    ,       (2) 

where      𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =   ∑ ∑ �𝑇𝑇𝑖𝑖,𝑗𝑗 − �𝐺𝐺(𝑁𝑁)�
𝑖𝑖,𝑗𝑗
�
2

𝐿𝐿
𝑗𝑗=0

𝐿𝐿
𝑖𝑖=0        (3)    

and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  −𝐷𝐷(𝐺𝐺(𝑁𝑁))                      (4)  

Here, L is the protein sequence length, T corresponds to the native 
contact matrix (map), and N is the input predicted (noisy) contact matrix, 
G(N) is the denoised matrix and D(G(N)) is the discriminator’s predic-
tion of the denoised map, which ranges between 0 to 1. We optimize the 
negative of D(G(N)), as we want to fool the discriminator to consider 
that the denoised map to be as good as the native map. The content loss 
is defined by the Mean Squared Error (MSE) between the denoised map 
and the native map. The adversarial loss is given as the negative softmax 
probabilities of the discriminator predictions. 

We employed the Two Time-scale Update Rule (TTUR) (Heusel, 
et al., 2017) to use separate learning rates for the generator and the dis-
criminator for stable GAN training. We used learning rates of 0.0001 for 
the generator and 0.0004 for the discriminator (Supplementary Note 1). 
The batch size was set to 1 as contact maps (i.e. proteins in the dataset) 
are of different sizes. ContactGAN was trained for 50 epochs (Supple-
mentary Figure 2). We choose the best performing model on the valida-
tion dataset for testing the CASP13 and CASP14 test datasets. The com-
putational time needed for training and inference are provided in Sup-
plementary Table 2. 

2.5 Building structure models from a contact map 
To build protein structure models from the predicted contact map, we 
used the energy minimization protocol, MinMover, in pyRosetta 
(Chaudhury, et al., 2010). Detailed procedure is explained in Supple-
mentary Note 2.  

3 Results 
ContactGAN was evaluated on three datasets, the validation set in the 
non-redundant protein dataset as well as the CASP13 and CASP14 con-
tact prediction targets. We evaluated whether ContactGAN could im-
prove the quality of predicted contact maps by the four existing methods, 
CCMpred, DeepContact, DeepCov, and trRosetta. 

3.1 Contact map improvement with ContactGAN 
In Table 1, we summarize ContactGAN’s performance in improving 
residue contact map prediction on the validation set and the CASP13 set. 
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In this table, we only showed precision considering predicted contacts 
with the top L/1 highest probabilities (L is the length of the protein). 
Results with more metrics are provided in Supplementary Table S3, S4, 
and S5. Supplementary Figure S3 shows improvements of the preci-
sion of individual predicted contact maps on the validation and the  
CASP13 datasets. 

The first three rows in Table 1 show results for individual meth-
ods, CCMpred, DeepCov, and DeepContact. ContactGAN made substan-
tial improvements for these methods in all the metrics, which was con-
sistent between the validation set and the CASP13 set. Particularly, the 
improvements were largest for CCMpred, which had the lowest original 
precision among the three methods. For CCMpred, ContactGAN im-
proved L/1 Long precision on the validation set from 0.193 to 0.333, an 
improvement of 72.5%. For the CASP13 set, the improvement for L/1 
Long was slightly larger, 79.3% (from 0.121 to 0.217). The improvement 
ranged from 71.8% to 79.3% for other metrics shown in Table 1 for 
CCMpred. The improvement was also consistent for DeepCov and 
DeepContact, but with smaller improvement margins than observed for 
CCMpred. For DeepCov, ContactGAN showed an improvement of 
3.43% and 8.23% for L/1 Long on the validation and the CASP13 sets, 
respectively. The corresponding values for DeepContact were 6.55%, 
and 5.99%, respectively. 
 
 
Table 1. Improvement on L/1 prediction by ContactGAN. 
 

 

Results shown are for top L/1 prediction. a) Results of two datasets are shown: On the 

left, the validation set of 301 proteins in the non-redundant protein dataset; on the right, 

the CASP13 dataset. b) The columns Lg consider only long-range contacts (residue pairs 

separated by more than 23 residues) while Med+Lg columns consider medium- and long-

range contacts (residue pairs separated by more than 11 residues). c) Each result corre-

sponds to top L/1 contact predictions with the highest probabilities where L is the length 

of the protein. Two values shown: up, original average precision by the existing method; 

bottom, average precision of denoised contact maps by ContactGAN. In the middle rows, 

contact maps of two or three methods were used as input: C, CCMpred; Dv, DeepCov; 

Dt, DeepContact. When multiple maps were used as input, the highest precision among 

the existing methods was shown as the original results. For trRosetta, three independent 

contact predictions were combined, each of which used an MSA with different E-value 

cutoffs, 0.001, 0.1, and 1.0. d) 9 blocks of ResNet were used in the generator. 

 
The middle rows in Table 1 present ContactGAN performance us-

ing multiple channels, where a pairwise combination of the above three 
methods and all three methods together were used as input channels. To 
be able to take two or three contact maps as input, the network architec-
ture of ContactGAN was modified accordingly. The row with “C + Dv” 
shows the precision values with CCMpred and DeepCov as two input 
channels for ContactGAN. With these two channels, ContactGAN 
showed substantial improvement in every evaluation category over the 
two individual methods. It is interesting to note that the improvement 
was achieved not only over CCMpred, the method with lower accuracy, 
but also over the better method, DeepCov. We see similar improvements 
when CCMpred+DeepContact and DeepCov+DeepContact were used as 
two-channel inputs. Then, we further extended the use of multi-channels 
to three channel inputs with CCMpred, DeepCov, and DeepContact 
altogether (C+Dv+Dt in the table), which resulted in a further improve-
ment over two channel inputs. 
 

 

Figure 2. Improvement of L/1 Long precision by using additional predicted contact 

maps as input channels.  Two sets of lines are shown for validation and CASP13 results 

for each of CCMpred (solid gray line), DeepCov (dashed line), and DeepContact (dashed 

and dotted line). Original indicates precision of the original contact maps, X-channel(s) 

indicates predictions by GAN with X=1,2, and 3 channels as inputs. In the case of 2 

channels, every method has 2 possible combinations of input. The order of the combina-

tions was as follows: For C: C+Dv, C+Dt. For Dv: C+Dv, Dv+Dt. For Dt: C+Dt, Dv+Dt. 

Precision values plotted are taken from Table 1. 

 
Improvements by combining additional method(s) are apparent in 

Figure 2, where L/1 Long precision values of each individual method 
and its combinations with other methods are compared. From originally 
predicted contact maps predicted by a single method, ContactGAN im-
proved them with a large margin, which was further improved by using 
additional contact maps predicted by different methods (2 input chan-
nels). Furthermore, an even higher precision was achieved by using three 
methods as input. 

In the last row of Table 1 we show the results of the application of 
ContactGAN to trRosetta, a relatively new method which showed one of 
the best performances among those published and available (Yang, et al., 
2020). Since the base accuracy of trRosetta is significantly better than 
the other methods, we combined three different channels of trRosetta, 
each using different MSAs generated with a sequence E-value cutoff of 
0.001, 0.1, and 1.0, respectively, instead of combining with the other 
methods. Compared with the best prediction among the results with the 
three E-values, which is 0.001, ContactGAN made small but consistent 

Method Validation a) CASP13 
Med+Lg b) Lg Med+Lg Lg 

CCMpred  0.245 
0.421 

0.193 
0.333 

0.164 
0.287 

0.121 
0.217 

DeepCov  0.457 
0.470 

0.349 
0.361 

0.320 
0.368 

0.231 
0.250 

DeepContact 
 

0.450 
0.480 

0.351 
0.374 

0.382 
0.408 

0.267 
0.283 

C + Dv c) 
 

0.457 
0.523 

0.349 
0.410 

0.320 
0.402 

0.231 
0.284 

C + Dt 
 

0.450 
0.514 

0.351 
0.405 

0.382 
0.420 

0.267 
0.299 

Dv + Dt 
 

0.450 
0.521 

0.351 
0.411 

0.382 
0.438 

0.267 
0.310 

C + Dv + Dt 
 

0.450 
0.537 

0.351 
0.426 

0.382 
0.437 

0.267 
0.314 

trRosetta 
 

0.702 
0.707 

0.583 
0.585 

0.657 
0.667 

0.510 
0.516 

9 blocksd) 0.696 0.580 0.650 0.512 
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improvements for all the metrics. For L/1 Long, ContactGAN improved 
by 0.34% and 1.17%, for the validation set and the CASP13 set, respec-
tively. The performance gains seen on trRosetta are lower than for the 
other methods, but these improvements in Table 1 have p-value < 0.05 
by t-test. Supplementary Table S5 provides p-values of other metrics. 
Supplementary Figure S3 shows change of the L/1 long precision 
values of individual contact maps. 

The generator for trRosetta used a deeper network (18 ResNet 
blocks) than the networks for the other contact prediction methods (9 
blocks) (Figure 1). We also trained a generator with 9 ResNet blocks  
for trRosetta and applied, which is shown in the last row of Table 1. The 
smaller generator showed a lower precision than the 18-block one, which 
was still better on average than the best among the original trRosetta (i.e. 
E-value of 0.001) for the CASP13 set (0.512). But for the validation set, 
the result (0.580) was worse than the best trRosetta with an E-value of 
0.001). We further tested the performance of the network when only 
generator was trained without the discriminator. ContactGAN con-
sistenty showed better performance than the generator-only network 
(Supplementary Table S5).  

 
Table 2. Improvement of L/1 precision on the CASP14 dataset. 
 

 
We were also curious if a GAN trained on maps generated by one 

method was able to refine predicted maps by another method (Supple-
mentary Figure S4). As shown, overall ContactGAN could not improve 
maps if it was trained on maps by a different method, which implies that 
the trained GAN captured method-specific predicted contact patterns. 
One exception was observed when the GAN trained on DeepContact 
map was applied to DeepCov maps, where we see improvement on 22 
maps out of 43 maps. Prediction accuracy of DeepCov and DeepContact 
are similar but the opposite case, i.e. GAN trained on DeepCov did not 
improve maps by DeepContact (Figure S4, panel b). 

Next, we investigated which types of contacts were improved by 
ContactGAN. Particularly, we examined contacts between residues in 
secondary structure elements, α-helix and α-helix (denoted as α−α 
below), β-strand and β-strand (β−β), and α-helix and β-strand (α−β). To 
quantify the change made by ContactGAN, we compared the fraction of 

correct contacts between secondary structure elements predicted among 
the top L/1 long-range contacts before and after applying ContactGAN 
(Supplementary Figure S5). For both validation and the CASP13 set, 
all three types of correct secondary structure interactions increased. For 
the validation set, particularly the fraction of β−β correct contacts in-
creased while correct α−α contact predictions were particularly in-
creased in the CASP13 set consistently across different prediction meth-
ods. Thus, the secondary structure preferences observed in the validation 
set and the CASP13 set were not consistent. 

3.2 CASP14 contact prediction dataset 
We further tested ContactGAN on the 49 CASP14 contact predic-

tion targets. Table 2 shows the L/5 and L/1 precisions and Supplemen-
tary Table S6 provides results on the full metrics. Similar to the results 
on the previous two datasets, consistent improvements were observed by 
ContactGAN. The margin of the improvements on the L/1 long precision 
was 1.58% (for DeepCov) to 57.0 % (for CCMpred). The improvement 
for trRosetta was smaller, 2.45%, but the change of the distribution of 
L/1 long precision was statistically significant (p-value < 0.05). T-test 
results of other metrics are provided in Supplementary Table S6. 
 

 

Figure 3. Examples of contact maps before and after applying ContactGAN. For each 

panel, the map on the left is the original one predicted by an existing method and the map 

on the right is the refined map by ContactGAN. The color scale shows predicted probabil-

ity values of contacts, ranging from dark blue (0.0) to bright yellow (1.0). Contacts with 

the residue itself along the diagonal line are removed. a, a contact map of Ribonucleotide-

Triphosphate Reductase in E-coli (PDB ID: 1HK8A; 561 amino acids (aa)) predicted by 

CCMpred. The L/1 long precision improved from 0.357 to 0.633. b, Mg-ATPase Nucleo-

tide binding domain (PDB ID: 3GWIA, 164 aa). The two-channel ContactGAN with 

CCMpred and DeepContact improved L/1 long precision from 0.396 (by DeepContact) to 

0.622. c, A CASP13 target, enterococcal surface protein (CASP ID: T0987, PDB 

ID:6ORI; 405aa). Three-channel ContactGAN improved over DeepCov. L/1 long preci-

sion of domain D1, before: 0.405; after: 0.589. For domain D2, before: 0.367; after: 

0.536. d, A CASP13 target protein. Filamentous haemagglutinin family protein (CASP 

ID: T0968s1, PDB ID:6CP9; 126 aa). The original map was by trRosetta with E-value 

0.001. L/1 long precision, before: 0.407; after: 0.466. 

3.3 Examples of improved contact map predictions 
In this section, we show four examples of pairs of contact maps before 
and after applying ContactGAN. The first example (Figure 3a) is a 
ContactGAN application to a map by CCMpred. For this large protein of 
561 amino acids (PDB ID: 1HK8A), the original map by CCMpred is 
covered by noisy predictions with low probability values. In contrast, 
ContactGAN map denoised it into more distinct contact patterns, which 

Method CASP14 
L/5a) L/1 

Med+Lg b) Lg Med+Lg Lg 
CCMpred  0.275 

0.379 
0.247 
0.314 

0.157 
0.255 

0.128 
0.201 

DeepCov  0.496 
0.527 

0.417 
0.407 

0.322 
0.345 

0.253 
0.257 

DeepContact 
 

0.531 
0.551 

0.434 
0.445 

0.329 
0.352 

0.243 
0.252 

C + Dv c) 
 

0.531 
0.571 

0.434 
0.483 

0.329 
0.377 

0.243 
0.275 

C + Dt 
 

0.496 
0.529 

0.417 
0.423 

0.322 
0.360 

0.253 
0.269 

Dv + Dt 
 

0.496 
0.581 

0.417 
0.477 

0.322 
0.381 

0.253 
0.292 

C + Dv + Dt 
 

0.496 
0.581 

0.417 
0.473 

0.322 
0.386 

0.253 
0.298 

trRosetta 
 

0.671 
0.671 

0.577 
0.591 

0.468 
0.474 

0.368 
0.377 

9 blocks 0.667 0.580 0.461 0.365 
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yielded a 77.3% improvement in L/1 long-range precision from 0.357 to 
0.633. The next example is the refinement on a DeepContact’s prediction 
(Figure 3b). The right panel is from a two-channel ContactGAN with 
DeepContact and CCMpred as input. ContactGAN was able to clean the 
strong noise and improved the L/1 long precision from 0.396 to 0.622 
over DeepContact. In Figure 3c, a map predicted by DeepCov for a 405 
residue-long protein in the CASP13 dataset was improved by the three-
channel ContactGAN. Similar to the previous two cases, the original 
map suffered from high noisy probability values for medium and long-
range contacts, which were cleaned by ContactGAN. The last example 
was a refinement for a contact map by trRosetta (MSA E-value: 10-3) 
(Figure 3d). Compared to the previous cases, the improvements by 
ContactGAN visually seem minor; however, they include enhancement 
of critical very long-range contacts between residues 12-18 and 112-118. 
These correct contacts were very weakly predicted by trRosetta with the 
min, max, and the average values of 0.002, 0.143, and 0.03, respectively, 
which were strengthened to 0.003, 0.794, and 0.213, respectively. The 
precision improvement of L/1 long contacts was 14.5% overall. In Sup-
plementary Figure S6, more examples of improved maps over trRosetta 
are provided where the improved margin was relatively large. 

3.4 Effect of contact map improvement in str. modeling 
We further examined how the improvement in contact map prediction 
transfer to resulting protein structure models. Figure 5 shows GDT-TS 
(Zemla, 2003) of models built for the 35 CASP13 targets using predicted 
contact maps before and after applying refinement using ContactGAN. 
In Figure 5, we showed results of a one-channel, a two-channel, the 
three-channel ContactGAN, and ContactGAN for trRosetta. The rest of 
the ContactGAN results are shown in Supplementary Figure S7. For 
each target, 180 models were generated using pyRosetta as described in 
the Supplementary Note 2. Dependency of the modeling results on the 
probability cutoff of contact prediction and the folding protocols used are 
provided in Supplementary Table S7. The left column in Figure 5 
shows the largest GDT-TS among the generated models while in the 
right column, the best energy models by the Rosetta score were consid-
ered. The improvements of the GDT-TS distribution by ContactGAN in 
all the panels are statistically significant (p-value < 0.05). 

Using a refined contact map by ContactGAN produced a higher 
GDT-TS model for a majority of the targets (panel a, c, e, g). The actual 
counts of improvements are provided in figure captions. This is also true 
for trRosetta (panel g), where the improvement is observed for 22 targets 
and 1 tie. When models selected by the Rosetta energy (the right column 
of the figures) were considered, the margin between the number of im-
proved and worsened targets by ContactGAN shrank, but this is a scor-
ing problem where the Rosetta energy failed to select better quality mod-
els. Model selection would improve by some recently-developed model 
quality assessment (QA) methods. Some examples of improved structure 
models are provided in Supplementary Figure S8. 

4 Discussion 
In this work, we developed ContactGAN, which refines predicted con-
tact maps using a GAN architecture. Overall, ContactGAN made im-
provement to a majority of the contact maps in the three datasets tested. 
The improvement of contact maps also led to better protein structure 
models. The margin of the improvement observed was the largest for 
CCMpred, where the original accuracy was relatively low, and the 
smallest for trRosetta, which produced substantially more accurate maps 

than the other prediction methods. The difficulty of improving trRosetta 
maps may be attributed to three reasons: First, the original prediction has 
already more accurate than other methods. Second, trRosetta uses CNN 
as ContactGAN does. Third, since trRosetta is aimed for residue distance 
prediction, it was trained on residue distance distribution data, which is 
richer information than residue contacts information, which was used to 
train ContactGAN. To increase the margin of the improvement over 
trRosetta’s contact maps, increasing the depth of the networks and the 
training dataset size would certainly help. More fundamentally, redesign-
ing the loss function used in training may be effective. Similar to Con-
tactGAN, we expect that GAN can also improve predicted residue dis-
tance maps, which is left for us as a future work. 
 

 
Figure 5. GDT-TS score of protein structure models generated with contact maps 

before and after ContactGAN. 

GDT-TS of structure models using predicted contact maps for the 35 CASP13 targets are 
shown. Out of 180 models generated (see Supplementary Note 2) the best GDT-TS score 
is shown in first column and values of the model with the best Rosetta score (the contact 
constraint term was not included) is shown in second column. X-axis, models built with 
original predicted contact maps; y-axis, with maps after applying ContactGAN. a, using 
maps predicted by CCMpred. The best GDT-TS value among the pool was plotted for 
each target. The number of targets where GDT-TS improved/tie/worsened after Con-
tactGAN is 29/0/6 (p-value < 0.0001), respectively. We show these three numbers in this 
format for the rest of the panels. The number in the bracket indicates the P-value of the 
significance test conducted. b, maps by CCMpred. GDT-TS of the best Rosetta score 
models was plotted. 20/0/15 (0.009). c, the two-channel ContactGAN with DeepCov 
(Dcv) and DeepContac (Dct). Circles, comparison against Dct; triangles, against Dv. 
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Against Dct: 35/0/0 (< 0.0001); against Dcv: 27/0/8 (< 0.0001). d, the best Rosetta score 
models for the 2-channel with Dcv and Dct. Against Dct: 25/0/10 (0.003); against Dcv: 
20/1/14 (0.348). e, a three-channel with CCMpred, Dcv, and Dct. Crosses, CCMpred; 
circles, Dct; triangles, Dcv. Against CCMpred: 34/1/0 (< 0.0001); against Dcv: 28/0/7 
(0.000); against Dct: 34/0/1 (< 0.0001). f, GDT-TS of the best scoring models are plotted 
for the three-channel ContactGAN. Against CCMpred: 29/0/6 (< 0.0001); against Dcv: 
25/0/10 (0.002); against Dct: 30/1/4 (< 0.0001). g, trRosetta with the three E-value cut-
offs. compared to trRosetta with E-value 0.001 (which performed the best among the 
three cutoffs): 22/1/12 (0.023). h, the channel for trRosetta. Against trRosetta (E-value: 
0.001): 19/0/16 (0.049). Plots for the other contact prediction methods are provided in 
Supplementary Figure S7. 
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