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Abstract

A new network with super approximation power is introduced. This network is built
with Floor (|z]) or ReLU (max{0,z}) activation function in each neuron and hence
we call such networks Floor-ReLU networks. For any hyper-parameters N € N* and
L e N*, it is shown that Floor-ReLU networks with width max{d, 5N + 13} and depth
64dL + 3 can uniformly approximate a Holder function f on [0, 1]¢ with an approxi-
mation error 3A\d*/2N-VL where « € (0,1] and X are the Holder order and constant,
respectively. More generally for an arbitrary continuous function f on [0, 1]¢ with a
modulus of continuity wy(-), the constructive approximation rate is w f(\/c_iN -VL ) +
2w f(\/c_Z)N -VL_ As a consequence, this new class of networks overcomes the curse of
dimensionality in approximation power when the variation of w¢(r) as r - 0 is mod-
erate (e.g., wy(r) S r* for Holder continuous functions), since the major term to be
considered in our approximation rate is essentially \/d times a function of N and L

independent of d within the modulus of continuity.

1 Introduction

Recently, there has been a large number of successful real-world applications of deep
neural networks in many fields of computer science and engineering, especially for
large-scale and high-dimensional learning problems. Understanding the approximation

capacity of deep neural networks has become a fundamental research direction for re-



vealing the advantages of deep learning compared to traditional methods. This paper
introduces new theories and network architectures achieving root exponential conver-
gence and avoiding the curse of dimensionality simultaneously for (Holder) continuous
functions with an explicit error bound in deep network approximation, which might
be two foundational laws supporting the application of deep network approximation in
large-scale and high-dimensional problems. The approximation results here are quan-
titative and apply to networks with essentially arbitrary width and depth. These results
suggest considering Floor-ReLU networks as a possible alternative to ReLU networks
in deep learning.

Deep ReLU networks with width O(N') and depth O(L) can achieve the approxi-
mation rate O( N~1) for polynomials on [0, 1]¢ (Lu et al., 2020) but it is not true for gen-
eral functions, e.g., the (nearly) optimal approximation rates of deep ReLU networks for
a Lipschitz continuous function and a C'* function f on [0,1]¢ are O(\/dN-2/4[-2/4)

and O(| f|cs N-2s/4L-2s/4) (Shen et al., 2019b; Lu et al., 2020), respectively. The

limitation of ReLU networks motivates us to explore other types of network architec-
tures to answer our curiosity on deep networks: Do deep neural networks with arbi-
trary width O(N) and arbitrary depth O(L) admit an exponential approximation rate
O(ws(N-L")) for some constant 1 > 0 for a generic continuous function f on [0, 1]¢
with a modulus of continuity wy(-)?

To answer this question, we introduce the Floor-ReLU network, which is a fully

connected neural network (FNN) built with either Floor (|z]) or ReLU (max{0,z})



activation function!

in each neuron. Mathematically, if we let Ny = d, Ny, = 1,
and N, be the number of neurons in /-th hidden layer of a Floor-ReLU network for

¢=1,2,--, L, then the architecture of this network with input & and output ¢(x) can be

described as

= Wo,bo oor ] =~ Wr_1,br1 oor|-] =~ Wig,bg
xr = ho h1 h1 hL hL

hL+1 = ¢(w)a
where Wy € RNesixNe b, € RNest b,y := Wy-hy+by for £=0,1, -+, L, and /ﬁg,n is equal
to o(hyy) or |hyy,| for € =1,2,-- L and n = 1,2,---, Ny, where hy = (hyy,-, hin,)

and by = (Eé,h "‘,’ﬁg,Nl) for { =1,2,--, L. See Figure 1 for an example.
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Figure 1: An example of a Floor-ReLU network with width 5 and depth 2.

In Theorem 1.1 below, we show by construction that Floor-ReLLU networks with
width max{d, 5N + 13} and depth 64dL + 3 can uniformly approximate a continu-
ous function f on [0, 1]¢ with a root exponential approximation rate? w f(ﬂ N _\/E) +

2w (V/d)N-VE, where w;(-) is the modulus of continuity defined as

wi(r) =sup{|f (@) - FW)|: |z - yl2 <7, ®,y[0,1]"}, foranyr>0,

1Our results can be easily generalized to Ceiling-ReLLU networks, namely, feed-forward neural net-

works with either Ceiling ([«]) or ReLU (max{0, z}) activation function in each neuron.

2All the exponential convergence in this paper is root exponential convergence. Nevertheless, after

the introduction, for the convenience of presentation, we will omit the prefix “root”, as in the literature.
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where | z|2 = \/2? + 22 + -+ + 2% for any @ = (21,22, 74) € R%

Theorem 1.1. Given any N, L € N* and an arbitrary continuous function f on [0,1]9,
there exists a function ¢ implemented by a Floor-ReLU network with width max{d, 5N+

13} and depth 64dL + 3 such that
|p(x) - f(x)| < wf(\/aN’ﬁ) - wa(\/g)N’ﬁ, for any x € [0, 1]°.
With Theorem 1.1, we have an immediate corollary.

Corollary 1.2. Given an arbitrary continuous function f on [0,1]%, there exists a func-

tion ¢ implemented by a Floor-ReLU network with width N and depth L such that

o)~ @) <oy (V| 52 VU oy e VL)

5
orany x € |0, and N, L € with N > max{d, and L > + 3.
f 0,1]¢ and N, L € N* with N d,18 dL>64d+3

In Theorem 1.1, the rate in w f(\/c_l N-VL) implicitly depends on N and L through
the modulus of continuity of f, while the rate in 2w (v/d) N~V is explicit in N and L.
Simplifying the implicit approximation rate to make it explicitly depending on N and
L is challenging in general. However, if f is a Holder continuous function on [0, 1]¢ of

order v € (0, 1] with a constant A, i.e., f(x) satisfying

() - f(y)l <Az -yl3, foranyx,ye[0,1]", (D)

then w(r) < Are for any r > 0. Therefore, in the case of Holder continuous functions,
the approximation rate is simplified to 3A\d®/2N-2VL as shown in the following corol-
lary. In the special case of Lipschitz continuous functions with a Lipschitz constant A,

the approximation rate is simplified to 3A\V/dN-VL.
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Corollary 1.3. Given any N, L € N* and a Hélder continuous function f on [0,1]¢
of order o with a constant ), there exists a function ¢ implemented by a Floor-ReLU

network with width max{d, 5N + 13} and depth 64dL + 3 such that
6(x) = f(2)] < 3Ad2N->VL forany x € [0, 1]

First, Theorem 1.1 and Corollary 1.3 show that the approximation capacity of deep
networks for continuous functions can be nearly exponentially improved by increasing
the network depth, and the approximation error can be explicitly characterized in terms
of the width O(N') and depth O(L). Second, this new class of networks overcomes the
curse of dimensionality in the approximation power when the modulus of continuity is
moderate, since the approximation order is essentially w;(~/dN-VE). Finally, apply-
ing piecewise constant and integer-valued functions as activation functions and integer
numbers as parameters has been explored in the study of quantized neural networks
(Hubara et al., 2017; Yin et al., 2019; Bengio et al., 2013) with efficient training algo-
rithms for low computational complexity (Wang et al., 2018). The floor function (| z ) is
a piecewise constant function and can be easily implemented numerically at very little
cost. Hence, the evaluation of the proposed network could be efficiently implemented
in practical computation. Though there might not be an existing optimization algorithm
to identify an approximant with the approximation rate in this paper, Theorem 1.1 can
provide an expected accuracy before a learning task and how much the current opti-
mization algorithms could be improved. Designing an efficient optimization algorithm
for Floor-ReLLU networks will be left as future work with several possible directions
discussed later.

We would like to remark that an increased smoothness or regularity of the target
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function could improve our approximation rate but at the cost of a large prefactor. For
example, to attain better approximation rates for functions in C*([0, 1]¢), it is common
to use Taylor expansions and derivatives, which are tools that suffer from the curse
of dimensionality and will result in a large prefactor like O((s + 1)) that is subject
to the curse of dimensionality. Furthermore, the prospective approximation rate using
smoothness is not attractive. For example, the prospective approximation rate would
be O(N-*VL), if we use Floor-ReLU networks with width O(N) and depth O(L) to
approximate functions in C*([0,1]¢). However, such a rate O(N-sVL) = O(N-V*L)
can be attained by using Floor-ReLU networks with width O(N') and depth O(s%L) to
approximate Lipschitz continuous functions. Hence, increasing the network depth can
result in the same approximation rate for Lipschitz continuous functions as the rate of
smooth functions.

The rest of this paper is organized as follows. In Section 2, we discuss the applica-
tion scope of our theory and compare related works in the literature. In Section 3, we
prove Theorem 1.1 based on Proposition 3.2. Next, this basic proposition is proved in

Section 4. Finally, we conclude this paper in Section 5.

2 Discussion

In this section, we will discuss the application scope of our theory in machine learning

and its comparison related to existing works.



2.1 Application scope of our theory in machine learning

In supervised learning, an unknown target function f(x) defined on a domain € is
learned through its finitely many samples {(x;, f(x;))}™,. If deep networks are ap-
plied in supervised learning, the following optimization problem is solved to identify a
deep network ¢(x; 6s), with 85 as the set of parameters, to infer f () for unseen data

samples x:

65 =g min Rs(0) = argmin 3 (0(::6). /() @

{zi}i,

with a loss function typically taken as £(y,y’) = 5|y—y'|*. The inference error is usually

measured by Rp(6s), where

Rp(0) = Bpv(o) [((0(2;0), f(2))],

where the expectation is taken with an unknown data distribution U (2) over 2.

Note that the best deep network to infer f(x) is ¢(x; 0p) with Op given by
0p = argmin Rp(0).
0

The best possible inference error is Rp(0p). In real applications, U(£2) is unknown
and only finitely many samples from this distribution are available. Hence, the empiri-
cal loss Rs (@) is minimized hoping to obtain ¢(x; 8s), instead of minimizing the pop-
ulation loss Rp (@) to obtain ¢(x; Op). In practice, a numerical optimization method to
solve (2) may result in a numerical solution (denoted as 6,) that may not be a global
minimizer Os. Therefore, the actually learned neural network to infer f(x) is ¢(x; Oz )
and the corresponding inference error is measured by Rp(6).

By the discussion just above, it is crucial to quantify Rp(6) to see how good the
learned neural network ¢(x; @) is, since Rp(6,) is the expected inference error over
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all possible data samples. Note that

Rp(Oy) = [Rp(Ox) = Rs(Ox)] + [Rs(0x) — Rs(0s)] + [Rs(0s) — Rs(6p)]
+ [Rs(ep) - RD(QD)] + RD(GD)

< Rp(0p) + [Rs(Ox) — Rs(65)] 3)

+[Rp(Oy) — Rs(0n)] + [Rs(0p) - Rp(6p)],

where the inequality comes from the fact that [Rs(0s) — Rs(0p)] < 0 since O is a
global minimizer of Rs(6). The constructive approximation established in this paper
and in the literature provides an upper bound of Rp(80p) in terms of the network size,
e.g., in terms of the network width and depth, or in terms of the number of param-
eters. The second term of (3) is bounded by the optimization error of the numerical
algorithm applied to solve the empirical loss minimization problem in (2). If the nu-
merical algorithm is able to find a global minimizer, the second term is equal to zero.
The theoretical guarantee of the convergence of an optimization algorithm to a global
minimizer s and the characterization of the convergence belong to the optimization
analysis of neural networks. The third and fourth term of (3) are usually bounded in
terms of the sample size n and a certain norm of 8, and 0y (e.g., {1, {5, or the path
norm), respectively. The study of the bounds for the third and fourth terms is referred
to as the generalization error analysis of neural networks.

The approximation theory, the optimization theory, and the generalization theory
form the three main theoretical aspects of deep learning with different emphases and
challenges, which have motivated many separate research directions recently. Theorem
1.1 and Corollary 1.3 provide an upper bound of Rp(6p). This bound only depends on
the given budget of neurons and layers of Floor-ReLLU networks and on the modulus of
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continuity of the target function f. Hence, this bound is independent of the empirical
loss minimization in (2) and the optimization algorithm used to compute the numerical
solution of (2). In other words, Theorem 1.1 and Corollary 1.3 quantify the approxima-
tion power of Floor-ReLU networks with a given size. Designing efficient optimization
algorithms and analyzing the generalization bounds for Floor-ReLU networks are two
other separate future directions. Although optimization algorithms and generalization
analysis are not our focus in this paper, in the next two paragraphs, we discuss several
possible research topics in these directions for our Floor-ReLU networks.

In this work, we have not analyzed the feasibility of optimization algorithms for the
Floor-ReLLU network. Typically, stochastic gradient descent (SGD) is applied to solve
a network optimization problem. However, the Floor-ReLU network has piecewise
constant activation functions making standard SGD infeasible. There are two possible
directions to solve the optimization problem for Floor-ReLU networks: 1) gradient-free
optimization methods, e.g., Nelder-Mead method (Nelder and Mead, 1965), genetic al-
gorithm (Holland, 1992), simulated annealing (Kirkpatrick et al., 1983), particle swarm
optimization (Kennedy and Eberhart, 1995), and consensus-based optimization (Pinnau
et al., 2017; Carrillo et al., 2019); 2) applying optimization algorithms for quantized
networks that also have piecewise constant activation functions (Lin et al., 2019; Boo
et al., 2020; Bengio et al., 2013; Wang et al., 2018; Hubara et al., 2017; Yin et al., 2019).
It would be interesting future work to explore efficient learning algorithms based on the
Floor-ReLLU network.

Generalization analysis of Floor-ReLU networks is also an interesting future di-

rection. Previous works have shown the generalization power of ReLU networks for
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regression problems (Jacot et al., 2018; Cao and Gu, 2019; Chen et al., 2019b; E et al.,
2019; E and Wojtowytsch, 2020) and for solving partial differential equations (Berner
etal.,2018; Luo and Yang, 2020). Regularization strategies for ReLU networks to guar-
antee good generalization capacity of deep learning have been proposed in (E et al.,
2019; E and Wojtowytsch, 2020). It is important to investigate the generalization ca-
pacity of our Floor-ReLU networks. Especially, it is of great interest to see whether
problem-dependent regularization strategies exist to make the generalization error of

our Floor-ReLU networks free of the curse of dimensionality.

2.2 Approximation rates in O(N) and O(L) versus O(1)

Characterizing deep network approximation in terms of the width O(N )3 and depth
O(L) simultaneously is fundamental and indispensable in realistic applications, while
quantifying the deep network approximation based on the number of nonzero param-
eters IV is probably only of interest in theory as far as we know. Theorem 1.1 can
provide practical guidance for choosing network sizes in realistic applications while
theories in terms of I/ cannot tell how large a network should be to guarantee a target
accuracy. The width and depth are the two most direct and amenable hyper-parameters
in choosing a specific network for a learning task, while the number of nonzero parame-
ters W is hardly controlled efficiently. Theories in terms of W essentially have a single
variable to control the network size in three types of structures: 1) fixing the width N
and varying the depth L; 2) fixing the depth L and changing the width /V; 3) both the

width and depth are controlled by the same parameter like the target accuracy € in a

3For simplicity, we omit O(+) in the following discussion.
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specific way (e.g., NV is a polynomial of Eid and L is a polynomial of log()). Con-
sidering the non-uniqueness of structures for realizing the same W, it is impractical to
develop approximation rates in terms of 1 covering all these structures. If one network
structure has been chosen in a certain application, there might not be a known theory
in terms of W to quantify the performance of this structure. Finally, in terms of full er-
ror analysis of deep learning including approximation theory, optimization theory, and
generalization theory as illustrated in (3), the approximation error characterization in
terms of width and depth is more useful than that in terms of the number of parameters,
because almost all existing optimization and generalization analysis are based on depth
and width instead of the number of parameters (Jacot et al., 2018; Cao and Gu, 2019;
Chen et al., 2019b; Arora et al., 2019; Allen-Zhu et al., 2019; E et al., 2019; E and
Wojtowytsch, 2020; Ji and Telgarsky, 2020), to the best of our knowledge. Approxi-
mation results in terms of width and depth are more consistent with optimization and
generalization analysis tools to obtain a full error analysis in (3).

Most existing approximation theories for deep neural networks so far focus on the
approximation rate in the number of parameters I/ (Cybenko, 1989; Hornik et al.,
1989; Barron, 1993; Liang and Srikant, 2016; Yarotsky, 2017; Poggio et al., 2017; E
and Wang, 2018; Petersen and Voigtlaender, 2018; Chui et al., 2018; Yarotsky, 2018;
Nakada and Imaizumi, 2019; Gribonval et al., 2019; Giihring et al., 2019; Chen et al.,
2019a; Li et al., 2019; Suzuki, 2019; Bao et al., 2019; Opschoor et al., 2019; Yarot-
sky and Zhevnerchuk, 2019; Bolcskei et al., 2019; Montanelli and Du, 2019; Chen and
Wu, 2019; Zhou, 2020; Montanelli and Yang, 2020; Montanelli et al., 2020). From the

point of view of theoretical difficulty, controlling two variables N and L in our theory
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is more challenging than controlling one variable WV in the literature. In terms of math-
ematical logic, the characterization of deep network approximation in terms of /N and
L can provide an approximation rate in terms of I/, while we are not aware of how to
derive approximation rates in terms of arbitrary N and L given approximation rates in
terms of IV, since existing results in terms of W are valid for specific network sizes
with width and depth as functions in W without the degree of freedom to take arbitrary
values. As we have discussed in the last paragraph, existing theories essentially have a
single variable to control the network size in three types of structures. Let us use the
first type of structures, which includes the best-known result for a nearly optimal ap-
proximation rate, O(wy(1W~2/?)), for continuous functions in terms of W using ReLU
networks (Yarotsky, 2018) and the best-known result, O(exp(—co.av/W)), for Holder
continuous functions of order o using Sine-ReL.U networks (Yarotsky and Zhevner-
chuk, 2019), as an example to show how Theorem 1.1 in terms of /N and L can be
applied to show a better result in terms of /. One can apply Theorem 1.1 in a similar
way to obtain other corollaries with other types of structures in terms of /. The main
idea is to specify the value of NV and L in Theorem 1.1 to show the desired corollary.
For example, if we let the width parameter N = 2 and the depth parameter L = W in
Theorem 1.1, then the width is max{d, 23}, the depth is 64dV + 3, and the total num-
ber of parameters is bounded by O (max{d?,232}(64dW +3)) = O(W). Therefore,
we can prove Corollary 2.1 below for the approximation capacity of our Floor-ReL.U

networks in terms of the total number of parameters as follows.

Corollary 2.1. Given any W € N* and a continuous function f on [0,1]%, there exists

a function ¢ implemented by a Floor-ReLU network with O(W') nonzero parameters, a
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width max{d, 23} and depth 64dW + 3, such that
|p(x) - f(x)] < wf(\/ﬁz-ﬁ) + 2<uf(\/3)2‘¢w7 for any x € [0, 1]<.

Corollary 2.1 achieves root exponential convergence without the curse of dimen-
sionality in terms of the number of parameters I/ with the help of the Floor-ReLU
networks. When only ReLLU networks are used, the result in (Yarotsky, 2018) suffers
from the curse and does not have any kind of exponential convergence. The result in
(Yarotsky and Zhevnerchuk, 2019) with Sine-ReLLU networks has root exponential con-
vergence but has not excluded the possibility of the curse of dimensionality as we shall
discuss later. Furthermore, Corollary 2.1 works for generic continuous functions while

(Yarotsky and Zhevnerchuk, 2019) only applies to Holder continuous functions.

2.3 Further interpretation of our theory

In the interpretation of our theory, there are two more aspects that are important to
discuss. The first one is whether it is possible to extend our theory to functions on
a more general domain, e.g, [-M, M]¢ for some M > 1, because M > 1 may cause
an implicit curse of dimensionality in some existing theory as we shall point out later.
The second one is how bad the modulus of continuity would be since it is related to a
high-dimensional function f that may lead to an implicit curse of dimensionality in our
approximation rate.

First, Theorem 1.1 can be easily generalized to C([-M, M]?) for any M > 0.
Let £ be a linear map given by L(x) = 2M(x — 1/2). By Theorem 1.1, for any

f e C([-M, M]?), there exists ¢ implemented by a Floor-ReLU network with width
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max{d, 5N + 13} and depth 64dL + 3 such that
6(2) = f o L()] € wror (VANVE) + 2w (VA)N VT, forany a € [0, 1]

It follows from y = L(x) € [-M, M]¢ and wyor(r) = wE[M’M]d(QMr) for any r > 0

that,4 for any y € [-M, M4,

(G(Bal) — f(3)] <M (2MVANEY 4 25 2MVA)NVE. (4

2M

Hence, the size of the function domain [-M, M]? only has a mild influence on the
approximation rate of our Floor-ReLU networks. Floor-ReLU networks can still avoid
the curse of dimensionality and achieve root exponential convergence for continuous
functions on [-M, M]¢ when M > 1. For example, in the case of Holder continuous
functions of order «v with a constant A on [-M, M ]¢, our approximation rate becomes
3AN2MVAN-VE)e,

Second, most interesting continuous functions in practice have a good modulus of
continuity such that there is no implicit curse of dimensionality hiding in w¢(-). For
example, we have discussed the case of Holder continuous functions previously. We
would like to remark that the class of Holder continuous functions implicitly depends
on d through its definition in (1), but this dependence is moderate since the /- norm
in (1) is the square root of a sum with d terms. Let us now discuss several cases of
wy(-) when we cannot achieve exponential convergence or cannot avoid the curse of

dimensionality. The first example is w;(r) = m for all small r > 0, which leads to

4For an arbitrary set £ ¢ R9, w};(r) is defined via w]]?(r) =sup{|f(z)-f(y)|: |z-yla<r, z,y€

d
E}, for any r > 0. As defined earlier, w(r) is short of w;o’l] (r).
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an approximation rate
3(VLInN - 3lnd)™, forlarge N, L e N*.

Apparently, the above approximation rate still avoids the curse of dimensionality but
there is no exponential convergence, which has been canceled out by “In” in w¢(-). The

second example is wy(r) = for all small » > 0, which leads to an approximation

1
In'/4(1/r)

rate

3(VLInN - 1ind)™4  forlarge N, L € N*.

The power é further weakens the approximation rate and hence the curse of dimension-
ality occurs. The last example we would like to discuss is ws(r) = r2/¢ for all small

r > 0, which results in the approximation rate
3d%N_%‘/Z, for large N, L € N*,

which achieves the exponential convergence and avoids the curse of dimensionality
when we use very deep networks with a fixed width. But if we fix the depth, there is no
exponential convergence and the curse occurs. Though we have provided several exam-
ples of immoderate w;(-), to the best of our knowledge, we are not aware of practically

useful continuous functions with w¢(-) that is immoderate.

2.4 Discussion on the literature

The neural networks constructed here achieve exponential convergence without the
curse of dimensionality simultaneously for a function class as general as (Holder) con-
tinuous functions, while—to the best of our knowledge—most existing theories only apply
to functions with an intrinsic low complexity. For example, the exponential convergence
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was studied for polynomials (Yarotsky, 2017; Montanelli et al., 2020; Lu et al., 2020),
smooth functions (Montanelli et al., 2020; Liang and Srikant, 2016), analytic functions
(E and Wang, 2018), and functions admitting a holomorphic extension to a Bernstein
polyellipse (Opschoor et al., 2019). For another example, no curse of dimensionality
occurs, or the curse is lessened for Barron spaces (Barron, 1993; E et al., 2019; E and
Wojtowytsch, 2020), Korobov spaces (Montanelli and Du, 2019), band-limited func-
tions (Chen and Wu, 2019; Montanelli et al., 2020), compositional functions (Poggio
et al., 2017), and smooth functions (Yarotsky and Zhevnerchuk, 2019; Lu et al., 2020;
Montanelli and Yang, 2020; Yang and Wang, 2020).

Our theory admits a neat and explicit approximation error bound. For example, our
approximation rate in the case of Holder continuous functions of order o with a constant
X is 3Ad®/2N-oVL while the prefactor of most existing theories is unknown or grows
exponentially in d. Our proof fully explores the advantage of the compositional struc-
ture and the nonlinearity of deep networks, while many existing theories were built on
traditional approximation tools (e.g., polynomial approximation, multiresolution anal-
ysis, and Monte Carlo sampling), making it challenging for existing theories to obtain
a neat and explicit error bound with an exponential convergence and without the curse
of dimensionality.

Let us review existing works in more detail below.

Curse of dimensionality. The curse of dimensionality is the phenomenon that ap-
proximating a d-dimensional function using a certain parametrization method with a
fixed target accuracy generally requires a large number of parameters that is exponen-

tial in d and this expense quickly becomes unaffordable when d is large. For example,
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traditional finite element methods with W parameters can achieve an approximation
accuracy O(W-1/) with an explicit indicator of the curse é in the power of W. If an
approximation rate has a constant independent of W and exponential in d, the curse still
occurs implicitly through this prefactor by definition. If the approximation rate has a
prefactor C'; depending on f, then the prefactor C still depends on d implicitly via f
and the curse implicitly occurs if C'; exponentially grows when d increases. Designing
a parametrization method that can overcome the curse of dimensionality is an important
research topic in approximation theory.

In (Barron, 1993) and its variants or generalization (E et al., 2019; E and Woj-
towytsch, 2020; Chen and Wu, 2019; Montanelli et al., 2020), d-dimensional functions
defined on a domain 2 ¢ R¢ admitting an integral representation with an integrand as a

ridge function on Q) ¢ R with a variable coefficent were considered, e.g.,

f@) = [ a(w)K@w-)dv(w). )

where v(w) is a Lebesgue measure in w. f(x) can be reformulated into the expectation
of a high-dimensional random function when w is treated as a random variable. Then
f(x) can be approximated by the average of 1 samples of the integrand in the same
spirit of the law of large numbers with an approximation error essentially bounded
by L\/@ measured in L?(€2, 1) (Equation (6) of (Barron, 1993)), where O(W) is
the total number of parameters in the network, C is a d-dimensional integral with an
integrand related to f, and ;(€2) is the Lebesgue measure of €. As pointed out in
(Barron, 1993) right after Equation (6), if € is not a unit domain in R?, 1(€2) would
be exponential in d; at the beginning of Page 932 of (Barron, 1993), it was remarked
that C can often be exponentially large in d and standard smoothness properties of f
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alone are not enough to remove the exponential dependence of C'y on d, though there is
a large number of examples for which C is only moderately large. Therefore, the curse
of dimensionality occurs unless C'y and 4(€2) are not exponential in d. It was observed
that if the error is measured in the sense of mean squared error in machine learning,
which is the square of the L?(€2, i) error averaged over j(£2) resulting in CW’%, then the
mean squared error has no curse of dimensionality as long as C is not exponential in d
(Barron, 1993; E et al., 2019; E and Wojtowytsch, 2020).

In (Montanelli and Du, 2019), d-dimensional functions in the Korobov space are
approximated by the linear combination of basis functions of a sparse grid, each of
which is approximated by a ReLU network. Though the curse of dimensionality has
been lessened, target functions have to be sufficiently smooth and the approximation
error still contains a factor that is exponential in d, i.e., the curse still occurs. Other
works in (Yarotsky, 2017; Yarotsky and Zhevnerchuk, 2019; Lu et al., 2020; Yang and
Wang, 2020) study the advantage of smoothness in the network approximation. Polyno-
mials are applied to approximate smooth functions and ReLLU networks are constructed
to approximate polynomials. The application of smoothness can lessen the curse of di-
mensionality in the approximation rates in terms of network sizes but also results in a
prefactor that is exponentially large in the dimension, which means that the curse still
occurs implicitly.

The Kolmogorov-Arnold superposition theorem (KST) (Kolmogorov, 1956; Arnold,
1957; Kolmogorov, 1957) has also inspired a research direction of network approxima-
tion (Ktrkova, 1992; Maiorov and Pinkus, 1999; Igelnik and Parikh, 2003; Montanelli

and Yang, 2020) for continuous functions. (Ktrkova, 1992) provided a quantitative ap-
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proximation rate of networks with two hidden layers, but the number of neurons scales
exponentially in the dimension and the curse occurs. (Maiorov and Pinkus, 1999) re-
laxes the exact representation in KST to an approximation in a form of two-hidden-
layer neural networks with a maximum width 6d + 3 and a single activation function.
This powerful activation function is very complex as described by its authors and its
numerical evaluation was not available until a more concrete algorithm was recently
proposed in (Guliyev and Ismailov, 2018). Note that there is no available numerical
algorithm in (Maiorov and Pinkus, 1999; Guliyev and Ismailov, 2018) to compute the
whole networks proposed therein. The difficulty is due to the fact that the construction
of these networks relies on the outer univariate continuous function of the KST. Though
the existence of these outer functions can be shown by construction via a complicated
iterative procedure in (Braun and Griebel, 2009), there is no existing numerical algo-
rithm to evaluate them for a given target function yet, even though computation with
an arbitrary precision is assumed to be available. Therefore, the networks considered
in (Maiorov and Pinkus, 1999; Guliyev and Ismailov, 2018) are similar to the original
representation in KST in the sense that their existence is proved without an explicit way
or numerical algorithm to construct them. (Igelnik and Parikh, 2003) and (Montanelli
and Yang, 2020) apply cubic-splines and piecewise linear functions to approximate the
inner and outer functions of KST, resulting in cubic-spline and ReLU networks to ap-
proximate continuous functions on [0, 1]¢. Due to the pathological outer functions of
KST, the approximation bounds still suffer from the curse of dimensionality unless tar-
get functions are restricted to a small class of functions with simple outer functions in

the KST.
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Recently in (Yarotsky and Zhevnerchuk, 2019), Sine-ReLLU networks have been
applied to approximate Holder continuous functions of order « on [0, 1] with an ap-
proximation accuracy € = exp(—c, ¢W?), where IV is the number of parameters in the
network and ¢, 4 is a positive constant depending on « and d only. Whether or not ¢, 4
exponentially depends on d determines whether or not the curse of dimensionality ex-
ists for the Sine-ReLLU networks, which is not answered in (Yarotsky and Zhevnerchuk,
2019) and is still an open question.

Finally, we would like to discuss the curse of dimensionality in terms of the con-
tinuity of the weight selection as a map X : C'([0,1]?) - RW. For a fixed network
architecture with a fixed number of parameters IV, let g : RW — C'([0, 1]¢) be the map
of realizing a DNN from a given set of parameters in R to a function in C'([0,1]%).
Suppose that there is a continuous map > from the unit ball of Sobolev space with
smoothness s, denoted as F 4, to RW such that || f — g(X(f))|r~ < e forall f e Fy,.
Then W > ce~%5 with some constant ¢ depending only on s. This conclusion is given
in Theorem 3 of (Yarotsky, 2017), which is a corollary of Theorem 4.2 of (Devore,
1989) in a more general form. Intuitively, this conclusion means that any constructive
approximation of ReLU FNNs to approximate C'([0,1]¢) cannot enjoy a continuous
weight selection property if the approximation rate is better than ce~%/%, i.e., the curse
of dimensionality must occur for constructive approximation for ReLU FNNs with a
continuous weight selection. Theorem 4.2 of (Devore, 1989) can also lead to a new
corollary with a weight selection map ¥ : K4, — RW (e.g., the constructive approxi-
mation of Floor-ReLU networks) and g : RW — L>=([0,1]%) (e.g., the realization map

of Floor-ReLU networks), where K 4 is the unit ball of C*([0, 1]¢) with the Sobolev

21



norm W= ([0,1]¢). Then this new corollary implies that the constructive approxima-
tion in this paper cannot enjoy continuous weight selection. However, Theorem 4.2
of (Devore, 1989) is essentially a min-max criterion to evaluate weight selection maps
maintaining continuity: the approximation error obtained by minimizing over all con-
tinuous selection > and network realization g and maximizing over all target functions
is bounded below by O(W-5/4). In the worst scenario, a continuous weight selec-
tion cannot enjoy an approximation rate beating the curse of dimensionality. However,
Theorem 4.2 of (Devore, 1989) has not excluded the possibility that most continuous
functions of interest in practice may still enjoy a continuous weight selection without
the curse of dimensionality.

Exponential convergence. Exponential convergence is referred to as the situation
that the approximation error exponentially decays to zero when the number of param-
eters increases. Designing approximation tools with an exponential convergence is an-
other important topic in approximation theory. In the literature of deep network approx-
imation, when the number of network parameters IV is a polynomial of O(log(%)), the
terminology “exponential convergence” was also used (E and Wang, 2018; Yarotsky and
Zhevnerchuk, 2019; Opschoor et al., 2019). The exponential convergence in this paper
is root-exponential as in (Yarotsky and Zhevnerchuk, 2019), i.e., W = O(log®()). The
exponential convergence in other works is worse than root-exponential.

In most cases, the approximation power to achieve exponential approximation rates
in existing works comes from traditional tools for approximating a small class of func-
tions instead of taking advantage of the network structure itself. In (E and Wang, 2018;

Opschoor et al., 2019), highly smooth functions are first approximated by the linear
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combination of special polynomials with high degrees (e.g., Chebyshev polynomials,
Legendre polynomials) with an exponential approximation rate, i.e., to achieve an e-
accuracy, a linear combination of only O(p(log(+))) polynomials is required, where p
is a polynomial with a degree that may depend on the dimension d. Then each poly-
nomial is approximated by a ReLU network with O(log(2)) parameters. Finally, all
ReLU networks are assembled to form a large network approximating the target func-
tion with an exponential approximation rate. As far as we know, the only existing work
that achieves exponential convergence without taking advantage of special polynomials
and smoothness is the Sine-ReLLU network in (Yarotsky and Zhevnerchuk, 2019), which
has been mentioned in the paragraph just above. We would like to emphasize that the
result in our paper applies for generic continuous functions including, but not limited

to, the Holder continuous functions considered in (Yarotsky and Zhevnerchuk, 2019).

3 Approximation of continuous functions

In this section, we first introduce basic notations in this paper in Section 3.1. Then we

prove Theorem 1.1 based on Proposition 3.2, which will be proved in Section 4.

3.1 Notations

The main notations of this paper are listed as follows.

* Vectors and matrices are denoted in a bold font. Standard vectorization is adopted
in the matrix and vector computation. For example, adding a scalar and a vector

means adding the scalar to each entry of the vector.
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 Let N* denote the set containing all positive integers, i.e., N* = {1,2,3,---}.

* Let 0 : R - R denote the rectified linear unit (ReLU), i.e. o(z) = max{0,x}.
max{0, z1 }

With a slight abuse of notation, we define o : RY - Ré as o(x) =

max{0,x,}

for any @ = (z1,-+,4) € R%

¢ The floor function (Floor) is defined as || := max{n : n < x, n € Z} for any

z € R,

e For 6 € [0,1), suppose its binary representation is 6 = Y2, 6,2~¢ with 6, € {0,1},
we introduce a special notation bin0.6,60,---0;, to denote the L-term binary repre-

sentation of 6, i.e., bin0.6,0,--0, = Y1, 6,27
* The expression “a network with width N and depth L”” means

— The maximum width of this network for all hidden layers is no more than

N.

— The number of hidden layers of this network is no more than L.

3.2 Proof of Theorem 1.1

Theorem 1.1 is an immediate consequence of Theorem 3.1 below.

Theorem 3.1. Given any N, L € N* and an arbitrary continuous function f on [0,1],
there exists a function ¢ implemented by a Floor-ReLU network with width max{d, 2N?+

5N} and depth TdL? + 3 such that

6(x) - f(x)| <wr(VAN) + 2w (Vd)27NE, for any x € [0,1]%,
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This theorem will be proved later in this section. Now let us prove Theorem 1.1

based on Theorem 3.1.

Proof of Theorem 1.1. Given any N, L € N*, there exist N, L € N* with N > 2 and

L > 3 such that
(N-12<N<N? and (L-1)?<4L<I?

By Theorem 3.1, there exists a function ¢ implemented by a Floor-ReLU network with

width max{d, 2N2 + 5N} and depth 7dL? + 3 such that
6(z) - f(z)] < w,(VANT) + 2w (Vd)2"NE, for any x € [0, 1]%

Note that

Then we have
|p(x) - f(x)| < Wf(\/EN_\/E) - 2wf(\/3)N‘\/E, for any x € [0, 1]¢.
For]V,feN+ withﬁkQande& we have
ON?+5N <5(N-1)2+13<5N+13 and 7L><16(L-1)><64L.

Therefore, ¢ can be computed by a Floor-ReLU network with width max{d, IN? +
5N} < max{d, 5N + 13} and depth 7dL? + 3 < 64dL + 3, as desired. So we finish the

proof. ]

To prove Theorem 3.1, we first present the proof sketch. Put briefly, we construct
piecewise constant functions implemented by Floor-ReLU networks to approximate
continuous functions. There are four key steps in our construction.
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1. Normalize f as [ satisfying f(z) € [0,1] for any x € [0, 1]¢, divide [0,1]¢ into a
set of non-overlapping cubes {Qg} Be{0,1,.. k-1)4, and denote xg as the vertex of
() with minimum | - |; norm, where K is an integer determined later. See Figure

2 for the illustrations of )z and .

2. Construct a Floor-ReLLU sub-network to implement a vector-valued function ® :
R? — R4 projecting the whole cube (g to the index 3 for each 8 € {0,1,-, K —

1} ie., @1(x) = B forall x € Qg.

3. Construct a Floor-ReLU sub-network to implement a function ¢, : R¢ - R map-
ping B € {0,1,-, K — 1}¢ approximately to f(xg) for each 3, i.e., ¢2(3) ~
f(zg). Then ¢y 0 ®,(x) = ¢2(B) ~ f(xpg) for any & € Qg and each 3 ¢
{0,1,--, K~1}, implying ¢ = 0@, approximates f within an error O(w;(1/K))

on [0, 1]

4. Re-scale and shift ¢ to obtain the desired function ¢ approximating f well and

determine the final Floor-ReLU network to implement ¢.

It is not difficult to construct Floor-ReLLU networks with the desired width and depth
to implement ®;. The most technical part is the construction of a Floor-ReLLU network
with the desired width and depth computing ¢, which needs the following proposition
based on the “bit extraction” technique introduced in (Bartlett et al., 1998; Harvey et al.,

2017).

Proposition 3.2. Given any N, L € N* and arbitrary 0,, € {0,1} form = 1,2, NL,

there exists a function ¢ computed by a Floor-ReLU network with width 2N + 2 and
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depth 7L — 2 such that
é(m)=0,,, form=1,2- N-

The proof of this proposition is presented in Section 4. By this proposition and
the definition of VC-dimension (e.g., see (Harvey et al., 2017)), it is easy to prove
that the VC-dimension of Floor-ReLU networks with a constant width and depth O(L)
has a lower bound 2”. Such a lower bound is much larger than O(L?), which is a
VC-dimension upper bound of ReLLU networks with the same width and depth due to
Theorem 8 of (Harvey et al., 2017). This means Floor-ReLLU networks are much more
powerful than ReLLU networks from the perspective of VC-dimension.

Based on the proof sketch stated just above, we are ready to give the detailed
proof of Theorem 3.1 following similar ideas as in our previous work (Shen et al.,
2019a; Shen et al., 2019b; Lu et al., 2020). The main idea of our proof is to re-
duce high-dimensional approximation to one-dimensional approximation via a projec-
tion. The idea of projection was probably first used in well-established theories, e.g.,
KST (Kolmogorov superposition theorem) mentioned in Section 2, where the approxi-
mant to high-dimensional functions is constructed by: first, projecting high-dimensional
data points to one-dimensional data points; second, construct one-dimensional approx-
imants. There has been extensive research based on this idea, e.g., references related
to KST summarized in Section 2, our previous works (Shen et al., 2019a; Shen et al.,
2019b; Lu et al., 2020), and (Yarotsky and Zhevnerchuk, 2019). The key to a suc-
cessful approximant is to construct one-dimensional approximants to deal with a large
number of one-dimensional data points; in fact, the number of points is exponential in
the dimension d.
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Proof of Theorem 3.1. The proof consists of four steps.
Step 1: Set up.
Assume f is not a constant function since it is a trivial case. Then w(r) > 0 for any

r > 0. Clearly, | f(x) - f(0)| < ws(V/d) for any @ € [0, 1]%. Define

Fi=(f = £(0) +w(Vd)) [ (2ws (Vd)). (6)

It follows that f(z) € [0, 1] for any x € [0, 1]¢.
Set K = NL, By = [£2.1], and Ej, = [£, %) for k = 0,1,-+, K — 2. Define

xp=0/K and
QB = {w = ($1,$27"',$d) € Rd : x] € Eﬂj forj - 1727”',d}7

for any 8 = (51, B+, Ba) € {0, 1,---, K — 1}%. See Figure 2 for the examples of ()5 and

xgforB3e{0,1,- K -1}¢with K =4andd=1,2.

* axgforBef0,1,-- K—1}

e =
|

Qs3 |
I—

* xglorBef0,l,--- K—1}1

I 1

I 1

I I 1 1 1

I I 1 1 1

1 I 1 1 1

1 1 1 1 1 )

: [0,1/4) :[1/4,2/4):[2/4.3/4): B3/4,1] : 3/4
* T L T 1 2/4
: Qo : o) : (@) : Q3 :

I I 1 1 1

1 1 1 1 1 1/4
I 1 1 1 1

1 1 1 1 1

I 1 1 1 1

| 1 1 1 1

0 1/4 2/4 3/4 1

(a) (b)

Figure 2: Illustrations of Qg and xg for B € {0,1,--, K - 1}4. (a) K =4, d = 1. (b)

K=4,d=2.

Step 2: Construct ®; mapping x € (3 to 3.
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Define a step function ¢; as
¢i1(z)=|-o(-Ka+ K -1)+ K ~1], foranyzeR.)
See Figure 3 for an example of ¢; when K = 4. It follows from the definition of ¢; that

o1 (x) =k, ifxeE,,fork=0,1- K-1.

Es
3 —— gy .
2 -4
Ey
1
Eli
0 4
1/4 2/4 3/4 1
Figure 3: An illustration of ¢; on [0, 1] for the case K = 4.

Define

‘1’1(93) = (¢1($1),¢1($2)»"',¢1($d)), for any x = ($1,$2a"',$d) e R™
Clearly, we have, for x € Qg and B € {0,1,--, K - 1}4,
®,(x) = (¢1(5U1),¢1(952)a"',¢1($d)) = (B1, B2, Ba) = B.
Step 3: Construct ¢, mapping 3 € {0, 1, -, K — 1} approximately to f(x).
Using the idea of K -ary representation, we define a linear function v, via
d .
() =1+ z;K7', forany @ = (21,22, ,34) € R%
j=1

Then ¢/ is a bijection from {0, 1,---, K —1}4 to {1,2,---, K?}.

S1f we just define ¢1 () = [ Kz |, then ¢1(1) = K # K — 1 even though 1 € Ex_;.
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Given any i € {1,2,---, K}, there exists a unique 3 € {0,1,---, K — 1}¢ such that

i =11(03). Then define

&= f(xp) €[0,1], fori=1(B)and Be{0,1, K -1}4,

where f is the normalization of f defined in Equation (6). It follows that there exists

&y €{0,1} for j =1,2,---, NL such that
& —bin0.&1& 0 & v <27V, fori=1,2,-, K.

By K4 = (N%)4 = N9L and Proposition 3.2, there exists a function ¢, ; implemented
by a Floor-ReLU network with width 2N +2 and depth 7dL -2, foreach j = 1,2,---, NL,
such that

Yo (i) =&y, fori=1,2, ---,Kd_
Define
NL
o = Z 2774y and g =1y 0 ty.
j=1

Then, for i = ¢, (3) and B € {0,1,---, K - 1}%, we have
~ ~ NL
[f (@) = 02(B)] = |f(®p) = 2(¥1(8))] = & = ¥2(0)[ = |&i - 2 2774h95(7)]
” (7
= |€z - bin0.§i71§i,2---§i,NL\ < 2_NL.

Step 4: Determine the final network to implement the desired function ¢.

Define ¢ = ¢y o @4, i.e., for any @ = (1, 22, 24) € R,

O() = ¢ 0 ®1() = do(¢1(21), d1(22), -+, b1(24)).

Note that |z — zg| < \/73 for any « € Qg and 3 € {0,1,---, K — 1}%. Then we have,

30



forany x € Qgand B € {0,1,--, K - 1},
F(@) - d(@)| < |F(z) - F(zp)] + [ (25) - d()|
<wi(¥) +|f(zp) - 62(B1())|

<wr () +|F(2p) ~ $2(8)] < wr() + 27N,

where the last inequality comes from Equation (7).

Note that x € Qg and B € {0, 1,---, K~1}% are arbitrary. Since [0, 1]? = Ugefo.1,.... k-13¢ @

we have

|]"’v(ac) - 5(:13)| < wf(%j) +27NL " forany x € [0, 1]<.
Define
6= 20;(Vd) + £(0) - wy (V).
By K = NZ and w(r) = 2w;(V/d) -wz(r) for any r > 0, we have, for any x € [0, 1]%,
(@) - 6(@)| = 20, (VD) T (@) - §()] < 20 (V) (wp(4) +27VE)

< wf(%a) + 2w (Vd)2~NE
<wp(VANT) + 2w (Vd)27NE,

It remains to determine the width and depth of the Floor-ReLU network implement-
ing ¢. Clearly, ¢, can be implemented by the architecture in Figure 4.

As we can see from Figure 4, ¢, can be implemented by a Floor-ReLLU network with
width N(2N +2+3) =2N2+5N and depth L(7dL-2+1)+2 = L(7dL-1)+2. With the
network architecture implementing ¢- in hand, a can be implemented by the network
architecture shown in Figure 5. Note that ¢ is defined via re-scaling and shifting ¢. As
shown in Figure 5, ¢ and 5 can be implemented by a Floor-ReLLU network with width
max{d, 2N2+5N} and depth 1+ 1+ L(7dL-1)+2 < 7dL? + 3. So we finish the proof.

]

31



a(i) = P2 0 ¥ (B) = ¢2(B)

Figure 4: An illustration of the desired network architecture implementing ¢, = 1) 0 9y

for any input 3 € {0,1,---, K — 1}4, where i = 1)1 (3).

o(—Kxi + K — 1)]—{{—@—1@1 FE-1)+K—1]= ¢1(z1)\

o(—Kzy+ K — 1)|—>| |[—o(—Kzy+ K — 1)+ K — 1| = ¢1(x2) £ by

Sala
ol

U(fl(zd.Jr K- 1)]—{[70(4(1‘, FE-1)+K—1] = é1(za)

Figure 5: An illustration of the network architecture implementing b =¢yo®.
4 Proof of Proposition 3.2

The proof of Proposition 3.2 mainly relies on the “bit extraction” technique. As we shall
see later, our key idea is to apply the Floor activation function to make “bit extraction”
more powerful to reduce network sizes. In particular, Floor-ReLU networks can extract
much more bits than ReLLU networks with the same network size.

Let us first establish a basic lemma to extract 1/N of the total bits of a binary

number; the result is again stored in a binary number.

Lemma 4.1. Given any J, N € N*, there exists a function ¢ : R?> - R that can be
implemented by a Floor-ReLU network with width 2N and depth 4 such that, for any

0;,€{0,1}, j=1,--,NJ, we have

gb(bin()ﬂln-@NJ, TL) = binO.H(n,l)Jﬂ'--QnJ, forn = ]_, 2, LN N.
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Proof. Given any 6, € {0,1} for j =1,---, N.J, denote
s=bin0.0;---0n; and s, =bin0.0¢,_1)541-0ny, forn=1,2,--- N.

Then our goal is to construct a function ¢ : R? - R computed by a Floor-ReLU

network with the desired width and depth that satisfies
o(s,n)=s,, forn=12 N.
Based on the properties of the binary representation, it is easy to check that
sy =2"s][27 - [2Ds], forn=1,2,-N. 8)

Even with the above formulas to generate s, so, -, sy, it is still technical to construct
a network outputting s,, for a given index n € {1,2,---, N'}.

Set § = 277 and define g (see Figure 6) as

g(z) =o(o(z) - o (&%), where o(x) = max{0,z}.

1—6,1-0)

0

-1.0 —0.5 0.0 0.5 1.0 1.5 2.0

Figure 6: An illustration of g(z) = o(o(z) —o(£2-)), where o(z) = max{0, z} is the

ReLU activation function.

Since s, € [0,1-¢] forn=1,2,---, N, we have

N
sn=Zg(sk+k—n), forn=1,2-- N. 9)
k=1
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Input 1 2 3 4 Output
[275] o(s1+1—n)

LQZJSJ O'( s1+1—n+d6— 1)

a :

& \,

g(s2+2—n)

Sp = ¢(s,m)
(N— 1)1 :
\

I’
g(sy + N —n)
A U(<\+V6n+o 1)

Figure 7: An illustration of the desired network architecture implementing ¢ based on
Equation (8) and (9). We omit some ReLLU (o) activation functions when inputs are
obviously non-negative. All parameters in this network are essentially determined by
Equation (8) and (9), which are valid no matter what 6;,---, 0 € {0, 1} are. Thus, the

desired function ¢ implemented by this network is independent of ¢;,---, 0, ; € {0,1}.

As shown in Figure 7, the desired function ¢ can be computed by a Floor-ReLU

network with width 2N and depth 4. Moreover, it holds that

o(s,n)=s,, forn=12 N.

So we finish the proof. [

The next lemma constructs a Floor-ReLLU network that can extract any bit from a

binary representation according to a specific index.

Lemma 4.2. Given any N, L € N*, there exists a function ¢ : R? - R implemented by a
Floor-ReLU network with width 2N + 2 and depth 7L — 3 such that, for any 0,, € {0,1},

m=1,2,---, NE, we have

¢(bin0.9192"'9NL, m) = 9m7 form = 1727...7NL.
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Proof. The proof is based on repeated applications of Lemma 4.1. Specifically, we
inductively construct a sequence of functions ¢, ¢, -+, ¢, implemented by Floor-ReLU

networks to satisfy the following two conditions for each ¢ € {1,2,---, L}.

(i) ¢¢ : R? > R can be implemented by a Floor-ReL.U network with width 2N + 2

and depth 7/ - 3.
(ii) Forany 6,, € {0,1}, m=1,2,---, N, we have
$p(bin0.0,0y--0 e, m) = bin0.0,,, form=1,2,---, N*.
Firstly, consider the case ¢/ = 1. By Lemma 4.1 (set J = 1 therein), there exists a

function ¢, implemented by a Floor-ReLU network with width 2NV < 2N + 2 and depth

4 =7 - 3 such that, for any 6,,, € {0,1}, m =1,2,---, N, we have

¢1(bin0.9102---9]\;, m) = banHm, form = 1’27...7]\[.

It follows that Condition (i) and (ii) hold for ¢ = 1.

Next, assume Condition (i) and (ii) hold for ¢ = k. We would like to construct ¢y
to make Condition (i) and (ii) true for £ = k + 1. By Lemma 4.1 (set J = N* therein),
there exists a function v implemented by a Floor-ReLLU network with width 2N and

depth 4 such that, for any 6,, € {0,1}, m =1,2,---, N¥*1 we have

$(in 0.0y Byrsr, 1) = bin 0.0,y wisr-Bponynkans, forn=1,2,-N. (10)

By the hypothesis of induction, we have

* ¢ : R? > R can be implemented by a Floor-ReLU network with width 2N + 2
and depth 7k - 3.
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» Forany 0; € {0,1}, j =1,2,---, N*, we have

¢r(bin0.0,05-0nk, j) =bin0.0;, for j=1,2,--- N* (11)

Given any m € {1,2,---, N**1}  there exist n € {1,2,--, N} and j € {1,2,---, N*}
such that m = (n — 1) N* + j, and such n, j can be obtained by

n=|(m-1)/N¥|+1 and j=m-(n-1)N* (12)

Then the desired architecture of the Floor-ReLU network implementing ¢y, is shown

in Figure 8.

D [billl).(i(",l),w“---H(n,l)‘\vww]

}Q[bixlo.Q(”ﬂ)Mﬂ = bin0.0, = dpp1(bindy - Oynir, m)]

Figure 8: An illustration of the desired network architecture implementing ¢, based

on (10), (11), and (12). We omit ReLLU (o) for neurons with non-negative inputs.
Note that ¢/ can be computed by a Floor-ReLLU network of width 2N and depth 4.
By Figure 8, we have

* ¢rs1: R? > R can be implemented by a Floor-ReLU network with width 2V + 2
and depth 2 +4 + 1 + (7k-3) = 7(k + 1) — 3, which implies Condition (i) for

(=Fk+1.
 Forany 6,, € {0,1}, m =1,2,---, N*! we have
Grr1(bin0.0,05---0 k1, m) = bin0.6,,, form =1,2,---, Nk,

That is, Condition (ii) holds for / = k + 1.
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So we finish the process of induction.

By the principle of induction, there exists a function ¢, : R? — R such that

* ¢ can be implemented by a Floor-ReLU network with width 2N + 2 and depth

7L - 3.
 Forany 6,, € {0,1},m =1,2,---) NI, we have
¢1,(bin0.0,05---0nz, m) = bin0.6,,, form=1,2,--- NL.
Finally, define ¢ := 2¢;,. Then ¢ can also be implemented by a Floor-ReLLU network

with width 2N + 2 and depth 7L — 3. Moreover, for any 6,, € {0,1}, m = 1,2,---, NE,

we have
d(bin0.0105---0yr, m) =2- ¢ (bin0.0105---0yr, m) =2-bin0.6,, = 0,,,
form=1,2,---, NL. So we finish the proof. O

With Lemma 4.2 in hand, we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. By Lemma 4.2, there exists a function 5 : R? > R computed
by a Floor-ReLU network with a fixed architecture with width 2NV + 2 and depth 7L - 3

such that, for any z,,, € {0,1}, m=1,2,---, N¥, we have
a(binO.zlzg-~~zNL, m) =2Zn, forms= 1,2’...,NL_

Based on 6,, € {0,1} for m = 1,2,---, N given in Proposition 3.2, we define the final

function ¢ as

o(x) = 25(0(1: -0 +bin0.0,05-+-0n1), a(a:)), where o(x) = max{0,x}.
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Clearly, ¢ can be implemented by a Floor-ReLLU network with width 2V + 2 and depth

(7L -3) + 1 ="T7L - 2. Moreover, we have, for any m € {1,2,---, N'},
¢(m) = (o (m-0+bin0.0,05-0y1),0(m)) = G(bin0.6102--Oxz,m) = b,,.
So we finish the proof. O

We finally point out that only the properties of Floor on [0, c0) are used in our proof.
Thus, the Floor can be replaced by the truncation function that can be easily computed

by truncating the decimal part.

5 Conclusion

This paper has introduced a theoretical framework to show that deep network approxi-
mation can achieve root exponential convergence and avoid the curse of dimensionality
for approximating functions as general as (Holder) continuous functions. Given a Lip-
schitz continuous function f on [0, 1]¢, it was shown by construction that Floor-ReLU
networks with width max{d, 5N + 13} and depth 64dL + 3 can achieve a uniform ap-
proximation error bounded by 3\\v/d N-VL, where \ is the Lipschitz constant of f.
More generally for an arbitrary continuous function f on [0, 1]¢ with a modulus of con-
tinuity w;(-), the approximation error is bounded by w(v/d N=VE) + 2w (v/d)N-VL,
The results in this paper provide a theoretical lower bound of the power of deep network
approximation. Whether or not this bound is achievable in actual computation relies on

advanced algorithm design as a separate line of research.
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