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Abstract

We prove a theorem concerning the approximation of multivariate functions by deep ReLU networks, for which the
curse of the dimensionality is lessened. Our theorem is based on a constructive proof of the Kolmogorov—Arnold
superposition theorem, and on a subset of multivariate continuous functions whose outer superposition functions can

be efficiently approximated by deep ReLU networks.
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1. Introduction

At the second International Congress of Mathemati-
cians in Paris 1900, Hilbert presented ten of his 23 prob-
lems, including the 13th problem about equations of de-
gree seven. He considered the following equation,

X +ar +bx*+cx+1=0,

and asked whether its solution x(a, b, ¢), seen as a func-
tion of the three parameters a, b and ¢, could be written
as the composition of functions of only two variables.

Hilbert’s 13th problem was solved by Kolmogorov
and his 19 years old student Arnold in a series of pa-
pers in the 1950s. Kolmogorov first proved in 1956
that any continuous function of several variables could
be expressed as the composition of functions of three
variables [1]. His student Arnold extended his theo-
rem in 1957; three variables were reduced to two [2].
Kolmogorov finally showed later that year that func-
tions of only one variable were needed [3]. The latter
result is known as the Kolmogorov—Arnold superposi-
tion theorem, and states that any continuous functions
f:10,1]" — R can be decomposed as

2n n
fan. o)=Y ¢ [Z wi,,»<xi)],
=0 i=1
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with 2n + 1 continuous outer functions ¢; : R — R
(dependent of f) and 2n% + n continuous inner functions
¥;;: [0,1] = R (independent of f).

The Kolmogorov—Arnold superposition theorem was
further improved in the 1960s and the 1970s. Lorentz
showed in 1962 that the outer functions ¢; might be
chosen to be the same function ¢, and replaced the inner
functions y; ; by A;1f;, for some positive rationally inde-
pendent constants 4; < 1 [4], while Sprecher replaced
the inner functions ; ; by Holder continuous functions
x;i > Ay (x; + je) in 1965 [5]. Two years later, Fridman
demonstrated that the inner functions could be chosen
to be Lipschitz continuous, but his decomposition used
2n+1 outer functions and 21>+ n inner functions [6]. Fi-
nally, Sprecher provided in 1972 a decomposition with
Lipschitz continuous functions x; — /li’ltjf(xi + je) [7].

Theoretical connections with neural networks started
with the work of Hecht—Nielsen in 1987 [8]. He in-
terpreted the Kolmogorov—Arnold superposition theo-
rem as a neural network, whose activation functions
were the inner and outer functions. Girosi and Pog-
gio claimed in 1989 that his interpretation was irrele-
vant for two reasons; first, the inner and outer functions
were highly nonsmooth (i.e., these were at least as dif-
ficult to approximate as f); second, the outer functions
depended on f (i.e., the network architecture could not
be parametrized). Kirkovd weakened the statement of
Girosi and Poggio, in the early 1990s, by giving a direct
proof of the universal approximation theorem of mul-
tilayer neural networks using the Kolmogorov—Arnold
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superposition theorem, and by showing that the weight
selection reduced to a linear regression problem [9, 10].

Numerical implementations originated with the work
of Sprecher in the mid 1990s [11, 12], which was fol-
lowed, in 2003, by the Kolmogorov’s spline network of
Igelnik and Parikh [13]. Braun and Griebel proposed
an algorithm to implement a constructive proof of the
Kolmogorov—Arnold theorem in 2009 [14], using Kop-
pen’s Holder continuous inner function [15].

Approximation theory for neural networks started
with shallow networks and the 1989 universal approx-
imation theorems of Cybenko [16] and Hornik [17]. In
the last few years, the attention has shifted to the ap-
proximation properties of deep ReLU networks [18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. In particular,
one of the most important theoretical problems is to de-
termine why and when deep networks lessen or break
the curse of dimensionality, characterized by the O(e™")
growth of the network size W as the error ¢ — 0, in
dimension n.! We recommend the review [24] for a dis-
cussion about the curse of dimensionality in the context
of deep network approximation.

In this paper, we introduce a set of multivariate con-
tinuous functions for which the approximation of the
outer functions by deep ReLU networks is appealing to
lessen the curse of the dimensionality. We show that any
function f : [0, 1]" — R in this set can be approximated
with error € by a very deep ReLU network of depth and
size? O (e’ 1"g"); the curse of dimensionality is lessened.

Before the exposition of our main result in Section 4,
we will review a specific version of the Kolmogorov—
Arnold superposition theorem in Section 2, and show in
Section 3 how to approximate the inner and outer func-
tions by very deep ReLU networks.

2. Constructive version of the Kolmogorov-Arnold
superposition theorem

We review in this section a constructive version of the
Kolmogorov—Arnold superposition theorem that goes
back to Sprecher in 1996 and 1997 [11, 12]. The proof
he provided at the time was not fully correct; minor
modifications were made by Braun and Griebel in 2009
to complete his proof [14, Thm. 2.1], using the inner
function suggested by Koppen [15].

I'We recall that W = O(e™") means that there exists ¢;(n) > 0, such
that W < c1(n)e™", for sufficiently small values of €. Alternatively,
we shall write € = O(W~'/") when there exists ¢2(n) > 0, such that
€ < co(mW=1" for sufficiently large values of W.

2Following Yarotsky [27], we define the depth L of a network as
the number of layers, the size W as the total number of weights, and
we allow connections between units in non-neighboring layers.

For any integern > 2, m > 2nandy > m + 2, let

1

a=———m-Hmr, )
yiy-1)
L=1, =) yEBO  2<i<n (2
=1
with
1= 4
Bu(0)= — - =1 4n+...+n", 3)
1-n
and
y=2"%y+3), a= logy 2. 4)

We recall that a function f : [a,b] — R is said to be
(v, @)-Holder continuous if and only if there exist scalars
v>0and 0 < o < 1, such that [f(x) — f(V)] < v|x —y|%
for all x,y € [a, b]. (The value @ = 1 yields v-Lipschitz
continuous functions.)

Theorem 2.1 (Kolmogorov—Arnold superposition the-
orem). Letn > 2, m > 2nandy > m + 2 be given
integers, and let a, A; (1 < i < n), v and a be defined as
in Equations (1)—(4). Then, there exists a (v, @)-Holder
continuous inner function ¥ : [0,2) — [0,2), such that
Sfor any continuous function f : [0,1]" — R, there exist
m + 1 continuous outer function ¢; : [0,2%) - R
such that

Fan ) = 6 [Z A + ja)]. 5)
j=0 i=1

Let us now go through the main two steps of the proof
of Theorem 2.1; for details, see [11, 12, 14].

The first step is the building of the inner function i,
which involves uniform grids Dy with step sizes y*,

Dy ={iy*, 0<i<y*—1)c]o0,1).
There are y* different points 0 < d < 1 —y* < 1 on

each grid Dy, and each point d on Dy is represented in
base vy as follows,

k
d:ZW—‘, ire{0,1,...,y— 1
=1

Proposition 2.2 (Construction of the inner function).
The inner function  is first defined at grid points d € Dy
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Figure 1: Plot of the inner function  evaluated on the grid D3 with
n=2andy = 10 (top). The second row is a zoomed plot that reveals
the self-similarity of the graph of ¥ as k — oo.

via y(d) = Y (d) for all integers k > 1, where the func-
tions Y are recursively defined by

d, de Dy,
W1 (d - ik)’*k) +
weld) = § By O,
How(a-vF) +
Vi (d+y™*)], deDik>1,i=y-1.

dEDk,k>],ik<’y—1,

The function \ is then defined at any x € [0, 1) via®

k
v() = lim gy [Z m"],

(=1

since each x € [0, 1) has the representation

o0 k
_ T P
x—me —]31_2)1021[7 .
¢=1 =1
Finally, the inner function is extended to x € [1,2) by

Y =¢y(x-D+1.

The resulting function has domain and range [0, 2).

3The existence of the limit is based on a suitably defined Cauchy
sequence; see [14, Lem. 2.3] for details.
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Figure 2: For each d € (D']i)", the function 6(d;-) is compactly sup-
ported and piecewise linear with slope +y#"*+D_ Therefore, it is v-
Lipschitz continuous with v = yPr®+1),

For points d = Z’;zl iryt € Dy whose indices i, are
all strictly smaller than y — 1, it is easy to show, by in-
duction, that

k

w(d) = ) iy P,

=1
For other points, the right-hand side in the equation
above is only a lower bound.

The inner function constructed in Proposition 2.2 was
introduced by Koppen in 2002 [15]. It is Holder contin-
uous, a result that can be proved using the techniques
introduced by Sprecher in his 1965 paper [5].

Proposition 2.3 (Holder continuity of the inner func-
tion). The inner function ¥ of Proposition 2.2 is (v, a)-
Holder continuous with v = 27*(y + 3) and « = log,, 2.

Proof. See [5, Sec. 4]. O

We plot in Figure 1 the graph of the function ¢ eval-
uated on the grid D3 forn =2 andy = 10. As k — oo,
the graph of ¥ exhibits self-similarity, which is expected
since ¥ is merely Holder continuous.

The second step of the proof is the iterative construc-
tion of the outer functions ¢;. For each 0 < j < m, let
Di denote the shifted grid defined by

k
Di:Dkﬂ‘Zy—", 0<j<m.
=2

Let (Dy)" and (D',i)” denote the Cartesian products of n
copies of Dy and D7, and let

&(d) = Z/lil//(di), d=(d,...,d,) e D),
i=1

and



Finally, for each d € (D',i)", let 6 : x — 6(d; x) denote
the function defined by

o (YD [x - &d)] + 1)
o (Y [x = &) - (y - 2B,

where o : R — [0, 1] is the piecewise linear function
satisfying o(x) = O forx < 0, o(x) = xfor0 < x < 1,
and o(x) = 1 forx > 1. Forgivenk > 1 and 0 < j < m,
the y"* functions 6(d; -) have disjoint supports, and are
v-Lipschitz with v = y#&+D; see Figure 2.

o(d; x) =

Proposition 2.4 (Construction of the outer functions).
Let 6 and 1 be two scalars that verify

0<5<1—L
n-m+1
and
m-n+1 2n
0< 0+ <n<l,
n+1 m+1_)7

and f : [0,1]" — R be a continuous function.

Starting with fo = 0 and ey = f — fo = f, the approx-
imate outer function ¢; at iteration r > 1 are defined,
foreach0 < j<m,as

ke
— Z eg_l(d)H{d+ij_i;x],

=1 de(Dy, )" i=2

Pi(x) =

for some k, = k.(f) chosen such that ||x — x'|| <y
implies |e,1(x) — e,—1(x")| < dller-1lz=0,11)-
This yields an approximate function f,,

A o) = 8, [Z Ap(x; + ja)], 6)
=0 i=1

= f— f,, with

llerllz=qo,11y < 7' If1lz=qo,11)- @)

and its error e,

Taking the limit r — oo yields

SO, x) = Z%[Zﬂilﬂ(xi + ja)],
=\

where ¢; = lim,_, ¢’..4

The approximate outer functions ¢’ of Proposi-
tion 2.4 are Lipschitz continuous, as we shall prove
next.

4The existence of the limits as r — oo relies on ¢; being bounded
and Equation (7); see [14, Cor. 3.9] for details.

Proposition 2.5 (Lipschitz continuity of the outer func-

tions). Forallr > 1 and 0 < j < m, the outer functions
r .. . y—1

¢’ of Proposition 2.4 have domain [O,ZE), and are

v, (f)-Lipschitz continuous with

Vh(f) = ||f||L"°([0 11")2 1Pk, (8)

Proof. To prove that the domain is [0, 2%), we use the
fact that |i(x)| < 2 for all x € [0, 2), and

- 1 1 1

g/li<1+ + + = +...,

P 7—1 0% -1 ylann -1
vy—-1

< .
y-2

For the Lipschitz constant, we recall that, for given
ke(f) and j, the functions x — 6(d;x), d € (Di/)”,
have disjoint supports, and are v(f)-Lipschitz continu-
ous with v(f) = y#&*D  Using Equation (7), sum-
ming over ¢ and multiplying by 1/(m + 1) yields the
desired result. (]

Let us emphasize that the Lipschitz constants v,(f) in

Proposition 2.5 depend on f via the integers k¢(f). This
motivates us to introduce a set of continuous functions
based on the growth of k,(f) with ¢ as follows,
Kc([0, 11" R) = {f € C([0,1]"; R), k(f) < C, r = 1},
for some constant C > 0, where C([0, 1]"; R) denotes
the set of multivariate continuous functions, and for
givenn > 2, m > n,y > m+ 2,0 and . A direct
calculation shows that functions in this set have outer
functions whose Lipschitz constants (8) satisfy

I l=qo,11)  ope
—r'y .
m+1

v (f) £ 9)

3. Approximation of the inner and outer functions
by very deep ReLLU networks

Let w : [0, 00) — [0, o) be a function that is vanish-
ing and continuous at 0, i.e., lims_,0+ w(0) = w(0) = 0
and B ¢ R? be a compact domain. We say that an uni-
formly continuous function f : B — R has modulus of
continuity w if and only if

lf(x) = f] < wllx = X'[l2),  Vx,x" € B.

Many classical estimates in approximation theory

are based on moduli of continuity. For example, best



degree-d polynomial approximation of continuous func-
tions of one variable with modulus of continuity w
yields O(w(d™")) errors [30, Thm. 3.9]. The O(w(d~'/"))
errors in dimension n suffers from the curse of dimen-
sionality, but matches the lower bound obtained by non-
linear widths [31, Thm. 4.2].

In neural network approximation, moduli of continu-
ity appear in the work of Yarotsky. In 2018, he proved
that very deep ReLU networks of depth L = O(W) and
size W generate O(w(O(W~2/"))) errors [28, Thm. 2].
This result matches the lower bound based on VC di-
mension of Anthony and Barlett [32, Thm. 8.7] (see also
[33]), and improves the O(W~1/" log;/” W) errors he ob-
tained for Lipschitz functions in 2017 [27, Thm. 1].

Let us stress that Yarotsky’s theorems provide upper
bounds for the errors when the same network architec-
ture is used to approximate all functions in a given func-
tion space. In other words, the network architecture
does not depend on the function being approximated in
that space; only the weights do. Moreover, the networks
he utilizes are said to be very deep because the depth L
satisfies L = O(W). We recall his 2018 result below.

Theorem 3.1 (Approximation of continuous functions
by very deep ReLLU networks in the unit hypercube).
For any continuous function f : [0, 1]" — R with mod-
ulus of continuity wy, there is a deep ReLU network f
depth L < co(n)W and size W, such that

If = fllz=qor < clmawy (camWm),
for some co(n), ci(n), ca(n) > 0.
We extend Yarotsky’s result to domains [0, M]".

Corollary 3.2 (Approximation of continuous functions
by very deep ReLU networks in scaled hypercubes).
For any continuous function f : [0, M]" — R with mod-
ulus of continuity wy, there is a deep ReLU network f
of depth L < co(n)W and size W, such that

If = Al o < cr(mwy (camyMW="),
with co(n), c1(n), co(n) as in Theorem 3.1.

Proof. We use Theorem 3.1 with g(x) = f(x/M) on
[0,1]". Note that w,(6) = ws(M6). Therefore, there
is a deep ReLLU network g of depth L < ¢o(n)W and size
W, such that

llg = 8lle (0,11 < c1(Mw, (Cz(n)W_z/"),
= ci(mwy (2 (mMW),

with c¢o(n),ci(n),cr(n) as in Theorem 3.1.  Since
gMx) — g(Mx) = f(x) — g(Mx), the network f(x) =
‘g(Mx) satisfies all requirements in this corollary. O

We shall now apply Corollary 3.2 to the inner and
outer functions of Propositions 2.2 and 2.4. For sim-
plicity, we shall assume, throughout the rest of the pa-
per, thatm = 2nand y = 2n + 2.

Proposition 3.3 (Approximation of the inner function
by very deep ReLLU networks). Let n > 2 be an integer
and  be the inner function defined in Proposition 2.2.
Then, for any scalar 0 < € < 1, there is a deep ReLU
network J that has depth L < co(1)W and size

W < C3(n)e—[l+logz(n+l)]/2’
such that |y — Y=o < € with
c3(n) = [2n + S)ey (1)t DI2 o) (12 (10)
and co(1), ci1(1), c2(1) as in Theorem 3.1.

Proof. We use Corollary 3.2 with M = 2 and the mod-
ulus of continuity of Proposition 2.3, i.e.,

wy (6) = vo®,
with v =27%(2n + 5) and @ = log,,,, 2. |

Proposition 3.4 (Approximation of the outer functions
by very deep ReLU networks). Let n > 2 be an in-
teger, f : [0,1]" — R be a continuous function in
Kc([0, 11" R) that satisfies || fllz=qo,1m < 1, and (]); be
the (2n + 1) outer functions defined in Proposition 2.4
at iteration r, for some r > 1. Then, for any scalar
0 < € < 1, there are (2n + 1) deep ReLU networks 5;
that have depth L < co(1)W and size

W < c4(n, r)e_]/z,
such that ||¢', - E;umo,z% ) < € with

12
Qn+ 2|, 1D

eanry = 202D,

and co(1), ci1(1), c2(1) as in Theorem 3.1.

Proof. We use Corollary 3.2 with M = 2% and the
modulus of continuity corresponding to the Lipschitz
continuity described in Proposition 2.5, i.e.,

wyr (6) = V()0
with v,.(f) as in Equation (9). This yields

— -1
16 = &llmqozzzy < 21 (Deav(HE— W2,

y-2
Dex(1
< adel) o a2,
n



where 5; is a very deep neural network with size W and
depth L < co(1)W, and c¢o(1), c1(1), (1) as in Theo-
rem 3.1. To achieve the € approximation error, W can
be as small as c4(n, ) /2, where

1/2

ae) o e
n

C4(7’l, r) =

4. Main theorem

We present in this section our main theorem about
the approximation of multivariate continuous functions
by very deep ReLLU networks. Our proof is based on
the Kolmogorov—Arnold superposition theorem (The-
orem 2.1), and on the approximation of the inner and
outer functions by very deep ReLU networks (Proposi-
tions 3.3 and 3.4).

Theorem 4.1 (Approximation of continuous functions
using the Kolmogorov—Arnold superposition theorem).
Let n > 2 be an integer and f be a continuous function
in Kc([0, 117 R) that satisfies || fllz~qo,1py < 1. Then,
for any scalar 0 < € < 1, there is a deep ReLU network
f. that has depth

L <co(1)&3(n, r(e))e 1 Hloatr+DI/2

+ co(1)2a(n, r(€))e™ "2,
and size

W <n(2n + 1)&3(n, r(e))e tHontm+l/2

+ 2n + Dés(n, r(e))e V2,

such that ||f — f;-”Loo([O’l]/x) < € with co(1) as in Theo-
rem 3.1,

[1+log,(n+1)]/2

It 2 oen+ 2| e

n
Ea(n, r(€)=[8n + 41'* ca(n, r(e)),

¢3(n, r(e))=

c3(n) as in Equation (10), c4(n, r) as in Equation (11),
and r(e) = [log2e™"/logn~"1.

Proof. Let0 < € < 1 be ascalar. Let f: [0,1]" - R
be a continuous function in Kc([0, 11%; R) that satisfies
I f1lz 0,11y < 1. Using Equation (5) in Theorem 2.1, we
write f as

2n n
F@X1s X)) = Z@-[Z A + ja)].
J=0

i=1

¢ (Z A (x; + ja))
i=1

L¢ < CO(l)W¢

i A + ja)

i=1

J(xl + ja) J(x,, + ja)

Lz// < C()(l)Wl/,

X1 X2 Xn

Figure 3: Subnetwork 5’. that approximates the outer function ¢".. The
deep ReLU network in Equation (12) is the sum of 2n + 1 suclg sub-
networks. Each subnetwork has depth Ly + Ly and size nWy, + Wy,
so that the network in Equation (12) has depth Ly + Ly and size
2n% + MWy + 2n + DHW,.

We first approximate f by f, defined in Equation (6)
using the error bound in Proposition 3.4, i.e.,

2n n
FO )= [Z A (i + ja)].
=0

i=1

If we choose r(e) = [log2e~'/logn~'], then using
Equation (7), we get ||f — fillz=qo,11m) < €/2.

We now approximate f, by a deep ReLU network f,
defined by

2n n
ferm) = 8, (Z A + ja)], (12)
j=0 i=1

where Z and ?q;; approximate ¢ and ¢’; to some accura-
cies 0 < g < 1 and 0 < ¢ < 1 to be determined later.
We plot the subnetwork ?q;; in Figure 3.

Using Propositions 3.3 and 3.4, the network ¢ has
depth Ly < co(n)Wy and size

~[1+log, (n+1)]/2
W(// < C3(n)€¢[ +log, (n+1)]/ ,
while the networks 5? have depth Ly < co(n)W, and size

Ws < caln, r)eg;l/z.

Using the triangle inequality, we compute the accu-



racy of the network £, as follows,

1ty ey X0) = fr(xt, o X)),

2n n 2n n

<D {Z A (i + ja)] -4 (Z A (i + ja))
j=0 p=1 j=0 i=1
2n n 2n n

D¢ [Z A + ja)] -9 (Z A (i + ja)] :
=0 i=1 j=0 i=

@n+ 1)2

o vr(fley + 2n+ 1)ey.

‘We must choose

ne €
€y = ———""- """ €) = ———
YT 20n+ D2v(f) Y 4@n+ 1)

to obtain || f, ~ fll=o,1 < €/2 and ||f = fille=qo1p < €.
Therefore, the network i has depth L, < co(n)W,
and size

Wl// < 53(” 6)6—[1+Iog2(n+1)]/2

with

[1+log,(n+1)]/2

nt2 oen+ 2| e

n

&3(n, r(e)) =

while the networks 5; have depth Ly < co(n)W, and size
Wy < 4(n, r(e))e 2,
with
Ea(n, r(€)) = [8n + 412 c4(n, r(e)).

Lastly, the network £, has depth L < co(H(Wy, + Wy)
and size W < n(2n + DWWy, + 2n + 1)Wy. O

The upper bounds in Theorem 4.1 show that, for a
given dimension n, the depth and the size of the net-
work grow like O(e‘ l"g”); the curse of dimensionality
is lessened asymptotically when € approaches 0.

Let us end this section with a comment about smooth-
ness. Yarotsky provedin 2017 that deep ReLU networks
of depth and size O(¢™™) can approximate functions
with m weak and bounded derivatives in [0, 1]" to accu-
racy € [27, Thm. 1] (we omitted a logarithmic factor for
simplicity). For given n and large enough m, O(e /™)
may be smaller than O(e~1¢"). Conversely, however,
for given m and large enough n, O(¢ /™) may be greater
than O(e™'°8™).

5. Discussion

We have proven upper bounds for the approximation
of multivariate functions f : [0, 1]* — R by deep ReLU
networks, for which the curse of dimensionality is less-
ened. The depth and the size of the networks to approx-
imate such functions f grow like O(e~!°¢"), as opposed
to O(e™"). The proof is based on the ability of very deep
ReLU networks to implement the Kolmogorov—Arnold
superposition theorem.

There are many ways in which this work could be
fruitfully continued. If we were able to construct a Lip-
schitz continuous inner function, we would be able to
obtain O(e™!) estimates. Actor and Knepley designed
in 2017 an algorithm to compute a Lipschitz continu-
ous inner function, but they did not provide a method to
compute the outer functions [34].

From a theoretical point of view, it would be inter-
esting to investigate error bounds for deep networks
with other activation functions (e.g., sigmoid and tanh).
Some results about approximation by deep networks us-
ing smooth activation functions can be found in [24] and
the references therein. Using these results, it would be
possible to derive an analogue of Theorem 4.1. Let us
highlight that, from a numerical point of view, only the
ReL.U activation function (combined with other tricks)
can avoid the gradient degeneracy during network train-
ing.
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