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Abstract

We prove a theorem concerning the approximation of multivariate functions by deep ReLU networks, for which the

curse of the dimensionality is lessened. Our theorem is based on a constructive proof of the Kolmogorov–Arnold

superposition theorem, and on a subset of multivariate continuous functions whose outer superposition functions can

be efficiently approximated by deep ReLU networks.
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1. Introduction

At the second International Congress of Mathemati-

cians in Paris 1900, Hilbert presented ten of his 23 prob-

lems, including the 13th problem about equations of de-

gree seven. He considered the following equation,

x7
+ ax3

+ bx2
+ cx + 1 = 0,

and asked whether its solution x(a, b, c), seen as a func-

tion of the three parameters a, b and c, could be written

as the composition of functions of only two variables.

Hilbert’s 13th problem was solved by Kolmogorov

and his 19 years old student Arnold in a series of pa-

pers in the 1950s. Kolmogorov first proved in 1956

that any continuous function of several variables could

be expressed as the composition of functions of three

variables [1]. His student Arnold extended his theo-

rem in 1957; three variables were reduced to two [2].

Kolmogorov finally showed later that year that func-

tions of only one variable were needed [3]. The latter

result is known as the Kolmogorov–Arnold superposi-

tion theorem, and states that any continuous functions

f : [0, 1]n → R can be decomposed as

f (x1, . . . , xn) =

2n∑

j=0

φ j


n∑

i=1

ψi, j(xi)

 ,
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with 2n + 1 continuous outer functions φ j : R → R

(dependent of f ) and 2n2
+n continuous inner functions

ψi, j : [0, 1]→ R (independent of f ).

The Kolmogorov–Arnold superposition theorem was

further improved in the 1960s and the 1970s. Lorentz

showed in 1962 that the outer functions φ j might be

chosen to be the same function φ, and replaced the inner

functions ψi, j by λiψ j, for some positive rationally inde-

pendent constants λi ≤ 1 [4], while Sprecher replaced

the inner functions ψi, j by Hölder continuous functions

xi 7→ λ
i jψ(xi+ jǫ) in 1965 [5]. Two years later, Fridman

demonstrated that the inner functions could be chosen

to be Lipschitz continuous, but his decomposition used

2n+1 outer functions and 2n2
+n inner functions [6]. Fi-

nally, Sprecher provided in 1972 a decomposition with

Lipschitz continuous functions xi 7→ λ
i−1ψ(xi + jǫ) [7].

Theoretical connections with neural networks started

with the work of Hecht–Nielsen in 1987 [8]. He in-

terpreted the Kolmogorov–Arnold superposition theo-

rem as a neural network, whose activation functions

were the inner and outer functions. Girosi and Pog-

gio claimed in 1989 that his interpretation was irrele-

vant for two reasons; first, the inner and outer functions

were highly nonsmooth (i.e., these were at least as dif-

ficult to approximate as f ); second, the outer functions

depended on f (i.e., the network architecture could not

be parametrized). Kůrková weakened the statement of

Girosi and Poggio, in the early 1990s, by giving a direct

proof of the universal approximation theorem of mul-

tilayer neural networks using the Kolmogorov–Arnold
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superposition theorem, and by showing that the weight

selection reduced to a linear regression problem [9, 10].

Numerical implementations originated with the work

of Sprecher in the mid 1990s [11, 12], which was fol-

lowed, in 2003, by the Kolmogorov’s spline network of

Igelnik and Parikh [13]. Braun and Griebel proposed

an algorithm to implement a constructive proof of the

Kolmogorov–Arnold theorem in 2009 [14], using Köp-

pen’s Hölder continuous inner function [15].

Approximation theory for neural networks started

with shallow networks and the 1989 universal approx-

imation theorems of Cybenko [16] and Hornik [17]. In

the last few years, the attention has shifted to the ap-

proximation properties of deep ReLU networks [18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. In particular,

one of the most important theoretical problems is to de-

termine why and when deep networks lessen or break

the curse of dimensionality, characterized by the O(ǫ−n)

growth of the network size W as the error ǫ → 0, in

dimension n.1 We recommend the review [24] for a dis-

cussion about the curse of dimensionality in the context

of deep network approximation.

In this paper, we introduce a set of multivariate con-

tinuous functions for which the approximation of the

outer functions by deep ReLU networks is appealing to

lessen the curse of the dimensionality. We show that any

function f : [0, 1]n → R in this set can be approximated

with error ǫ by a very deep ReLU network of depth and

size2 O
(
ǫ− log n

)
; the curse of dimensionality is lessened.

Before the exposition of our main result in Section 4,

we will review a specific version of the Kolmogorov–

Arnold superposition theorem in Section 2, and show in

Section 3 how to approximate the inner and outer func-

tions by very deep ReLU networks.

2. Constructive version of the Kolmogorov–Arnold

superposition theorem

We review in this section a constructive version of the

Kolmogorov–Arnold superposition theorem that goes

back to Sprecher in 1996 and 1997 [11, 12]. The proof

he provided at the time was not fully correct; minor

modifications were made by Braun and Griebel in 2009

to complete his proof [14, Thm. 2.1], using the inner

function suggested by Köppen [15].

1We recall that W = O(ǫ−n) means that there exists c1(n) > 0, such

that W ≤ c1(n)ǫ−n, for sufficiently small values of ǫ. Alternatively,

we shall write ǫ = O(W−1/n) when there exists c2(n) > 0, such that

ǫ ≤ c2(n)W−1/n, for sufficiently large values of W.
2Following Yarotsky [27], we define the depth L of a network as

the number of layers, the size W as the total number of weights, and

we allow connections between units in non-neighboring layers.

For any integer n ≥ 2, m ≥ 2n and γ ≥ m + 2, let

a =
1

γ(γ − 1)
, (1)

λ1 = 1, λi =

∞∑

ℓ=1

γ−(i−1)βn(ℓ), 2 ≤ i ≤ n, (2)

with

βn(ℓ) =
1 − nℓ

1 − n
= 1 + n + . . . + nℓ−1, (3)

and

ν = 2−α(γ + 3), α = logγ 2. (4)

We recall that a function f : [a, b] → R is said to be

(ν, α)-Hölder continuous if and only if there exist scalars

ν > 0 and 0 < α ≤ 1, such that | f (x) − f (y)| ≤ ν|x − y|α,

for all x, y ∈ [a, b]. (The value α = 1 yields ν-Lipschitz

continuous functions.)

Theorem 2.1 (Kolmogorov–Arnold superposition the-

orem). Let n ≥ 2, m ≥ 2n and γ ≥ m + 2 be given

integers, and let a, λi (1 ≤ i ≤ n), ν and α be defined as

in Equations (1)–(4). Then, there exists a (ν, α)-Hölder

continuous inner function ψ : [0, 2) → [0, 2), such that

for any continuous function f : [0, 1]n → R, there exist

m + 1 continuous outer function φ j : [0, 2
γ−1

γ−2
) → R,

such that

f (x1, . . . , xn) =

m∑

j=0

φ j


n∑

i=1

λiψ(xi + ja)

 . (5)

Let us now go through the main two steps of the proof

of Theorem 2.1; for details, see [11, 12, 14].

The first step is the building of the inner function ψ,

which involves uniform grids Dk with step sizes γ−k,

Dk = {iγ
−k, 0 ≤ i ≤ γk − 1} ⊂ [0, 1).

There are γk different points 0 ≤ d ≤ 1 − γ−k < 1 on

each grid Dk, and each point d on Dk is represented in

base γ as follows,

d =

k∑

ℓ=1

iℓγ
−ℓ, iℓ ∈ {0, 1, . . . , γ − 1}.

Proposition 2.2 (Construction of the inner function).

The inner function ψ is first defined at grid points d ∈ Dk
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Figure 1: Plot of the inner function ψ evaluated on the grid D3 with

n = 2 and γ = 10 (top). The second row is a zoomed plot that reveals

the self-similarity of the graph of ψ as k →∞.

via ψ(d) = ψk(d) for all integers k ≥ 1, where the func-

tions ψk are recursively defined by

ψk(d) =



d, d ∈ D1,

ψk−1

(
d − ikγ

−k
)
+

ikγ
−βn(k), d ∈ Dk, k > 1, ik < γ − 1,

1
2

[
ψk

(
d − γ−k

)
+

ψk−1

(
d + γ−k

) ]
, d ∈ Dk, k > 1, ik = γ − 1.

The function ψ is then defined at any x ∈ [0, 1) via3

ψ(x) = lim
k→∞
ψk


k∑

ℓ=1

iℓγ
−ℓ

 ,

since each x ∈ [0, 1) has the representation

x =

∞∑

ℓ=1

iℓγ
−ℓ
= lim

k→∞

k∑

ℓ=1

iℓγ
−ℓ.

Finally, the inner function is extended to x ∈ [1, 2) by

ψ(x) = ψ(x − 1) + 1.

The resulting function has domain and range [0, 2).

3The existence of the limit is based on a suitably defined Cauchy

sequence; see [14, Lem. 2.3] for details.

xξ(d) ξ(d) + (γ − 2)bk

0

1
θ(d; x)

γ−βn(k+1) γ−βn(k+1)

Figure 2: For each d ∈ (D
j

k
)n, the function θ(d; ·) is compactly sup-

ported and piecewise linear with slope ±γβn (k+1). Therefore, it is ν-

Lipschitz continuous with ν = γβn (k+1).

For points d =
∑k
ℓ=1 iℓγ

−ℓ ∈ Dk whose indices iℓ are

all strictly smaller than γ − 1, it is easy to show, by in-

duction, that

ψ(d) =

k∑

ℓ=1

iℓγ
−βn(ℓ).

For other points, the right-hand side in the equation

above is only a lower bound.

The inner function constructed in Proposition 2.2 was

introduced by Köppen in 2002 [15]. It is Hölder contin-

uous, a result that can be proved using the techniques

introduced by Sprecher in his 1965 paper [5].

Proposition 2.3 (Hölder continuity of the inner func-

tion). The inner function ψ of Proposition 2.2 is (ν, α)-

Hölder continuous with ν = 2−α(γ + 3) and α = logγ 2.

Proof. See [5, Sec. 4].

We plot in Figure 1 the graph of the function ψ eval-

uated on the grid D3 for n = 2 and γ = 10. As k → ∞,

the graph of ψ exhibits self-similarity, which is expected

since ψ is merely Hölder continuous.

The second step of the proof is the iterative construc-

tion of the outer functions φ j. For each 0 ≤ j ≤ m, let

D
j

k
denote the shifted grid defined by

D
j

k
= Dk + j

k∑

ℓ=2

γ−ℓ, 0 ≤ j ≤ m.

Let (Dk)n and (D
j

k
)n denote the Cartesian products of n

copies of Dk and D
j

k
, and let

ξ(d) =

n∑

i=1

λiψ(di), d = (d1, . . . , dn) ∈ (D
j

k
)n,

and

bk =


∞∑

ℓ=k+1

γ−βn(ℓ)




n∑

i=1

λi

 .

3



Finally, for each d ∈ (D
j

k
)n, let θ : x 7→ θ(d; x) denote

the function defined by

θ(d; x) = σ
(
γβn(k+1) [x − ξ(d)

]
+ 1
)

− σ
(
γβn(k+1) [x − ξ(d) − (γ − 2)bk

])
,

where σ : R → [0, 1] is the piecewise linear function

satisfying σ(x) = 0 for x ≤ 0, σ(x) = x for 0 ≤ x ≤ 1,

and σ(x) = 1 for x ≥ 1. For given k ≥ 1 and 0 ≤ j ≤ m,

the γnk functions θ(d; ·) have disjoint supports, and are

ν-Lipschitz with ν = γβn(k+1); see Figure 2.

Proposition 2.4 (Construction of the outer functions).

Let δ and η be two scalars that verify

0 < δ < 1 −
n

n − m + 1

and

0 <
m − n + 1

n + 1
δ +

2n

m + 1
≤ η < 1,

and f : [0, 1]n → R be a continuous function.

Starting with f0 = 0 and e0 = f − f0 = f , the approx-

imate outer function φr
j

at iteration r ≥ 1 are defined,

for each 0 ≤ j ≤ m, as

φr
j(x) =

1

m + 1

r∑

ℓ=1

∑

d∈(Dkℓ
)n

eℓ−1(d)θ

d + j

kℓ∑

i=2

γ−i; x

 ,

for some kr = kr( f ) chosen such that ‖x − x
′‖∞ ≤ γ

−kr

implies |er−1(x) − er−1(x
′)| ≤ δ‖er−1‖L∞([0,1]n).

This yields an approximate function fr ,

fr(x1, . . . , xn) =

m∑

j=0

φr
j


n∑

i=1

λiψ(xi + ja)

 , (6)

and its error er = f − fr, with

‖er‖L∞([0,1]n) ≤ η
r‖ f ‖L∞ ([0,1]n). (7)

Taking the limit r → ∞ yields

f (x1, . . . , xn) =

m∑

j=0

φ j


n∑

i=1

λiψ(xi + ja)

 ,

where φ j = limr→∞ φ
r
j
.4

The approximate outer functions φr
j

of Proposi-

tion 2.4 are Lipschitz continuous, as we shall prove

next.

4The existence of the limits as r → ∞ relies on φr
j

being bounded

and Equation (7); see [14, Cor. 3.9] for details.

Proposition 2.5 (Lipschitz continuity of the outer func-

tions). For all r ≥ 1 and 0 ≤ j ≤ m, the outer functions

φr
j

of Proposition 2.4 have domain [0, 2
γ−1

γ−2
), and are

νr( f )-Lipschitz continuous with

νr( f ) =
‖ f ‖L∞ ([0,1]n)

m + 1

r∑

ℓ=1

ηℓ−1γβn(kℓ( f )+1). (8)

Proof. To prove that the domain is [0, 2
γ−1

γ−2
), we use the

fact that |ψ(x)| < 2 for all x ∈ [0, 2), and

n∑

i=1

λi < 1 +
1

γ − 1
+

1

γ1+n − 1
+

1

γ1+n+n2
− 1
+ . . . ,

<
γ − 1

γ − 2
.

For the Lipschitz constant, we recall that, for given

kℓ( f ) and j, the functions x 7→ θ(d; x), d ∈ (D
j

kℓ
)n,

have disjoint supports, and are ν( f )-Lipschitz continu-

ous with ν( f ) = γβn(kℓ( f )+1). Using Equation (7), sum-

ming over ℓ and multiplying by 1/(m + 1) yields the

desired result.

Let us emphasize that the Lipschitz constants νr( f ) in

Proposition 2.5 depend on f via the integers kℓ( f ). This

motivates us to introduce a set of continuous functions

based on the growth of kℓ( f ) with ℓ as follows,

KC([0, 1]n; R) =
{
f ∈ C([0, 1]n; R), kr( f ) ≤ C, r ≥ 1

}
,

for some constant C > 0, where C([0, 1]n; R) denotes

the set of multivariate continuous functions, and for

given n ≥ 2, m ≥ n, γ ≥ m + 2, δ and η. A direct

calculation shows that functions in this set have outer

functions whose Lipschitz constants (8) satisfy

νr( f ) ≤
‖ f ‖L∞ ([0,1]n)

m + 1
rγ2nC

. (9)

3. Approximation of the inner and outer functions

by very deep ReLU networks

Let ω : [0,∞) → [0,∞) be a function that is vanish-

ing and continuous at 0, i.e., limδ→0+ ω(δ) = ω(0) = 0,

and B ⊂ R
d be a compact domain. We say that an uni-

formly continuous function f : B → R has modulus of

continuity ω if and only if

| f (x) − f (x
′)| ≤ ω(‖x − x

′‖2), ∀x, x′ ∈ B.

Many classical estimates in approximation theory

are based on moduli of continuity. For example, best

4



degree-d polynomial approximation of continuous func-

tions of one variable with modulus of continuity ω

yieldsO(ω(d−1)) errors [30, Thm. 3.9]. TheO(ω(d−1/n))

errors in dimension n suffers from the curse of dimen-

sionality, but matches the lower bound obtained by non-

linear widths [31, Thm. 4.2].

In neural network approximation, moduli of continu-

ity appear in the work of Yarotsky. In 2018, he proved

that very deep ReLU networks of depth L = O(W) and

size W generate O(ω(O(W−2/n))) errors [28, Thm. 2].

This result matches the lower bound based on VC di-

mension of Anthony and Barlett [32, Thm. 8.7] (see also

[33]), and improves the O(W−1/n log1/n
2

W) errors he ob-

tained for Lipschitz functions in 2017 [27, Thm. 1].

Let us stress that Yarotsky’s theorems provide upper

bounds for the errors when the same network architec-

ture is used to approximate all functions in a given func-

tion space. In other words, the network architecture

does not depend on the function being approximated in

that space; only the weights do. Moreover, the networks

he utilizes are said to be very deep because the depth L

satisfies L = O(W). We recall his 2018 result below.

Theorem 3.1 (Approximation of continuous functions

by very deep ReLU networks in the unit hypercube).

For any continuous function f : [0, 1]n → R with mod-

ulus of continuity ω f , there is a deep ReLU network f̃

depth L ≤ c0(n)W and size W, such that

‖ f − f̃ ‖L∞([0,1]n) ≤ c1(n)ω f

(
c2(n)W−2/n

)
,

for some c0(n), c1(n), c2(n) > 0.

We extend Yarotsky’s result to domains [0,M]n.

Corollary 3.2 (Approximation of continuous functions

by very deep ReLU networks in scaled hypercubes).

For any continuous function f : [0,M]n → R with mod-

ulus of continuity ω f , there is a deep ReLU network f̃

of depth L ≤ c0(n)W and size W, such that

‖ f − f̃ ‖L∞([0,M]n) ≤ c1(n)ω f

(
c2(n)MW−2/n

)
,

with c0(n), c1(n), c2(n) as in Theorem 3.1.

Proof. We use Theorem 3.1 with g(x) = f (x/M) on

[0, 1]n. Note that ωg(δ) = ω f (Mδ). Therefore, there

is a deep ReLU network g̃ of depth L ≤ c0(n)W and size

W, such that

‖g − g̃‖L∞([0,1]n) ≤ c1(n)ωg

(
c2(n)W−2/n

)
,

= c1(n)ω f

(
c2(n)MW−2/n

)
,

with c0(n), c1(n), c2(n) as in Theorem 3.1. Since

g(Mx) − g̃(Mx) = f (x) − g̃(Mx), the network f̃ (x) =

g̃(Mx) satisfies all requirements in this corollary.

We shall now apply Corollary 3.2 to the inner and

outer functions of Propositions 2.2 and 2.4. For sim-

plicity, we shall assume, throughout the rest of the pa-

per, that m = 2n and γ = 2n + 2.

Proposition 3.3 (Approximation of the inner function

by very deep ReLU networks). Let n ≥ 2 be an integer

and ψ be the inner function defined in Proposition 2.2.

Then, for any scalar 0 < ǫ < 1, there is a deep ReLU

network ψ̃ that has depth L ≤ c0(1)W and size

W ≤ c3(n)ǫ−[1+log2(n+1)]/2,

such that ‖ψ − ψ̃‖L∞([0,2]) ≤ ǫ, with

c3(n) = [(2n + 5)c1(1)][1+log2(n+1)]/2 c2(1)1/2, (10)

and c0(1), c1(1), c2(1) as in Theorem 3.1.

Proof. We use Corollary 3.2 with M = 2 and the mod-

ulus of continuity of Proposition 2.3, i.e.,

ωψ(δ) = νδα,

with ν = 2−α(2n + 5) and α = log2n+2 2.

Proposition 3.4 (Approximation of the outer functions

by very deep ReLU networks). Let n ≥ 2 be an in-

teger, f : [0, 1]n → R be a continuous function in

KC([0, 1]n; R) that satisfies ‖ f ‖L∞ ([0,1]n) ≤ 1, and φr
j

be

the (2n + 1) outer functions defined in Proposition 2.4

at iteration r, for some r ≥ 1. Then, for any scalar

0 < ǫ < 1, there are (2n + 1) deep ReLU networks φ̃r
j

that have depth L ≤ c0(1)W and size

W ≤ c4(n, r)ǫ−1/2,

such that ‖φr
j
− φ̃r

j
‖

L∞([0,2
γ−1

γ−2
]) ≤ ǫ, with

c4(n, r) =

[
c1(1)c2(1)

n
r(2n + 2)2nC

]1/2
, (11)

and c0(1), c1(1), c2(1) as in Theorem 3.1.

Proof. We use Corollary 3.2 with M = 2
γ−1

γ−2
and the

modulus of continuity corresponding to the Lipschitz

continuity described in Proposition 2.5, i.e.,

ωφr
j
(δ) = νr( f )δ,

with νr( f ) as in Equation (9). This yields

‖φr
j − φ̃

r
j‖L∞([0,2

γ−1
γ−2

])
≤ 2c1(1)c2(1)νr( f )

γ − 1

γ − 2
W−2,

≤
c1(1)c2(1)

n
r(2n + 2)2nC

W−2,

5



where φ̃r
j
is a very deep neural network with size W and

depth L ≤ c0(1)W, and c0(1), c1(1), c2(1) as in Theo-

rem 3.1. To achieve the ǫ approximation error, W can

be as small as c4(n, r)ǫ−1/2, where

c4(n, r) =

[
c1(1)c2(1)

n
r(2n + 2)2nCr

]1/2
.

4. Main theorem

We present in this section our main theorem about

the approximation of multivariate continuous functions

by very deep ReLU networks. Our proof is based on

the Kolmogorov–Arnold superposition theorem (The-

orem 2.1), and on the approximation of the inner and

outer functions by very deep ReLU networks (Proposi-

tions 3.3 and 3.4).

Theorem 4.1 (Approximation of continuous functions

using the Kolmogorov–Arnold superposition theorem).

Let n ≥ 2 be an integer and f be a continuous function

in KC([0, 1]n; R) that satisfies ‖ f ‖L∞ ([0,1]n) ≤ 1. Then,

for any scalar 0 < ǫ < 1, there is a deep ReLU network

f̃r that has depth

L ≤c0(1)c̃3(n, r(ǫ))ǫ−[1+log2(n+1)]/2

+ c0(1)c̃4(n, r(ǫ))ǫ−1/2,

and size

W ≤n(2n + 1)c̃3(n, r(ǫ))ǫ−[1+log2(n+1)]/2

+ (2n + 1)c̃4(n, r(ǫ))ǫ−1/2,

such that ‖ f − f̃r‖L∞([0,1]n) ≤ ǫ, with c0(1) as in Theo-

rem 3.1,

c̃3(n, r(ǫ))=

[
4n + 2

n
r(ǫ)(2n + 2)2nC

][1+log2(n+1)]/2

c3(n),

c̃4(n, r(ǫ))= [8n + 4]1/2 c4(n, r(ǫ)),

c3(n) as in Equation (10), c4(n, r) as in Equation (11),

and r(ǫ) = ⌈log 2ǫ−1/ log η−1⌉.

Proof. Let 0 < ǫ < 1 be a scalar. Let f : [0, 1]n → R

be a continuous function in KC([0, 1]n; R) that satisfies

‖ f ‖L∞([0,1]n) ≤ 1. Using Equation (5) in Theorem 2.1, we

write f as

f (x1, . . . , xn) =

2n∑

j=0

φ j


n∑

i=1

λiψ(xi + ja)

 .

x1 x2

. . . . . .

xn

ψ̃(x1 + ja) . . . . . . ψ̃(xn + ja)

n∑

i=1

λiψ̃(xi + ja)

φ̃r
j


n∑

i=1

λiψ̃(xi + ja)



Lψ ≤ c0(1)Wψ

Lφ ≤ c0(1)Wφ

Figure 3: Subnetwork φ̃r
j

that approximates the outer function φr
j
. The

deep ReLU network in Equation (12) is the sum of 2n + 1 such sub-

networks. Each subnetwork has depth Lψ + Lφ and size nWψ + Wφ,

so that the network in Equation (12) has depth Lψ + Lφ and size

(2n2
+ n)Wψ + (2n + 1)Wφ.

We first approximate f by fr defined in Equation (6)

using the error bound in Proposition 3.4, i.e.,

fr(x1, . . . , xn) =

2n∑

j=0

φr
j


n∑

i=1

λiψ(xi + ja)

 .

If we choose r(ǫ) = ⌈log 2ǫ−1/ log η−1⌉, then using

Equation (7), we get ‖ f − fr‖L∞([0,1]n) ≤ ǫ/2.

We now approximate fr by a deep ReLU network f̃r
defined by

f̃r(x1, . . . , xn) =

2n∑

j=0

φ̃r
j


n∑

i=1

λiψ̃(xi + ja)

 , (12)

where ψ̃ and φ̃r
j

approximate ψ and φr
j

to some accura-

cies 0 < ǫψ < 1 and 0 < ǫφ < 1 to be determined later.

We plot the subnetwork φ̃r
j
in Figure 3.

Using Propositions 3.3 and 3.4, the network ψ̃ has

depth Lψ ≤ c0(n)Wψ and size

Wψ ≤ c3(n)ǫ
−[1+log2(n+1)]/2

ψ
,

while the networks φ̃r
j
have depth Lφ ≤ c0(n)Wφ and size

Wφ ≤ c4(n, r)ǫ−1/2
φ
.

Using the triangle inequality, we compute the accu-
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racy of the network f̃r as follows,

| fr(x1, . . . , xn) − f̃r(x1, . . . , xn)|,

≤

∣∣∣∣∣∣∣∣

2n∑

j=0

φr
j


n∑

p=1

λiψ(xi + ja)

 −
2n∑

j=0

φr
j


n∑

i=1

λiψ̃(xi + ja)



∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣

2n∑

j=0

φr
j


n∑

i=1

λiψ̃(xi + ja)

 −
2n∑

j=0

φ̃r
j


n∑

i=1

λiψ̃(xi + ja)



∣∣∣∣∣∣∣∣
,

≤
(2n + 1)2

2n
νr( f )ǫψ + (2n + 1)ǫφ.

We must choose

ǫψ =
nǫ

2(2n + 1)2νr( f )
, ǫφ =

ǫ

4(2n + 1)
,

to obtain ‖ fr− f̃r‖L∞([0,1]n) ≤ ǫ/2 and ‖ f − f̃r‖L∞([0,1]n) ≤ ǫ.

Therefore, the network ψ̃ has depth Lψ ≤ c0(n)Wψ
and size

Wψ ≤ c̃3(n, ǫ)ǫ−[1+log2(n+1)]/2,

with

c̃3(n, r(ǫ))=

[
4n + 2

n
r(ǫ)(2n + 2)2nC

][1+log2(n+1)]/2

c3(n),

while the networks φ̃r
j
have depth Lφ ≤ c0(n)Wφ and size

Wφ ≤ c̃4(n, r(ǫ))ǫ−1/2,

with

c̃4(n, r(ǫ)) = [8n + 4]1/2 c4(n, r(ǫ)).

Lastly, the network f̃r has depth L ≤ c0(1)(Wψ + Wφ)

and size W ≤ n(2n + 1)Wψ + (2n + 1)Wφ.

The upper bounds in Theorem 4.1 show that, for a

given dimension n, the depth and the size of the net-

work grow like O
(
ǫ− log n

)
; the curse of dimensionality

is lessened asymptotically when ǫ approaches 0.

Let us end this section with a comment about smooth-

ness. Yarotsky proved in 2017 that deep ReLU networks

of depth and size O(ǫ−n/m) can approximate functions

with m weak and bounded derivatives in [0, 1]n to accu-

racy ǫ [27, Thm. 1] (we omitted a logarithmic factor for

simplicity). For given n and large enough m, O(ǫ−n/m)

may be smaller than O(ǫ− log n). Conversely, however,

for given m and large enough n,O(ǫ−n/m) may be greater

than O(ǫ− log n).

5. Discussion

We have proven upper bounds for the approximation

of multivariate functions f : [0, 1]n → R by deep ReLU

networks, for which the curse of dimensionality is less-

ened. The depth and the size of the networks to approx-

imate such functions f grow like O(ǫ− log n), as opposed

to O(ǫ−n). The proof is based on the ability of very deep

ReLU networks to implement the Kolmogorov–Arnold

superposition theorem.

There are many ways in which this work could be

fruitfully continued. If we were able to construct a Lip-

schitz continuous inner function, we would be able to

obtain O(ǫ−1) estimates. Actor and Knepley designed

in 2017 an algorithm to compute a Lipschitz continu-

ous inner function, but they did not provide a method to

compute the outer functions [34].

From a theoretical point of view, it would be inter-

esting to investigate error bounds for deep networks

with other activation functions (e.g., sigmoid and tanh).

Some results about approximation by deep networks us-

ing smooth activation functions can be found in [24] and

the references therein. Using these results, it would be

possible to derive an analogue of Theorem 4.1. Let us

highlight that, from a numerical point of view, only the

ReLU activation function (combined with other tricks)

can avoid the gradient degeneracy during network train-

ing.
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