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Abstract

Batch Normalization (BN) (Ioffe and Szegedy 2015) normal-
izes the features of an input image via statistics of a batch
of images and this batch information is considered as batch
noise that will be brought to the features of an instance by BN.
We offer a point of view that self-attention mechanism can
help regulate the batch noise by enhancing instance-specific
information. Based on this view, we propose combining BN
with a self-attention mechanism to adjust the batch noise and
give an attention-based version of BN called Instance En-
hancement Batch Normalization (IEBN) which recalibrates
channel information by a simple linear transformation. IEBN
outperforms BN with a light parameter increment in vari-
ous visual tasks universally for different network structures
and benchmark data sets. Besides, even if under the attack
of synthetic noise, IEBN can still stabilize network training
with good generalization. The code of IEBN is available at
https://github.com/gbup-group/IEBN

Introduction

Mini-batch Stochastic Gradient Descent (SGD) is a simple
and effective method in large-scale optimization by aggre-
gating multiple samples at each iteration to reduce opera-
tion and memory cost. However, SGD is sensitive to the
choice of hyperparameters and it may cause training insta-
bility (Luo, Xiong, and Liu 2019). Normalization is one
possible choice to remedy SGD methods for better stabil-
ity and generalization. Batch Normalization (BN) (Ioffe and
Szegedy 2015) is a frequently-used normalization method
that normalizes the features of an image using the mean and
variance of the features of a batch of images during train-
ing. Meanwhile, the tracked mean and variance that esti-
mate the statistics of the whole dataset are used for nor-
malization during testing. It has been shown that BN is
an effective module to regularize parameters (Luo et al.
2019), stabilize training, smooth gradients (Santurkar et al.
2018), and enable a larger learning rate (Bjorck et al. 2018;
Cai, Li, and Shen 2019) for faster convergence.

Two kinds of noise effects in SGD and BN are concerned
in this paper.

*Equal contribution
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Estimation Noise. In BN, the mean and variance of a batch
are used to estimate those of the whole dataset; in SGD, the
gradient of the loss over the batch is applied to approximate
that of the whole dataset. These estimation errors are called
estimation noise.

Batch Noise. In the forward pass, BN incorporates batch in-
formation to the features of an instance via the normalization
with batch statistics. In the back-propagation, the gradient of
an instance will be disturbed by the batch information due to
BN and SGD. These disturbances to an instance caused by
the batch is referred to as batch noise.

The randomness of BN and SGD has been well-known
to improve the performance of deep networks and there ex-
ists extensive study on optimizing their effeteness via tuning
batch sizes. On the one hand, a small batch size will lead to a
high variance of statistics and weaken the training stability.
On the other hand, a large batch size can reduce the estima-
tion noise but it will cause a sharp landscape of loss (Keskar
et al. 2016) making the optimization problem more chal-
lenging. Therefore, it is important to choose an appropriate
batch size to make a good balance but the noise still exists.
These two kinds of noise will finally influence the gradient
when performing a forward pass and back-propagation. In
fact, the appropriate estimation noise and batch noise can
benefit the generalization of the network. BN with the es-
timation noise can work as an adaptive regularizer of pa-
rameters (Luo et al. 2019) and the moderate noise can help
escape bad local minima and saddle point (Jin et al. 2017;
Ge et al. 2015).

It is an art to infuse a model with the appropriate noise.
We argue that self-attention mechanism is an adaptive noise
regulator for the model by enhancing instance specificity.
The appropriate noise enables a model with BN to ease op-
timization and benefit generalization, which motivates us
to design a new normalization to combine the advantage
of BN and self-attention. This paper proposes an attention-
based BN which adaptively emphasizes instance informa-
tion called as Instance Enhancement Batch Normaliza-
tion (IEBN). The idea behind IEBN is simple. As shown
in Fig. 1, IEBN extracts the instance statistic of a channel
before BN and applies it to rescale the output channel of
BN with a pair of additional parameters. IEBN costs a light
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Figure 1: The illustration of IEBN. The top shows a block of
ResNet. The bottom is the showcase of IEBN, where the box
with red border is the basic flow of BN. AVG(-) means the
average pooling over a channel and Sigmoid(+) is sigmoid
function.

parameter increment and a low computation complexity in-
crement. The extended experiment shows that IEBN outper-
forms BN on benchmark datasets over popular architectures
for image classification. Our contribution is summarized as
followed,

1. We offer a point of view that self-attention mechanism can
regulate the batch noise adaptively.

2. We propose a simple-yet-effective and attention-based
BN called as Instance Enhancement Batch Normaliza-
tion (IEBN). We demonstrate empirically the effective-
ness of IEBN on benchmark datasets with different net-
work architectures.

Algorithm 1 Instance Enhancement Batch Normalization
Input: X is abatch input of size B x C x H x W;

Paramentes: 7., ., 9. and ﬂc, c=1,---,C,
Output: {Y = IEBN7 o p. X}

1' ’yc <_ O’BC
2: for channel ¢ from 1 to C do

3: MCB BHW Z E Z Xbchw

=1h=1w=1
B H W

\/BHW > > (Xpchw — pB)? + €

4: Jf —
=1h=1w=1

5 for instance b from 1 to B do A
6 Ope  Sigmoid(AVG(Xpe) X Ye + Be)
7 Xbc%(Xbcfuf)/O'CB

8: ch — Xbc X (’Yc X 5bc) + Bc
9 end for
10: end for

Related Work

This session reviews related works and mainly focuses
on two directions, normalization, and self-attention mech-
anism. Then we will discuss a work which combines them
together.

Normalization. The normalization layer is an important
component of a deep network. Multiple normalization meth-
ods have been proposed for different tasks. Batch Nor-
malization (Ioffe and Szegedy 2015) which normalizes in-
put by mini-batch statistics has been a foundation of vi-
sual recognition tasks (He et al. 2016a). Instance Normal-
ization (Ulyanov, Vedaldi, and Lempitsky 2017a) performs
one instance BN-like normalization and is widely used
in generative model (Johnson, Alahi, and Fei-Fei 2016a;
Zhu et al. 2017). There are some variants of BN, such
as, Conditional Batch Normalization (de Vries et al. 2017)
for Visual Questioning and Answering, Group Normaliza-
tion (Wu and He 2018) and Batch Renormalization (Ioffe
2017) for small batch size training, Adaptive Batch Normal-
ization (Li et al. 2018) for domain adaptation and Switchable
normalization (Luo, Ren, and Peng 2018) which learns to se-
lect different normalizers for different normalization layers.
Among them, Conditional Batch Norm and Batch Renorm
adjust the trainable parameters in reparameterization step of
BN. Both of them are most related to our work which modi-
fies the trainable scaling parameter.

Self-attention Mechanism. Self-attention mechanism se-
lectively focuses on the most informative components of
a network via self-information processing and has gained
a promising performance on vision tasks. The procedure
of attention mechanism can be divided into three parts.
First, the added-in module extracts internal information of
a networks which can be squeezed channel-wise informa-
tion (Hu, Shen, and Sun 2018; Li et al. 2019; Huang et al.
2019) or spatial information (Wang et al. 2018; Li, Hu, and
Yang 2019). Next, the module processes the extraction and
generates a mask to measure the importance of features via
fully connected layer (Hu, Shen, and Sun 2018), convolu-
tion layer (Wang et al. 2018) or LSTM (Huang et al. 2019).
Last, the mask is applied back to features to enhance fea-
ture importance (Hu, Shen, and Sun 2018; Li et al. 2019;
Huang et al. 2019).

The cooperation of BN and attention dates back to Visual
Questioning and Answering (VQA) which inputs an image
and an image-related question and then outputs the answer
to the question. For this task, Conditional Batch Norm (de
Vries et al. 2017) is proposed to influence the feature ex-
traction of an image via the feature collected from the ques-
tion. A Recurrent Neural Network (RNN) is used to extract
the features from the question while a Convolutional Neu-
ral Network (CNN), a pre-trained ResNet, performs features
selection from the image. The features extracted from the
question are conditioned on the shift and scale parameters
of the BN in the pre-trained ResNet such that the feature
selection of the CNN is question-referenced and the overall
networks can handle different reasoning tasks. Note that for
VQA, the features from question can be viewed as external
attention to guide the training of overall network since those
features are external regarding the image. In our work, the



IEBN we proposed can also be viewed as a kind of Con-
ditional Batch Norm but the guidance of the network train-
ing is using the internal attention since we use self-attention
mechanism to extract the information from the image itself.

Instance Enhancement Batch Normalization

This session first reviews BN and then introduces IEBN.

We consider a batch input X € REXCXHxW yhere
B,C, H and W stand for batch size, number of channels
(feature maps), height and width respectively. For simplic-
ity, we denote Xpcn = X[b, ¢, h,w] as the value of pixel
(h,w) at channel ¢ of instance b and X, = X[b,c,:,:] as
the tensor at channel c of instance b.

Review of BN

The computation of BN can be divided into two steps: batch-
normalized step and reparameterization step. Without loss of
generality, we perform BN on the channel ¢ of the instance
b, i.e., X be-

In batch-normalized step, each channel of features is nor-
malized using mean and variance of a batch over the chan-
nel,

Ky = 2be M 1
b s ()

where pZ, o2 are defined in Step 3 and Step 4 as the esti-
mation of mean and standard derivation respectively of the
whole dataset.

Then in reparameterization step, a pair of learnable pa-
rameters ., 0. scale and shift the normalized tensor Xpe to
restore the representation power,

Xbc X Ye + Bc- (2)

As said in Introduction, the batch noise mainly comes from
the batch-normalized step where the feature of the instance
b is mixed with information from the batch, i.e., uf and af .

Formulation of IEBN

The showcase of IEBN is shown in Fig. 1, where we high-
light the instance enhancement process of one channel. The
detailed computation can be found in Alg. 1. IEBN is based
on the adjustment of the trainable scaling parameter on BN
and its implementation consists of three operations: global
squeezing, feature processing, and instance embedding.
Global Squeezing. The global reception field of a feature
map is captured by average pooling AVG(-). We obtain a
shrinking feature descriptor mp,. of the channel c for the in-
stance b by taking average over the channel,

H W
1
mye = AVG(Xpe) = 7 > D Koenur ()

h=1w=1

myp Will serve as a shrinking feature to adjust the c;; chan-
nel after BN and my,.. is exclusive to the instance b.

Feature Processing. The shrinking feature my,. will be pro-
cessed to generate a weight coefficient ranged in [0, 1] for
self-recalibration of channel c. To enhance self-regulating

capacity, we introduce an addition pair of parameters B,
4. for the ¢y, channel, which serve as scale and shift re-
spectively to linearly transform my,.. Then Sigmoid function
(i.e.,0(2) = 1/(1+e~7)) is applied to the value after linear
transformation as a gating mechanism:

Sbe = 0 (Fempe + Be). 4)

Specially, the parameters ., ﬁc are initialized by constant
0 and -1 respectively. We will discuss the initialization in
Ablation Study.

Instance Embedding. J,. works as a weight coefficient to
adjust the scaling in the reparameterization step of BN for
the instance b. We embed the recalibration d. to compensate
the instance information in Eqn. 2,

}/E)C = Xbc X (’Yc X 6bc) + ﬂc- (5)

The dp. is composed of nonlinear activation function and
an additional pair of parameters which helps improve the
nonlinearity of reparameterization of BN.

We conduct IEBN on all channels, i.e., c = 1,2,--- ,C.
Compared with BN, the parameter increment comes from
the additional pair parameter for generating coefficient for
each channel. The total number of parameter increment is
equal to twice the number of channels.

Experiments

In this section, we evaluate the performance of IEBN in im-
age classification task and empirically demonstrate its ef-
fectiveness. We conduct experiments on benchmark datasets
with popular networks.

Dataset and Model. We conduct experiments on CIFAR10,
CIFAR100 (Krizhevsky and Hinton 2009), and ImageNet
2012 (Russakovsky et al. 2015). CIAFR10 or CIFAR100 has
50k train images and 10k test images of size 32 by 32 but
has 10 and 100 classes respectively. ImageNet 2012 (Rus-
sakovsky et al. 2015) comprises 1.28 million training and
50k validation images from 1000 classes, and the random
cropping of size 224 by 224 is used in our experiments. We
evaluates our methods with popular networks, ResNet (He et
al. 2016a), PreResNet (He et al. 2016b) and ResNeXt (Xie
et al. 2017). In our experiments, we replace all the BNs in
the original networks with IEBN. The implementation de-
tails can be found in the Appendix.

Image Classification. As shown in Table 1, the IEBN im-
proves the testing accuracy over BN for different datasets
and different network backbones. For small-classes dataset
CIFARI10, the performance of the networks with BN is good
enough, so there is not large space for improvement. How-
ever, for CIFAR100 and ImageNet datasets, the networks
with IEBN achieve a significant testing accuracy improve-
ment over BN. In particular, the performance improvement
of the ResNet with the IEBN is most remarkable. Due to the
popularity of ResNet and the light additional parameter in-
crement, the IEBN has good application potential in various
deep learning tasks.

Analysis
In this session, we explore the role of self-attention mecha-
nism on enhancing instance information and regulating the



BN

Dataset |

| SE | IEBN |

| #P(M) | topl-acc. | #P(M) | topl-acc. | #P(M) | topl-acc. |

ResNet164 CIFAR100 | 1.73 74.29 1.93 75.80 1.75 77.09
PreResNet164 CIFAR100 | 1.73 76.56 1.92 77.41 1.75 77.27
DenseNet100-12 | CIFAR100 | 0.80 77.23 - - 0.82 78.57
ResNext29,8x64 | CIFAR100 | 34.52 81.47 - - 34.57 82.45
ResNet164 CIFAR10 1.70 93.93 1.91 - 1.73 95.03
PreResNet164 CIFAR10 1.70 95.01 1.90 95.18 1.73 95.09
DenseNet100-12 | CIFAR10 0.77 95.29 - - 0.79 95.83
ResNext29,8x64 | CIFARIO | 34.43 96.11 - - 34.48 96.26
ResNet34 ImageNet | 21.81 73.91 21.97 74.39 21.82 74.38
ResNet50 ImageNet | 25.58 76.01 28.09 76.61 25.63 77.10
ResNet152 ImageNet | 60.27 77.58 66.82 78.36 60.41 79.17
ResNext50 ImageNet | 25.03 77.19 27.56 78.04 25.09 77.99

Table 1: Accuracy (%) on benchmark datasets with different architectures using BN, SE module or IEBN.

batch noise. We analysis through the style transfer and ex-
periments with the synthetic noise attack.

Instance Enhancement

We explore the role of self-attention mechanism on instance
enhancement through the example of the style transfer
task (Gatys, Ecker, and Bethge 2016). We use the style trans-
fer method which generates image by a network called trans-
formation network (Johnson, Alahi, and Fei-Fei 2016b).

It has been empirically shown that the type of normal-
ization in the network has an impact on the quality of im-
age generation (Ulyanov, Vedaldi, and Lempitsky 2017b;
Huang and Belongie 2017; Dumoulin, Shlens, and Kudlur
2016). Instance Normalization (IN) is widely used in gener-
ative models and it had proved to have a significant advan-
tage over BN in style transfer tasks (Ulyanov, Vedaldi, and
Lempitsky 2017b). The formulation of IN is followed,

(Xbc _M(Xbc) M(Xbc)

o(Xpe) o(Xpe)

(6)

where 11(Xp.) and o (X}.) denote the mean and standard de-

viation of the instance b at the channel c. Similarly, the for-
mulation of BN can be written in this form,

(Fa)

~ and [ are learned parameters and both are closely related
to the target style (Dumoulin, Shlens, and Kudlur 2016).
From Eqn. 6 and Eqn. 7, IN or BN directly leads to the scal-
ing of vy that affects the style of images. Different from BN,
IN affects the style by self-information instead of batch in-
formation. Fig. 2 compares the quality of images generated
by the network with BN, IN and SE module. The style trans-
fer task is noise-sensitive, and when the batch noise is added
by BN, the style of the generated image becomes more con-
fused. We add the SE module (Hu, Shen, and Sun 2018) to
the transformation network with BN to find its effectiveness

i
U(Xbc)

B
XbC — M
of

B
v K
+B=—"1 Xpe+B-%n. (7

c C

of regulating batch noise. We can see in Fig. 2 that the atten-
tion mechanism (SE) visually improves the effect of style
transfer and the quality of the generated images is closer
to that of IN. Fig. 3 shows the training loss with respect
to the iterations by applying the style Mosaic. The BN net-
work with SE module achieves smaller style loss and smaller
content loss than BN, and is closer to IN (see Appendix for
more results about the loss by applying other style). There-
fore, although the BN can bring the batch information to an
instance, it simultaneously introduce batch noise to network
training. The attention mechanism such as SE module may
be good at alleviating the batch noise and we will investigate
it further.

IEBN is a BN equipped with self-attention and Fig. 2
shows the similarity of the generated images of the SE mod-
ule and IEBN. In fact, we consider IEBN:

(

where Jy. is defined in Eqn. 4 and ¢, contains informa-
tion from the instance b. It seems like the added-in dy,. is
only directly applied to scaling parameter v of BN, but it
does scale the batch information (i.e., 12, 05) to regulate
the batch information via supplement of instance informa-
tion. This adjustment of batch information via d,. makes the
Eqn. 8 closer to Eqn. 6 than Eqn. 7 and also leads to the
similar results in style transfer between IN and IEBN.

Xb(: - ,ucB

B
Oc

B
pe

B
UC

7617(; .
of

)'V5bc+ﬁ = Xpe+p— ¥+ 0be, (8)

Noise Attack

To further study the ability to regulate the noise of IEBN,
two kinds of strategies is used to add the synthetic noise in
the batch-normalized step of BN.

Constant Noise Attack. We add constant noise into each
BN in the batch-normalized step as followed,

KXpe — /J/E

B
Oc

Xpe = - N + Ny, 9)



Figure 2: Stylization results obtained by applying style (second column) to content images (first column) with different normal-
ization methods. Specially, “SE” means the transformation network with BN and SE module. The style of the generated images
with BN appears more confused, but those with SE or IEBN are quite similar to IN visually.
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Figure 3: Training curves of style transfer networks with Mosaic style and different normalization methods. Specially, “SE”

means the transformation network with BN and SE module.

where (N, N;) are a pair of constant as the constant noise.
Table 2 shows the testing accuracy of ResNetl64 on CI-
FAR100 under different pairs of constant noise.

The added constant noise is equivalent to disturbing pZ
and 0B such that we can use the inaccurate estimations of
mean and variance respectively of the whole dataset in train-
ing. This bad estimation can lead to terrible performance.
Denote (Xp. — p2)/oB as A. Then in the reparameteriza-
tion step of BN, we introduce the learnable parameters y and
[ and get

Xbc:(A'Na+Nb)'7+B

=A-(Ng-7)+(Ny-v+p) (10
! ﬂl
Y

From the inference of Eqn. 10, the impact of constant noise
can be easily neutralized by the linear transformation of ~
and [ because N, and NNV, are just constants. However, in
Table 2, the network with only BN is not good at handling
most constant noise (N, Np). The trainable v and 8 of BN
does not have enough power to help BN reduce the impact of
the constant noise. Due to the forward propagation, the noise
will accumulate as the depth increases and a certain amount
of noise leads to poor performance and training instability.
As shown in Table 2, SE module can partly alleviate this
problem, but not enough because of the high variance of the
testing accuracy under most pairs of constant noise.
For IEBN, we can rewrite Eqn. 10 as

Xoe = A:-Na-v- S+ Ny -y -G +8, (11

,Y// ﬂ/l
where d;. denotes the attention learned in IEBN. Compared
to Eqn. 10, Eqn. 11 with §. from IEBN has successfully ad-
justed constant noise and even achieved better performance

under partial noise configuration. If d;. only excites 3, we
can rewrite Eqn. 11 as

Xpe = ANy v+ Ny -y + B Spe, (12)
—— N——

'Y”/ 6///

where & can only adjust the noise in 3’ instead of .
But if applied to v, dp. can handle the noise of scale and bias
simultaneously. It may be the reason why the result about
only exciting /3 is worse than the other in Table 5, but better
than the original model with BN in Table 1.

| (Noy Ny) | BN | SE | IEBN |
(0.0,0.0) | 74291061y | 75.80(105) | 77.09(x0.15)
(0.8,0.8) | 45.42 (131 4) | 73-18(x0.66) | 7542(x0.08)
(0.8,0.5) | 46.10(x31.01) | 71.59x1.77) | 77.39(x0.00)
(0.8,0.2) | 71.6510.92) | 71.08(x052) | 76.77(x0.22)
(0.5,0.5) | 35.77(x34.76) | 7461 (x056) | 77.00(x0.20)
(050.2) | 73101179y | 75.72(x1.47) | 7711 (20.08)

Table 2: The testing accuracy (mean =+ std %) of ResNet164
on CIFARI100. (N,, Ny) is a pair of constant noise added
to BN at the batch-normalized step as stated in Eqn. 9.
(0.0, 0.0) means we do not add the noise.

Mix-Datasets Attack. In this part, we consider interfering
with 2 and o2 by simultaneously training on the datasets
with different distributions in one network. Unlike constant
noise which is added to networks directly, this noise is im-
plicit and is generated when BN computes the mean and
variance of training data from different distribution. These
datasets differ widely in their distribution and causes severe
batch noise. Compared with the constant noise, this noise is
not easy to eliminate by linear transformation of y and .
In our experiments, we train ResNet164 on CIFAR100 but
mix up with MINIST (LeCun and Cortes 2010) or Fashion-
MINIST (Xiao, Rasul, and Vollgraf 2017) in a batch and
compare the performance of BN and IEBN. Table 3 shows
the test accuracy on CIFAR100, where “C+kx M or F”
means we sample a batch consisted of 100 images from
CIFAR100 (C) and 120 x k images from MNIST (M) or
FashionMNIST (F) at each iteration during training. As k in-
creases, the batch noise becomes more severe for CIFAR100
since 2 and o2 contains more information about MNIST



or FashionMnist. In most cases, despite the severe noise like
“C+2x”, the model with IEBN still performs better than the
model with BN training merely on CIFAR100. On the other
hand, the drop in accuracy of IEBN is smaller than that of
IEBN, and IEBN alleviates the degradation of network gen-
eralization. These phenomena illustrate that, although under
the influence of MINIST or FashionMINIST, the model with
IEBN has a stronger ability to resist the batch noise.

| | BN | IEBN |

| Dateset | testacc | accdrop | testacc | accdrop |
C 74.29 -0.00 77.09 -0.00
C+2x M | 73.13 -1.16 76.65 -0.44
C+3x M | 71.54 -2.75 76.03 -1.06

C+2x F 71.56 -2.73 75.57 -1.52
C+3x F 71.27 -3.02 74.26 -2.83

Table 3: Test accuracy (%) on CIFARI00 with ResNet-
164. “C+kx M/F” means we samples a batch consisted of
100 images from CIFAR100 (C) and 120 x k images from
MNIST (M) or FashionMNIST (F) at each iteration during
training. “acc drop” means the drop of accuracy compared
with network trained merely on CIFAR100.

Ablation Study

In this section, we conduct experiments to explore the ef-
fect of different configurations of IEBN. We study different
ways of generating 6., the position for applying the atten-
tion, initialization of IEBN and activation function used in
IEBN. All experiments are performed on CIFAR100 with
ResNet164 using 2 GPUs.

The Way of Generating ;.. This part we study different
ways to process the squeezed features to generate Jp.. As
shown in Alg. 1, IEBN squeezes the channel through global
average pooling AVG(+) and processes the squeezed feature

by linear transformation (i.e. AVG(Xp.) X7, + Bc) for each
channel, denoted as “Linear”. We also consider another two
methods to process the information. The first one is that we

remove the additional trainable parameters 7. and BC for lin-
ear transformation in [EBN and directly apply the squeezed
feature after sigmoid function to the channel, denoted as
“Identity”. The second one is that we use a fully connected
layer stacking of a linear transformation, a ReL.U layer, and
a linear transformation to fuse the squeezed features of all
channels {AVG(X}.)}<.;, denotes as “FC”. “FC” is similar
to the configuration as SE module introduced in (Hu, Shen,
and Sun 2018).

Table 4 shows the testing accuracy using different ways
to process the squeezed features. “FC” operator provides
more nonlinearity than “Linear” operator (IEBN), but such
nonlinearity may lead to overfitting and the “Linear” oper-
ator (IEBN) simplifies the squeezed feature processing and
has better generalization ability. Furthermore, the result of
“Identity” indicates that it is not enough to simply and di-
rectly use instance information to enhance self-information

without any trainable parameters. The operators with train-
able parameters, such as “Linear” (IEBN) and “FC”, are
needed to process the instance information such that the
adaptive and advantageous noise during training can be reg-
ulated to improve the performance.

|  Operator | Dataset | TestAcc. |
Linear IEBN) | CIFAR100 | 77.09(40.15)
Identity CIFAR100 | 67.53(+2.49)
FC CIFAR100 | 76.11(£0.28)

Table 4: Testing accuracy (%) with different ways to process
the squeezed features. “Linear” means a linear transforma-
tion applied to a squeezed feature, which is actually IEBN.
“Identity” means removing the parameters for linear trans-
formation in “Linear”. “FC” means a fully connected layer
is used to fuse all the squeezed features of all channels.

Excitation Position. We study the influence of different
positions that J,. excites. For self-attention mechanism like
SENet (Hu, Shen, and Sun 2018), DIANet (Huang et al.
2019) and SGENet (Li, Hu, and Yang 2019), the rescal-
ing coefficient usually excites both the trainable parameter
~ and 8 of BN. In IEBN, the 4y, is only applied to adjust the
scaling parameter v in BN. To differentiate the influence of
the excitation positions, Table 5 shows testing accuracy with
different positions where the d;. excites. We show that the
performance is unsatisfied when the ;. is merely exciting
B. Moreover, there is a slight difference between exciting
only v and exciting both v and 3, and the former excitation
position has better performance. From the point of view of
adjusting noise, Eqn. 11 and Eqn. 12 can explain the result
shown in Table 5. Therefore, the results suggest that to make
IEBN more effective, it is important to carefully choose the
position where the & should excite.

| Position | Dataset | TestAcc. |
v (IEBN) | CIFAR100 | 77.09(£0.15)
3 CIFAR100 | 75.03(+0.54)
vand § | CIFAR100 | 77.02(%+0.08)

Table 5: Testing accuracy (%) with different positions that
the dp. excites. v and 3 are the parameters in the reparame-
terization step of BN.

Initialization of 4. and B. This part studies the initial-
ization of trainable parameters 4. and Bc which are used to
process the squeezed feature in IEBN. According to the ex-
periments in Table 4, the learnable parameters, 4. and BC,
are indispensable for IBEN to be effective. Therefore, fur-
ther study of different initialization configuration is essential
to understand IEBN in depth. In order to explore this impact,
we use constant 1, 0 and -1 for grid search to find the best
pair of initialization for 4. and Bc. We find that the initial-
ization of the trainable parameters of IBEN 4. and Bc have
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Figure 4: The training curve with different activation func-
tions in IEBN. The sigmoid function outperforms other ac-
tivation functions as a gating mechanism.

a significant impact on the performance of model: From Ta-
ble 6, the performance is varying as different initialization is
chosen. Note that, the best choice of 4. is 0 when we freeze
the initialization of {3.. Similarly, the effect of the model is
the best when the initialization of Bc is fixed to be -1. The
theoretical nature behind the best initialization configuration
will be our future work.

A\Be | 1 | o | 1]
1 68.5 | 66.96 | 69.53
0 75.86 | 76.21 | 77.09
-1 74.64 | 74.73 | 75.31

Table 6: Test accuracy (%) with different constant initializa-
tion for trainable parameters scaling 4. and shift 3. in IEBN.

Activation Function. We explore the choice of activation
function in IEBN. We consider four options for activation
function: sigmoid, tanh, ReLU and Softmax. The testing
accuracy results are reported in Fig. 4. Note that, ReLU
may be a terrible choice which maintains only 1% accu-
racy throughout the training. In addition, the performance
of Softmax is evidently worse than that of sigmoid or tanh.
The choice of sigmoid can benefit the stability of training
and performance. In fact, sigmoid is used in many attention-
based methods like SENet (Hu, Shen, and Sun 2018) to gen-
erate attention maps as a gate mechanism. The testing accu-
racy of different choices of activation functions in Table 4
shows that sigmoid helps IEBN as a gate to rescale channel
features better. The similar ablation study in the SENet pa-
per (Hu, Shen, and Sun 2018) also shows the performance
of different activation functions like: sigmoid, > tanh >, and
ReLU (bigger is better), which coincides to our reported re-
sults.

Conclusion

In this paper, we introduce two kinds of noise brought by BN
and offer a point of view that self-attention mechanism can
regulate the batch noise adaptively. We propose a simple-
yet-effective and attention-based BN called as Instance
Enhancement Batch Normalization (IEBN). We demon-
strate empirically the effectiveness of IEBN on benchmark
datasets with different network architectures and also pro-
vide ablation study to explore the effect of different config-
urations of IEBN.
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| | ResNetl64 | PreResNet164 | ResNext29-8x64 | Densenet100-12 |

Batch size 128 128 128 64
Epoch 180 164 300 300
Optimizer SGD(0.9) SGD(0.9) SGD(0.9) SGD(0.9)
depth 164 164 29 100
schedule 81/122 81/122 150/225 150/225
wd 1.00E-04 1.00E-04 5.00E-04 1.00E-04
gamma 0.1 0.1 0.1 0.1
widen-factor - - 4 -
cardinality - - 8 -
Ir 0.1 0.1 0.1 0.1

Table 7: Implementation detail for CIFAR10/100 image classification. Normalization and standard data augmentation (random
cropping and horizontal flipping) are applied to the training data.

\ | ResNet34 | ResNet50 | ResNet]152 | ResNext50-32x4 |

Batch size 256 256 256 256
Epoch 120 120 120 120
Optimizer | SGD(0.9) | SGD(0.9) | SGD(0.9) SGD(0.9)
depth 34 50 152 50
schedule | 30/60/90 | 30/60/90 | 30/60/90 30/60/90
wd 1.00E-04 | 1.00E-04 | 1.00E-04 1.00E-04
gamma 0.1 0.1 0.1 0.1
Ir 0.1 0.1 0.1 0.1

Table 8: Implementation detail for ImageNet 2012 image classification. Normalization and standard data augmentation (random
cropping and horizontal flipping) are applied to the training data. The random cropping of size 224 by 224 is used in these
experiments.

Appendix
Implementation Detail
The implementation detail is shown in Table 7 and Table 8.

Other Style Transfer Loss

The style transfer loss of different styles can be found in
Fig. 5.
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Figure 5: Training curves of style transfer networks with different styles and different normalization methods. Specially, “SE”
means the transformation network with BN and SE module.
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