Multidimensional Phase Recovery and
Interpolative Decomposition Butterfly Factorization

Ze Chen
Department of Mathematics, National University of Singapore, Singapore

Juan Zhang
Department of Mathematics and Computational Science, Xiangtan University, China

Kenneth L. Ho
Center for Computational Mathematics, Flatiron Institute, USA

Haizhao Yang
Department of Mathematics, Purdue University, USA

March 23, 2020

Abstract

This paper focuses on the fast evaluation of the matrix-vector multiplication (matvec) g = K f for
K e CN*N_ which is the discretization of a multidimensional oscillatory integral transform g(z) =
[K(z,€)f(€)d¢ with a kernel function K (z,£) = e*™®(®) where ®(z,£) is a piecewise smooth phase
function with = and ¢ in R? for d = 2 or 3. A new framework is introduced to compute K f with
O (Nlog (N)) time and memories complexity in the case that only indirect access to the phase function
® is available. This framework consists of two main steps: 1) an O (N log (N)) algorithm for recovering
the multidimensional phase function ® from indirect access is proposed; 2) a multidimensional inter-
polative decomposition butterfly factorization (MIDBF) is designed to evaluate the matvec K f with
an O (Nlog(N)) complexity once ® is available. Numerical results are provided to demonstrate the
effectiveness of the proposed framework.

Keywords. Data-sparse matrix, butterfly factorization, interpolative decomposition, operator compres-
sion, randomized algorithm, matrix completion.

1 Introduction

This paper is concerned with the efficient evaluation of multidimensional oscillatory integral transforms.
After discretization with N grid points in each variable, the integral transform is reduced to a dense matrix-
vector multiplication (matvec) as follows:

g(x) =Y K@, f(€) =Y =0 f(¢), zeX, (1)

£eQ e

where X and Q are typically point sets in R? for d > 1, K (z,£) = ¢*™®@%) is a kernel function, ®(z,¢) is
a piecewise smooth phase function with O (1) discontinuous points in « and &, f(£) is a given function, and
g(x) is a target function.

When the explicit formula of the kernel function is known, the direct computation of matvec in (1) takes
0] (N 2) operations and is prohibitive in large-scale computation. There has been an active research line
aiming at a nearly linear-scaling matvec for evaluating (1). In the case of uniformly distributed point sets
X and Q, the fast Fourier transform (FFT) [36] can evaluate (1) when ®(z,£) = 2z - £ in O (Nlog(N))
operations. When the point sets are non-uniform, the non-uniform FFT (NUFFT) algorithms in [13, 32]
are able to evaluate (1) when ®(z,£) = x- & in O (N log (N)) operations. For more general kernel functions,

the butterfly factorization (BF) [21, 25, 27, 28] can factorize the dense matrix e2™*®(®%) as a product of
O (log (N)) sparse matrices, each of which has only O (V) non-zero entries. Hence, storing and applying
e?™®(@:8) via the BF for evaluating (1) take only O (N log (N)) complexity.

However, for multidimensional kernel functions, existing algorithms are efficient only when the explicit
formula of the phase function ® is known [1, 32, 25, 6, 20, 21, 23, 28]. The case of indirect access of the
kernel function is illustrated in Table 1 for a list of different scenarios. When O (1) rows and columns of the
phase matrices are available by solving PDE’s, Scenario 3, as well as Scenario 1, are special cases of Scenario
2. Therefore, we will focus more on Scenario 2 in this paper and will discuss the relationship between there
Scenarios in detail. In fact, it is hard to evaluate any arbitrary entry of the kernel matrix directly in O (1)
operations in Scenario 2. Therefore, the computational challenge in the case of indirect access of the kernel
function motivates a series of new algorithms in this paper.

Scenario 1 : | There exists an algorithm for evaluating an arbitrary entry of the kernel
matrix K in O (1) operations [3, 4, 21, 27].

Scenario 2 : | There exists an O (N log (N)) algorithm for applying the kernel matrix K and
its transpose to a vector [14, 21, 23, 31].

Scenario 3 : | The phase functions ® are solutions of partial differential equations (PDE’s)
[10]. O (1) rows and columns of the phase matrices are available by solving
PDE’s.

Table 1: Three scenarios of the indirect access of the phase functions.

As the first main contribution of this paper, in the case of indirect access, a nearly linear scaling algorithm
is proposed to recover multidimensional phase matrices in the form of low-rank matrix factorization. In
scientific computing, several important problems require the construction of low-rank phase matrices [3, 4,
17, 30, 31, 7, 26, 34, 14]. Previously, a nearly linear scaling algorithm has been proposed in [38] to recover
the low-rank phase matrix with uniform discretization grid points in 1D. However, the 1D algorithm in [38] is
problematic in the case of high-dimensional nonuniform discretization grid points. In this paper, we address
the problem in multidimensional cases via Delaunay triangulation (DT) and minimum spanning tree (MST)
construction. Assuming the geometric coordinates of the discretization grids are given, and the indirect
access of the phase functions is known, such as Scenario 2 in Table 1. The phase matrices will be recovered
to piecewise smoothness matrices by a fast MST algorithm based on DT. Then, low-rank approximations of
the recovered phase matrices will be constructed.

Secondly, when low-rank constructions of the phase matrices have been recovered, a new BF, multi-
dimensional interpolative decomposition butterfly factorization (MIDBF), is proposed for the matvec K f
with an O (N log (N)) complexity for both precomputation and application. The MIDBF is a generalization
of the interpolative decomposition butterfly factorization (IDBF) [28] in multidimensional cases especially
when the discretization grid points are non-uniform. These two contributions lead to the first framework
for multidimensional fast oscillatory integral transforms in the case of indirect access with non-uniform grid
points.

The rest of the paper is organized as follows. In Section 2, we revisit and generalize existing low-rank
phase matrix factorization techniques, and propose a new low-rank matrix factorization in the case of indirect
access. Next, the MIDBF will be introduced in Section 3. Finally, we provide several numerical examples
to demonstrate the efficiency of the proposed framework in Section 4. For simplicity, we adopt MATLAB
notations for the algorithm described in this paper: given row and column index sets I and J, K(I,J) is
the submatrix with entries from rows in I and columns in J; the index set for an entire row or column is
denoted as “: 7.

2 Low-rank phase matrix factorization

This section introduces a new low-rank phase matrix factorization for indirect access, which is the first main
step in the proposed framework. We begin with a brief review of existing techniques and introduce a new

algorithm afterward. These low-rank factorization methods will be applied repeatedly.

2.1 Low-rank approximation by randomized sampling

Let us revisit an existing low-rank matrix factorization with linear complexity. For A € C™*" a rank-r
approximate singular value decomposition (SVD) of A is defined as

A=USVT, (2)

where U € C™*" is orthogonal, ¥ € R"*" is diagonal, and V € C"*" is orthogonal, and r = O (1)
independent of the matrix size m and n with a prefactor depending only on the approximation error e.
Previously, [12, 15] have proposed efficient randomized tools to compute approximate SVDs for numerically
low-rank matrices. The method in [12] is more attractive because it only requires O (1) randomly sampled
rows and columuns of A for constructing (2) with O (m + n) operations and memories complexity, and it is
observed that |A(i, j) — (UXVT)(i,)| = O (€) in a probabilistic sense, where 1 <i <m and 1 < j < n.

The method is denoted as Function randomizedSVD and is presented in Algorithm 1. Assuming the whole
low-rank matrix A is known, the input of Function randomizedSVD is A, O (1) randomly sampled row indices
R and column indices C, as well as a rank parameter 7. based on the error e. Equivalently, it can also be
assumed that A(R,:) and A(:,C) are known as the inputs. Let r be an empirical estimation of r., then the
outputs are three matrices U € C"™*" ¥ € R™" and V € C™*" satisfying (2). In Function randomizedSVD,
for simplicity, given any matrix K € C**! Function qr (K) performs a pivoted QR decomposition K (:, P) =
QR, where P is a permutation vector of the ¢ columns, @ is a unitary matrix, and R is an upper triangular
matrix with positive diagonal entries in decreasing order. Function randperm(m,r) denotes an algorithm
that randomly selects r different samples in the set {1,2,...,m}. If necessary, we can add an over sampling
parameter g such that we sample rq rows and columns and only generate a rank r truncated SVD in Line 10
in Algorithm 1. Larger ¢ results in better stability of Algorithm 1.

1 Function [U, 3, V] < randomizedSVD(A,R,C,r)

2 [m, n] < size(A)

3 P qr(A(R,:)) ; e« P(1:7) // A(R,P)=QR
4 P+ qr(AG,CO)T) 5 Moy + P(1:7) // A(P,C) = RTQT
5 Q<+ ar(A(Iew)) 5 Qeot <+ Q(:,1:7) // A(P1l.) = QR
6 Q + qr(A(I,ouw,)T 5 Qrow + Q(,1:7) // A(Il,on, P) = RTQT
7 Srow randperm(m,r) ; I + [iow, Srow)

8 Secot < randperm(n,r) ; J < [eor, Seol

o | M (Qea(l,:) AL, J) (fow(:,J))T // ()T : pseudo-inverse
10 [U]\/[, ZM, VM] — SVd(M)

11 U+ QcolUM ; 24— ZM 5 V QT'O’LUVM

Algorithm 1: Randomized sampling for a rank-r approximate SVD with O (m + n) operations, such
that A~ USVT.

2.2 One-dimensional phase matrix factorization with indirect access

A nearly linear scaling algorithm for constructing the low-rank factorization of the phase matrix ® € RV*N
in (1) has been proposed in [38] when only O (1) selected rows and columns of a 1D kernel matrix K = e>™i®
with uniform discretization grid points are available as Scenario 2 in Table 1. In this subsection, we revisit
the algorithms in [38] as a motivation for the multidimensional case proposed in this paper. The introduction
of the 1D algorithms also helps to clarify the difficulties in the multidimensional case.

The difficulty of reconstructing ® from K = e2™® comes from the fact that

1 1 o 1 o
o . _ o 27i®(,7) _ 2mi®(4,5) | — .
—271_0 (log (K (7,7)))) —271_\; (log (e)) o arg (e) mod(®(7, 5), 1),

where (+) returns the imaginary part of the complex number, and arg(-) returns the argument of a complex
number. Thus, ® is only known up to modular 1.

Since the point sets of the 1D kernel matrix are uniformly distributed, the main idea of [38] is to recover
® by looking for the solution of the following combinatorial constrained 7'V 3-norm! minimization problem:

min Y 06 lrvs + D 9G4 lrvs

DERN XN 1ER jec (3)

subject to mod (®(¢,7),1) = %%(log (K(i,7))) fori e Ror jeC,

where R and C are row and column index sets with O (1) randomly selected indices, respectively. The
optimization problem above is appealing because it only requires the knowledge of O (1) rows and columns
of K and the computational cost in each iteration takes O (N) operations and memories. If the optimization
problem can be solved in O (1) iterations, then the recovered rows and columns of ® can be used to compute
the low-rank factorization of ® by Function randomizedSVD in Algorithm (1). The final computational cost
is nearly linear in N. However, due to the non-convexity of (3), O (1) iterations are almost impossible to
give a good solution unless a very good initial guess is available. This motivates [38] to design an empirical
O (N) algorithm to provide a good initial guess to the optimization problem in (3).

The main algorithms of [38] are revisited and summarized in Algorithm 2 and Algorithm 3 in this
paper for the preparation of higher dimensional cases. Algorithm 3 relies on the repeated application of
Algorithm 2, which adjusts the values of phase vectors by minimizing the absolute value of the third-order
derivative, to provide an empirical solution to (3). The functions in these two algorithms are denoted as
RecoveryVectorl and RecoveryMatrixl, respectively. In fact, the algorithms presented in this paper are
slightly different from those in [38] for robustness against discontinuity detection, which relies on a class of
vectors C with a threshold 7 defined via:

Cr={ueR":|u) —3u(i — 1)+ 3u(t —2) —u(i — 3)| < 7,Vi € {4,5,...,n}}. (4)

Essentially, C consists of vectors with a small absolute value of the third order derivative controlled by 7 in
the sense of finite difference. In our algorithms, if |u(i) —3u(i —1) +3u(i —2) —u(i — 3)| > 7, we will consider
the original function that generates u to be discontinuous at the location corresponding to u(:). With this
definition ready, we are able to explain our algorithms as follows.

For Function RecoveryVectorl in Algorithm 2, input variables are a vector u of length N, a discontinuity
detection parameter 7, and a parameter flag which indicates whether u will be recovered from the first entry
or the fourth entry. Then, the outputs are a smooth vector v satisfying mod (v, 1) = mod (u, 1) and a vector
of indices D for discontinuity locations.

In Function RecoveryMatrix1 in Algorithm 3, one of the input variables is a function handle ®, which
can evaluate an arbitrary row or column of the phase matrix. The other inputs are a vector R and a vector C
as the row and column index sets indicating O (1) randomly selected rows and columns of the phase matrix,
as well as a discontinuity detection parameter 7.

Because it is more convenient to apply Algorithm 2 to recover a vector representing a continuous function,
we first apply Algorithm 2 with 7 to identify the sets of discontinuous points D, and D., each of which
contains the first index 1. Next, the phase matrix is partitioned into n, x n. blocks, each of which is denoted
as ®.B;B; representing a continuous piece of the phase function, where n, is the cardinality of D, n. is
the cardinality of D., s = 1,2,...,n,, and t = 1,2,...,n.. This procedure is referred to as the Function
Partitioni in Line 6 in Algorithm 3. Similarly, R and C are partitioned into n, and n. parts by D, and
D., and saved as R.B;s and C.B; respectively. For example, Panel (a) in Figure 1 visualizes an example when
the phase function contains only 4 continuous blocks: ®.818;, ®.58182, ®.B281, .B38,. Panel (¢) and (d)
in Figure 1 visualize the randomly selected rows R.B; and columns C.3; in ®.5,5;.

Finally, the selected rows and columns are recovered by Algorithm 2 with a carefully designed order in
Line 9-13 in Algorithm 3. The parameter for detecting discontinuous points is set to 1 since there is no need
to detect discontinuity anymore. Note that there is no uniqueness for recovering a smooth vector from its
values after mod 1. Hence, we introduce the specially designed order in Line 9-13 to guarantee that each

!The TV3-norm of a vector v € RY is defined as ||v||py 3 := Zﬁizx |vi — 3vi—1 + 3v;—2 — v;—3] in this paper.

1 Function [v, D] = RecoveryVectorl (u, T, flag)

2 N «length(u); v+ u; D+ [l]; n+<1; c+1

3 while ¢ <n do

4 st < D(c)

5 if flag ~=1 or st ~=1 then

6 v(st + 1) « u(st + 1) — round(u(st + 1) — v(st))

7 v(st +2) < u(st + 2) — round(u(st + 2) — 2v(st + 1) + v(st))

8 fora=st+3: N do

9 v(a) < u(a) — round(u(a) — 3v(a — 1) + 3v(a — 2) — v(a — 3))
10 if |v(a) —3v(e —1)+3v(a—2) —v(e—3)] > 7and a < N — 3 then
11 D+ [Dyal; n+n+1 // detect discontinuous locations
12 v(a) < u(a) — round(u(a) — v(a — 1))

13 Break

14 c+—c+1

Algorithm 2: An O (N) algorithm for recovering a vector v from the observation u = mod(v, 1).
The locations of discontinuity in v are automatically detected. A vector v is identified via empirically
minimizing the magnitude of the absolute value of its third-order derivative.

recovered row and column at their intersection share the same value, as long as the discontinuous points in
the phase function are well distinguished by a parameter 7 from continuous points, which can be shown by
Lemma 2.1 below.

1 Function [®,R,C] = RecoveryMatrix1 (P, R,C,7)

2 D, + RecoveryVector1(®(;,C(1)),7,0) // D, : discontinuous point set
3 D. + RecoveryVector1(®(R(1),:),7,0) // D.: discontinuous point set
4 R+ [R,D,]; C+[C,D]

5 n, < length(D,.) ; n. + length(D,.)

6 | [® R,C] < Partition1(®,R,C,D,,D.)

7 for s=1:n, do

8 fort=1:n.do

9 ®.BB:(1,:) + RecoveryVectorl(P.B,B:(1,:),1,0)

10 ®.B:B:(:, k) + RecoveryVector1(®.B,B;(:, k),1,0) for k =1,2,3

11 ®.B,B;(k,:) + RecoveryVector1(®.B,B;(k,:),1,1) for k =2,3

12 ®.B:B.(R.Bs(k),:) < RecoveryVector1(P.B,B:(R.Bs(k),:),1,1) for all k

13 ®.BsB:(:,C.B:(k)) < RecoveryVectorl(®.B;B:(:,C.Bi(k)),1,1) for all k

Algorithm 3: An O (N) algorithm for the approximate solution of the T'V3-norm minimization when
the phase function ®(z, &) is defined on R x R.

Lemma 2.1. Given mod(¢,1) € R™ ™ and the recovered values of ¢(1 : 3,1 : 3), where ¢ is a one-
dimensional phase matriz. Assuming that all rows and columns of ¢ belong to the class C. with a threshold

T < 16, then the intersection of each recovered row and column by Algorithm 3 share the same value.

The proof of Lemma 2.1 can be found in the appendix. The correct 7 depends on the phase function and
is not known a priori. In practice, T is set as % according to Lemma 2.1 and it performs good enough to
identify O (1) discontinuous points with O (N) operations.

Once the phase function recovery algorithm in Algorithm 3 is ready, following the idea of low-rank matrix
factorization via randomized sampling in Algorithm 1, we can obtain a nearly linear scaling algorithm to

construct the low-rank factorization of the phase matrix.

(a) (b) (c) (@

Figure 1: An illustration of the low-rank matrix recovery for a 1D phase matrix in Algorithm 3. (a) Line 6
partitions the phase matrix into submatrices such that there is no discontinuity along rows and columns in
each submatrix. Then, Line 9-10 recovers the first row and column of each submatrix. (b) Next, Line 10
recovers the second and the third columns for each submatrix. (c) Next, Line 11-12 recovers O (1) rows
(including the second row and the third row) of each submatrix. (d) Finally, Line 13 recovers O (1) columns
of each submatrix.

2.3 Multidimensional phase matrix factorization with indirect access
2.3.1 Overview

In this subsection, a nearly linear scaling algorithm for constructing the low-rank factorization of the mul-
tidimensional phase matrix ® € RV* will be introduced when we only know the kernel matrix K = e?™?®
with non-uniform discretization grid points through Scenario 2 in Table 1. In the multidimensional case,
the coordinates of N x N discretization grid points will be required for our methods, where N = n? is the
number of points in a d-dimensional domain, d = 2 or 3, and n is the number of points in each dimension.
Recall that the main purpose of our algorithm is to recover O (1) randomly selected rows and columns of @,
and construct the low-rank factorization in the end.

In Scenario 2, applying the kernel matrix K and its transpose to O (1) randomly selected natural basis
vectors in RY can obtain the rows and columns of K in O (N log (N)) operations. Notice that Scenario 1 is
a special case of Scenario 2, we only focus on Scenario 2 for phase recovery.

Similar to the 1D case, instead of recovering the exact ® that generates K, our primary purpose is to
find a low-rank matrix ¥ such that

mod (¥, 1) = %S(log (K)). (5)

Based on the piecewise smoothness of the multidimensional phase function, a recovery algorithm similar
to the 1D case can be proposed to recover the rows and columns of ® up to an additive error matrix F
that is numerically low-rank, i.e., the method returns a matrix ¥ = ® + E such that e>™¥ = ¢>™*® and
E is numerically low-rank. However, the discretization of the integral operator especially in the case of
non-uniform grid points can introduce “artificial” discontinuity along the rows and columns of the phase
matrix. Hence, it is impossible to apply the vector class C. and the algorithms in the 1D case. Although
informally the recovery problem can be stated as

Find piecewise smooth ¥(i,:) and V(:, j)
1 6
S (log (K(i,7))) fori € Ror jeC. ©)

subject to mod (¥(4,j),1) = by
T

Notice that the vectors ¥(i,:) and ¥(:,j) are not “smooth” at the location when adjacent entries are
corresponding to non-adjacent points in the high-dimensional spatial domain in R?. In other words, the
definition of the smoothness of these vectors should rely on the smoothness of the phase function in the
original domain in R? instead of the difference of adjacent entries as in (4).

How to recover such piecewise smooth vectors is the main difficulty of the extension of the 1D algorithm
to high-dimensional cases. A naive algorithm is to identify the value according to the adjacent point with
the smallest distance through all points. However, this takes O (N 2) operations to find the adjacent point.
In other words, how to solve this difficulty with nearly linear computational complexity is the main challenge
for us.

2.3.2 Vector recovery

Let us use the example of a vector recovery in the high-dimensional case to illustrate the ideas to conquer
the difficulty mentioned above. Suppose v is the discretization of a piecewise smooth function ¢(x) with N
(possibly nonuniform) grid points in [0, 1] and O (1) pieces of domains in which ¢(z) is smooth. The spatial
locations of the N grid points are stored in a matrix X € RV*4 ie.. X(i,:) is the location of the i-th entry
of v. Assume that k is a vector representing e>7*¢(*) using the same discretization. Informally, the vector
recovery problem is to find a “piecewise smooth” vector v subject to mod (v, 1) = 5=S (log (k)).

To conquer the difficulty of artificial discontinuity, the entry values of v are identified via minimizing the
variation of ¢(z) using physically adjacent locations in R?. For this purpose, we introduce a special recovery
path matrix P € ZV-1*2 with a beginning Node ¢ such that P(:,2) is a permutation of {1,2,..., N} \ ¢,
and (P(i,1), P(i,2)) is a pair of indices of v with corresponding spatial locations adjacent to each other in
R< ie., X(P(i,1),:) is an adjacent grid point of X (P(i,2),:) in R%.

If the recovery path matrix P and a set of indices for discontinuous locations D are given, the recovery
of v can be solved via the optimization problem:

min Z |U(P(i72)) —v(P(i, 1))|

VERY e TN M)

1
subject to mod (v,1) = %% (log (k)) .

We will introduce the construction of P later and focus on the construction of D and a nearly linear
scaling empirical solution to (7) first. Similarly to the 1D case, to detect discontinuity of the piecewise smooth
function automatically, we define a class of vectors C p for a threshold 7 and a recovery path matrix P via:

Crp={veR": |[v(P(i,2)) —v(P(,1))| < 7,Vi € {1,2,...,n— 1}}.

C- p consists of vectors with a small absolute value of the first order derivative controlled by 7 in the sense
of finite difference. In our assumption, if |v(P(%,2)) — v(P(i,1))| > 7, we will consider the original function
that generates v to be discontinuous at the location X (P(i,2),:), which will be justified by our method
afterwards.

Function RecoveryVector2 in Algorithm 4 below identifies a piecewise smooth vector v from a given
vector u = 5= (log (k)) via empirically minimizing [v(P(4,2)) — v(P(i,1))| such that mod(v(P(i,2)),1) =
u(P(i,2)), for each : = 1,2,..., N (corresponding to Line 5 in Algorithm 4). Each smooth piece of v belongs
to C; p. The discontinuity location ¢ will be detected and assigned to the discontinuity location set D if
[v(P(3,2)) —v(P(i,1))] > 7. Tt is clear that the complexity of Algorithm 4 to empirically solve (7) and detect
discontinuity is O (N). Note that Function RecoveryVector2 in Algorithm 4 is based on the first-order
derivative of the phase function while Function RecoveryVectorl in Algorithm 2 is based on the third-order
derivative. It is a simple extension to apply higher order derivative in Algorithm 4 using the high-order finite
difference schemes in [18, 37], which is left as future work if necessary.

Function [v, D] = RecoveryVector2 (u, T, P)
N « length(u); D+« [1]; v+ u
forc=1:N—-1do
bg < P(c,1); ed <+ P(c,2)
v(ed) + u(ed) — round(u(ed) — v(bg))
if |v(ed) —v(bg)| > 7 then
L D «+ [D,ed] // detect discontinuous locations

N 0 A W

Algorithm 4: An O (N) algorithm for recovering a vector v from the observation v = mod(v,1) and
detecting discontinuity using the recovery path matrix P.

2.3.3 Recovery path

The main challenge of vector recovery is to identify a recovery path matrix P efficiently. Recall that the
naive algorithm to identify an adjacent point of a given location is to traverse all other points, compute
distances, and pick up the smallest one, which needs O (N 2) operations to construct P for N points.

First of all, we consider an algorithm for constructing a recovery path matrix based on k-nearest neighbors
algorithm in O (N log (N)) operations [35]. When k-nearest neighbors of each point are found, the recovery
path can be constructed by the edges between each point and its k-nearest neighbors. However, it is not
efficient to find an integrated recovery path through all points. For example, in Figure 2 (a), for a row vector
v of a phase matrix, 100 points as the locations of v are randomly generated and connected with their 2-
nearest neighbors. Then, the result shows that this graph is split to 19 connected components. If we recover
v for each component, at least 19 column indices of the phase matrix should be selected as initialization.
Another similar example of a graph for connecting 3-nearest neighbors is illustrated in Figure 2 (b). In
addition, for a graph of IV points connected with their k-nearest neighbors, the largest number of connected

components is O (klﬂ . Thus, this method may not be robust compared to our assumption: only O (1)
rows and columns of the kernel matrix can be used for recovery.

.. 2 y - :. “ * » ."-{“..

I & A 2l L \‘- \. !

<:’ -) $ 3. .!u N

> R S S = P

’.‘ — 4 ‘ Ve , /

P o }, v

o e x.(-' * A A .\\ /I:

& o o —o_ e y.

Figure 2: (a) 100 randomly generated points connected with their 2-nearest neighbors. (b) 100 randomly
generated points connected with their 3-nearest neighbors.

Secondly, we also consider an algorithm based on a radius search in O (N log (N)) operations [11]. By
this method, a graph of recovery path can be generated by connecting each point with their neighbors no
further apart than a search radius. Unfortunately, this graph may also be split to a number of connected
components, which depends on the selection of the search radius. Otherwise, how to choose a search radius
and detect discontinuity will become new challenges.

Therefore, in the rest of this subsection, we propose an algorithm based on the Delaunay triangulation
(DT) and the minimum spanning tree (MST) with nearly linear computational complexity instead of k-
nearest neighbors and radius search algorithm to conquer the main difficulty of vector recovery.

Definition 2.2. For a set of points in the d-dimensional Fuclidean space with locations X € RN*? ¢
Delaunay triangulation is a triangulation DT(X) such that no point in this set is inside the circum-
hypersphere of any d-simplex in DT(X).

Definition 2.3. A minimum spanning tree (MST) T is a subset of the edges of a connected, edge-
weighted undirected graph G that connects all the vertices, without any cycle and with the minimum possible
total edge weight.

DTs are widely used in scientific computing in many diverse applications. The Delaunay criterion is the
fundamental property of DTs, which is often called as the empty circumcircle criterion in the case of 2D
triangulations. In other words, a Delaunay triangulation of a set of points in 2D ensures the circumcircle
associated with each triangle containing no other point in its interior. This property can be extended to
higher dimensions. For instance, in 3D cases, the triangulation of a set of points is composed of tetrahedra.
Then, the circumspheres of all tetrahedra also satisfy the empty circumsphere criterion.

In our problem, given the location matrix X € RV*? of N points in R%, DT(X') can be treated as a fully
connected undirected graph G with edges weighted by the Euclidean distance of two connected points. Due
to the property of DT, useless long edges between X can be eliminated efficiently. Since a DT is a planar

graph, and there are no more than three times as many edges as vertices in any planar graph, DT(X) will
generate only O (N) edges. Moreover, it has been a standard routine to identify DT(X) with an expected
runtime bounded by O (N log (N)) for d = 2 or 3 (e.g., see [5, 24, 33]).

Based on the fact in [9] that the set of edges of DT(X) contains an MST for X, we can use an MST
T(X) as an efficient representation of the graph G = DT(X). Since there are O (N) edges in DT(X), any
of the standard minimum spanning tree algorithms is able to find 7(&X') with an O (N log (IV)) complexity
such as the Prim’s algorithm [29].

Finally, a recovery path matrix P can be identified following the order of nodes in T(X). Breadth-first
search algorithm [19] can be applied for traversing 7 (X) starting from the root ¢ and exploring all of the
neighbor nodes at the present depth prior to moving on to the nodes at the next depth level. It is an efficient
method for constructing P with an O (N) complexity. Otherwise, the definition of the recovery path matrix
P is modified according to T as follows.

Definition 2.4. Given an MST T with N nodes and the root at Node q, a recovery path matrix P €
ZIN=1X2 gssociated to T is a matriz such that 1) P(:,2) is a permutation vector of {1,2,..., N} \ q; 2) the
depth of Node P(i,2) is less than or equal to that of Node P(4,2) if i < j; 3) Node P(i,1) is the predecessor
node of Node P(i,2) in T foralli=1,2,...,N —1.

Figure 3 visualizes an example of DT(X) and 7 (X) for X € R72. The process of constructing P by the
Breadth-First search algorithm is illustrated as well. The whole algorithm is summarized in Algorithm 5.

”2 [7]
ﬁ—E. 54 o544 47

A

g
<

<«

-~

6

3
6

(a)

(b)

(€)

(d)

(e)

)

(&)

Figure 3: An illustration of DT(X), T(X), and the corresponding P for X € R™*2. (a) DT(X) (black dash
line) and 7(X) (in blue). (b) Starting from the root (Node 1), find the first undiscovered node, e.g., Node
3 with depth 1, then let P = [1,3]. (¢) Add [1,4] to P. (d) Add [1,7] to P. (e) find the first undiscovered
node, e.g., Node 6 with depth 2, then add [3,6] to P. (f) Add [4,2] to P. (g) Add [4,5] to P. Finally, a
recovery path matrix P € R%? is set to be P = [1,3;1,4;1,7;3,6;4,2;4,5].

Function P = RecoveryPath(X)
G < delaunayTriangulation(X);
T < minspantree(G);
P < bfsearch(7);

W N R

Algorithm 5: An O (N log (N)) algorithm for generating a recovery path matrix P.

2.3.4 Matrix recovery

When the vector recovery algorithms in Algorithm 4 and Algorithm 5 are ready, we apply them to design a
matrix recovery algorithm. Recall that the main idea is to identify piecewise smooth rows and columns of
U satisfying (5) as summarized in an informal problem statement in (6). Let X; and X» € RV*? store the
spatial locations of the N grid points for the discretization of ®(z,) in x and &, respectively.

First, Algorithm 5 is applied to construct the recovery path matrices P; and P, corresponding to X; and

X, respectively. Then the matrix recovery problem can be formally stated as

min Z Z |(I)(Z7P2(572)) _(I)(Z7P2(571))‘

PERNXN -«
i€R se{l,...,N—1}\D,

+3 3 |®(P1(t,2),) — P(Pi(t,1),5)] (8)

JEC te{l,....N—1}\D,
1

subject to mod (®(4,5),1) = 2—%(log (K(i,7))) fori e Ror j€C,
™

where D, and D, are index sets indicating the discontinuous locations of ® along columns and rows, R and
C are row and column index sets with O (1) randomly selected indices, respectively.

Next, Algorithm 4 is applied with 7 to identify the sets of discontinuous points D, and D, to make (8)
self-contained. Similarly to the 1D case, we can partition the phase matrix into (usually non-contiguous)
submatrices corresponding to the domains in which the phase matrix is continuous, which is equivalent
to dividing the MST T (X) into subtrees whenever an edge connects a predecessor node considered as a
discontinuous point. Correspondingly, the recovery path matrix is partitioned into submatrices associated
with these subtrees. Figure 4 below visualizes an example when an MST 7 (X) is partitioned into two MST's
at the discontinuity location at Node 4.

The partition procedure is denoted as Function Partition2 in Algorithm 6, resulting in n, X n. sub-
matrices of the phase matrix denoted as ®.B,8;, n, submatrices of the recovery path matrix P;, and n,
submatrices of the recovery path matrix Py, for s =1,2,...,n,, and t =1,2,...,n.. The random samples
of the row and column indices in the submatrices are denoted as R.B; and C.B;, respectively. For example,
Panel (a) in Figure 5 visualizes an example when the phase function contains only 4 continuous submatrices
(from light color to dark color): ®.B18y, ®.31B3, ®.B3B1, ®.B3B5. Panel (b) in Figure 5 visualizes the root
row and the root column of each submatrix. Panel (c¢) and (d) in Figure 5 visualize the randomly selected

rows R.B; and columns C.By in ®.58,5;.
(a) ‘:)l @) (2) (b) (c) (d)

.) . Figure 5: An illustration of the low-rank matrix recovery for
Figure 4: (a) An MST 7(Z) with multidimensional phase matrix in Algorithm 6. (a) Line 7
partitions the phase matrix into 4 submatrices in 4 kinds
of color such that there is no discontinuity along rows and
columns in each submatrix. (b) Line 10-11 recovers the row
and column of each submatrix corresponding to the root
node of each sub-MST. (c) Line 12 recovers O (1) rows of
each submatrix. (d) Line 13 recovers O (1) columns of each
submatrix.

a discontinuity location at Node
4. (b) Separate T(X) at the edge
between Node 4 and its predeces-
sor Node 1. (c¢) Two resulting
subtrees and the corresponding re-
covery path matrices [1,3;1,7;3, 6]
and [4,2;4, 5].

Finally, we apply Algorithm 4 again to recover each submatrix. The parameter for detecting discontinuity
is set to 1 since there is no need to detect discontinuity. The specially designed order also guarantees that
each recovered row and column at their intersection share the same value, as long as the discontinuous points
in the phase function have already been well distinguished, as proved by Lemma 2.5 below.

Lemma 2.5. Given mod(¢,1) € R"*™ where ¢ is a d-dimensional phase matriz, d = 2 or 3. Assuming
that all rows and columns of ¢ belong to the class Cr p with a threshold T < i, then the intersection of each
recovered row and column by Algorithm 6 share the same value.

The proof of Lemma 2.5 is simple and similar to Lemma 2.1. For simplicity, we leave the proof to the
reader.

Recall that the correct 7 depends on the phase function and is not known a priori in one-dimensional cases.
In practice, 7 can be set as % for identifying discontinuous point, which can guarantee that the intersection

10

of each recovered row and column share the same value. When the number of discontinuous points is too
large, 7 + € is used to identify discontinuous points, i.e. € = 4—10. This procedure can be repeated until O (1)
discontinuous points have been detected and it takes at most O (IN) operations to obtain a reasonable 7.
When 7 increases to %, no more discontinuoub point will be detected.

In fact, if 7 is set larger than 1 7, the consistency of the intersection of each recovered row and column
should be checked manually instead of by Lemma 2.5. As previously said, our method is based on the first-
order derivative of the phase function, the extension of Algorithm 4 using the high-order finite difference
schemes in [18, 37] is left as future work if the recovered intersection values are not consistent. In our
numerical tests for multidimensional cases, 7 = % is good enough for all numerical examples.

When O (1) discontinuous points have been detected, Algorithm 4 will recover O (1) randomly selected
rows and columns of the phase matrix with nearly linear computational complexity.

Algorithm 6 below summarizes the above steps and the whole process is illustrated in Figure 5.

1 Function ® = RecoveryMatrix2(®,R,C, Xy, Xs, 7)

2 P < RecoveryPath(X;) ; P, < RecoveryPath(X,)

3 D, < RecoveryVector2(®(:,1),7, P;) // D, : discontinuous point set
4 D. < RecoveryVector2(®(1,:), 7, Py) // D.: discontinuous point set
5 R+ [R,D;]; C+|[C,D.]

6 n, < length(D,) ; n. <+ length(D,)

7 [@, R,C, Py, PQ] — PartitionQ((I), R,C, Py, P, D,, D.)

8 for s=1:n, do

9 fort=1:n.do

10 ®.B:8:(1,:) + RecoveryVector2(P.B.B:(1,:),1, Py.13;)

11 ®.BsB:(:,1) < RecoveryVector2(P.B.B:(:,1),1, Py.B;s)

12 ®.B;B:(R.Bs(k),:) < RecoveryVector2(®(R.Bs(k),:), 1, P,.B;) for all k

13 ®.B:B.:(:,C.Bi(k)) < RecoveryVector2(®(:,C.B:(k)), 1, P;.B,) for all k

Algorithm 6: An O (N log (N)) algorithm for the solution of matrix recovery problem (6) when the
phase function ®(z,¢) is defined on R? x R4

2.3.5 Phase matrix factorization

Once the phase function recovery algorithm in Algorithm 6 is ready, following the idea of low-rank matrix
factorization via randomized sampling in Algorithm 1, we can introduce a nearly linear scaling algorithm
to construct the low-rank factorization of the phase matrix as summarized in Algorithm 7. In particular,
Algorithm 7 constructs a low-rank factorization UV, where U € CN*" and V € CN*", such that e2miUVT o
e2™® when we only know the kernel matrix K = e*™® through Scenarios 1 and 2 in Table 1.

In Algorithm 7, K (and @) is a function handle for evaluating an arbitrary entry of the kernel matrix,
or evaluating an arbitrary row or column of K (and ®). Two coordinate matrices X;, Xo € RV*4 a rank
parameter r, an over-sampling parameter ¢, and the matrix size N are also inputs. We randomly select
rq rows and columns of the kernel matrix and use RecoveryMatrix2 to obtain the corresponding rows and
columns of ¥ such that e?™*¥ ~ K. Finally, apply Function randomizedSVD in Algorithm 1 in Subsection 2.1
to evaluate the low-rank factorization of ¥ ~ UVT such that e2™UV" ~ K = €2™?®_ The reconstructed phase
matrix can be set as an initial guess to the optimization problem in (8) and it takes O (1) iterations for sub-
gradient descent methods to converge.

2.3.6 Summary

Before moving to the next algorithm, let us summarize how those algorithms in Subsection 2.3 can be applied
to construct the low-rank matrix factorization of the multidimensional phase functions with nearly linear
computational complexity.

For a general kernel function K(x,§) = e €), suppose we discretize ®(z,¢) with N grid points in
each variable to obtain the phase matrix ®. When the explicit formulas of ®(z, &) are known, it takes O (N)

2mid(x

11

Function [U, V] = LowRankFactorization(K, X}, X2, 7, ¢, N)
R < randperm(N,rq) ; C < randperm(N,rq)
P+ S (log (K)) // generate a function handle for the evaluation of &
¥ < RecoveryMatrix2(®,R,C, Xy, X>)

// generate a function handle for the evaluation of W
[U,%, V] « randomizedSVD(V,R,C,r)
V< VX

W N

Algorithm 7: An O (N log (N)) algorithm for low-rank matrix factorization of phase functions in the
case of indirect access.

operations to evaluate one column or one row of ®. Then, the randomized SVD in Subsection 2.1 is able to
construct the low-rank matrix factorization of ® in O (N) operations.

When the explicit formulas are unknown such as in Scenario 2, it takes O (Nlog(N)) operations to
evaluate one column or one row of the kernel matrix K. Hence, the phase recovery and the low-rank
factorization of ® can be constructed by Algorithm 6 and Algorithm 7 in O (N log (IN)) operations.

In the case of indirect access in Scenario 3, O (1) columns and rows of and phase functions are available by
solving certain PDE’s. For example, in practical applications like solving wave equations [10], each column
or row can be obtained via interpolating the solution of the PDE on a coarse grid of size independent of
N. Thus, the phase recovery algorithm is not required for Scenario 3, it only needs to construct a low-rank
factorization of ® by Algorithm 7 in O (N log (N)) operations.

For Scenario 1, which is a special case included in Scenario 2, any arbitrary entry of the kernel matrix is
available in O (1) operations. Therefore, it can be applied directly to the next algorithm.

Since Line 4 in Algorithm 7 identifies O (1) rows and columns of a low-rank matrix ¥ such that mod
(U(i,§),1) = 5=S (log (K (i,4))) for i € R or j € C, there is not any error generated in this step. The
approximation error of Algorithm 7 is O (¢), which is caused by the low-rank approximation algorithm
(Line 5).

3 Multidimensional Interpolative Decomposition Butterfly Fac-
torization (MIDBF)

This section will introduce the multidimensional interpolative decomposition butterfly factorization for a
matrix K = (K(x,§))zex cco satisfying a complementary low-rank property [21], where X and € contain
O (N) points possibly non-uniformly distributed in [0, 1)% and d is the dimension of the domain. As a special
example, the kernel matrix K(z,§) = 2™ ®(#.8) gatisfies the complementary low-rank property. Hence, once
the phase function ® in Scenarios 2 and 3 has been recovered by Algorithm 7 in Subsection 2.3.5 in the form
of low-rank factorization, we can construct a function handle to evaluate an arbitrary entry of K in O (1)
operations. Especially, in Scenario 1, this kind of function handle is known directly. Then, the MIDBF can
construct the butterfly factorization of K for nearly linear scaling fast matvec, when the function handle is
given.

Let us recall the definition of complementary low-rank matrices in [21]. For such a matrix, we construct
two trees Tx and Tq for point sets X and (), respectively, assuming that both trees have the same depth
L = O (log (N)), with the top-level being level 0 and the bottom one being level L (see Figure 6 for an
illustration). Such a matrix K of size N x N is said to satisfy the complementary low-rank property if
for any level ¢, any node A in Tx at level £, and any node B in T at level L — ¢, the submatrix K (A4, B),
obtained by restricting K to the rows indexed by the points in A and the columns indexed by the points in
B, is numerically low-rank.

3.1 Notations and overall structure

The notation of the 1D IDBF introduced in [28] will be adopted and adjusted to the multidimensional case
in this paper. With no loss of generality, we focus on the 2D case with uniform point distributions first. The

12

v

Figure 6: Trees of the row and column indices. Left: Tx for the row indices X. Right: Tq for the column
indices 2. The interaction between A € Tx and B € T starts at the root of Tx and the leaves of Tq,.

notations and overall structure discussed below are similar to that in [22, 28].

Recall that n is the number of grid points on each dimension, N = n? = 4%ng is the total number of
points, ng = O (1) is the number of row or column indices in a leaf in the quadtrees of row and column
spaces and, without loss of generality, L is an even integer, i.e. Tx and T with L levels. For a fixed level
¢ between 0 and L, the quadtree Tx has 4¢ nodes at level £. By defining Z¢ = {0,1,...,4% — 1}, we denote
these nodes by AY with i € Z°. These 4’ nodes at level £ are further ordered according to a Z-order curve
(or Morton order) as illustrated in Figure 7. Based on this Z-ordering, the node Af at level ¢ has four child
nodes denoted by Aiﬁt with t = 0,...,3. The nodes plotted in Figure 7 for £ = 1 (middle) and ¢ = 2 (right)
illustrate the relationship between the parent node and its child nodes. Similarly, in the quadtree Tq, the
nodes at level L — ¢ are denoted as BJ-L_Z for j € TL—¢.

For any level ¢ between 0 and L, the kernel matrix K can be partitioned into O (N) submatrices
K (AL BjL_Z) = (K(2,8)) e at gepr— fori e T! and j € TF~*. For simplicity, we shall denote K(Af,BjL_e)

as K f ;j» where the superscript ¢ denotes the level in the quadtree T'x. Because of the complementary low-

rank property, every submatrix K. f’ ; 1s numerically low-rank with the rank bounded by a uniform constant
r independent of N.

X2 T2 T2

A2 L A2 | A2 A2

Al Al

0 71 2 A2 2 A2
AZ | AZ | AZLA2

z1 A z1 T

24 A2 2 | A2
As 419 A12 2413

Al Al

2 3 2 A2 2 A2
Afo1 AT | Afg[ATs

Figure 7: An illustration of Z-order curve across levels. The superscripts indicate the different levels while
the subscripts indicate the index in the Z-ordering. The light gray lines show the ordering among the
subdomains on the same level. Left: The root at level 0. Middle: At level 1, the domain A is divided into
2 x 2 subdomains A} with i € Z! = {0,1,2,3}. These 4 subdomains are ordered according to the Z-ordering.
Right: At level 2, the domain A is divided into 4 x 4 subdomains A? with i € Z? = {0,1,...,15}. These 16
subdomains are ordered similarly.

The multidimensional interpolative decomposition butterfly factorization for K is a product of O (log (N))

. . . 2 .
sparse matrices, each of which contains O (Z—ON) nonzero entries as follows:

K ~Uutyt-t...ytstyh...vE-lyL, (9)

and the level L is assumed to be even.

where k is a local rank parameter, h = %,

13

3.2 Linear scaling Interpolative Decomposition (ID)

This subsection introduces the linear scaling ID method in [28]. Suppose K € C™*™ has a numerical rank
ke < min{m,n}, i.e., K admits a rank k. factorization with e relative approximation accuracy. Let s be an
index set containing tk rows of K chosen from the Mock-Chebyshev grids as in [38, 16, 2|, ¢ is an oversampling
parameter, and k is an empirical estimation of k.. s is empirically selected and gradually increased if not
large enough. We apply the rank revealing thin QR to K(s,:):

K(s,)A=QR=Q[Ry Ry] with Ry € C"™ and R, € C"**("=th),

Define
T=(Ry(1:k1:k) " YRi(1:kk+1:kt) Ry(1:k,:)] € Ckx(n=h),

and V = [I T]A* € Ck*". Let ¢ be the index set with |g| = k such that
K(s,q) =QR1(1:k,1:k),

then ¢ and V will satisfy
K(s,:) = K(s,q)V (10)

with an approximation error by the QR truncation. By the approximation power of Lagrange interpolation
with Mock-Chebyshev points if K is the discretization of a smooth function, we have

K~ K(:;,q)V (11)

with an approximation error coming from the QR truncation and the Lagrange interpolation. Hence, K (:, q)
are important columns of K such that they can be “interpolated” back to K via a column interpolation
matriz V. In this sense, ¢ is called the skeleton index set, and the rest of indices are called redundant indices.
This column ID requires only O (nkQ) operations and O (nk) memories and is denoted as ¢ID for short.
Similarly, a row ID with O (mk‘2) operations and O (mk) memories, denoted as rID, can be constructed
via
K~AIT|*K(q,:) =UK(q,:) (12)

with a row interpolation matriz U.

3.3 Leaf-root complementary skeletonization (LRCS)

This subsection introduces the LRCS of a 2D complementary low-rank kernel matrix K, K ~ USV, via cIDs
of the submatrices corresponding to the leaf-root levels of the column-row quadtrees (e.g., see the associated
matrix partition in Figure 8 (right)), and rIDs of the submatrices corresponding to the root-leaf levels of the
column-row quadtrees (e.g., see the associated matrix partition in Figure 8 (middle)). Assume k. is constant
in all IDs for low-rank approximations and is denoted by k for simplicity.

Assume that the row index set r and the column index set ¢ of K can be partitioned into leaves {r; };czz
and {c;};ezz at the leaf level of the row and column quadtrees as follows

r=[ro,r1,-+ ,rm-1] (and c=[co,c1,- - Cmo1]), (13)
with |r;| = ng (and |¢;| = ng) for all 0 < i,5 < m — 1, where m = 4% = %,L = log, (N) — log, (ng), and

L + 1 is the depth of quadtrees T'x and Tg. See an example of row and column quadtrees with m = 16 in
Figure 8.

Apply rID to each K(r;,:) to obtain the row interpolation matrix U; and the associated skeleton indices
7; C 1y for all 0 <4 < m — 1. Then, after denoting K (#,:) as the important skeleton of K, where

7= [f()aflv"' 7TAm—1]a (14)
we have
U1 K(f’o,Co) K(fo,cl) K(?ﬁo,cmfl)
U2 K(’f‘l,CO) K(fl,cl) K(fhcm,l)
K~ , . . , , =UM.
Um K(f‘m_l,CQ) K(fm_l,cl) K(fm_l,cm_l)

14

Figure 8: The left figure is a complementary two-dimensional low-rank kernel matrix K. Assume that the
depth of the quadtrees of column and row spaces is 3. The middle figure illustrates the root-leaf partitioning
that divides the row index set into 16 subsets as 16 leaves. The right one is for the leaf-root partitioning
that divides the column index set into 16 subsets as 16 leaves.

Similarly, apply ¢ID to each K (7, ¢;) to obtain the column interpolation matrix V; and the skeleton
indices ¢; C ¢; for all 0 < j < m — 1. Then, the LRCS of K will be formed as

Ul K(’IA‘Q,éQ) K(fo,él) K(’f‘g,ém_;L) 1/1
p Us K(i1,é0) K(,é) ... K(f1,ém_1) Va
Um K(TAm—héO) K(”A‘m—lyél) e K("A‘m—laém—l) Vm
=USV.

(15)

For a concrete example, Figure 9 illustrates the non-zero pattern of the LRCS in (15) of K in Figure 8.

[y

Figure 9: An example of the LRCS in (15) of the complementary two-dimensional low-rank kernel matrix
K in Figure 8. Non-zero submatrices in (15) are shown in gray areas.

The main contribution of the LRCS is that M and S are only required to be generated and stored via the
skeleton of row and column index sets with O (szN) operations and O (Z—ZN) memories, instead of being
computed explicitly, since there are only 2m = % IDs in total. Notice that the matrix S in K =~ USV is

also a complementary low-rank matrix. The row and column quadtrees TXA and Tngf S are the compressed
version of the row and column quadtrees Tx and Tq of K. If we consider Tx and T as quadtrees with one
depth less than the leaf level of Tx and T, they will be compressible.

3.4 Matrix splitting with complementary skeletonization (MSCS)

Now we introduce another key idea repeatedly applied in 2D IDBF, the MSCS. According to the nodes of
the second level of the row and column quadtrees T and Tq (with m = 4% leaves), the complementary 2D

15

low-rank kernel matrix K can be split into a 4 x 4 block matrix

Ky Ko Kiz Kuy

Ky Ko Koz Ko (16)
K3 Kz K3z Kz |°

Ky Ky Kyz Ky

It is obvious that Kj;; is complementary low-rank for all 1 <4, j < 4, with row and column quadtrees Tx ;;
and Tq ;; of depth L — 1 and with 7 leaves.

Suppose that the LRCS of each Kj; is K;; ~ U;;5;;Vi;. Then, according to the LRCS of Kj;, the matrix
splitting with complementary skeletonization (MSCS) of the kernel matrix K can be proposed as:

K~ USYV, (17)

where
Uik

U= (U, Us Us Us) with U= Uz (18)

Si Si2 Sz Su
S = S21 S22 53 S with S;; as a4 by 4 block matrix with the (j, i)-th block as S;;, (19)
Sz1 Sz2 Ssz Saa

Sa1 Siz Saz Su

V1 Vkl
_ |V . _ Vo
V= v, with Vj, = Vis . (20)
V4 Vk4
Recall that the middle factor S is only required to be generated by some entries of the original kernel

matrix, forming (17)-(20) will be a linear scaling algorithm as well. Figure 10 illustrates the MSCS of a
complementary 2D low-rank kernel matrix K with quadtrees of depth 3 and 16 leaf nodes in Figure 8.

i
b
RS

o

i

Figure 10: The illustration of an MSCS of a complementary 2D low-rank kernel matrix K ~ USV with
quadtrees of depth 3 and 16 leaf nodes in Figure 8. Non-zero blocks in (18)-(20) are shown in gray areas.

{Uit1<i<as {Sij}1<i<ij<a, and {V;}1<i<s are visualized by large submatrices with wide edges in the middle
left, middle right, and right figures, respectively.

3.5 Recursive MSCS

This subsection applies MSCS recursively to obtain the full 2D IDBF of a complementary 2D low-rank kernel
matrix K.
First, we denote the first level of MSCS of K in (17) as

K ~U"StvE, (21)

16

where UL ST V' maintain the same structures as (18)-(20). Then, the index set r and the column index set
c of K can be partitioned into leaves {r;}o<i<m—1 and {¢;}o<j<m—1 at the leaf level of the row and column
quadtrees as (13). In addition, the skeleton index sets #; C r; and é; C ¢; will be obtained by applying the
rIDs and cIDs to the construction of (21), and the middle factor ST will be constructed by the non-zero
submatrices SZ% for all 1 <i,j <4 as follows:

K(P(i—1)(m=1)/a+1> C(j=1)(m=1)/4+1) = K(Pli—1)(m-1)/4415Cj(m—-1)/4)

Sh= (22)

K (Pi(m—1)/4) €(j—1)(m—1)/4+1) e K (Pi(m—1)/45 Cj(m—1)/4)

Since SiLj consists of the important rows and columns of Kj; for all 1 < 4,5 < 4, it will inherit the
complementary low-rank property of K;;. Suppose that T'x;; and Tq ;; are the quadtrees of the row and
column spaces of K;; with 7 leaves and L — 1 depth. Then, SiLj has compressible row and column quadtrees
Tx.ij and Tqi; with 1¢ leaves and L — 2 depth according to Subsection 3.3.

Next, a recursive MSCS will be applied to each SzLj The first step is similar to that of MSCS, we divide
each SiLj into a 4 x 4 block matrix according to the nodes at the second level of its row and column quadtrees:

(%)11 (%)12 (Sig)m (%)14
gL _ (5%)21 (Szz)m (SZZ)QB (5%)24 (23)
K (5?)31 (5%)32 (5?-)33 (5?)34 '

(Sij)41 (Sij)42 (Sij)43 (Sij)44

For each block (S’fj)u, the LRCS can be constructed as (SiLj)kg ~ (Uigfl)kg(SiLjfl)M(V;ijl)k@ for all 1 <
k,¢ < 4. After that, the MSCS of SiLj will be obtained as follows:

L . yrL—1gL—1y,/L—1
SijNUij Sij Vij) (24)

where Ué_l,SiLj_l, Vé‘l are constructed by (Ui?_l)kg(SiLj_l)kg(V;jL-_l)kg for all 1 <k,¢ <4 asin (18)-(20).
Eventually, the factorization in (24) for all 1 < i,j < 4 will be combined to form a factorization of S*:

SL ~ []L—lsL—l‘/L—l7 (25)

where

stt=23, . 2B gL-1 (27)
3

with Sfj_l as a 4 x 4 block matrix with the (j,)-th block as S]-Li_l,
V1L71 Vkliil
with V,ffl =

L1 L1
Vy Vi

(28)

Hence, the second level factorization of K can be constructed as follows:

K ~ ULUL_lsL_le_le.

17

Comparing (21) and (25), a fractal structure can be found in each level of the middle factor ST and
SL=1. For example, S and SL~! have the same structure consisting of 16 submatrices as shown in (19) and
(27). Besides, submatrices SZ-Lj_l can be factorized into a product of three matrices U£_2, SZ-Lj_Q, ‘/;jL_Q with
the same sparsity structure as that of S* in (25)-(28). Thus, the recursive MSCS can be applied repeatedly

toeach Sffor ¢ =L, L—1, ..., % and the matrix factors can be assembled hierarchically as follows:

K ~Utyt-t...ytstyh...vE-lyL, (29)

where h = %

In the ¢-th recursive MSCS, there are 42(/=¢+1) dense submatrices with compressible row and column
quadtrees, which consist 7%= leaves and depth L — 2(L — £+ 1), in S¢. Thus, after h = % iterations,
the recursive MSCS will stop, since there is not any compressible submatrix in S"*. Otherwise, when S*
is still compressible, there are 42(L_€+1)42(L+H1) = % low-rank submatrices to be factorized. Linear IDs

only require O (lc?’) operations for each low-rank submatrix, and hence at most O (Z—ZN) for each level of

factorization, and O (Z—ZNlog (N)) for the whole 2D IDBF-.

3.6 Extensions

We have introduced the 2D IDBF for a complementary low-rank kernel matrix K in the entire domain X x Q.
Although we have assumed the uniform grid in X and (2, the butterfly factorization extends naturally to
more general settings. In the case with non-uniform point sets X or 2, one can still construct a butterfly
factorization for K following the same procedure. More specifically, we construct two trees Tx and Tgq
adaptively via hierarchically partitioning the square domains covering X and 2. For non-uniform point sets
X and 2, the numbers of points in Af and Bf are different. If a node does not contain any point inside it, it
is simply discarded from the quadtree. We can also extend the 2D IDBF to the 3D case by constructing two
octrees Ty and Tq via hierarchically partitioning the cube domains covering X and 2. Lastly, the numerical
rank in all low-rank approximations in the IDBF presented is fixed. It’s easy to extend the current version
to an adaptive one with an adaptive rank k. in IDs depending on a target accuracy e. For example, choose
ke = min{k : Ri(k, k) < eR1(1,1)} and update k < k. after the QR in IDs. An adaptive rank leads to a
more compressed IDBF while a fixed rank results in a more predictable sparsity pattern in IDBF.

4 Numerical results

This section presents several numerical examples to demonstrate the efficiency of the proposed framework.
All implementations are in MATLAB® on a server computer with a single thread and 3.2 GHz CPU, and
are available in the ButterflyLab (https://github.com/ButterflyLab/ButterflyLab).

Let {g%(x),r € X} and {¢°(z),z € X} denote the results given by the direct matrix-vector multiplication
and MIDBF, respectively. The accuracy of applying fast algorithms is estimated by the relative error defined

as follows:
g4 (z)|?
v \/ Sacsl9'e) — g (@) a0

wES ‘g ()‘2

where S is an index set containing 256 randomly sampled row indices of the kernel matrix K. The error for
recovering the kernel function is defined as

||627ri¢'(S,S) _ 6271"£U(S W,s)T

K _ 2
€ = ||62m¢>(5,5)”2 ’ (31)

where ® is the phase matrix and UV is its low-rank recovery. In all of our examples, the tolerance parameter
e is set to 1077, the over-sampling parameter ¢ in low-rank phase matrix factorization is set to 2, the threshold
7 for detecting discontinuity in multidimensional cases is set to %7 the number of points in a leave node ng
in the MIDBF is set to 87, and the over-sampling parameter ¢ in ID in MIDBF is set to 5. We apply IDs
with an adaptive rank and k denotes our empirically estimated rank.

18

https://github.com/ButterflyLab/ButterflyLab

4.1 Accuracy and scaling of low-rank matrix recovery and MIDBF

In this part, we present numerical results of several examples to demonstrate the accuracy and asymptotic
scaling of the proposed low-rank matrix recovery for phase functions, and MIDBF. With no loss of generality,

we only focus on Scenario 2 of indirect access. Since there is not any detected discontinuous point in the

phase matrices of Example 1 and Example 3 when 411 >T2> 11—0, we will only address the related discontinuities

discussion in Example 2. Each experiment will be repeatedly tested for 10 times.

Example 1. Our first example is to evaluate a 2D generalized Radon transform which is a Fourier integral
operator (FIO) [38] defined as follows:

gla) = [= g (32
R
where fis the Fourier transform of f, and ®(z,£) is a phase function given by

B, =& +1/d(0)- &+) &,
c1(x) = (2 + sin(2mz,) sin(2712)) /16, (33)
and co(x) = (2 4 cos(2mxy) cos(2mxs))/16.

The discretization of (32) is
g(z) =Y 2™ *@Of(e), xeX, (34)
£eQ
where X and Q are the sets of O (N) points uniformly distributed in [0, 1) x [0,1). The computation in (34)
approximately integrates over spatially varying ellipses, for which ¢;(x) and ca(x) are the axis lengths of the
ellipse centered at the point z € X. The corresponding matrix form of (34) is simply

u=Kg, K=" yeca. (35)

The framework is applied to recover the phase functions in the form of low-rank matrix factorization,
compute the MIDBF of the kernel function, and apply it to a randomly generated f in (32) to obtain g.
Figure 11 illustrates the results of the recovery step for the phase matrix (®(7,¢)), ¢ X.¢eqs the recovered
phase matrix in (d) is set as an initial guess for the low-rank factorization step.

(b) (©) ()

Figure 11: Phase recovery results for the 2D uniform FIO given in (34). N = 642 is the size of the phase
matrix (®(2,€)),cx ceq- (a) A row vector of the phase matrix before recovery and reshaped into a matrix of
size 64 x 64. (b) A recovered row vector of the phase matrix when it is reshaped into a matrix of size 64 x 64.
(c) The phase matrix of size 642 x 642 before recovery. (d) The recovered phase matrix of size 642 x 642

Table 2 summarizes the results of this example for different grid sizes N = n? and different rank param-
eters r, k. It shows that the accuracy of the low-rank matrix recovery and the MIDBF stay almost of the
same order, though the accuracy becomes slightly worse as the problem size increases. The slightly increasing
error is due to the randomness of the proposed algorithm. As the problem size increases, the probability
of capturing the low-rank matrix with a fixed rank parameter becomes smaller. Otherwise, when the rank
parameter r or k increases, the accuracy of results will increase as well. In Figure 12 (a), we see that the
time for computing recovery path matrix, the reconstruction time of the phase functions, the factorization
time and the application time of the MIDBF scale nearly linearly, e.g. when r = 20 and k& = 30.

19

n,rk e ek Thath Trec Tfac Tapp Td/TaPP

16, 10, 30 2.85e-07 1.27e-08 7.77e-03 8.10e-03 2.23e-02 2.81e-04 2.11e401
16, 20, 20 5.08e-06 2.64e-09 9.75e-03 1.67e-02 2.14e-02 2.87e-04 2.79e+401
16, 20, 30 3.01e-07 2.63e-09 7.62e-03 1.19e-02 2.15e-02 2.56e-04 2.17e4-01

64, 10, 30 4.93e-08 1.29e-08 4.29e-02 9.56e-02 3.29e-01 4.43e-03 2.37e+02
64, 20, 20 2.36e-06 2.42e-09 4.15e-02 1.70e-01 2.59e-01 3.42e-03 3.24e+02
64, 20, 30 3.51e-08 2.36e-09 3.66e-02 1.39e-01 2.96e-01 4.08e-03 2.23e+02

256, 10, 30 1.19e-08 1.34e-08 5.14e-01 1.27e+00 5.10e4+00 4.00e-02 5.33e+4-03
256, 20, 20 2.28e-08 2.28e-09 6.52e-01 2.43e+00 4.37e4+00 4.33e-02 5.55e4-03
256, 20, 30 4.12e-09 2.23e-09 6.87e-01 2.62e+00 5.88e+00 5.63e-02 4.75e+4-03

1024, 10, 30 1.60e-08 1.41e-08 1.10e4+01 2.72e+01 8.74e+01 6.86e-01 1.00e+05
1024, 20, 20 3.29e-09 2.29e-09 1.42e4+01 6.0le4+01 9.29e4+01 1.09e4+00 9.21e+04
1024, 20, 30 2.76e-09 2.33e-09 1.34e+01 5.74e+01 1.08e+02 9.13e-01 9.21e+04

4096, 10, 30 1.27e-08 1.47e-08 2.74e+02 6.25e4+02 1.79e+03 1.64e+01 2.11e4-06
4096, 20, 20 3.16e-09 2.23e-09 2.62e+02 1.02e4+03 1.39e+03 1.47e+01 2.24e4-06
4096, 20, 30 2.30e-09 2.15e-09 2.60e+02 9.82e+02 1.66e+03 1.49e+01 2.18e+06

Table 2: Numerical results for the 2D uniform FIO given in (34). r is the rank parameter of the low-rank

approximation of the phase function. £ is the rank parameter of the MIDBF'. T},4p, is the time for computing

the recovery path matrix. T}, is the time for recovering the phase functions, T is the time for computing
TTTTTT ™ g the time for applying the MIDBF, and T} is the time for a direct summation in (34).

Path Time
=B Recovery Time
=& Factorization Tim:
=~ Application Time
N
- - N Iogz(N)

N log2(N)

log, ()

log,(N)

15

Figure 12: The visualization of the computational complexity. N is the size of the matrix. (a) the 2D
uniform FIO given in (34). (b) the 3D Fourier transform given in (36). (c) the example in (37).

Example 2. In this example, we evaluate a 3D non-uniform Fourier transform:

z) =Y e fg), (36)

£eq

where X and (2 are the sets of N points randomly selected in [0, 1)3.

Table 3 shows the relationship between the discontinuity threshold 7 and the number of detected discon-
tinuous points. We set 7 < % in order to guarantee that the intersection of each recovered row and column
share the same value. The results show that the numbers of detected discontinuity for rows and columns
(denoted as Np_. and Np,_, respectively) are both bounded in O(1) when the problem size N increases.
Therefore, T = i is an appropriate choice for this example.

Table 4 summarizes the results of this example for different grid sizes N = n? and different rank param-
eters r in the low-rank approximation of the phase function. In the MIDBF, the rank parameter k is 80.
The accuracy of the low-rank matrix recovery and the MIDBF stay almost of the same order in Table 4. In

Figure 12 (b), we see that each part of the whole process scales nearly linearly, e.g., when r = 5.

20

n T NDT NDC n T NDT NDc n T NDT NDC
8 % 0 0 16 % 0 0 32 % 0 0
8 ¢ 3.0 29 16 ¢ 0 0 32 ¢ 0 0
8 $ 29.1 320 16 H 0.2 0.1 32 g 0 0
8 5 825 827 16 & 24 16 32 15 0 0

Table 3: The number of discontinuous points of the 3D non-uniform Fourier transform given in (36). N = n?

is the size of grid. 7 is the threshold for detecting the discontinuity. Np, and Np, are the numbers of
discontinuous points along recovery rows and columns of the phase matrix, respectively.

n,r eb €K Tpath Trec Tfac Tapp Td/Tapp

16,3 2.61le-01 3.22e-01 1.11e-01 2.76e-02 1.32e+00 1.24e-02 7.33e+401
16,4 1.10e-06 1.02e-14 1.21e-01 3.80e-02 1.81e+00 1.72e-02 5.15e+4-01
16,5 1.10e-06 6.67e-15 1.03e-01 3.77e-02 1.65e+00 1.60e-02 5.35e+01

32,3 2.85e-01 3.80e-01 1.15e4+00 2.26e-01 1.32e4+01 1.09e-01 6.01e4-02
32,4 4.19e-08 8.66e-15 1.15e+00 2.91e-01 1.93e4+01 2.64e-01 2.41e+02
32,5 3.85e-08 1.15e-14 1.08e+00 3.46e-01 1.95e4+01 2.21e-01 2.74e+02

64,3 3.37e-01 4.56e-01 1.16e+01 1.80e4+00 9.72e+01 1.01e+00 4.25e+03
64,4 5.33e-08 2.80e-14 1.09e+01 2.28e4+00 1.37e+02 2.12e+00 1.71e+03
64,5 4.91e-08 2.04e-14 1.13e+01 2.62e4+00 1.38e+02 2.12e+00 1.87e+03

128, 3 4.54e-01 5.36e-01 1.32e402 1.86e+01 8.60e+02 8.51e+00 3.50e+-04
128, 4 2.92e-09 4.67e-14 1.27e4+02 2.32e+01 1.59e+03 2.14e+01 1.51e+04
128, 5 3.42e-09 4.63e-14 1.27e402 2.67e4+01 1.60e4+03 2.05e4+01 1.56e+04

Table 4: Numerical results for the 3D Fourier transform given in (36). Ty is the time for a direct summation
in (36).

Example 3. The final example is the oscillatory part of the Green’s function of a Helmholtz equation [8]:

g(z) =D *EOf(e), we X, (37)

£en

where ®(z,£) = h- ||z — &, and h = g ~ O(n). X and Q are the sets of N points generated via a
triangular mesh to discretize the surface of a unit sphere. The triangular mesh is generated by uniformly
refining an icosahedron and projecting the new mesh nodes, which are the old mesh edge center, onto the
sphere. The submatrix of the oscillatory part of the Green’s function corresponding to one half of the sphere
in X and the other half of the sphere in 2 is chosen as the matrix to be reconstructed, factorized, and applied
to a random vector.

In this example, rank parameters » = 50 and k& = 50. As shown in Table 5, the accuracy of the low-rank
matrix recovery and the MIDBF stay almost of the same order. The result in Figure 12 (¢) demonstrates
the efficiency of the proposed framework.

5 Conclusion

This paper introduced a framework for O (N log (IV)) evaluation of the multidimensional oscillatory integral
transform g(z) = [e2mi®(x.8) f (£)d€. In the case of indirect access of the phase functions, this paper proposed
a novel fast algorithm for recovering the phase functions in O (N log (N)) operations. Second, a new BF, the
multidimensional interpolative decomposition butterfly factorization (MIDBF), for multidimensional kernel
matrices in the form of a low-rank factorization is proposed, and it requires only O (N log (IV)) operations
to evaluate the oscillatory integral transform.

21

n 6b GK Tpath TT'CC Tfac Tapp Td /Tapp

640 3.18e-09 1.31e-09 1.04e-02 8.58e-02 5.10e-02 4.87e-04 1.79e+-02
2560 8.30e-09 4.48e-09 2.70e-02 2.82e-01 2.58e-01 1.96e-03 3.51e+02
10240 2.79e-08 1.12e-08 9.03e-02 1.12e+00 1.05e4+00 9.24e-03 9.58e+4-02
40960 2.33e-08 2.43e-08 3.35e-01 4.31e+00 5.61e+00 3.39e-02 3.31e+4-03
163840 5.38e-08 5.98e-08 1.51e4+00 2.09e+01 1.94e+01 1.28e-01 1.35e+4-04

Table 5: Numerical results for the case given in (37). Ty is the time for a direct summation in (37).

Acknowledgments. Z. C. was partially supported by the Ministry of Education in Singapore under
the grant MOE2018-T2-2-147. H. Y. was partially supported by NSF under the grant award 1945029.

6 Appendix

6.1 Proof of Lemma 2.1

Proof. First, let one of the block matrices be ¢, which is partitioned by discontinuous point sets (correspond-
ing to Line 6 in Algorithm 3). Then, Line 9-10 in Algorithm 3 can obtain the unique recovery values of the
first 3 x 3 entries of ¢, which are the first three entries in the first three columns.

Next step, consider the intersection of the fourth row and the fourth column in ¢. On one hand, after
applying Algorithm 2 in the first column, ¢(4,1) will be obtained by

¢(47 1) = ¢(1a 1) - 3¢(27 1) + 3¢(33 1) + €1, (38)

where €; € (f%, %), according to the property of the first column of ¢. Since mod(¢(4,1),1) has been
given, the recovery value of ¢(4, 1) will be unique.
Similarly, ¢(4,2) and ¢(4,3) can be evaluated by

¢<4’ 2) = d)(l’ 2) - 3¢(27 2) + 3¢(37 2) + €9,

39
$(4,3) = 6(1,3) — 36(2.3) + 36(3.3) + e (39
through the second and the third column, where €5, €3 € (_T16’ %)
Next, apply Algorithm 2 to the fourth row to evaluate ¢(4,4):
P(4,4) = ¢(4,1) = 36(4,2) +3¢(4,3) + &4

+ 3¢(1, 3) — 9¢(2, 3) + 9¢(3, 3) + 3es + €4
=C + €1 — 3e + 3e3 + €4,

where ¢4 € (— 1, &) and C = ¢(1,1) ~ 36(2, 1) +36(3,1) —36(1, 2) +96(2, 2) — 96(3, 2) + 36(1, 3) — 96(2, 3) +
9¢(3, 3).
Since €1 — 3e3 + 3e3 + €4 € (f%, %), ¢(4,4) can be obtained by identifying a unique integer a, such that
1
2
Then, the recovery value of ¢(4,4) through the fourth row will be unique as mod(¢(4,4),1) + a.
On the other hand, the same method can be applied to obtain

¢(174) = ¢(1v 1) - 3¢(17 2) + 3¢(1a 3) + 6,17
#(2,4) = ¢(2,1) — 3¢(2,2) + 34(2,3) + €5, (42)
$(3,4) = ¢(3,1) — 3¢(3,2) + 36(3,3) + €5,

mod (6(4,4),1) + a € (o-%7c+ (41)

1o 1 1
where €}, €5, €5 € (— 15, 15)-

22

Next, apply Algorithm 2 again to the fourth column to evaluate ¢(4,4) accompanying with a parameter
/ 1 1
€4 S (_E’ E)

d(4,4) = ¢(1,4) — 3¢(2,4) + 3¢(3,4) + €
=¢(1,1) — 3¢(1,2) + 36(1,3) + €] — 30(2,1) + 96(2,2) — 9¢p(2, 3) — 3¢}
+3¢(3,1) — 99(3,2) + 9¢(3,3) + 3¢5 + € (43)
=C+¢€) — 3¢, + 3¢5 + €,

1y

1
e(C—§,C+2

Similarly, ¢(4,4) can be obtained by identifying a unique integer b, such that

mod (6(4,4),1) + b € (c—%,c+%). (44)

Combining (41) and (44), integers a,b € (C' — mod(¢(4,4),1) — 3,C — mod(¢(4,4),1) + 3), which is
obvious to conclude that a = b. Thus, the intersection ¢(4,4) recovered by the fourth row and the fourth
column using Algorithm 2 will share the same value.

The same, when the recovered values of the first three entries of the second to fourth columns have been
obtained using the previous method, a unique recovery value of ¢(4,5) would be evaluated, which means
that the intersection recovered by the fourth row and the fifth column will share the same value.

Furthermore, the unique recovery values of ¢(4,6),$(4,7),...,®(4,m) can also be evaluated. Therefore,
when the values of the first three entries of the first three columns have been fixed, any entry in the fourth
row as the intersection will share the same value when recovering the corresponding row and column. The
method can be applied to prove the same property in the rest rows.

In conclusion, if the nine values of the first three entries of the first three columns have been fixed, any
recovered row and column by Algorithm 2 will share the same value at the intersection. O

References

[1] G. Bao and W. W. Symes. Computation of Pseudo-Differential Operators. SIAM Journal on Scientific
Computing, 17(2):416-429, 1996.

[2] J. P. Boyd and F. Xu. Divergence (Runge Phenomenon) for least-squares polynomial approximation on
an equispaced grid and Mock Chebyshev subset interpolation. Applied Mathematics and Computation,
210(1):158 — 168, 2009.

[3] J. Bremer. An algorithm for the rapid numerical evaluation of Bessel functions of real orders and
arguments. arXiw:1705.07820 [math.NA], 2017.

[4] J. Bremer. An algorithm for the numerical evaluation of the associated Legendre functions that runs in
time independent of degree and order. Journal of Computational Physics, 360:15 — 38, 2018.

[5] K.Buchin and W. Mulzer. Delaunay Triangulations in O(sort(n)) Time and More. In 2009 50th Annual
IEEE Symposium on Foundations of Computer Science, pages 139-148, Oct 2009.

[6] E. J. Candes, L. Demanet, and L. Ying. A Fast Butterfly Algorithm for the Computation of Fourier
Integral Operators. Multiscale Modeling and Simulation, 7(4):1727-1750, 2009.

[7] M. Costantin, A. Farina, and F. Zirilli. A Fast Phase Unwrapping Algorithm for SAR Interferometry.
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 37(1), 1999.

[8] B. Davies. Green’s Functions, pages 163-179. Springer New York, New York, NY, 2002.

[9] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Delaunay Triangulations, pages 191-218.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

23

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

L. Demanet and L. Ying. Fast wave computation via Fourier integral operators. Math. Comput.,
81(279), 2012.

M. T. Dickerson and R. Drysdale. Fixed-radius near neighbors search algorithms for points and segments.
Information Processing Letters, 35(5):269-273, 1990.

B. Engquist and L. Ying. A fast directional algorithm for high frequency acoustic scattering in two
dimensions. Communications in Mathematical Sciences, 7(2):327-345, 06 2009.

L. Greengard and J.-Y. Lee. Accelerating the Nonuniform Fast Fourier Transform. SIAM Review,
46(3):443-454, 2004.

H. Guo, Y. Liu, J. Hu, and E. Michielssen. A Butterfly-Based Direct Integral-Equation Solver Using
Hierarchical LU Factorization for Analyzing Scattering From Electrically Large Conducting Objects.
IEEE Transactions on Antennas and Propagation, 65(9):4742-4750, Sept 2017.

N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompositions. SIAM review, 53(2):217-288, 2011.

P. Hoffman and K. Reddy. Numerical Differentiation by High Order Interpolation. STAM Journal on
Scientific and Statistical Computing, 8(6):979-987, 1987.

H. Isozaki and J. L. Rousseau. Pseudodifferential Multi-Product Representation of the Solution Operator
of a Parabolic Equation. Communications in Partial Differential Equations, 34(7):625-655, 2009.

L. Jianchun, G. A. Pope, and K. Sepehrnoori. A high-resolution finite-difference scheme for nonuniform
grids. Applied Mathematical Modelling, 19(3):162 — 172, 1995.

C. Y. Lee. An Algorithm for Path Connections and Its Applications. IRE Transactions on Electronic
Computers, EC-10(3):346-365, Sep. 1961.

Y. Li and H. Yang. Interpolative Butterfly Factorization. SIAM Journal on Scientific Computing,
39(2):A503-A531, 2017.

Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying. Butterfly Factorization. Multiscale Modeling &
Simulation, 13(2):714-732, 2015.

Y. Li, H. Yang, and L. Ying. Multidimensional butterfly factorization. Applied and Computational
Harmonic Analysis, 2017.

Y. Liu, H. Guo, and E. Michielssen. An HSS Matrix-Inspired Butterfly-Based Direct Solver for Analyzing
Scattering From Two-Dimensional Objects. IEEE Antennas and Wireless Propagation Letters, 16:1179—
1183, 2017.

S. Lo. Parallel Delaunay triangulation in three dimensions. Computer Methods in Applied Mechanics
and Engineering, 237-240:88 — 106, 2012.

E. Michielssen and A. Boag. A multilevel matrix decomposition algorithm for analyzing scattering from
large structures. Antennas and Propagation, IEEE Transactions on, 44(8):1086-1093, Aug 1996.

G. Nico, G. Palubinskas, and M. Datcu. Bayesian Approaches to Phase Unwrapping: Theoretical Study.
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 48(9), 2000.

M. O’Neil, F. Woolfe, and V. Rokhlin. An algorithm for the rapid evaluation of special function
transforms. Appl. Comput. Harmon. Anal., 28(2):203-226, 2010.

Q. Pang, K. L. Ho, and H. Yang. Interpolative Decomposition Butterfly Factorization. arXiv:1809.10573
[math.NA], 2018.

R. Prim. Shortest Connection Networks And Some Generalizations. Bell System Technical Journal,
36:1389-1401, 11 1957.

24

[30]

[31]

J. L. Rousseau. Fourier-Integral-Operator Approximation of Solutions to First-Order Hyperbolic Pseu-
dodifferential Equations I: Convergence in Sobolev Spaces. Communications in Partial Differential
Equations, 31(6):867-906, 2006.

J. L. Rousseau and G. Hormann. Fourier-integral-operator approximation of solutions to first-order
hyperbolic pseudodifferential equations II: Microlocal analysis. Journal de Mathmatiques Pures et Ap-
pliquées, 86(5):403 — 426, 2006.

D. Ruiz-Antoln and A. Townsend. A Nonuniform Fast Fourier Transform Based on Low Rank Approx-
imation. SIAM Journal on Scientific Computing, 40(1):A529-A547, 2018.

M. Smid. The Well-Separated Pair Decomposition and Its Applications. In Handbook of Approximation
Algorithms and Metaheuristics, 2007.

E. Trouvé, J.-M. Nicolas, and H. Maitre. Improving Phase Unwrapping Techniques by the Use of Local
Frequency Estimates. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 36(6),
1998.

P. Vaidya. An O(nlogn) Algorithm for the All-Nearest-Neighbors Problem. Discrete and computational
geometry, 4(2):101-116, 1989.

C. Van Loan. Computational Frameworks for the Fast Fourier Transform. Society for Industrial and
Applied Mathematics, 1992.

0. V. Vasilyev. High Order Finite Difference Schemes on Non-uniform Meshes with Good Conservation
Properties. Journal of Computational Physics, 157(2):746 — 761, 2000.

H. Yang. A unified framework for oscillatory integral transforms: When to use NUFFT or butterfly
factorization? Journal of Computational Physics, 388:103-122, Jul 2019.

25

	Introduction
	Low-rank phase matrix factorization
	Low-rank approximation by randomized sampling
	One-dimensional phase matrix factorization with indirect access
	Multidimensional phase matrix factorization with indirect access
	Overview
	Vector recovery
	Recovery path
	Matrix recovery
	Phase matrix factorization
	Summary

	Multidimensional Interpolative Decomposition Butterfly Factorization (MIDBF)
	Notations and overall structure
	Linear scaling Interpolative Decomposition (ID)
	Leaf-root complementary skeletonization (LRCS)
	Matrix splitting with complementary skeletonization (MSCS)
	Recursive MSCS
	Extensions

	Numerical results
	Accuracy and scaling of low-rank matrix recovery and MIDBF

	Conclusion
	Appendix
	Proof of Lemma 2.1

