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Abstract

This paper proposes a deep-learning-initialized iterative method (Int-Deep) for low-dimensional
nonlinear partial differential equations (PDEs). The corresponding framework consists of two
phases. In the first phase, an expectation minimization problem formulated from a given non-
linear PDE is approximately resolved with mesh-free deep neural networks to parametrize the
solution space. In the second phase, a solution ansatz of the finite element method to solve
the given PDE is obtained from the approximate solution in the first phase, and the ansatz
can serve as a good initial guess such that Newton’s method or other iterative methods for
solving the nonlinear PDE are able to converge to the ground truth solution with high-accuracy
quickly. Systematic theoretical analysis is provided to justify the Int-Deep framework for several
classes of problems. Numerical results show that the Int-Deep outperforms existing purely deep
learning-based methods or traditional iterative methods (e.g., Newton’s method and the Picard
iteration method).

Keywords. Deep learning, nonlinear problems, partial differential equations, eigenvalue prob-
lems, iterative methods, fast and accurate.
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1 Introduction

This paper is concerned with the efficient numerical method for solving nonlinear partial differential
equations (PDEs) including a class of eigenvalue problems as special cases, which is a ubiquitous
and important topic in science and engineering [23, 3, 30, 36, 8, 42, 31, 15]. As far as we know,
there have developed many traditional and typical numerical methods in this area, e.g., the finite
difference method, the spectral method, and the finite element method [46]. The first two methods
are generally used for solving problems over regular domains while the latter one is particularly
suitable for solving problems over irregular domains [7, 67]. To achieve the numerical solution with
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the desired accuracy, one is often required to numerically solve the discrete problem formulated as
a large-scale nonlinear system of nonlinear equations, which is time-consuming. In this case, one
of the most critical issues is to choose the feasible initial guess so that the numerical solver (e.g.
Newton’s method) is convergent. On the other hand, for reducing the computational cost, two
grid methods are thereby devised in [58, 59], which only require to solve a small-sized nonlinear
system arising from the finite element discretization based on a coarse triangulation. However, the
difficulty is that we even can not ensure if the nonlinear system has a solution in theory if the mesh
size of the coarse triangulation is large enough.

Recently, science and engineering have undergone a revolution driven by the success of deep
learning techniques that originated in computer science. This revolution also includes broad appli-
cations of deep learning in computational and applied mathematics. Many new branches in scientific
computing have emerged based on deep learning in the past five years including new methods for
solving nonlinear PDEs. There are mainly two kinds of deep learning approaches for solving non-
linear PDEs: mesh-based [55, 56, 32, 34, 21, 20, 22] and mesh-free [9, 14, 28, 33, 48, 53, 47]. In
the mesh-based methods, deep neural networks (DNNs) are constructed to approximate the solu-
tion operator of a PDE, e.g., seeking a DNN that approximates the map mapping the coefficients
(or initial/boundary conditions) of a PDE to the corresponding solution. After construction, the
DNN can be applied to solve a specific class of PDEs efficiently. In the mesh-free methods, which
probably date back to 1990’s (e.g., see [17, 38]), DNNs are applied as the parametrization of the
solution space of a PDE; then the solution of the PDE is identified via seeking a DNN that fits the
constraints of the PDE in the least-squares sense or minimizes a variational problem formulated
from PDEs. The key to the success of these approaches is the universal approximation capacity
of DNNs [37, 6, 61, 62, 52] even without the curse of dimensionality for a large class of functions
[6, 43, 45, 44, 39].

Though the deep learning approach has made it possible to solve high-dimensional problems,
which is a significant breakthrough in scientific computing, to the best of our knowledge, the
advantage of deep learning approaches over traditional methods in the low-dimensional region is
still not clear yet. The main concern is the computational efficiency of these frameworks: the
number of iterations in deep learning methods is usually large or the accuracy is very limited (e.g.,
typically 10−2 to 10−4 relative error). In order to overcome this difficulty, one is tempted to set
up a more efficient neural network architecture (e.g., incorporating physical information in the
structure designing [49, 57, 64, 21, 27], designing a more advanced learning algorithm for deep
learning training [41, 63], or using a solution ansatz according to prior knowledge [38, 50, 40]).
However, the overall performance of these frameworks for nonlinear problems without any prior
knowledge may still not be very convincingly efficient.

This paper proposes the Int-Deep framework from a new point of view for designing highly
efficient solvers of low-dimensional nonlinear PDEs with a finite element accuracy leveraging both
the advantages of traditional algorithms and deep learning approaches. The Int-Deep framework
consists of two phases as shown in Figure 1. In the first phase, an approximate solution to the
given nonlinear PDE is obtained via deep learning approaches using DNNs of size O(1) and O(100)
iterations, where O(·) means that the prefactor is independent of the final target accuracy in the
Int-Deep framework, i.e., the accuracy of finite element methods. In particular, based on variational
principles, we propose new methods to formulate the problem of solving nonlinear PDEs into an
unconstrained minimization problem of an expectation over a function space parametrized via
DNNs, which can be solved efficiently via batch stochastic gradient descent (SGD) methods due to
the special form of expectation. Unlike previous methods in which the form of expectation is only
derived for nonlinear PDEs related to variational equations, our proposed method can also handle
those related to variational inequalities, providing a unified variational framework for a wider range
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of nonlinear problems.

Figure 1: Computational flow of Int-Deep: Deep learning solvers in Phase I only require O(1)
computational cost since the network size is O(1) and the number of epochs of the stochastic
gradient descent (SGD) is O(100). Empirically, traditional iterative methods converges to a solution
with O(ε) accuracy in O(log(1

ε )) iterations in Phase II.

In the second phase, the approximate solution provided by deep learning approaches can serve
as a good initial guess such that traditional iterative methods (e.g., Newton’s method for solving
nonlinear PDEs and the shifted power method for eigenvalue problems) converge quickly to the
ground truth solution with high-accuracy. The hybrid algorithm substantially reduces the learning
cost of deep learning approach while keeping the quality of initial guesses for traditional iterative
methods; good initial guesses enable traditional iterative methods to converge in O(log(1

ε )) iter-
ations to the ε precision of finite element methods. In each iteration of the traditional iterative
method, the nonlinear problem has been linearized and hence traditional fast solvers for linear
systems can be applied depending on the underlying structure of the linear system. Therefore, as
we shall see in the numerical section, the Int-Deep framework outperforms existing purely deep
learning-based methods or traditional iterative methods, e.g., Newton’s method and Picard itera-
tion. Furthermore, systematic theoretical analysis is provided to characterize the conditions under
which the Int-Deep framework converges, serving as a trial to change current deep learning research
from trial-and-error to a suite of methods informed by a principled design methodology.

This paper will be organized as follows. In Section 2, we briefly review the definitions of DNNs.
In Section 3, we introduce the expectation minimization framework for deep learning-based PDE
solvers in the first phase of the Int-Deep framework. In Section 4, as the second phase of Int-Deep,
traditional iterative methods armed with good initial guesses provided by deep learning approaches
will be introduced together with its theoretical convergence analysis, for clarity of presentation the
proofs of which are left in Appendix. In Section 5, a set of numerical examples will be provided
to demonstrate the efficiency of the proposed framework and to justify our theoretical analysis.
Finally in Section 6, we summarize our paper with a short discussion.
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2 Deep Neural Networks (DNNs)

Mathematically, DNNs are a form of highly non-linear function parametrization via function com-
positions using simple non-linear functions [26]. The validity of such an approximation method
can be ensured by the universal approximation theorems of DNNs in [37, 6, 61, 62, 51, 52]. Let us
introduce two basic neural network structures commonly used for solving PDEs below.

The first one is the so-called fully connected feed-forward neural network (FNN), which is a
function in the form of a composition of L simple nonlinear functions as follows:

φ(x;θ) := aThL ◦ hL−1 ◦ · · · ◦ h1(x),

where h`(x) = σ (W`x+ b`) with W` ∈ RN`×N`−1 , b` ∈ RN` for ` = 1, . . . , L, a ∈ RNL , σ is a
non-linear activation function, e.g., a rectified linear unit (ReLU) σ(x) = max{x, 0} or hyperbolic
tangent function tanh(x). Each h` is referred as a hidden layer, N` is the width of the `-th layer,
and L is called the depth of the FNN. In the above formulation, θ := {a, W`, b` : 1 ≤ ` ≤ L}
denotes the set of all parameters in φ, which uniquely determines the underlying neural network.

The second one is the so-called residual neural network (ResNet) introduced by He, Zhang, Ren
and Sun in [29]. We apply its variant defined recursively as follows:

h0 = V x,

g` = σ(W`h`−1 + b`), ` = 1, 2, . . . , L,

h` = Ū`h`−2 +U`g`, ` = 1, 2, . . . , L,

φ(x;θ) = aThL,

where V ∈ RN0×d, W` ∈ RN`×N0 , Ū` ∈ RN0×N0 , U` ∈ RN0×N` , b` ∈ RN` for ` = 1, . . . , L, a ∈ RN0 ,
h−1 = 0. Throughout this paper, we consider N0 = N` = N and U` is set as the identity matrix
in the numerical implementation of ResNets for the purpose of simplicity. Furthermore, as used in
[19], we set Ū` as the identify matrix when ` is even and set Ū` = 0 when ` is odd.

3 Phase I of Int-Deep: Variational Formulas for Deep Learning

In this section, we will present existing and our new analysis for reformulating nonlinear PDEs
including eigenvalue problems to the minimization of expectation that can be solved by SGD. The
analysis works for PDEs related to variational equations and variational inequalities, the latter of
which is of special interest since there might be no available literature discussing this case to the
best of our knowledge. Hence, our analysis could serve as a good reference for a wide range of
problems.

Throughout this paper, we will use standard symbols and notations for Sobolev spaces and
their norms/seminorms; we refer the reader to the reference [1] for details. Moreover, the standard
L2(D)-inner product for a bounded domain D is denoted by (·, ·)D. If the domain D is the solution
domain Ω, we will drop out the dependence of Ω in all Sobolev norms/seminorms and L2(Ω)-inner
product when there is no confusion caused.

3.1 PDE Solvers Based on DNNs

The general idea of deep learning-based PDE solvers is to treat DNNs as an efficient parametrization
of the solution space of a PDE and the solution of the PDE is identified via seeking a DNN that

4



fits the constraints of the PDE in the least-squares sense or minimizes the variational minimization
problem related to the PDE. Let us use the following example to illustrate the main idea:{

D(u) = f in Ω,

B(u) = g on ∂Ω,
(3.1)

where D is a differential operator and B is a boundary operator.
In the least squares type methods (LSM), a DNN φ(x;θ∗) is constructed to approximate the

solution u(x) for x ∈ Ω via minimizing the square loss

θ∗ = arg min
θ

L(θ) := Ex∈Ω

[
|Dφ(x;θ)− f(x)|2

]
+ γEx∈∂Ω

[
|Bφ(x;θ)− g(x)|2

]
, (3.2)

with a positive parameter γ.
In the variational type methods (VM), (3.1) is solved via a variational minimization

u∗ = arg min
u∈H

J(u), (3.3)

where the Hilbert space H is an admissible space, and J(u) is a nonlinear functional over H. Then,
the solution space H is parametrized via DNNs, i.e., H ≈ {φ(x;θ)}θ, where φ is a DNN with a
fixed depth L and width N . After parametrization, (3.3) is approximated by the following problem:

θ∗ = arg min
θ

J(φ(x;θ)). (3.4)

In general, J(φ(x;θ)) can be formulated as the sum of several integrals over several sets {Ωi}pi=1,
each of which corresponds to one equation in (3.1):

J(φ(x;θ)) =

p∑
i=1

∫
Ωi

Fi(x;θ) dx =

p∑
i=1

|Ωi|Eξi
[
Fi(ξi;θ)

]
, (3.5)

where Fi(·;θ) is a function related to a variational constraint on φ(x;θ), ξi is a random vector
produced by the uniform distribution over Ωi, and |Ωi| denotes the measure of Ωi. In addition, ξi
(1 ≤ i ≤ p) are mutually independent. Based on (3.5), (3.4) can be expressed as

θ∗ = arg min
θ

p∑
i=1

|Ωi|Eξi
[
Fi(ξi;θ)

]
. (3.6)

Both the LSM in (3.2) and VM in (3.4) can be reformulated to the expectation minimization
problem in (3.6), which can be solved by the stochastic gradient descent (SGD) method or its vari-
ants (e.g., Adam [35]). In this paper, we refer to (3.6) as the expectation minimization framework
for PDE solvers based on deep learning.

Although the convergence of SGD for minimizing the expectation in (3.6) is still an active
research topic, empirical success shows that SGD can provide a good approximate local minimizer
of (3.2) and (3.6). This completes the algorithm of using deep learning to solve nonlinear PDEs
with equality constraints.

We would like to emphasize that when the PDE in (3.1) is nonlinear, its solutions might be
the saddle points of (3.5) making it very challenging to identify its solutions via minimizing (3.5).
Hence, we will use the LSM in (3.2) for PDEs associated with variational equations. It deserves to
point out that (3.2) is also regarded as a variational formulation, referred to as the least-squares
variational principle in [10] in contrast with the usual Ritz variational principle.
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3.2 Minimization Problems for Variational Inequalities

Variational inequalities are a class of important nonlinear problems, frequently encountered in
various industrial and engineering applications [18, 25]. Unlike previous methods in which the
form of expectation is only derived for nonlinear PDEs with variational equations, we propose an
expectation minimization framework also suitable for variational inequalities.

The abstract framework of an elliptic variational inequality of the second kind can be described
as follows (cf. [25]). Find u ∈ H such that

a(u, v − u) + j(v)− j(u) ≥ 〈f, v − u〉, v ∈ H, (3.7)

where H is a Hilbert space equipped with the norm ‖ · ‖H , and 〈·, ·〉 stands for the duality pairing
between H ′ and H, with H ′ being the dual space of H; a(·, ·) is a continuous, coercive and symmetric
bilinear form over H; j(·) : H → R = R ∪ {±∞} is a proper, convex and lower semi-continuous
functional.

As shown in [25], the above problem has a unique solution under the stated conditions on the
problem data. Moreover, it can be reformulated as the following minimization problem:

u = arg min
v∈H

J(v) =
1

2
a(v, v)− 〈f, v〉+ j(v), (3.8)

which naturally falls into our expectation minimization framework in (3.6).
Let us discuss the simplified friction problem as an example, where the nonlinear PDE is given

by 
−∆u+ u = f in Ω,

|∂nu| ≤ g, u∂nu+ g|u| = 0 on ΓC ,

u = 0 on ΓD,

(3.9)

where n is the unit outward normal to ∂Ω; ΓC ⊂ ∂Ω denotes the friction boundary, and ΓD =
∂Ω \ ΓC ; f ∈ L2(Ω) and g ∈ L2(ΓC) are two given functions. (3.9) can be expressed as an elliptic
variational inequality in the form (3.7) or (3.8) by choosing

H = VD = {φ ∈ H1(Ω) : φ = 0 on ΓD}

and
a(φ, χ) = (∇φ,∇χ) + (φ, χ), j(φ) = (g, |φ|)ΓC

, φ, χ ∈ VD.

Hence, the minimization problem of the nonlinear PDE (3.9) is given by

u = arg min
φ∈VD

J1(φ), (3.10)

where

J1(φ) =
1

2
‖φ‖21 − (f, φ) + j(φ)

= |Ω|Eξ1
[1

2

(
|∇ξ1φ(ξ1;θ)|2 + φ2(ξ1;θ)

)
− f(ξ1)φ(ξ1;θ)

]
+ |ΓC |Eξ2

[
g(ξ2)|φ(ξ2;θ)|

]
,

where ξ1 and ξ2 are random vectors following the uniform distribution over Ω and ΓC , respectively.
We can also use the penalty method to remove the constraint condition in the admissible

space VD, giving rise to an easier unconstrained minimization problem for deep learning. Then,
the problem (3.10) is modified as

u = arg min
φ∈V1

J2(φ), (3.11)
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where

V1 = H1(Ω) J2(φ) = J1(φ) + γ‖φ‖20,ΓD
= |Ω|Eξ1

[1

2

(
|∇ξ1φ(ξ1;θ)|2 + φ2(ξ1;θ)

)
− f(ξ1)φ(ξ1;θ)

]
+ |ΓC |Eξ2

[
g(ξ2)|φ(ξ2;θ)|

]
+ |ΓD|Eξ3

[
γφ2(ξ3;θ)

]
,

with γ denoting a penalty parameter to be determined feasibly and ξ3 being a random vector
following the uniform distribution over ΓD. The minimization problem in (3.11) is of the form of
expectation minimization in (3.6).

3.3 Minimization Problems for Eigenvalue Problems

Now we discuss how to evaluate the smallest eigenvalue and its eigenfunction for a positive self-
adjoint differential operator, e.g.,{

−∇(p(x)∇u) + q(x)u = λu in Ω,

u = 0 on ∂Ω,
(3.12)

where p(x) ∈ C1(Ω̄) and there exist two positive constants p1 ≥ p0 such that p0 ≤ p(x) ≤ p1 for all
x ∈ Ω̄, and q(x) ∈ C(Ω̄) is nonnegative over Ω. Here and in what follows, Ω̄ denotes the closure of
Ω.

The solution (λ, u) is governed by the following variational problem

u = arg min
φ∈V

J3(φ), (3.13)

where V = H1
0 (Ω) and

J3(φ) =
a(φ, φ)

‖φ‖20
+ γ(φ(x0)− 1)2; a(φ, χ) =

∫
Ω

[p(x)∇φ · ∇χ+ q(x)φ χ] dx, φ, χ ∈ V ;

γ is any given positive number, and x0 is any given point in the interior of Ω.
If u∗ ∈ V is a solution, we have by the variational principle for eigenvalue problems [2] that

u∗ = arg min
φ∈V

a(φ, φ)

‖φ‖20
. (3.14)

Let α be a constant such that (αu∗)(x0) = 1 and u = αu∗. By (3.14), J3(u) ≤ a(φ,φ)
‖φ‖20

≤ J3(φ) for

all φ ∈ V . The converse can be proved similarly. Furthermore, it is easy to check that

J3(φ) =
a(φ(x;θ), φ(x;θ))

‖φ(x;θ)‖20
+γ(φ(x0;θ)−1)2=

Eξ
[
p(ξ)|∇ξφ(ξ;θ)|2 + q(ξ)φ2(ξ;θ)

]
Eη
[
φ2(η;θ)

] + γ(φ(x0;θ)− 1)2,

where ξ and η are i.i.d. random vectors following the uniform distribution over Ω.
In fact, (3.13) is a constrained minimization problem, that is

u = arg min
φ∈V1

J3(φ),

s.t. u = 0 on ∂Ω,
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where V1 = H1(Ω) as before. Here, we exploit the idea from Jens Berg and Kaj Nyström [9] to
reformulate the above problem as an unconstrained minimization one. To this end, we construct
the neural network function as follows:

φ(x;θ) = B(x)ψ(x;θ),

where B(x) is a known smooth function such that the boundary ∂Ω can be parametrized by
B(x) = 0, and ψ(x;θ) is any function in V1. So (3.13) becomes the expectation minimization:

u = arg min
ψ∈V1

J3(B(x)ψ(x;θ)). (3.15)

Once we have obtained the eigenfunction u(x), the corresponding eigenvalue is λ = a(u, u)/‖u‖20.
Note that the variational formulation developed here is different from the one devised by E and Yu
[19] and the expectation form in our formulation makes it easier to implement SGD.

The proposed method evaluates the smallest eigenvalue and its eigenfunction not only for lin-
ear eigenvalue problems, but also for nonlinear eigenvalue problems. To generalize this idea for
nonlinear eigenvalue problems, let us consider the nonlinear Schrödinger equation called the Gross-
Pitaevskii (GP) equation as an example:

−∆u+ V (x)u+ βu3 = λu in Ω,

u = 0 on ∂Ω,

‖u‖0 = 1,

(3.16)

where the real-valued potential function V (x) ∈ Lp(Ω) for some real number p > 1, and β is a
positive number.

According to [13], the ground state non-negative solution (λ, u) of (3.16) is unique and governed
by the following variational problem

u = arg min{J4(φ) : φ ∈ H1
0 (Ω), ‖φ‖0 = 1}, (3.17)

where

J4(φ) = (∇φ,∇φ) + (V (x)φ, φ) +
β

2
(φ3, φ).

To relax the constraint ‖φ‖0 = 1, we consider the minimization problem for φ/‖φ‖0 with φ ∈ V ,
and reformulate the variational problem (3.17) in the form

u = arg min
φ∈H1

0 (Ω)

J5(φ), (3.18)

where

J5(φ) =
(∇φ,∇φ) + (V (x)φ, φ)

‖φ‖20
+
β

2

(φ3, φ)

‖φ‖40
+ γ(φ(x0)− 1)2;

x0 is any given point in the interior of Ω. Moreover, the functional J5(φ) can be written as the
expectation framework as follow.

J5(φ(x;θ)) =
(∇xφ(x;θ),∇xφ(x;θ)) + (V (x)φ(x;θ), φ(x;θ))

‖φ(x;θ)‖20
+
β

2

(φ3(x;θ), φ(x;θ))

‖φ(x;θ)‖40
+ γ(φ(x0;θ)− 1)2

=
Eξ
[
|∇ξφ(ξ;θ)|2 + V (ξ)φ2(ξ;θ)

]
Eη
[
φ2(η;θ)

] +
β

2|Ω|

Eξ
[
φ4(ξ;θ)

]
Eη;ζ

[
φ2(η;θ)φ2(ζ;θ)

] + γ(φ(x0;θ)− 1)2,
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where ξ,η, ζ are i.i.d. random vectors produced by the uniform distribution over Ω.
Similarly, we can also eliminate the boundary constraint following the ideas in linear eigenvalue

problems. Then the variational problem (3.17) is rewritten as

u = arg min
ψ∈V1

J5(B(x)ψ(x; θ)), (3.19)

where V1 = H1(Ω) and B(x) is the same as of linear eigenvalue problems.
It is noted that if u is the solution of (3.19), the eigenfunction is its normalization: u/‖u‖0 (still

denoted by u for simplicity). Thus, the smallest eigenvalue can be computed by

λ = (∇xu,∇xu) + (V (x)u, u) + β(u3, u).

4 Phase II of Int-Deep: Traditional Iterative Methods

We propose to use deep learning solutions as initial guesses so as to achieve a high-accurate solution
by traditional iterative methods in a few iterations (e.g., Newton’s method for solving nonlinear
systems [54][24] or the two grid methods in the context of finite elements [58, 59, 60][12]). In
fact, these ideas have led to high-performance methods for solving semilinear elliptic problems and
eigenvalue problems with the effectiveness shown by mathematical theory and numerical simulation.
The key analysis of this idea is to characterize the conditions under which deep learning solutions
can help traditional iterative methods converge quickly. We will provide several classes of examples
and the corresponding analysis to support this idea as follows. In what follows, uDL denotes the
numerical solution obtained by the deep learning algorithm, and Ih is the usual nodal interpolation
operator (cf. [11, 16]).

4.1 Semilinear Elliptic Equations with Equality Constrains

Consider the following semilinear elliptic equation{
−∆u+ f(x, u) = 0 in Ω,

u = 0 on ∂Ω,
(4.1)

where Ω is a bounded convex polygon in Rd (d = 1, 2), and f(x, u) is a sufficiently smooth function.
For simplicity, we use f(u) for f(x, u) and f ′ for fu in what follows.

Let V = H1
0 (Ω). Then the variational formulation of problem (4.1) is to find u ∈ V such that

a(u, χ) := (∇u,∇χ) + (f(u), χ) = 0, χ ∈ V. (4.2)

For any v ∈ L∞(Ω), define

av(φ, χ) := (∇φ,∇χ) + (f ′(v)φ, χ), φ, χ ∈ V. (4.3)

As in [58, 59], we assume that problem (4.1) (equivalently, problem (4.2)) satisfies the following
conditions:

A1 Any solution u of (4.1) has the regularity u ∈W 2,∞(Ω).

A2 Let u ∈W 2,∞(Ω) be a solution of (4.1). Then there exists a positive constant Cu such that

Cu‖φ‖1 ≤ sup
χ∈V

au(φ, χ)

‖χ‖1
, φ ∈ V.
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We next consider the finite element method for solving problem (4.2). Let Th be a quasi-
uniform and shape regular triangulation of Ω into K. Write hK = diam(K) and h := maxK∈Th hK .
Introduce the Courant element space by

Vh = {φ ∈ C(Ω̄) : φ|K ∈ P1(K) for all K ∈ Th} ∩ V, (4.4)

where P1(K) denotes the function space consisting of all linear polynomials over K. Then the finite
element method is to find uh ∈ Vh such that

a(uh, χ) = 0, χ ∈ Vh. (4.5)

Now, let us introduce Int-Deep for solving the problem in (4.5). Concretely speaking, we choose
Ihu

DL as the initial guess and obtain a highly accurate approximate solution by Newton’s method.

Algorithm 1 A hybrid Newton’s method for semilinear problems

Input: the target accuracy ε, the maximum number of iterations Nmax, the approximate solution
in a form of a DNN uDL in Phase I of Int-Deep.
Output: uh = uhk+1.

Initialization: Let uh0 = Ihu
DL, k = 0, and ek = 1;

while ek > ε and k < Nmax do
Find vhk ∈ Vh such that

(∇vhk ,∇χ) + (f ′(uhk)vhk , χ) = −(∇uhk ,∇χ)− (f(uhk), χ), χ ∈ Vh.

Let uhk+1 = uhk + vhk .

ek+1 = ‖uhk+1 − uhk‖0/‖uhk‖0, k = k + 1.
end while

Next, we turn to discuss the convergence of the Algorithm 1. In the theorem below, we introduce
a discrete maximum norm ‖ · ‖0,∞,h to quantify errors. Let Ωh consist of all the vertices of the
triangulation Th of Ω. Then for any v ∈ C(Ω̄), ‖v‖0,∞,h = maxx∈Ωh

|v(x)|.
In what follows, to simplify the presentation, for any two quantities a and b, we write “a . b” for

“a ≤ Cb”, where C is a generic positive constant independent of h, which may take different values
at different occurrences. Moreover, any symbol C or c (with or without superscript or subscript)
denote positive generic constants independent of the finite element mesh size h.

Let us define a neighborhood of u as follows:

B(u) = {v ∈ V : ‖v − u‖0,∞ ≤ Cu1 }, (4.6)

where Cu1 is a positive constant given in Lemma A.1. Then we have the following theorem showing
the convergence of Algorithm 1.

Theorem 4.1. Let u ∈ W 2,∞(Ω) be a solution of (4.1) and uhk the function sequence formed by
Algorithm 1. Let B(u) be a neighborhood of u given by (4.6). Assume uhk ∈ B(u) for k = 0, 1, · · · .
Write δ = ‖u− uDL‖0,∞,h. Then there exist two positive constants h̄0 (h̄0 < h2) and δ̄0 such that
if h < h̄0 and δ < δ̄0, there holds

‖u− uhk‖0,∞ . h2 + β2k

1 for d = 1,

‖u− uhk‖0,∞ . h2| log(h)|+ h−2/pβ2k

2 for d = 2,
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where h2 is a positive constant given in Lemma A.4,

β1 = c0c1(h2 + δ) < 1, β2 = c2c3(h2| log(h) + δ|) < 1,

with ci (0 ≤ i ≤ 3) as positive constants.

The proof of Theorem 4.1 can be found in Appendix A. According to the second-order conver-
gence in β1 and β2 in the above theorem, one can use only a few Newton’s iterations to achieve a
numerical solution with the same accuracy as in the finite element solution uh. The forthcoming
numerical results will demonstrate this theoretical estimate. As shown in reference [58] (see also
Lemma A.3 in Appendix A), we find that under the condition h < h̄0 < h2 given in the above
theorem, the finite element method (4.5) has a unique solution uh around a given exact solution u.
Moreover, the analysis developed here can be applied to high order finite element methods.

4.2 Eigenvalue Problems

In this subsection, we propose and analyze Int-Deep for solving eigenvalue problems in the similar
spirit of the two grid method due to Xu and Zhou [60]. We first discuss how to design efficient
methods for linear eigenvalue problems. For simplicity, let us consider the following problem{

−∆u = λu in Ω,

u = 0 on ∂Ω.
(4.7)

The variational problem for (4.7) is given as follows. Find the smallest number λ and a nonzero
function u ∈ V such that

a(u, χ) = λ(u, χ), χ ∈ V, (4.8)

where V = H1
0 (Ω) and a(u, χ) = (∇u,∇χ). Without loss of generality, assume ‖u‖0 = 1.

In the discretization, we use the same finite element space Vh as given in the last subsection.
Hence, the finite element method for (4.8) is to find the smallest number λh and a nonzero function
uh ∈ Vh such that

a(uh, χ) = λh(uh, χ), χ ∈ Vh. (4.9)

Now, let us introduce Int-Deep for solving the problem in (4.9). Concretely speaking, we choose
the normalized Ihu

DL as the initial guess and obtain a highly accurate approximate solution by a
certain iterative scheme. The iterative scheme is motivated by the two grid method for eigenvalue
problems due to Xu and Zhou [60]. The method is essentially the power method for eigenvalue
problems and the eigenvalue computation is accelerated by the Rayleigh quotient.

In each iteration step of the “while” loop in Algorithm 2, typical numerical methods would
normalize the approximate eigenfunction to enforce ‖uhk‖0 = 1, which might help to speedup the
convergence. However, we will only prove the convergence of Algorithm 2 without the normalization
step as follows for simplicity. We define the elliptic projection operator Ph that projects any u ∈ V
to Phu ∈ Vh such that a(Phu, χ) = a(u, χ), χ ∈ Vh. The analysis of this operator is well-known
(cf. [11, 16]) but we quote an important result (cf. [5, 4]) below.

Lemma 4.1. Let (λ, u) be an eigenpair of (4.8). For any φ ∈ H1
0 (Ω) \ {0}, there holds

a(φ, φ)

(φ, φ)
− λ =

a(φ− u, φ− u)

(φ, φ)
− λ(φ− u, φ− u)

(φ, φ)
.

With the help of the above results, we can derive the following theorem.
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Algorithm 2 Int-Deep for linear eigenvalue problems

Input: the target accuracy ε, the maximum number of iterations Nmax, the approximate solution
in a form of a DNN uDL in Phase I of Int-Deep.
Output: uh = uhk+1, λ

h = λhk+1.

Initialization: Let uh0 = Ihu
DL/‖IhuDL‖0, λh0 = |uh0 |21/‖uh0‖20, k = 0, ek = 1;

while ek > ε and k < Nmax do
Find uhk+1 ∈ Vh such that

a(uhk+1, χ) = λhk(uhk , χ), χ ∈ Vh,

λhk+1 =
|uhk+1|21
‖uhk+1‖20

;

ek+1 = ‖uhk+1 − uhk‖0/‖uhk‖0, k = k + 1.
end while

Theorem 4.2. Let λ be the smallest eigenvalue of (4.7) and u ∈ H2(Ω) be the corresponding
eigenfunction with ‖u‖0 = 1, respectively. Denote δ̃ = max{|λ−λh0 |, ‖u−uDL‖0,∞,h}. Assume that
the sequence ‖uhk‖0 is bounded below and above by two positive constants ε0 and ε1, respectively.
Then there exist two positive constants h̃0 and δ̃0 such that if h < h̃0 and δ̃ < δ̃0, there holds

|λ− λhk |+ ‖u− uhk‖0 . β2k

3 + h2, (4.10)

where β3 = c4c6(δ̃ + h2), c4 and c6 are generic positive constants independent of the finite element
mesh size h.

Note that ‖uh0‖0 = 1 and only very few iterations are required to derive the desired numerical
solution in Algorithm 2 in practical implementation. Hence, it is reasonable to assume the sequence
‖uhk‖0 is bounded below and above by two positive constants. This assumption is also verified by
our numerical experiments.

The proof of Theorem 4.2 can be found in Appendix B. Similar to Theorem 4.1, in view of
the second-order convergence in β3 in the above theorem, one can use only a few iterations to
achieve a numerical solution with the same accuracy as for the related finite element method. The
forthcoming numerical results will demonstrate this theoretical estimate.

Now, let us turn to the nonlinear eigenvalue problem. For simplicity consider the Gross-
Pitaevskii equation (3.16). The weak form of (3.16) is given as follow. Find the smallest number
λ and a non-negative function u ∈ H1

0 (Ω) such that{
a(u, χ) + (f(u), χ) = λ(u, χ), χ ∈ H1

0 (Ω),

‖u‖0 = 1,
(4.11)

where
a(u, χ) = (∇u,∇χ) + (V (x)u, χ), f(u) = βu3.

Once we have obtained the eigenfunction u(x), then the corresponding eigenvalue is λ = a(u, u) +
(f(u), u).

To discretize the above problem, we use the same finite element space Vh in (4.4). Hence, the
finite element method for (4.11) is to find the smallest number λh and a non-negative function
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uh ∈ Vh such that {
a(uh, χ) + (f(uh), χ) = λh(uh, χ), χ ∈ Vh,
‖uh‖0 = 1.

(4.12)

The error analysis of the finite element method for (4.12) can be found in [65, 13].
Finally, let us introduce an accelerated iteration method for solving (4.12). Though an iteration

scheme can be derived by the two grid method for nonlinear elliptic eigenvalue problems due to
Cancès, Chakir, and He [12], we propose another iteration scheme motivated by Newton’s method
for nonlinear eigenvalue problems due to Gao, Yang and Meza [24]. Here, we only derive the
algorithm for nonlinear eigenvalue problems and we will analyze the convergence of Algorithm 3 in
future work.

Algorithm 3 A hybrid Newton’s method for nonlinear eigenvalue problems

Input: the target accuracy ε, the maximum number of iterations Nmax, the approximate solution
in a form of a DNN uDL in Phase I of Int-Deep.
Output: uh = uhk+1, λ

h = λhk+1.

Initialization: Let uh0 = Ihu
DL/‖IhuDL‖0, λh0 = a(uh0 , u

h
0) + (f(uh0), uh0), k = 0, ek = 1;

while ek > ε and k < Nmax do
Find (vhk , µ

h
k) ∈ Vh × R such that

a(vhk , χ) + (f ′(uhk)vhk , χ)− λhk(vhk , χ)− µhk(uhk , χ) = −a(uhk , χ)− (f(uhk), χ) + λhk(uhk , χ), χ ∈ Vh,
2(vhk , u

h
k) = 1− (uhk , u

h
k).

Let uhk+1 = uhk + vhk , λ
h
k+1 = λhk + µhk .

ek+1 = ‖uhk+1 − uhk‖0/‖uhk‖0, k = k + 1.
end while

5 Numerical Experiments

This section consists of two parts. In the first part, we provide various numerical examples to illus-
trate the performance of the proposed deep learning-based methods. As we shall see, deep learning
approaches are capable of providing approximate solutions to nonlinear problems in O(100) itera-
tions. However, continuing the iteration cannot further improve accuracy. In the second part, we
will investigate the numerical performance of the Int-Deep framework in terms of network hyper-
parameters and the convergence analysis in the previous section. Though the hyper-parameters of
Int-Deep to guarantee a good initial guess should be problem-dependent, as we shall see in various
numerical examples in this section, DNNs of size O(1) and trained with O(100) iterations can pro-
vide good initial guesses enabling traditional iterative methods to converge in O(log(1

ε )) iterations
to the ε precision of finite element methods.

In our numerical experience, the ResNet has a better numerical performance than FNN. Hence,
without especial explanation, we always use the ResNet of width 50 and depth 6 with an activation
function σ(x) = max{x3, 0}. Neural networks are trained by Adam optimizer [35] with a learning
rate η = 1e − 03. The batch size is 512 for all 1D examples and 1024 for all 2D examples. Deep
learning algorithms are implemented by Python 3.7 using PyTorch 1.0. and a single NVIDIA
Quadro P6000 GPU card. All finite element methods are implemented in MATLAB 2018b in an
Intel Core i7, 2.6GHz CPU on a personal laptop with a 32GB RAM.
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Let us first summarize notations used in this section. Suppose u is the exact solution to a
problem and uhk is the approximation evaluated by the Int-Deep framework in the k-th iteration in
the second phase. We denote the absolute difference between the ground truth and the numerical
solution as

ehk := u− uhk ,

which will be measured with different norms to obtain the accuracy of our framework. After
completing iterations, uh is used as the approximate solution by traditional iterative methods,
and eh is denoted as its absolute difference. Similarly, eDL is denoted as the absolute difference
between the exact solution and the approximate solution by deep learning. In eigenvalue problems,
let λ, λDL and λh denote the target eigenvalue, the approximate one by deep learning, and the
approximate one by traditional methods, respectively. #Epoch means the number of epochs in the
Adam for deep learning and #K stands for the number of iterations in the traditional iterative
methods in Int-Deep. We always apply the Courant element method to solve the weak form in
Algorithms 1 to 3.

We also summarize the numerical examples in this section in Table 1 below, which could help
the reader to better understand the structure of extensive numerical examples.

Table 1: Summary of numerical examples.

Phase I Phase II with an initial guess by Phase I
Example 5.1 Phase I, Section 3.1 Example 5.4 Phase II, Section 4.1
Example 5.2 Phase I, Section 3.2 Example 5.5 Phase II, Section 4.2, linear eigenvalue problem
Example 5.3 Phase I, Section 3.3 Example 5.6 Phase II, Section 4.2, nonlinear eigenvalue problem

5.1 Phase I of Int-Deep: Deep Learning Methods

Let us first provide numerical examples to illustrate the performance of the proposed variational
formulations for deep learning in Section 3.

5.1.1 Linear PDEs

Example 5.1. Consider the second-order linear elliptic equation with the Dirichlet boundary con-
dition in one dimension:{

− d
dx

(
p(x) du

dx

)
+ x2u(x) = f(x), x ∈ (−1, 1),

u = 0, x = −1 or 1,

with p(x) = 1 +x2 and f(x) = π2(1 +x2) sin(πx)− 2πx cos(πx) +x2 sin(πx). The exact solution of
this problem is

u(x) = sin(πx).

In this experiment, the variational formulation in (3.6) with a penalty constant γ = 500 is
applied in the deep learning method. To evaluate the test error, we adopt a mesh size h = 2

512
to generate the uniform triangulation Th as the test locations. The test errors during training are
summarized in Table 2 and Figure 2. From Table 2 and Figure 2, we know the absolute discrete
maximum error is reduced to order 1e-3 after 300 epochs. However, the error oscillates after about
1000 epochs and it is difficult to get a highly accurate solution when #Epoch increases.
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Table 2: Example 5.1

#Epoch ‖eDL‖0,∞,h

300 1.16e-3
500 6.09e-4
1000 9.36e-4
5000 3.09e-3
10000 2.49e-3

Table 3: Example 5.2.

#Epoch ‖eDL‖0,∞,h

300 6.55e-2
500 5.67e-2
1000 6.78e-3
5000 4.27e-3
10000 2.22e-3

Table 4: Example 5.3.

#Epoch |λ− λDL| ‖u− uDL‖0,∞,h

300 1.40e-1 5.06e-2
500 2.31e-2 1.37e-2
1000 1.71e-2 1.66e-2
5000 4.85e-3 1.04e-2
10000 3.20e-3 1.45e-2

Figure 2: eDL of Example 5.1. Figure 3: eDL of Example 5.2. Figure 4: Test errors of Example 5.3.

5.1.2 Variational Inequalities

Example 5.2. Consider the simplified friction problem
−∆u+ u = f in Ω,

|∂nu| ≤ g, u∂nu+ g|u| = 0 on ΓC ,

u = 0 on ΓD,

where n is the outer normal vector, Ω = (0, 1)2, ΓC = {1}× [0, 1] and ΓD = ∂Ω\ΓC . We set g = 1
and choose f such that the problem has an exact solution u(x, y) = (sinx− x sin 1) sin(2πy).

In this experiment, the variational formula in (3.11) with a penalty constant γ = 500 is applied
in the deep learning method. To evaluate the test error, we adopt a mesh size h = 1

128 to generate
the uniform triangulation Th as the test locations. The test errors during training are summarized
in Table 3 and Figure 3. From Table 3 and Figure 3, we know the absolute discrete maximum
error is reduced to order 1e-3 after 1000 epochs. However, the error oscillates after 2000 epochs
and it is difficult to get a highly accurate solution when #Epoch increases.

5.1.3 Eigenvalue Problems

Example 5.3. Consider the following problem{
−u′′ = λu, x ∈ (0, 1),

u = 0, x = 0 or 1.

The smallest eigenvalue is π2 and the corresponding eigenfunction is u(x) = sin(π(x− 1)).

In this experiment, the variational formula in (3.15) with x0 = 0.5 and γ = 100 is applied in
the deep learning method. To evaluate the test error, we adopt a mesh size h = 1

256 to generate the
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uniform triangulation Th as the test locations. The test errors during training are summarized in
Table 4 and Figure 4. From Table 4 and Figure 4, we know the absolute discrete maximum error
of the eigenfunction is reduced to order 1e-2 after 300 epochs and the eigenvalue error is reduced
to order 1e-3 after 5000 epochs. Both errors oscillate after 1000 epochs and it is hard to to get
high-accuracy as #Epoch increases.

5.2 Phase II of Int-Deep: Traditional Iterative Methods

Now we use the approximate solution by deep learning methods as the initial guess in traditional
iterative methods. We will show that DNNs of size O(1) and trained with O(100) iterations are
good enough for traditional iterative methods to converge in at most O(log(1

ε )) iterations to the ε
precision of finite element methods.

5.2.1 Semilinear PDEs

We consider semilinear elliptic equations with homogeneous Dirichlet boundary conditions to
demonstrate the efficiency of the Int-Deep framework in Algorithm 1 (deep learning combined
with Newton’s method for semilinear PDE) and to verify Theorem 4.1.

Example 5.4. Consider the following semilinear elliptic equations{
−∆u− (u− 1)3 + (u+ 2)2 = f in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1)d with d = 1 or 2. We choose f such that the problem has an exact solution
u(x) = 3 sin(2πx) for d = 1 and u(x) = 3 sin(2πx) sin(2πy) for d = 2.

Case d = 1.
First of all, we show that Newton’s method cannot converge to a solution without a good

initial guess u0 and the deep learning method can provide a good initial guess. We apply Newton’s
iteration in Algorithm 1 with several types of initial guesses u0 listed in Table 5, and the other
parameters are taken as h = 1

1024 , Nmax = 15, and ε = 0.01 × h2. uDL is obtained via the deep
learning approach based on the variational formula (3.6) with γ = 500 and 200 epochs in the Adam.
Without good knowledge of the ground truth solution or uDL, Newton’s method fails to converge
to a good numerical solution.

Table 5: The performance of Newton’s method with different initial guesses u0. ω stands for a
Gaussian random noise with mean zero and unit variance.

u0 #K ‖eh0‖0,∞,h ‖eh‖0,∞,h u0 #K ‖eh0‖0,∞,h ‖eh‖0,∞,h

1 5 4.00e+0 1.95e+0 ω 6 5.68e+0 3.05e+0
2 5 5.00e+0 1.95e+0 1 + ω 5 6.33e+0 1.95e+0
5 15 8.00e+0 1.28e+5 −1 + ω 15 6.95e+0 2.65e+6
−1 15 4.00e+0 9.50e+4 u+ ω 6 4.03e+0 1.82e-5
−2 12 5.00e+0 4.66e+0 u+ 2.5× ω 15 8.89e+0 2.10e+5
−5 15 8.00e+0 6.45e+4 uDL 5 2.97e-1 1.82e-5

Besides, we also test the performance of the Picard’s iteration in this example. We apply
Picard’s iteration with several types of initial guesses u0 listed in Table 6, and the other parameters
are taken as h = 1

1024 , Nmax = 15, and ε = 0.01 × h2. Picard’s iteration fails to converge to the
right solution in all tests.
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Table 6: The performance of Picard’s method with different initial guesses u0. ω stands for a
Gaussian random noise with mean zero and unit variance.

u0 #K ‖eh0‖0,∞,h ‖eh‖0,∞,h u0 #K ‖eh0‖0,∞,h ‖eh‖0,∞,h

1 15 4.00e+0 1.95e+0 ω 15 5.92e+0 1.95e+0
0 15 3.00e+0 1.95e+0 u+ ω 10 3.59e+0 nan

Furthermore, we show that the two-grid method also needs a good initial guess u0 for Newton’s
method in the coarse grid stage; otherwise, the two-grid method cannot converge well. Denote the
mesh size of the coarse grid as H and the mesh size of the fine grid as h. The numerical results in
Table 7 summarize the performance of the two-grid method with several types of initial guesses u0

and different mesh sizes H and h. The two grid method can converge to the correct solution only
in the case when the initial guess of the coarse grid stage is provided by the deep learning method.

Table 7: The performance of the two-grid method for Example 5.4 in 1D with different initial
guesses and mesh sizes.

u0 H h ‖eh‖0,∞,h H h ‖eh‖0,∞,h H h ‖eh‖0,∞,h

1 2−4 2−8 1.95e+0 2−5 2−10 1.95e+0 2−6 2−12 1.95e+0
-1 2−4 2−8 2.25e+1 2−5 2−10 2.74e+2 2−6 2−12 2.99e+2
0 2−4 2−8 1.95e+0 2−5 2−10 1.95e+0 2−6 2−12 1.95e+0
ω 2−4 2−8 3.06e+0 2−5 2−10 3.05e+0 2−6 2−12 3.05e+0
uDL 2−4 2−8 3.27e-3 2−5 2−10 1.98e-4 2−6 2−12 1.23e-5

Next, we show that the initial guess by the deep learning approach enables Newton’s method to
converge to a solution with the precision of finite element methods, i.e., the numerical convergence
order in terms of h defined by

order := log2

‖ehk‖
‖eh/2k ‖

is 2 as proved by Theorem 4.1, where ‖·‖ = ‖·‖0,∞,h, the same one as used in the above table. This
convention applies to other numerical examples. For the purpose of convenience, we choose h = 2−`

for different integers `’s and let eh2 = h2 as the theoretical precision of finite element methods. We
repeatedly apply the same deep learning method as in Table 5 to generate different initial guesses
uh0 for different sizes h. Let Nmax = 15 and ε = 0.01× h2 in Algorithm 1. Table 8 summarizes the
performance of Algorithm 1 and numerical results verify the accuracy and the convergence order
of the Int-Deep framework, even though the number of epochs in the training of deep learning is
O(100) and the initial error is very large.

Table 8: The performance of Int-Deep in Algorithm 1 for Example 5.4 in 1D with different mesh
sizes h.

h eh2 # Epoch ‖eDL‖0,∞,h #K ‖eh‖0,∞,h order
2−7 6.10e-5 200 2.97e-1 5 1.17e-3 -
2−8 1.53e-5 200 2.97e-1 5 2.92e-4 2.00
2−9 3.81e-6 200 2.97e-1 5 7.29e-5 2.00
2−10 9.54e-7 200 2.97e-1 5 1.82e-5 2.00
2−11 2.38e-7 200 2.97e-1 5 4.56e-6 2.00
2−12 5.96e-8 200 2.97e-1 5 1.14e-6 2.00
2−13 1.49e-8 200 2.97e-1 5 2.85e-7 2.00
2−14 3.73e-9 200 2.97e-1 5 7.12e-8 2.00
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Finally, we show that the performance of the Int-Deep in Algorithm 1 is independent of the size
of DNNs, which is supported by the numerical results in Table 9.

Table 9: The performance of Int-Deep in Algorithm 1 for Example 5.4 in 1D with different DNN
width N and depth L when h = 1

1024 and #Epoch = 400.

L
N 10 30 50
‖eDL‖0,∞,h ‖eh‖0,∞,h #K ‖eDL‖0,∞,h ‖eh‖0,∞,h #K ‖eDL‖0,∞,h ‖eh‖0,∞,h #K

2 3.72e+0 1.82e-5 8 2.27e-1 1.82e-5 5 5.19e-2 1.82e-5 4
4 1.05e-1 1.82e-5 4 1.63e-2 1.82e-5 3 1.51e-2 1.82e-5 3
6 9.84e-2 1.82e-5 4 8.48e-3 1.82e-5 3 5.34e-3 1.82e-5 3

Case d = 2.
Again, we show that the initial guess by the deep learning approach enables Newton’s method to

converge to a solution with the precision of finite element methods, i.e., the numerical convergence
order in terms of h is almost 2 as proved by Theorem 4.1. We repeatedly apply the variational
formula in (3.6) with γ = 500 and the deep learning method to generate different initial guesses uh0
for different sizes h. Let Nmax = 15 and ε = 0.01× h2 in Algorithm 1. Let eh2 = |h2 log h|. Table
10 summarizes the performance of Algorithm 1 and numerical results verify the accuracy and the
convergence order of the Int-Deep framework, even though the number of epochs in deep learning
is O(100) and the initial error is very large.

Table 10: The performance of Int-Deep in Algorithm 1 for Example 5.4 in 2D with different mesh
sizes h.

h eh2 # Epoch ‖eDL‖0,∞,h #K ‖eh‖0,∞,h order

2−4 1.08e-2 200 2.19e+0 5 2.03e-1 -
2−5 3.38e-3 200 2.19e+0 5 5.92e-2 1.78
2−6 1.02e-3 200 2.20e+0 5 1.55e-2 1.94
2−7 2.96e-4 200 2.20e+0 6 3.92e-3 1.98
2−8 8.46e-5 200 2.20e+0 6 9.83e-4 2.00

Finally, we show that the performance of the Int-Deep in Algorithm 1 is independent of the size
of DNNs, which is supported by the numerical results in Table 11.

Table 11: The performance of Int-Deep in Algorithm 1 for Example 5.4 in 2D with different DNN
width N and depth L when h = 1

128 and #Epoch = 400.

L
N 10 30 50
‖eDL‖0,∞,h ‖eh‖0,∞,h #K ‖eDL‖0,∞,h ‖eh‖0,∞,h #K ‖eDL‖0,∞,h ‖eh‖0,∞,h #K

2 3.15e+0 3.92e-3 6 2.91e+0 3.92e-3 6 3.32e+0 3.92e-3 6
4 4.06e+0 3.92e-3 6 2.53e+0 3.92e-3 5 7.59e-1 3.92e-3 4
6 3.54e+0 3.92e-3 6 1.20e+0 3.92e-3 4 1.05e+0 3.92e-3 4

5.2.2 Linear eigenvalue problems

Here, we demonstrate the efficiency of the Int-Deep framework in Algorithm 2 (deep learning
combined with the power method) and verify Theorem 4.2.
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Example 5.5. Consider the following problem{
−∆u = λu in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1)d for d = 1 and 2. The smallest eigenvalue is dπ2. The corresponding eigenfunction
is u(x) = sin(π(x− 1)) for d = 1, and u(x, y) = sin(π(x− 1)) sin(π(y − 1)) for d = 2.

Case d = 1.
We show that the initial guess by the deep learning approach enables the power method to

quickly converge to a solution with the precision of finite element methods, i.e., the numerical
convergence order in terms of h is 2 as proved by Theorem 4.2. We repeatedly apply the variational
formula in (3.15) (with x0 = 0.5 and γ = 100) and the deep learning method to generate different
initial guesses uh0 for different sizes h. Let Nmax = 10 and ε = h2 in Algorithm 2. Table 12
summarizes the performance of Algorithm 2 and numerical results verify the accuracy and the
convergence order of the Int-Deep framework, even though the number of epochs in deep learning
is O(100).

Table 12: The performance of Int-Deep in Algorithm 2 for Example 5.5 in 1D with different mesh
sizes h.

h #Epoch ‖eh0‖0 #K |λ− λh| eigenvalue order ‖eh‖0 eigenfunction order

2−5 300 1.13e-2 3 7.93e-3 - 8.08e-4 -
2−6 300 1.14e-2 4 1.98e-3 2.00 2.02e-4 2.00
2−7 300 1.14e-2 5 4.95e-4 2.00 5.05e-5 2.00
2−8 300 1.14e-2 6 1.24e-4 2.00 1.26e-5 2.00
2−9 300 1.14e-2 7 3.04e-5 2.03 3.17e-6 2.00

Next, we show that the performance of Int-Deep in Algorithm 2 is independent of the size of
DNNs, which is supported by the numerical results in Table 13.

Table 13: The performance of Int-Deep in Algorithm 2 for Example 5.5 in 1D with different DNN
width N and depth L when h = 1

512 and #Epoch = 400.

L
N 10 30 50
|λ− λh| ‖eh‖0 #K |λ− λh| ‖eh‖0 #K |λ− λh| ‖eh‖0 #K

2 3.06e-5 3.30e-6 7 2.61e-5 3.40e-6 8 3.67e-5 3.47e-6 8
4 3.10e-5 3.26e-6 6 3.09e-5 3.17e-6 6 3.24e-5 3.19e-6 8
6 4.25e-5 4.42e-6 8 2.98e-5 3.24e-6 7 3.09e-5 3.30e-6 6

Case d = 2.
Again, we show that the initial guess by the deep learning approach enables the power method

to quickly converge to a solution with the precision of finite element methods, i.e., the numerical
convergence order in terms of h is 2 as proved by Theorem 4.2. We repeatedly apply the variational
formula in (3.15) (with x0 = (0.5, 0.5) and γ = 100) and the deep learning method to generate
different initial guesses uh0 for different sizes h. Let Nmax = 10 and ε = h2 in Algorithm 2. Table
14 summarizes the performance of Algorithm 2 and numerical results verify the accuracy and the
convergence order of the Int-Deep framework, even though the number of epochs in deep learning
is O(100).
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Table 14: The performance of Int-Deep in Algorithm 2 for Example 5.5 in 2D with different mesh
sizes h.

h #Epoch ‖eh0‖0 #K |λ− λh| eigenvalue order ‖eh‖0 eigenfunction order

2−4 300 5.56e-2 4 1.91e-1 - 6.63e-3 -
2−5 300 5.65e-2 5 4.76e-2 2.00 1.70e-3 1.96
2−6 300 5.68e-2 7 1.19e-2 2.00 4.19e-4 2.02
2−7 300 5.69e-2 8 2.97e-3 2.00 1.07e-4 1.97
2−8 300 5.69e-2 10 7.43e-4 2.00 2.62e-5 2.03

Next, we show that the performance of Int-Deep in Algorithm 2 is independent of the size of
DNNs, which is supported by the numerical results in Table 15.

Table 15: The performance of Int-Deep in Algorithm 2 for Example 5.5 in 2D with different DNN
width N and depth L when h = 1

128 and #Epoch = 400.

L
N 10 30 50
|λ− λh| ‖eh‖0 #K |λ− λh| ‖eh‖0 #K |λ− λh| ‖eh‖0 #K

2 2.97e-3 1.09e-4 9 2.97e-3 1.08e-4 8 2.97e-3 1.08e-4 8
4 2.97e-3 1.07e-4 7 2.97e-3 1.07e-4 7 2.97e-3 1.09e-4 7
6 2.97e-3 1.07e-4 6 2.97e-3 1.11e-4 7 2.97e-3 1.05e-4 8

5.2.3 Nonlinear eigenvalue problems

As used in [24], denote by resDL and resh the residuals of uDL and uh corresponding to the matrix
form of (4.11), respectively. In this example, we denote ‖ · ‖2 as the vector L2−norm in Euclidian
space. Then we investigate the accuracy of Int-Deep framework in Algorithm 3 through the case
of the nonlinear Schrödinger equation.

Example 5.6. Consider the following problem
−∆u+ V (x)u+ 10u3 = λu in Ω,

u = 0 on ∂Ω,

‖u‖0 = 1,

where Ω = (0, 1)d for d = 1, 2, V (x) is a potential with two Gaussian wells on (0, 1) for d = 1, and
with four Gaussian wells on (0, 1)2 for d = 2.

Case d = 1
We first show that the initial guess by the deep learning approach enables Newton’s method to

quickly converge to the target solution. We repeatedly apply the variational formula in (3.19) (with
x0 = 0.5 and γ = 100) and the deep learning method to generate different initial guesses uh0 for
different sizes h. Let Nmax = 10 and ε = h2 in Algorithm 3. Table 16 summarizes the performance
of Algorithm 3.
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Table 16: The performance of Int-Deep in Algorithm 3 for Example 5.6 in 1D with different mesh
sizes h.

h #Epoch ‖resDL‖2 λDL #K ‖resh‖2 λh

2−5 300 6.10e-1 23.71 2 2.41e-6 23.60
2−6 300 4.72e-1 23.69 3 1.13e-10 23.58
2−7 300 3.46e-1 23.69 3 1.54e-11 23.58
2−8 300 2.49e-1 23.69 3 2.57e-12 23.58
2−9 300 1.77e-1 23.69 3 1.51e-12 23.58

Next, we show that the performance of Int-Deep in Algorithm 3 is independent of the size of
DNNs, which is supported by the numerical results in Table 17.

Table 17: The performance of Int-Deep in Algorithm 3 for Example 5.6 in 1D with different DNN
width N and depth L when h = 1

512 and #Epoch = 400.

L
N 10 30 50

λh ‖resh‖2 #K λh ‖resh‖2 #K λh ‖resh‖2 #K
2 23.58 1.33e-12 5 23.58 1.44e-12 4 23.58 1.50e-12 3
4 23.58 1.53e-12 3 23.58 2.14e-12 3 23.58 1.48e-12 3
6 23.58 1.44e-12 3 23.58 1.49e-12 3 23.58 1.34e-12 3

Case d = 2.
Again, we show that the initial guess by the deep learning approach enables Newton’s method

to quickly converge to the target solution. We repeatedly apply the variational formula in (3.19)
(with x0 = (0.5, 0.5) and γ = 100) and the deep learning method to generate different initial
guesses uh0 for different sizes h. Let Nmax = 10 and ε = h2 in Algorithm 3. Table 18 summarizes
the performance of Algorithm 3.

Table 18: The performance of Int-Deep in Algorithm 3 for Example 5.6 in 2D with different mesh
sizes h.

h #Epoch ‖resDL‖2 λDL #K ‖resh‖2 λh

2−4 300 4.07e-1 39.74 2 9.06e-6 39.46
2−5 300 2.46e-1 39.49 2 2.13e-6 39.19
2−6 300 1.35e-1 39.43 3 1.43e-10 39.12
2−7 300 7.04e-2 39.42 3 1.53e-11 39.10

Next, we show that the performance of Int-Deep in Algorithm 3 is independent of the size of
DNNs, which is supported by the numerical results in Table 19.

Table 19: The performance of Int-Deep in Algorithm 3 for Example 5.6 in 2D with different DNN
width N and depth L when h = 1

128 and #Epoch = 400.

L
N 10 30 50

λh ‖resh‖2 #K λh ‖resh‖2 #K λh ‖resh‖2 #K
2 39.10 1.60e-12 3 39.10 7.88e-13 4 39.10 4.26e-13 3
4 39.10 3.28e-10 3 39.10 1.30e-11 3 39.10 6.33e-12 3
6 39.10 3.77e-11 3 39.10 8.30e-11 3 39.10 2.10e-10 3
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6 Conclusion

This paper proposed the Int-Deep framework from a new point of view for designing highly efficient
solvers of low-dimensional nonlinear PDEs with a finite element accuracy leveraging both the ad-
vantages of traditional algorithms and deep learning approaches. The Int-Deep framework consists
of two phases. In the first phase, an approximate solution to the given nonlinear PDE is obtained
via deep learning approaches using DNNs of size O(1) and O(100) iterations. In the second phase,
the approximate solution provided by deep learning can serve as a good initial guess such that
traditional iterative methods converge in O(log(1

ε )) iterations to the ε precision of finite element
methods. The Int-Deep framework outperforms existing purely deep learning-based methods or
traditional iterative methods. The code can be shared per request.

In particular, based on variational principles, we propose new methods to formulate the problem
of solving nonlinear PDEs into an unconstrained minimization problem of an expectation over a
function space parametrized via DNNs, which can be solved efficiently via batch stochastic gradient
descent (SGD) methods due to the special form of expectation. Unlike previous methods in which
the form of expectation is only derived for nonlinear PDEs related to variational equations, our
proposed method can also handle variational inequalities and eigenvalue problems, providing a
unified variational framework for a wider range of nonlinear problems. With the good initialization
given by deep learning, we hope to reduce the difficulty of designing an efficient traditional iterative
algorithm for variational inequalities. We will leave this as future work.
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Appendix

A Proof of Theorem 4.1

Making use of the assumption A2 in Section 4.1, we immediately have the following result (see
[58]).

Lemma A.1. Let u ∈ W 2,∞(Ω) be a solution of (4.1). There exist two positive constant Cu1 and
Cu2 such that if a function v satisfies that ‖v − u‖0,∞ ≤ Cu1 , then

Cu2 ‖φ‖1 ≤ sup
χ∈V

av(φ, χ)

‖χ‖1
, φ ∈ V.

The mathematical analysis for the finite element method (4.5) is very technical and has been es-
tablished in [59]. In the following two lemmas, we collect some results which will be used frequently
later on.

Lemma A.2. Let u ∈W 2,∞(Ω) be a solution of (4.2). Then there exists a constant h0 > 0 and a
positive constant Cu3 independent of h such that if h < h0 and a function v satisfies ‖v−u‖0,∞ ≤ Cu1 ,
then

Cu3 ‖φ‖1 ≤ sup
χ∈Vh

av(φ, χ)

‖χ‖1
, φ ∈ Vh.

This lemma can be derived by using Lemma A.1 and the arguments for proving Lemma 2.2 in
[59].

Lemma A.3. Let u ∈ W 2,∞(Ω) be a solution of (4.2). Then there exists a positive constant
h1 < h0 such that if h < h1, the finite element method (4.5) has exactly one solution uh satisfying

‖u− uh‖1 ≤ Cu4

for a positive constant Cu4 independent of h. Moreover,

lim
h→0+

‖u− uh‖1 = 0.

Lemma A.4. Let u ∈W 2,∞(Ω) be a solution of (4.2) and uh be the finite element method of (4.5).
Then, there exists a positive constant h2 < h1 such that if h < h2,

‖u− uh‖0,∞ . h2 when d = 1,

‖u− uh‖0,∞ . h2| log(h)| when d = 2.

Proof. The estimate for d = 2 is given in [59]. We will derive the estimate for d = 1 following some
ideas in [59]. To this end, we first introduce an elliptic projection operator Ph such that if u ∈ V ,
then Phu ∈ Vh satisfies

(∇(Phu),∇χ) = (∇u,∇χ), χ ∈ Vh. (A.1)

It is shown in [66] that
‖u− Phu‖0,∞ . ‖u− Phu‖1 . h2|u|2,∞. (A.2)

On the other hand, the finite element solution uh satisfies

(∇uh,∇χ) + (f(uh), χ) = 0, χ ∈ Vh.
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Recalling the relation (A.1) and using (4.2) gives

(∇(Phu),∇χ) = (∇u,∇χ) = −(f(u), χ), χ ∈ Vh.

Hence, subtracting the last two equations and using Taylor’s expansion yield

aPhu((uh − Phu), χ) = −1

2
(f ′′(ζ)(uh − Phu)2, χ)− (f(Phu)− f(u), χ), χ ∈ Vh,

where ζ = ν(x)uh(x) + (1 − ν(x))(Phu)(x) for some ν(x) ∈ (0, 1). We have by the estimate (A.2)
that there exists a positive constant h̄ < h1 such that if h < h̄, ‖Phu− u‖0,∞ ≤ Cu1 . In this case,
it follows from Lemma A.2 and the last equation that

‖uh − Phu‖1 . sup
χ∈Vh

aPhu((uh − Phu), χ)

‖χ‖1
. ‖uh − Phu‖20,∞ + ‖f(u)− f(Phu)‖0,∞
. ‖uh − Phu‖21 + ‖u− Phu‖0,∞
≤ C‖uh − Phu‖21 + C‖u− Phu‖0,∞, (A.3)

where C > 0 is a generic constant. On the other hand, it follows from Lemma A.3 and the estimate
(A.2) that

‖uh − Phu‖1 ≤ ‖u− uh‖1 + ‖u− Phu‖1 → 0 as h→ 0+.

Hence, there exists a positive constant h2 < h̄ such that if h < h2, then C‖uh − Phu‖1 < 1/2,
which combined with (A.3) readily implies

‖uh − Phu‖1 . ‖u− Phu‖0,∞.

Therefore, by the Sobolev embedding theorem and the estimate (A.2),

‖u− uh‖0,∞ ≤ ‖u− Phu‖0,∞ + ‖Phu− uh‖0,∞
. ‖u− Phu‖0,∞ + ‖Phu− uh‖1 . ‖u− Phu‖0,∞ . h2|u|2,∞,

as required.

Remark 1. As shown in [11], we require to make certain strong regularity assumption on the
solution to problem (4.2) for d = 3, so as to derive the maximum norm estimate for the related
finite element method. To avoid too technical treatment, we skip the further discussion in this case.

The following result plays an important role in the convergence analysis of Int-Deep for solving
the finite element method (4.5), which will be introduced later on.

Lemma A.5. Let u ∈ W 2,∞(Ω) be a solution of (4.2). Let uh be an approximation of u obtained
by the finite element method (4.5). Assume that h < h2 with h2 the same as given in Lemma A.4.
For any v ∈ Vh ∩B(u), define a mapping Tv = v + w, where w ∈ Vh is uniquely determined by

(∇w,∇χ) + (f ′(v)w,χ) = −(∇v,∇χ)− (f(v), χ), χ ∈ Vh. (A.4)

Then there holds

‖uh − Tv‖1 . ‖uh − v‖20,p . ‖uh − v‖21.
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Proof. Recalling the definition (4.5), we know

(∇uh,∇χ) + (f(uh), χ) = 0, χ ∈ Vh,

Subtracting the above equation from (A.4) and reorganizing terms, we find

(∇Eh,∇χ) + (f(uh)− f(v)− f ′(v)w,χ) = 0, χ ∈ Vh,

where Eh = uh − Tv. Furthermore, use Taylor’s expansion to get

av(Eh, χ) = −1

2
(f ′′(ζ)(uh − v)2, χ), χ ∈ Vh,

where ζ = (1− ν(x))v(x) + ν(x)uh(x) with ν(x) ∈ (0, 1). Since h < h2 and v ∈ B(u), from Lemma
A.3 it follows that ‖ζ‖0,∞ is uniformly bounded with respect to h. Hence, by the Hölder inequality
and the Sobolev embedding theorem, for p > 2 and any χ ∈ Vh,

av(Eh, χ) .
∫

Ω
(uh − v)2|χ| dx

. ‖(uh − v)2‖0,p/2‖χ‖0,p/p−2 . ‖uh − v‖20,p‖χ‖1,

where the generic constant is independent of h but depends on p. The combination of the last
estimate with Lemma A.2 immediately implies

‖Eh‖1 . ‖uh − v‖20,p . ‖uh − v‖21,

as required.

Now we are ready to prove Theorem 4.1.

Proof. Denote Ehk = uh − uhk . Applying Lemma A.5 gives rise to

‖Ehk+1‖1 . ‖Ehk‖20,p . ‖Ehk‖21. (A.5)

When d = 1, By the Sobolev embedding theorem and (A.5),

‖Ehk+1‖0,∞ . ‖Ehk+1‖1 . ‖Ehk‖20,p . ‖Ehk‖20,∞.

This means there exists a positive constant c1 such that ‖Ehk‖0,∞ ≤ c1‖Ehk−1‖20,∞. Hence,

c1‖Ehk‖0,∞ ≤ (c1‖Ehk−1‖0,∞)2 ≤ (c1‖Eh0 ‖0,∞)2k .

On the other hand, it follows from Lemma A.4 and error estimates for the interpolation operator
Ih (cf. [11, 16]) that

‖Eh0 ‖0,∞ = ‖uh − uh0‖0,∞
≤ ‖uh − u‖0,∞ + ‖u− Ihu‖0,∞ + ‖Ihu− IhuDL‖0,∞
≤ c0(h2 + δ),

where c0 > 0 is a generic constant. Let β1 = c1c0(h2 + δ). Then

‖Ehk‖0,∞ ≤ β2k

1 /c1. (A.6)
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When d = 2, for any given number p > 2, we have by the Sobolev embedding theorem and
(A.5) that

‖Ehk+1‖0,p . ‖Ehk+1‖21 . ‖Ehk‖20,p,

which implies c2‖Ehk‖0,p ≤ (c2‖Eh0 ‖0,p)2k for a generic positive constant c2. In addition, by
Lemma A.4 and error estimates for Ih,

‖Eh0 ‖0,p = ‖uh − uh0‖0,p
≤ ‖uh − u‖0,p + ‖u− Ihu‖0,p + ‖Ihu− uh0‖0,p
. ‖uh − u‖0,∞ + ‖u− Ihu‖0,∞ + ‖Ihu− uh0‖0,∞
≤ c3(h2| log h|+ δ),

where c3 > 0 is a generic constant independent of h and δ but depending on p. Let β2 =
c2c3(h2| log h|+ δ). Then

‖Ehk‖0,p ≤ β2k

2 /c2,

and further by the inverse inequality for finite elements,

‖Ehk‖0,∞ . h−2/p‖Ehk‖0,p . h−2/pβ2k

2 . (A.7)

Now, we have by (A.6), (A.7) and Lemma A.4 that

‖u− uhk‖0,∞ ≤ ‖u− uh‖0,∞ + ‖uh − uhk‖0,∞ . h2 + β2k

1 for d = 1,

and
‖u− uhk‖0,∞ ≤ ‖u− uh‖0,∞ + ‖uh − uhk‖0,∞ . h2| log h|+ h−2/pβ2k

2 for d = 2.

The proof is complete.

B Proof of Theorem 4.2

The proof of Theorem 4.2 is rather involved and requires the following elementary but nontrivial
result as a key bridge to produce the optimal convergence analysis.

Lemma B.1. Let {ak} be a sequence satisfying ak+1 ≤ a2
k + b for k = 0, 1, 2, · · · . If 0 ≤ a0 < 1/2

and 0 < b < 1/4, then

ak ≤ a2k

0 +

(
2 +

1

1− 2a0

)
b. (B.1)

Proof. First of all, construct an auxiliary sequence {Ak} generated by

Ak+1 = A2
k + b, k = 0, 1, 2, · · · ; A0 = a0. (B.2)

It is easy to check ak ≤ Ak for all nonnegative integer k. The recursive relation (B.2) is a fixed
point iteration corresponding to the following fixed point equation

A = A2 + b⇒ A2 −A+ b = 0, (B.3)

which has exactly two fixed points

α0 =
2b

1 +
√

1− 4b
and α1 =

1 +
√

1− 4b

2
.
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Next, let us study the boundedness of the sequence {Ak}. When A0 ≤ α0, we have by mathe-
matical induction that Ak ≤ α0 for k = 0, 1, 2, · · · . In fact, if k = 0 the statement is true. Now we
assume it holds for k = m with m an any given natural number, i.e. Am ≤ α0. Then, observing
that α0 satisfies the equation (B.3), we immediately know

Am+1 = A2
m + b ≤ α2

0 + b = α0.

So the statement is really true by the principle of mathematical induction. On the other hand, it
is easy to check by a direct computation that α0 ≤ 2b. Hence, if A0 ≤ α0, there holds

ak ≤ Ak ≤ α0 ≤ 2b. (B.4)

When α0 ≤ A0 ≤ α1, we use mathematical induction again to know α0 ≤ Ak ≤ α1 for any
nonnegative integer k. Let us now consider a function f(x) defined by

f(x) = x+
b

x
, x ∈ [α0, α1].

Clearly, it is convex over [α0, α1] and hence must take the maximum value over the interval at one
of the two end points. However, recalling the definitions of α0 and α1, we easily know

f(α0) = f(α1) = 1,

which implies f(x) ≤ 1 for x ∈ [α0, α1]. Thus, since Ak ∈ [α0, α1], we find

Ak+1

Ak
=
A2
k + b

Ak
= f(Ak) ≤ 1;

in other words, {Ak} is a decreasing sequence. Therefore, the result Ak ≤ a0 also holds in this case.
To sum up, we find that if a0 < 1/2 < α1, Ak ≤ a0 for all nonnegative integer k.

To further our analysis, we require to construct another auxiliary sequence generated by

Bk+1 = B2
k, k = 0, 1, 2, · · · ; B0 = a0. (B.5)

It is evident that Bk = B2k
0 = a2k

0 and Bk ≤ Ak. Denote dk = Ak − Bk ≥ 0. Recalling the
definitions (B.2) and (B.5), and using the fact that Ak ≤ a0 obtained above, we find

dk+1 = A2
k + b−B2

k = dk(Ak +Bk) + b ≤ 2a0dk + b,

which readily yields

dk ≤ (2a0)kd0 +
1− (2a0)k

1− 2a0
b ≤ 1

1− 2a0
b

by noting that d0 = 0. Therefore,

Ak = Bk + dk ≤ B2k

0 +
1− (2a0)k

1− 2a0
b = a2k

0 +
1− (2a0)k

1− 2a0
b

and

ak ≤ Ak ≤ a2k

0 +
1

1− 2a0
b. (B.6)

We then obtain the required estimate by combining (B.4) and (B.6).

Now we are ready to present the proof of Theorem 4.2.
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Proof. For any φ ∈ Vh, we know

a(Phu− uhk+1, χ) = a(u, χ)− a(uhk+1, χ) = λ(u, χ)− λhk(uhk , χ)

= (λ− λhk)(u, χ) + λhk(u− uhk , χ).

Choosing χ = Phu− uhk+1, we have by the coerciveness of a(·, ·) that

α0‖Phu− uhk+1‖21 ≤ a(Phu− uhk+1, Phu− uhk+1)

≤ |λ− λhk |(u, Phu− uhk+1) + |λhk |(u− uhk , Phu− uhk+1)

.
(
|λ− λhk |‖u‖−1 + |λhk − λ+ λ|‖u− uhk‖−1

)
‖Phu− uhk+1‖1,

which combined with the assumption ‖uhk‖0 ≤ ε1 implies

‖Phu− uhk+1‖1 . |λ− λhk |‖u‖0 +
(
|λ− λhk |+ |λ|

)
‖u− uhk‖0

. |λ− λhk |+ |λ− λhk |
(
‖u‖0 + ‖uhk‖0

)
+ ‖u− uhk‖0

. |λ− λhk |+ ‖u− uhk‖0.

Hence, by the error estimate for Ph and the triangle inequality,

‖u− uhk+1‖1 ≤ ‖u− Phu‖1 + ‖Phu− uhk+1‖1 . h+ |λ− λhk |+ ‖u− uhk‖0. (B.7)

Using the duality argument to the equation determining uhk+1, we deduce from (B.7) and the Cauchy
inequality that

‖u− uhk+1‖0 . h‖u− uhk+1‖1 . h2 + h
(
|λ− λhk |+ ‖u− uhk‖0

)
. h2 +

(
|λ− λhk |+ ‖u− uhk‖0

)2
. (B.8)

By Lemma 4.1 and assumption ‖uhk+1‖0 ≥ ε0 > 0,

|λ− λhk+1| =
∣∣∣|uhk+1 − u|21 − λ‖uhk+1 − u‖20

∣∣∣ /‖uhk+1‖20 . ‖uhk+1 − u‖21.

Inserting this into (B.7) gives

|λ− λhk+1| . ‖u− uhk+1‖21 .
(
h+ |λ− λhk |+ ‖u− uhk‖0

)2
. h2 +

(
|λ− λhk |+ ‖u− uhk‖0

)2
,

which combined with (B.8) implies

|λ− λhk+1|+ ‖u− uhk+1‖0 . h2 +
(
|λ− λhk |+ ‖u− uhk‖0

)2
. (B.9)

Let ek = |λ− λhk |+ ‖u− uhk‖0. Then the estimate (B.9) can be expressed as

ek+1 ≤ c̄4h
2 + c4e

2
k,

where c4 and c̄4 are two positive generic constants. The above inequality can expressed as

c4ek+1 ≤ c5h
2 + (c4ek)

2, (B.10)
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where c5 = c4c̄4.
On the other hand, by assumption and using error estimates of Ih, we know there exists a

constant h̃1 > 0 such that if h < h̃1, there holds

e0 = |λ− λh0 |+ ‖u− uh0‖0 ≤ |λ− λh0 |+ ‖u− Ihu‖0 + ‖Ihu− uh0‖0 ≤ c6(δ̃ + h2),

where c6 > 0 is a generic constant. For clarity, we want to point out all the generic constants given
above are independent of the finite element mesh size h.

Next, we choose two positive constants h̃0 and δ̃0 such that

h̃0 < h̃1, c4c6(δ̃0 + h̃0
2
) < 1/2 and c5h̃0

2
< 1/4. (B.11)

For the recursive estimate (B.10), we set ak = c4ek and b = c5h
2. Then, if h < h̃0 and δ̃ < δ̃0,

the conditions (B.11) hold, or equivalently the assumptions in Lemma B.1 hold, so it follows from
(B.1) that

c4ek ≤ (c4e0)2k + c5

(
2 +

1

1− 2c4e0

)
h2 = (c4e0)2k + c5

(
3 +

2c4e0

1− 2c4e0

)
h2,

which immediately yields

|λ− λhk |+ ‖u− uhk‖0 . β2k

3 + h2.

The proof is complete.

33


	Introduction
	Deep Neural Networks (DNNs)
	Phase I of Int-Deep: Variational Formulas for Deep Learning
	PDE Solvers Based on DNNs
	Minimization Problems for Variational Inequalities
	Minimization Problems for Eigenvalue Problems

	Phase II of Int-Deep: Traditional Iterative Methods
	Semilinear Elliptic Equations with Equality Constrains
	Eigenvalue Problems

	Numerical Experiments
	Phase I of Int-Deep: Deep Learning Methods
	Linear PDEs
	Variational Inequalities
	Eigenvalue Problems

	Phase II of Int-Deep: Traditional Iterative Methods
	Semilinear PDEs
	Linear eigenvalue problems
	Nonlinear eigenvalue problems


	Conclusion
	Proof of Theorem 4.1
	Proof of Theorem 4.2

