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Abstract. Deep learning is a powerful tool for solving nonlinear differential equations, but usually, only the
solution corresponding to the flattest local minimizer can be found due to the implicit regularization of stochastic
gradient descent. This paper proposes a network-based structure probing deflation method to make deep learning
capable of identifying multiple solutions that are ubiquitous and important in nonlinear physical models. First, we
introduce deflation operators built with known solutions to make known solutions no longer local minimizers of the
optimization energy landscape. Second, to facilitate the convergence to the desired local minimizer, a structure
probing technique is proposed to obtain an initial guess close to the desired local minimizer. Together with neural
network structures carefully designed in this paper, the new regularized optimization can converge to new solutions
efficiently. Due to the mesh-free nature of deep learning, the proposed method is capable of solving high-dimensional
problems on complicated domains with multiple solutions, while existing methods focus on merely one or two-
dimensional regular domains and are more expensive in operation counts. Numerical experiments also demonstrate
that the proposed method could find more solutions than exiting methods.
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1. Introduction.

1.1. Problem statement. Nonlinear differential equations are ubiquitous in various im-
portant physical models such as fluid dynamics, plasma physics, solid mechanics, and quantum
field theory [30, 17, 22, 49], as well as chemical and biological models [76, 18]. Solving nonlinear
differential equations has been a very challenging problem especially when it is important to find
multiple distinct solutions. The nonlinearity of the differential equation may cause traditional iter-
ative solvers to stop at a spurious solution if the initial guess is not close to a physically meaningful
solution. When multiple distinct solutions are of interest, a naive strategy is to try different ini-
tial guesses as many as possible so that iterative solvers can return distinct solutions as many as
possible. However, most of the initial guesses would lead to either spurious solutions or repeated
solutions, making this approach usually time-consuming and inefficient unless a priori estimate of
the solutions is available.

Neural network-based optimization has become a powerful tool for solving nonlinear differ-
ential equations, dating back to 1980s [67] and 1990s [52, 33, 23, 51], and recently revisited in
high-dimensional spaces [38, 7, 46, 12, 83, 37, 71, 48, 47, 81, 68]. As a form of nonlinear parametriza-
tion through compositions of simple functions [34], deep neural networks (DNNs) can efficiently
approximate various useful classes of functions without or lessening the curse of dimensionality
[6, 60, 62, 70, 80, 57, 61, 44] and achieve exponential approximation rates [79, 62, 57, 54, 27, 66].
Therefore, applying DNNs to parametrize the solution space of differential equations (including
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2 Structure Probing Neural Network Deflation

boundary value problems, initial value problems, and eigenvalue problems) and seeking a solution
via energy minimization from variational formulation have become a popular choice, e.g., the least-
square method [7, 46, 43] as a special case of variational formulation, the Ritz method [28], the
Nitsche method [56].

However, neural network-based optimization usually can only find the smoothest solution with
the fastest decay in the frequency domain due to the implicit regularization of network structures
and the stochastic gradient descent (SGD) for solving the minimization problem, no matter how
the initial guess is randomly selected. It was shown through the frequency principle of neural
networks [84, 85, 58] and the neural tangent kernel [13] that neural networks have an implicit bias
towards functions that decay fast in the Fourier domain and the gradient descent method tends
to fit a low-frequency function better than a high-frequency function. Through the analysis of
the optimization energy landscape of SGD, it was shown that SGD with small batches tends to
converge to the flattest minimum [63, 53, 20]. Though the above optimization and generalization
analysis work only for regression problems, they can be generalized to PDE problems. Recently
in [59], the optimization convergence and generalization analysis of two-layer neural networks for
general second-order linear PDEs with variable coefficients on a bounded domain in an arbitrary
dimension has been investigated. Global convergence of the gradient descent optimization in the
over-parametrization regime is proved using neural tangent kernels and the generalization error
with a regularized loss using a Barron-norm is analyzed. Later in [73], the neural tangent kernel of
network-based PDE solvers using two-layer neural networks for one-dimensional Poisson equation
is also discussed including the analog of the spectral bias for regression problems proprosed in [13].
Therefore, designing an efficient algorithm for neural network-based optimization to find distinct
solutions as many as possible is a challenging problem.

To tackle the challenging problem just above and find distinct solutions as many as possible,
we propose a network-based structure probing deflation method in this paper. The key idea of the
deflation method is to introduce deflation operators built with known solutions to regularize deep
learning optimization, making known solutions no longer local minimizers of the optimization en-
ergy landscape while preserving unknown solutions as local minimizers. In particular, we introduce
a deflation functional mapping known solutions to infinity. We multiply this deflation functional to
the original optimization loss function, then the known solutions will be removed from consideration
and unknown solutions can be found by optimizing the regularized loss function via SGD. Further-
more, to facilitate the convergence of SGD, we propose special network structures incorporating
boundary conditions of differential equations to simplify the optimization loss function. Finally,
a novel structure-probing algorithm is proposed to initialize the deflation optimization making it
more powerful to identify distinct solutions with desired structures.

As a general framework, the deflation method can be applied to all neural network-based
optimization methods for differential equations. In this paper, we will take the example of boundary
value problem (BVP) and the least-square method without loss of generality. The generalization
to other problems and methods is similar. Consider the boundary value problem (BVP)

Du(x) = f(u(x),x), in Ω,

Bu(x) = g(x), on ∂Ω,
(1.1)

where D : Ω → Ω is a differential operator that is either linear or nonlinear, f(u(x),x) can be a
nonlinear function in u, Ω is a bounded domain in Rd, and Bu = g characterizes the boundary
condition. Other types of problems like initial value problems can also be formulated as a BVP as
discusssed in [37]. Then least-square method seeks a solution u(x;θ) as a neural network with a
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parameter set θ via the following optimization problem

(1.2) min
θ

LLS := ‖Du(x;θ)− f(u,x)‖2L2(Ω) + λ‖Bu(x;θ)− g(x)‖2L2(∂Ω),

where LLS is the loss function measuring the L2 norms of the differential equation residual Du(x;θ)−
f(u,x) and the boundary residual Bu(x;θ)− g(x), and λ > 0 is a regularization parameter.

As we shall see, the neural network deflation method enjoys four main advantages compared to
traditional deflation methods not based on deep learning:

• Numerical examples show that the network-based method can identify more solutions than
other existing methods, e.g., see Test Case 5 in Section 5.
• The network-based method can be applied to solve high-dimensional nonlinear differen-

tial equations with multiple solutions while existing methods are only applicable to low-
dimensional problems. For example, there is a 6-dimensional Yamabe’s equation in Test
Case 6 in Section 5.
• The network-based method can be applied to problems with complex domains due to the

flexibility of neural network parameterization, e.g., see Test Cases 5 & 6 in Section 5.
• As we shall discuss in Section 3.4, the network-based method admits lower computational

complexity in each iteration compared to existing methods like the original deflation method
in [29].

1.2. Related work. The deflation technique is traced back to the last century for identi-
fying distinct roots of scalar polynomials [75]. This technique was extended to find roots of systems
of nonlinear algebraic equations by Brown and Gearhart in [9], where deflation matrices were con-
structed with old roots to transform the residual of a system of nonlinear algebraic equations so that
iterative methods applied to the new residual will only converge to a new root. In [29], Ferrell et al.
extended the theoretical framework of Brown and Gearhart [9] to the case of infinite-dimensional
Banach spaces with new classes of deflation operators, enabling the Newton-Kantorovitch iteration
to converge to several distinct solutions of nonlinear differential equations even with the same initial
guess.

Another well-established method for distinct solutions of differential equations is based on the
numerical continuation [5, 4, 14, 16], where the basic idea of which is to transform the known
solutions of a simple start system gradually to the desired solutions of a difficult target system.
For example, [1] proposed coefficient-parameter polynomial continuation for computing all geomet-
rically isolated solutions to polynomial systems. [39] put forward a bootstrapping approach for
computing multiple solutions of differential equations using a homotopy continuation method with
domain decomposition to speed up computation. For more examples of homotopy-based methods
and theory in the literature, the reader is referred to [55].

The third kind of methods to identify distinct solutions of nonlinear systems is the numerical
integration of the Davidenko differential equation associated with the original nonlinear problem
[8, 21]. The basic idea is to introduce an artificial time parameter s such that solving the original
nonlinear equation F (u(x)) = 0 to identify a solution u0(x) is equivalent to finding a steady

state solution of a time-dependent nonlinear equation dF (u(s,x))
ds +F (u(s,x)) = 0, which provides a

gradient flow of u(s,x). The gradient flow forms an ordinary differential equation with a solution
converging to a solution to the original problem, i.e., lims→∞ u(s,x) = u0(x). This method is
indeed a broad framework containing the Newton’s method as a special example.

1.3. Organization. This paper is organized as follows. In Section 2, we will review the
fully connected feed-forward neural network, introduce the formulation of the least-square method
for BVP, and design special network structures for four types of boundary conditions. In Section 3,
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the detailed formulation and implementation of the proposed method will be presented. In Section
4, the structure probing initialization is introduced. Various numerical experiments are provided
in Section 5 to verify the efficiency of the proposed method. Finally, we conclude this paper in
Section 6.

2. Network-based Methods for Differential Equations. In this section, we introduce
the network-based least-square method based on fully connected feed-forward neural networks
and (1.2) for solving the BVP (1.1). Moreover, special network structures for common boundary
conditions are introduced to simplify the loss function in (1.2) to facilitate the convergence to
the desired PDE solution. Vectors are written in bold font to distinguish from scalars in our
presentation.

2.1. Fully connected feed-forward neural network (FNN). FNNs are one of the
most popular DNNs and are widely applied to network-based methods for differential equations.
Mathematically speaking, for a fixed nonlinear activation function σ, FNN is the composition of L
simple nonlinear functions, called hidden layer functions, in the following formulation:

φ(x;θ) := aThL ◦ hL−1 ◦ · · · ◦ h1(x) for x ∈ Rd,

where a ∈ RNL ; h`(x`) := σ (W`x` + b`) with W` ∈ RN`×N`−1 and b` ∈ RN` for ` = 1, . . . , L. With
the abuse of notations, σ(x) means that σ is applied entry-wise to a vector x to obtain another
vector of the same size. Usual choices of σ include the rectified linear unit (ReLU) function σ(x) =
max{x, 0}, its cubic polynomial σ(x) = max{x3, 0}, a hyperbolic tangent function σ(x) = tanh(x),
etc. N` is the width of the `-th layer and L is the depth of the FNN. θ := {a, W`, b` : 1 ≤ ` ≤ L}
is the set of all parameters in φ to determine the underlying neural network. Other kinds of neural
networks are also suitable in our proposed methods, but we will adopt FNNs for simplicity.

2.2. Least-square method. The least-square method is an optimization approach to
solve general differential equations. Specifically, let u(x;θ) be a neural network to approximate the
solution u(x) of BVP (1.1), then the least-square method is formulated as

(2.1) min
θ

LLS(θ) := ‖Du(x;θ)− f(x)‖2L2(Ω) + λ‖Bu(x;θ)− g(x)‖2L2(∂Ω),

where LLS is the loss function measuring the weighted magnitude of the differential equation residual
Du(x;θ)− f(x) and the boundary residual Bu(x;θ)− g(x) in the sense of L2-norm with a weight
parameter λ > 0.

The goal of (2.1) is to find an appropriate set of parameters θ such that the network u(x;θ)
minimizes the loss LLS. If the loss LLS is minimized to zero with some θ, then u(x;θ) satisfies
Du(x;θ)−f(x) = 0 in Ω and Bu(x;θ)−g(x) = 0 on ∂Ω, implying that u(x;θ) is exactly a solution
of (1.1). If LLS is minimized to a nonzero but small positive number, u(x;θ) is close to the true
solution as long as (1.1) is well-posed (e.g. the elliptic PDE with Neumann boundary condition,
see Theorem 4.1 in [37]).

In general, the optimization problem (2.1) is solved by stochastic gradient descent (SGD)
method or its variants (e.g. Adagrad [25], Adam [50] and AMSGrad [72]) in the deep-learning
framework. The optimization and mesh-free setting of the least-square method with neural net-
works admit several advantageous features that led to its great success and popularity including
but not limited to 1) the capacity to solve high-dimensional problems; 2) the flexibility to solve
equations of various forms on complicated problem domains; 3) the simple and high-performance
implementation with automatic differential programming in existing open-source software.
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2.3. Special network structures for boundary conditions. In numerical implemen-
tations, the least-square loss function in (2.1) relies on the selection of a suitable weight parameter
λ and a suitable initial guess. If λ is not appropriate, it may be difficult to identify a reasonably
good minimizer of (2.1). For instance, in the BVP (1.1) with g ≡ 0, if we solve (2.1) by SGD with
an initial guess θ0 such that u(x;θ0) ≈ 0, SGD might converge to a local minimizer corresponding
to a solution neural network close to a constant zero, which is far away from the desired solution,
especially when the differential operator D is highly nonlinear or λ is too large. The undesired local
minimizer is due to the fact that the boundary residual ‖Bu(x;θ)−g(x)‖ overwhelms the equation
residual ‖Du(x;θ)− f(x)‖ in the loss function.

The idea just above motivates us to design special networks u(x;θ) that satisfy the boundary
condition Bu(x;θ) = g(x) automatically and hence we can simplify the least-square loss function
from (2.1) to

(2.2) min
θ

LLS(θ) := ‖Du(x;θ)− f(x)‖2L2(Ω).

As we shall see in the numerical section, our numerical tests show that such simplification can help
SGD to converge to desired solutions rather than spurious solutions. The design of these special
neural networks depends on the type of boundary conditions. We will discuss four common types
of boundary conditions by taking one-dimensional problems defined in the domain Ω = [a, b] as
an example. Network structures for more complicated boundary conditions in high-dimensional
domains can be constructed similarly. In what follows, denote by û(x;θ) a generic deep neural
network with trainable parameters θ. We will augment û(x;θ) with several specially designed
functions to obtain a final network u(x;θ) that satisfies Bu(x;θ) = g(x) automatically.

Case 1. Dirichlet boundary condition u(a) = a0, u(b) = b0.
In this case, we can introduce two special functions h1(x) and l1(x) to augment û(x;θ) to obtain

the final network u(x;θ):

(2.3) u(x;θ) = h1(x)û(x;θ) + l1(x).

Note h1(x) and l1(x) are chosen such that u(x;θ) automatically satisfies the Dirichlet u(a;θ) =
a0, u(b;θ) = b0 no matter what θ is. Then u(x;θ) is used to approximate the true solution of the
differential equation and is trained through (2.2).

For the purpose, l1(x) is set as a lifting function which satisfies the given Dirichlet boundary
condition, i.e. l1(a) = a0, l1(b) = b0; h1(x) is set as a special function which satisfies the homoge-
neous Dirichlet boundary condition, i.e. h1(a) = 0, h1(b) = 0. A straightforward choice of l1(x) is
the linear function given by

l1(x) = (b0 − a0)(x− a)/(b− a) + a0.

For h1(x), we can set it as a (possibly fractional) polynomial with roots a and b, namely,

h1(x) = (x− a)pa(x− b)pb ,

with 0 < pa, pb ≤ 1. To obtain an accurate approximation, pa and pb should be chosen to be
consistent with the orders of a and b of the true solution, hence no singularity will be brought into
the network structure. For regular solutions, we take pa = pb = 1; for singular solutions, pa and pb
would take fractional values. For instance, in the case of a fractional Laplace equation (−∆)su = f
for 0 < s < 1 on the domain Ω = [−1, 1] with boundary conditions u(±1) = 0, the true solution
u(x) has the property that u(x) = (x−1)s(x+1)sv(x) with v(x) as a smooth function [2, 26]. Then
in the construction of u(x;θ), it is reasonable to choose h1(x) = (x− 1)s(x− 1)s and l1(x) = 0.
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Case 2. one-sided condition u(a) = a0, u′(a) = a1.
Similarly to Case 1, the special network is constructed by u(x;θ) = h2(x)û(x;θ) + l2(x), where

the lifting function l2(x) is given by

l2(x) = a1(x− a) + a0,

and h2(x) is set as

(2.4) h2(x) = (x− a)pa ,

with 1 < pa ≤ 2. Such pa guarantees h2(x)û(x;θ) and its first derivative both vanish at x = a.

Case 3. mixed boundary condition u′(a) = a0, u(b) = b0.
In this case, the special network is constructed by u(x;θ) = ũ(x;θ)+l3(x) with a lifting function

l3(x) chosen as a linear function satisfying the mixed boundary conditions, e.g.,

l3(x) = a0x+ b0 − a0b,

and ũ(x;θ) satisfying the homogeneous mixed boundary conditions. In the construction of ũ(x;θ),
it is inappropriate to naively take ũ(x;θ) = (x − a)pa(x − b)pb with 1 < pa ≤ 2 and 0 < pb ≤ 1,
following the approaches in the preceding two cases, because such ũ(x;θ) satisfies a redundant
condition ũ(a;θ) = 0. Instead, we assume

(2.5) ũ(x;θ) = (x− a)pa û(x;θ) + c,

where 1 < pa ≤ 2 and c is a network-related constant to be determined. Clearly, (2.5) implies
ũ′(a;θ) = 0, whereas ũ(a;θ) has not been specified. Next, the constraint ũ(b;θ) = 0 gives c =
−(b− a)pa û(b;θ). Therefore, the special network for mixed boundary conditions is constructed via

(2.6) u(x;θ) = (x− a)pa û(x;θ)− (b− a)pa û(b;θ) + l3(x).

Case 4. Neumann boundary condition u′(a) = a0, u′(b) = b0.
Similarly to Case 3, we construct the network by u(x;θ) = ũ(x;θ)+ l4(x) with a lifting function

l4(x) satisfying the Neumann boundary condition given by

l4(x) =
(b0 − a0)

2(b− a)
(x− a)2 + a0x.

And ũ(x;θ) satisfying the homogeneous Neumann boundary condition is assumed to be

(2.7) ũ(x;θ) = (x− a)pa ǔ(x; θ̌) + c1,

where 1 < pa ≤ 2, ǔ(x; θ̌) is an intermediate network to be determined later, and c1 is a network
parameter to be trained together with θ̌. It is easy to check that ũ′(a;θ) = 0. Next, by the
constraint ũ′(b;θ) = pa(b− a)pa−1ǔ(b; θ̌) + (b− a)pa ǔ′(b; θ̌) = 0, we have

paǔ(b; θ̌) + (b− a)ǔ′(b; θ̌) = 0,

which can be reformulated as (
exp(

pax

b− a
)ǔ(x; θ̌)

)′
x=b

= 0.
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Therefore, we have

(2.8) exp(
pax

b− a
)ǔ(x; θ̌) = (x− b)pb û(x; θ̂) + c2,

where 1 < pb ≤ 2 and c2 is another network parameter to be trained together with θ̂. Finally, by
combining (2.7) and (2.8), we obtain the following special network satisfying the given Neumann
condition, i.e.

(2.9) u(x;θ) = exp(
pax

a− b
)(x− a)pa

(
(x− b)pb û(x; θ̂) + c2

)
+ c1 + l4(x),

where θ = {θ̂, c1, c2}.
Finally, we would like to remark that it is difficult to construct special neural networks to

automatically satisfy boundary conditions when the PDE domain is irregular. In this case, the
conventional penalty method in (2.1) is more preferable. Though we will show in our numerical
experiments that special neural networks satisfying boundary conditions are better than penalty
methods to identify distinct solutions. This does not exclude the possibility that penalty methods,
or other advanced optimization algorithms for constrained optimization, can also work well with
well-tuned parameters.

3. Neural Network Deflation. In this section, we propose the general formulation, the
detailed implementation, and the computational complexity of the proposed method. As we shall
see, our method is easy to implement on high-dimensional and complex domains with a lower
computational cost per iteration than other traditional deflation methods.

3.1. Formulation. A nonlinear BVP (1.1) might have multiple distinct solutions and each
solution is a minimizer of the corresponding network-based optimization, say

(3.1) min
θ

L(u(x;θ)),

where L is a generic loss function for solving differential equations. One example of L is the residual
loss in (2.2), and L can also be other loss functions. Due to the implicit regularization of SGD
and neural networks, only local minimizers in flat energy basins are likely to be found. Hence, no
matter how to initialize the SGD and how to choose hyper-parameters, usually, only a few solutions
can be found by minimizing (3.1) directly.

The neural network deflation is therefore introduced, the main idea of which is to construct
a modified loss function LND with two properties: First, a candidate minimizer of LND is also a
minimizer of L. Second, the minimizers that are already found by the network-based optimization
(3.1) will not be minimizers of LND again. Following this idea, LND is constructed by multiplying L
with a deflation term introduced in [29] such that the energy landscape of L is modified. Specifically,
suppose the minimum value of L is zero. Let uk(x) (k = 1, · · · ,K) be the solutions already found
by (3.1), then the neural network deflation is formulated as the following optimization problem,

(3.2) min
θ

LND :=
( K∑
k=1

‖u(x;θ)− uk(x)‖−pk
L2(Ω)

+ α
)
L(u(x;θ)),

where pk are positive powers for k = 1, · · · ,K, and α > 0 is a shift constant. Here, we name
uk(x) (k = 1, · · · ,K) as deflation sources. Indeed, the modified loss function LND satisfies the two
properties discussed above. First, any minimizer of LND such that LND = 0 also ensure L = 0
and, hence, is also a minimizer of L. Second, for all k = 1, · · · ,K, the term ‖u(x;θ)− uk(x)‖−pk

L2(Ω)
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acts a penalty term that excludes uk as a minimizer, since it approaches infinity as u goes to uk.
The introduction of a positive α is help to eliminate spurious solutions in practice. If α = 0, the
modified loss function LND would approach zero when u is far from all uk’s, which leads to many
spurious solutions. For a more detailed discussion of the deflation term, the reader can refer to
[29].

3.2. Deflation with a varying shift. The original deflation operator introduced in [29]
fixes the shift α in (3.2) as a constant. In this paper, we propose a new variant of deflation operators
with a varying shift α along with the SGD iteration. Note that when α is equal or close to 0, the
deflation term

∑K
k=1 ‖u(x;θ)−uk(x)‖−pk

L2(Ω)
dominates the loss and hence gradient descent tends to

converge to what is far away from the known solutions. When α is moderately large, the original
loss function L(u(x;θ)) dominates the loss and the gradient descent process tends to converge to a
solution with a smaller residual. Therefore, α in this paper is set to be a monotonically increasing
function of the SGD iteration. In the early stage, α is chosen to be close to 0 such that the current
solution will be pushed away from known solutions. During this stage, a large learning rate is
preferable. In the latter stage when the current solution is roughly stable, α is set to be large and
a small learning rate is used to obtain a small residual loss.

In practice, one heuristic choice is to increase α exponentially with a linearly growing power
when the iteration increases. For example, in the n-th iteration, α is set as αn defined below

(3.3) αn = 10p0+n(p1−p0)/NI ,

where p0 and p1 are two prescribed powers with p0 ≤ p1, and NI is the total number of iterations.
Note that the exponentially varying formula is also widely used in setting the learning rates of
SGD.

3.3. Discretization. In the implementation, the continuous loss functions in (2.2) and
(3.2) are approximately evaluated by stochastic sampling. The L2-norm can be interpreted as
an expectation of a random function with a random variable x in a certain domain. Hence, the
expectation is approximated by sampling x several times and computing the average function value
as an approximant. Let us take ‖u(x)‖L2(Ω) as an example. We generate Np random samples xi,

i = 1, · · · , Np, which are uniformly distributed in Ω. Denote X := {xi}
Np

i=1, then ‖u(x)‖L2(Ω) is
evaluated as the discrete L2-norm denoted as ‖u(x)‖L2(X) via

(3.4) ‖u(x)‖L2(X) :=
( 1

Np

∑
xi∈X

|u(xi)|2
) 1

2
.

The discretization technique above is applied to discretize the L2-norms in all loss functions in
this paper. In the n-th iteration of gradient descent, assuming that the shift α is set to be αn and
the set of random samples is denoted as Xn, the discrete deflation loss function is calculated by

L̂
(n)
ND(θ) :=

( K∑
k=1

‖u(x;θ)− uk(x)‖−pk
L2(Xn)

+ αn

)
L̂(u(x;θ)),

where L̂(u(x;θ)) is a discrete approximation to L(u(x;θ)) using the same set of samples, e.g.,

L̂(u(x;θ)) = ‖Du(x;θ)− f(x)‖2L2(Xn)

when the least-square loss in (2.2) is applied. Then the network parameter θ is updated by

θ ← θ − τn∇θL̂
(n)
ND(θ),
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where τn > 0 is the learning rate in the n-th iteration. In our implementation, Xn is renewed
in every iteration. Note that the gradient of the loss function can be evaluated using PyTorch
built-in function autograd that essentially compute the gradient using a sequence of chain rules,
since the network is the composition of several simple functions with explicit formulas.

3.4. Computational Complexity. Let us estimate the computational complexity of the
SGD algorithm for deflation optimization (3.2) with least-square loss function (2.2). Recall that Np

denotes the number of random samples in each iteration. Assume that the FNN has L layers and N
neurons in each hidden layer. Note that evaluating the FNN or computing its derivative with respect
to its parameters or input x via the forward or backward propagation takes O(dN +LN2) FLOPS
(floating point operations per second) for each sample x. Moreover, as in most existing approaches,
we assume f(x) in the BVP can be evaluated with O(d) FLOPS for a single x. Therefore, L(u(x;θ))
in (2.2) and its derivative ∇θL(u(x;θ)) can be calculated with O(Np(dN + LN2)) FLOPS using
the discrete L2-norm in (3.4), if the differential operator D is evaluated through finite difference
approximation. Similarly, assuming the number of known solutions K is O(1) and the known
solutions {uk(x)}Kk=1 are stored as neural networks of width N and depth L, then the deflation
factor and its gradient with respect to θ can also be calculated with O(Np(dN + LN2)) FLOPS.
Finally, the total complexity in each gradient descent iteration of the deflation optimization is
O(Np(dN + LN2)).

In existing methods [29, 19, 3], a given nonlinear differential equation is discretized via tradi-
tional discretization techniques, e.g. FDM and FEM, resulting in a nonlinear system of algebraic
equations. The solutions of the system of algebraic equations provide numerical solutions to the
original nonlinear differential equation. By multiplying different deflation terms to the nonlinear
system of algebraic equations, existing methods can identify distinct solutions via solving the de-
flated system by Newton’s iteration. The number of algebraic equations Ne derived by FDM is
exactly the number of grid points; and the number of equations derived by FEM is exactly the
number of trial functions in the Galerkin formulation.

Now we compare neural network deflation with existing deflation methods in [29, 19, 3] in terms
of the computational complexity under the assumption that the degrees of freedom of these methods
are equal, i.e., the number of grid points or trial functions in existing methods is equal to the number
of parameters in the neural network deflation, which guarantees that these methods have almost
the same accuracy to find a solution. Denote the degree of freedom of these methods by W . Then
by the above discussion, we have W = Ne = O(dN + LN2). Therefore, the total computational
complexity in each iteration is O(NpW ), where Np is usually chosen as a hyper-parameter much
smaller than W . In existing methods, the Jacobian matrix in each Newton’s iteration is a low-
rank matrix plus a sparse matrix of size W by W . Typically, each iteration of Newton’s method
requires solving a linear system of the Jacobian matrix, which usually requires O(W 2) FLOPS. If
a good preconditioner exists or a sparse direct solver for inverting the Jacobian matrix exists, the
operation count may be reduced. Consequently, the total complexity in each iteration of existing
methods would be more expensive than the neural network deflation depending on the performance
of preconditioners.

4. Structure Probing Initialization. The initialization of parameters plays a critical
role in training neural networks and has a significant impact on the ultimate performance. In
the training of a general FNN, network parameters are usually randomly initialized using normal
distributions with zero-mean. One popular technique is the Xavier initialization [32]: for each layer
`, the weight matrix W` ∈ RN`×N`−1 is chosen randomly from a normal distribution with mean 0
and variance 1/Nl−1; the bias vector b` is initialized to be zero. As a variant of Xavier initialization,
the He initialization [41] takes a slightly different variance 2/(Nl−1 + Nl) for W` and 2/Nl−1 for
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b`. In general, FNNs initialized randomly have a smooth function configuration, and hence their
Fourier transform coefficients decay quickly.

The least-squares optimization problem, either for regression problems or solving linear par-
tial differential equations, with over-parameterized FNNs and random initialization admits global
convergence by gradient descent with a linear convergence rate [45, 24, 82, 15, 59]. However, the
speed of convergence depends on the spectrum of the target function. The training of a randomly
initialized DNN tends to first capture the low-frequency components of a target solution quickly.
The high-frequency fitting error cannot be improved significantly until the low-frequency error has
been eliminated, which is referred to as F-principle [78]. Related works on the learning behav-
ior of DNNs in the frequency domain is further investigated in [58, 85, 84, 13]. In the case of
nonlinear differential equations where multiple solutions exist, these theoretical works imply that
deep learning-based solvers converge to solutions in the low-frequency domain unless the DNN is
initialized near a solution with high-frequency components.

The discussion just above motivates us to propose the structure probing initialization that
helps the training converge to multiple structured solutions. The structure probing initialization
incorporates desired structures in the initialization and training of DNNs. For example, to obtain
oscillatory solutions of a differential equation, we initialize the DNN with high-frequency compo-
nents to make the initialization closer to the desired oscillatory solution. During the optimization
process, the magnitudes of these high-frequency components will be optimized to fit the desired
solution. One choice to probe an oscillatory solution is to take a linear combination of structure
probing functions with various frequencies, e.g., {ξj(x) = eikj ·x, |kj | = j, j = 1, · · · , J} with kj
randomly selected. Then the following network uJ with a set of random parameters θ can serve as
an oscillatory initial guess:

(4.1) uJ(x;θJ) = u(x;θ) +

J∑
j=1

cjξj(x),

where θJ := {θ, {cj}Jj=1} is trainable after initialization. In the initialization, {cj} are set as
random numbers or manually determined hyper-parameters with large magnitudes. The idea of
adding planewaves has been applied in [10, 11] to obtain high-frequency solutions. But the goal
and detailed formulations are different. Instead of planewaves, radial basis functions are also a
popular structure in the solution of differential equations. In this case, we can choose {ξj(x) =
sin(jπ|x|), j = 1, · · · , J} for example. The idea of structure probing initialization is not limited to
the above two types of structures and is application dependent.

The above paragraph has sketched out the main idea of the structure probing initialization.
Now we are ready to discuss its special cases when we need to make the structure probing network
uJ in (4.1) satisfy the boundary condition BuJ = g in the BVP (1.1), which is important for the
convergence of deep learning-based solvers as discussed in Section 2.3. For this purpose, we first
construct a special network u(x;θ) such that Bu(x;θ) = g by the approaches described in Section
2.3. Next, the structured probing functions {ξj(x)} are specifically chosen to satisfy Bξj(x) = 0
for each j. As an example, let us take the one-dimensional mixed boundary condition on [a, b]:

(4.2) u′(a) = a0, u(b) = b0

for any constants a0 and b0. Then a feasible choice of ξj(x) is ξj(x) = cos( (2j−1)π(x−a)
2(b−a) ). Finally, it

is easy to check that BuJ(x;θ) = g.

5. Numerical Examples. In this section, several numerical examples are provided to
show the performance of network-based structure probing deflation in solving BVP (1.1). We
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choose the least-square loss function as the general loss function L(u(x;θ)) in (3.2), then the
neural network deflation is formulated as

(5.1) min
θ

LND(θ) :=
( K∑
k=1

‖u(x;θ)− uk(x)‖−pk
L2(Ω)

+ α
)
‖Du(x;θ)− f(x)‖2L2(Ω),

where u(x;θ) is the neural network of the approximate solution to be determined. Remark that
the optimization problem can also be formulated by other optimization-based methods instead of
least squares.

To verify the effectiveness of special networks that satisfy boundary conditions automatically,
we use the deflation without the special network for boundary conditions as a comparison, where
the loss function of the deflation becomes

(5.2) min
θ

LND(θ) :=
( K∑
k=1

‖u(x;θ)− uk(x)‖−pk
L2(Ω)

+ α
)
·(

‖Du(x;θ)− f(u,x)‖2L2(Ω) + λ‖Bu(x;θ)− g(x)‖2L2(∂Ω)

)
.

The overall setting for all examples is summarized as follows.

• Environment. The experiments are performed in Python 3.7 environment. We utilize the
PyTorch library for neural network implementation and CUDA 10.0 toolkit for GPU-based
parallel computing. One-dimensional examples (Test Case 1-4) are implemented on a laptop
and high-dimensional examples (Test Case 5-7) are implemented on a scientific workstation.
• Optimizer. In all examples, the optimization problems are solved by adam subroutine

from PyTorch library with default hyper parameters. This subroutine implements the
Adam algorithm in [50].
• Learning rate. In each example, the learning rate is set to decay exponentially with

linearly decreasing powers. Specifically, the learning rate in the n-th iteration is set as

τn = 10q0+n(q1−q0)/NI ,

where q0 > q1 are the initial and final powers, respectively, and NI denotes the total number
of iterations.
• Network setting. In each example, we construct a special network that satisfies the given

boundary condition as discussed in Section 2.3. The special network involves a generic FNN,
denoted by û. In all examples, we set the depth and width of û as fixed numbers L = 3
and N = 100. Unless specified particularly, all weights and biases of û are initialized by
Wl, bl ∼ U(−

√
Nl−1,

√
Nl−1). The activation function of û is chosen as σ(x) := max(0, x3).

• Varying shifts in deflation operators. In one-dimensional examples (Test Case 1-4),
using constant shifts is sufficient to find all solutions. In high-dimensional examples (Test
Case 5-7), varying shifts will help to find more distinct solutions. In these examples, we set
varying shifts according to (3.3).

We also summarize the numerical examples in this section in Table 5.1 below, which could help
the reader to better understand how the extensive numerical examples demonstrate the advantages
of our new ideas in this paper: 1) neural network deflation (ND); 2) structure probing initialization
(SP); 3) special network for boundary conditions (BC); 4) varying shifts in deflation operators
(VS).
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Test Case ND SP BC VS Justified Ideas
Case 1 1/0 0 1/0 0 ND and BC
Case 2 1/0 0 1/0 0 ND and BC
Case 3 1/0 0 1/0 0 ND and BC
Case 4 1/0 1/0 1/0 0 ND, SP and BC
Case 5 1/0 1/0 1 1/0 ND, SP, and VS
Case 6 1/0 1/0 1 1/0 ND, SP, and VS
Case 7 1/0 0 1 1 ND

Table 5.1: Summary of numerical examples and goals. In this table, “1” represents an idea is used
and “0” means the idea is not used. “1/0” indicates that a comparison with/without the idea is
tested.

In each example, necessary parameters to obtain each solution are listed in a table right next
to the example. In these tables, we use Np, NI, and Ilr to denote the width for û, the batch size,
the number of iterations, and the range of learning rates (i.e. [10q1 , 10q0 ]), respectively. In each
iteration of the optimization, Np random samples will be renewed. The value of the shift α for
each solution found by the deflation is listed in the table as a constant for a fixed α or an interval
[10p0 , 10p1 ] for a varying α.

5.1. Numerical tests in one-dimension. First of all, we will provide four numerical
tests for problems in one-dimension. These numerical tests show that the proposed neural network
deflation works as well as existing methods [29, 39].

Test Case 1. We consider second-order the Painlevé equation [42, 31, 65] that seeks u(x)
satisfying

d2u

dx2
= 100u2 − 1000x, in Ω = (0, 1),(5.3)

u(0) = 0, u(1) =
√

10.(5.4)

It has been shown in [40] that the Painlevé equation (5.3)-(5.4) has exactly two solutions,
denoted by u1 and u2, which satisfy u′1(0) > 0 and u′2(0) < 0, respectively.

In our experiments, we take the following special network

(5.5) u(x;θ) = x(x− 1)û(x;θ) +
√

10x

that automatically satisfies the boundary conditions and use parameters in Table 5.2. The
initial guess of θ is randomly initialized as mentioned previously. The first solution u1 is
easily found by the least-square method using (2.2), and the second solution u2 is found by
deflation with u1 as the deflation source and p1 = 2. Other parameters associated with these
solutions are listed in Table 5.2. Figure 5.1 visualizes the identified solutions u1 and u2 with
the same function configurations as in [29].

To verify the effectiveness of special networks that satisfy the boundary conditions (5.4),
we use the deflation without special networks for boundary conditions as a comparison.
Hence, the loss function is given by (5.2) with a solution network u(x;θ) as a generic FNN
of the same structure as û in (5.5). To show that the results of (5.2) are quite independent
of the weight λ, λ = 1 and λ = 100 are used and the corresponding solutions are denoted
as ū1 and ū2, respectively. As listed in Table 5.2, other parameters to identify these two
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u1 u2 ū1 ū2

NI 10000 10000 10000 10000

Np 1000 1000 1000 1000

Ilr [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2]

deflation source / u1 (p1 = 2) u1 (p1 = 2) u1 (p1 = 2)

α / 1 1 1

Table 5.2: Parameters for 1-D Painlevé equations (5.3)-(5.4). “/” means the corresponding item
is not used (the same as below)
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Fig. 5.1: Identified solutions of the 1-D Painlevé equations (5.3)-(5.4) by the least squares method
and neural network deflation. All correct solutions, u1 and u2, are identified with special networks
for boundary conditions. Spurious solutions, ū1 and ū2, are found if the special networks are not
used. Another solution, ū3, is found when the deflation fails with an inappropriate power p1.

solutions are the same as those for identifying u2 for a fair comparison. It is clear that these
two solutions do not satisfy the boundary condition at the endpoint x = 0 (see Figure 5.1).
This verifies the importance of using special networks that satisfy the boundary conditions
automatically.

Moreover, we test the effectiveness of the deflation when smaller powers of deflation
sources are used. We basically repeat the same experiment as the previous one for computing
u2 in Figure 5.1. The only difference is that we use a larger power p1 = 2 in the previous
experiment, but now we use a smaller power p1 = 1. The solution by nerual network deflation
with p1 = 1 is denoted as ū3 and visualized in Figure 5.1. Note that ū3 is almost the same
as the deflation source u1 by visual inspection. This result is not surprising even if we have
used u1 as the deflation source. The loss function LND in (3.2) can still be very small at
u = ū3 even if the deflation term is large, since the loss function L in (3.2) can be much
smaller than one over the deflation term at u = ū3 close to u1. This example indicates that
an appropriate power p1 is necessary to exclude spurious solutions close to u1.
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u1 u2 ū1 ū2

NI 5000 5000 5000 5000

Np 1000 1000 1000 1000

Ilr [10−3, 10−2] [10−2, 10−1] [10−2, 10−1] [10−2, 10−1]

deflation source / u1 (p1 = 1) u1 (p1 = 1) u1 (p1 = 1)

α / 1 1 1

Table 5.3: Parameters for the equation (5.6)-(5.7).

Test Case 2. We consider a fourth-order nonlinear BVP that seeks u such that

d4u

dx4
= βx(1 + u2) in Ω = (0, 1),(5.6)

u(0) = u′(1) = u′′(1) = 0, u′′(0)− u′′(γ) = 0,(5.7)

where β and γ are two given constants. Graef et al. [36, 35] have proven that the problem
(5.6)-(5.7) has at least two positive solutions when β = 10 and γ = 1/5.

The three-point boundary condition (5.7) is more complicated than usual. Accordingly,
we construct the following special network for it,

(5.8) u(x;θ) = (x− 1)3û(x;θ) + û(0;θ) + cγx(x− 1)3,

where

(5.9) cγ =
1

−12γ2 + 18γ

( d2

dx2

(
(x− 1)3û(x;θ)

)
|x=γ −

d2

dx2

(
(x− 1)3û(x;θ)

)
|x=0

)
.

It can be verified that (5.8) indeed satisfies the boundary condition (5.7) independent of θ.
In our experiment, we find the first solution, denoted by u1, by applying the least-square

method (2.2). With deflation source u1 (p1 = 1), we find the second solution, denoted by
u2, by using the deflation (5.1). The parameters and solutions are demonstrated in Table
5.3 and Figure 5.2.

Similarly, we test the deflation without special networks for boundary conditions as a
comparison under the same setting as Test Case 1. We find two solutions, denoted by ū1 and
ū2, from λ = 1 and λ = 100, respectively (see Figure 5.2). It is clear that both solutions are
spurious since their configurations do not take the prescribed boundary value 0 at x = 0 (see
Figure 5.2), which implies the effectiveness of using special networks for boundary conditions.

Test Case 3. We consider the fourth-order nonlinear equation describing the steady laminar
flow of a viscous incompressible fluid in a porous channel [77]. For simplicity, we consider
the one-dimensional problem that seeks u such that

d4u

dx4
+ γ(x

d3u

dx3
+ 3

d2u

dx2
) + R(u

d3u

dx3
− du

dx

d2u

dx2
) = 0, 0 < x < 1,(5.10)

u(0) = 0, u′′(0) = 0, u(1) = 1, u′(1) = 0,(5.11)

where R is the cross-flow Reynolds number and γ is a physical constant related to the wall
expansion ratio. Xu et al. [77] have proven that the problem (5.10)-(5.11) admits multiple
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Fig. 5.2: Identified solutions of the equation (5.6)-(5.7) by least square or neural network defla-
tion. All correct solutions, u1 and u2, are identified with special networks for boundary conditions.
Spurious solutions, ū1 and ū2, are found if the special networks are not used.

u1 u2 u3 û1 û2

NI 20000 10000 20000 10000 10000

Np 1000 1000 1000 1000 1000

Ilr [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2]

deflation source / u1 (p1 = 2) u1, u2 (p1 = p2 = 2) u1 (p1 = 2) u1 (p1 = 2)

α / 1 1 1 1

Table 5.4: Parameters for the channel flows equation (5.10)-(5.11).

solutions by analytic approaches. Three solutions were found by homotopy analysis method
(HAM) in [55] for the setting R = −11 and γ = 1.5.

In our experiments, we take the same R and γ as in [55]. The special network for the
boundary condition (5.11) is chosen as

(5.12) u(x;θ, ĉ) = x(x− 1)2(x2û(x;θ) + c)e2x + sin(πx/2),

where c is a network parameter to be trained together with θ. In this case, we initialize
b3 = 0 and c ∼ U [−5, 0]. Other network parameters are initialized as mentioned above.
Firstly, one solution u1 is found by the least-square method (2.2). Next, the second solution
u2 is obtained by the deflation (5.1) with deflation source u1 (p1 = 2). Moreover, the third
solution u3 is obtained by the deflation (5.1) with deflation sources u1 and u2 (p1 = p2 = 2).
Corresponding parameters are shown in Table 5.4. The three found solutions and their first
derivatives are plotted in Figure 5.3, which are the same solutions found in [55].

Also, a comparison test is performed to seek u2 by the deflation (5.2) with the same
setting as above, except for using a generic solution network without special structures for
boundary conditions. We find two solutions, denoted by û1 and û2, using λ = 1 and λ = 100.
Neither of them takes the prescribed boundary value 0 at x = 0 or 1 at x = 1 and, hence,
they are spurious solutions (see Figure 5.3).
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Fig. 5.3: Identified solutions and their derivatives of the channel flows equation (5.10)-(5.11) by
least square or neural network deflation. All correct solutions, u1, u2 and u3, are identified with
special networks for boundary conditions. Spurious solutions, ū1 and ū2, are found if the special
networks are not used.

Test Case 4. We consider the following second-order problem that seeks u such that

d2u

dx2
= f(u), 0 < x < 1,(5.13)

u′(0) = 0, u(1) = 0,(5.14)

where f(u) is a polynomial function of u. The existence of multiple solutions for the problem
(5.13) has been studied by the bootstrapping method [39].

First, we set the right-hand side of the problem (5.13) as f(u) = λ(1 + u4). It is shown
in [39] that there are two solutions for 0 < λ < λ∗ = 1.30107. In our experiments, we take
λ = 1.2. The special network for the boundary condition (5.14) is given by

(5.15) u(x;θ) = x2û(x;θ)− û(1; θ).

The first solution u1 is found by the least-square method (2.2) and the second solution u2 is
found by the deflation (5.1) with deflation source u1 (p1 = 2). Similarly to preceding cases,
we perform a comparison test without the special network structure for boundary conditions
and two spurious solutions û1 (for λ = 1) and û2 (for λ = 100) are found by the deflation
(5.2). The parameters for all these solutions are shown in Table 5.5 and all solutions are
plotted in Figure 5.4.

Second, we repeat the test by choosing f(u) = −π2

4
u2(u2 − 10). [39] has proved that

there exist eight solutions in total. Note that u0 = 0 is a trivial solution. In this case,
we start from the deflation (5.1) with the special network (5.15) and the deflation source
u0 (p0 = 2) to find the first solution u1, which is quite close to u0. We would like to
emphasize that it is sufficient to use the deflation without structure probing initializations
to identify u0 and u1. However, we were not able to identify any other solutions without the
structure probing initialization even if we tried our best to tune parameters and use different
random initialization. To perform a wider search for other solutions, we employ the following
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u1 u2 û1 û2

NI 10000 10000 10000 10000

Np 1000 1000 1000 1000

Ilr [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2]

deflation source / u1 (p1 = 2) u1 (p1 = 2) u1 (p1 = 2)

α / 1 1 1

Table 5.5: Parameters for the nonlinear problem (5.13)-(5.14) with f(u) = λ(1 + u4).
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Fig. 5.4: Identified solutions of the nonlinear problem (5.13)-(5.14) with f(u) = λ(1 + u4) by least
square or neural network deflation. All correct solutions, u1 and u2, are identified with special
networks for boundary conditions. Spurious solutions, ū1 and ū2, are found if the special networks
are not used.

structure probing initialization

(5.16) uJ(x;θ, ĉj) = x2û(x;θ)− û(1; θ) +
J∑
j=1

ĉj cos((2j − 1)πx/2),

with initial setting cj = 0 for j = 1, · · · , J − 1 and cJ ∼ U(−5, 5). Two solutions, denoted
by u2 and u3, are found by the deflation (5.1) with source u0 (p0 = 2) and the structure
probing network (5.16) with J = 1. Another two solutions, denoted by u4 and u6, are found
by the deflation (5.1) with source u0 (p0 = 2) and the network (5.16) with J = 2. Two more
solutions, denoted by u5 and u7, are found by the deflation (5.1) with deflation sources u4

(p4 = 2) and u6 (p6 = 2), respectively, and the network (5.16) with J = 2. Corresponding
parameters, including the initial value of cJ actually randomized for each solution, are listed
in Table 5.6. All the 7 nontrivial solutions are plotted in Figure 5.5.

5.2. Numerical tests in high-dimension. In this subsection, we will provide numer-
ical tests in high-dimensional domains (d ≥ 2).

Test Case 5. We consider 2-D Yamabe’s equation that seeks u such that

−8∆u− 0.1u+
u5

|x|3
=0, in Ω = {x ∈ R2 : r < |x| < R},

u =1, on ∂Ω,

(5.17)
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u1 u2 u3 u4

NI 5000 5000 10000 20000

Np 1000 1000 1000 1000

Ilr [10−3, 10−2] [10−3, 10−2] [10−4, 10−3] [10−4, 10−3]

J / 1 1 2

initial cJ / −3.48 4.61 −3.67

deflation source u0 (p0 = 2) u0 (p0 = 2) u0 (p0 = 2) u0 (p0 = 2)

u5 u6 u7

NI 20000 20000 20000

Np 1000 1000 1000

Ilr [10−4, 10−3] [10−4, 10−3] [10−4, 10−3]

J 2 2 2

initial cJ −4.12 3.64 3.44

deflation source u4 (p4 = 2) u0 (p0 = 2) u6 (p6 = 2)

Table 5.6: Parameters for the nonlinear problem (5.13)-(5.14) with f(u) = −π2

4 u
2(u2 − 10).
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Fig. 5.5: Identified solutions of the nonlinear equation (5.13)-(5.14) with f(u) = −π2
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by the deflation.

where r and R are set as 1 and 100. Nine solutions were found by using non-network deflation
techniques and various initial guesses in [29].

In our experiments, the solutions are approximated by the following special network

(5.18) uJ(x;θ) = û(x;θ) sin

(
π
|x| − r
R− r

)
+ 1

if the random initialization without the structure probing technique is used, or the following
network

(5.19) uJ(x;θ, cj) = û(x;θ) sin

(
π
|x| − r
R− r

)
+

J∑
j=1

cj sin(jπ
|x| − r
R− r

) + 1

with the structure probing initialization, where the initial values are cj = 0 for j = 1, · · · , J−
1 and cJ ∼ U(−1, 1). Note that both (5.18) and (5.19) satisfy the given boundary condition
automatically.
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u1 u2 u3 u4 u5

NI 2000 2000 2000 5000 2000

Np 10000 10000 10000 10000 10000

Ilr [10−3, 10−1] [10−2, 10−1] [10−2, 10−1] [10−2, 10−1] [10−2, 10−1]

network (5.18) (5.18) (5.18) (5.18) (5.18)

α / 1 1 [0.01, 100] [0.01, 100]

deflation source / u1 u2 u3 u1

u6 u7 u8 u9 u10

NI 5000 10000 20000 20000 10000

Np 10000 10000 10000 20000 10000

Ilr [10−2, 10−1] [10−2, 10−1] [10−2, 10−1] [10−2, 10−1] [10−2, 10−1]

network (5.18) (5.18) (5.18) (5.18) (5.18)

α [0.01, 10] [0.01, 10] [0.01, 10] [0.01, 10] [0.01, 10]

deflation source u1,u4 u1,u2 u1,u2 u1,u2 u9

u11 u12 u13 u14

NI 2000 10000 10000 10000

Np 10000 10000 10000 10000

Ilr [10−3, 10−1] [10−2, 10−1] 10−2 [10−2, 10−1]

network (5.19) (J = 4) (5.19) (J = 4) (5.19) (J = 4) (5.18)

α / 0.01 [0.01, 10] 1

deflation source / u11 u8,u11 u11

Table 5.7: Parameters for the 2-D Yamabe’s equation (5.17) (pk = 2 for all deflation sources for
the solutions obtained by the deflation).

In our proposed framework of the network-based structure probing deflation with a vary-
ing shift, we always follow the four steps: 1) use the least-square method (2.2) to find the
first few solutions; 2) use neural network deflation without structure probing and varying
shifts to find other solutions; 3) use structure probing deflation without varying shifts to find
more distinct solutions; 4) finally, use structure probing deflation with varying shifts to find
extra distinct solutions. Following these procedures, we find 14 solutions in total for the 2-D
Yamabe’s equation as plotted in Figure 5.6 with parameters specified in Table 5.7.

More precisely, u1 and u11 are found by the least-square method (2.2) and the others are
found by the deflation (5.1) with previously found solutions as deflation sources (pk = 2 for
all k). In deflation, we employ the technique of varying shifts in deflation operators, which
helps to find more distinct solutions. All solutions are found by using networks (5.18) or
(5.19) (specified in Table 5.7) with their corresponding initialization as mentioned previously,
except that we take the network (5.18) with 2−u9 as the initial guess to find u10. We would
like to remark that both the structure probing initialization and the varying shifts are key
techniques to find more distinct solutions for high-dimensional problems. Without any of
them, we cannot find 14 distinct solutions even if we have tried our best to tune parameters
with commonly used random initialization in the literature.



20 Structure Probing Neural Network Deflation

-100 0 100

-100

0

100
-100 0 100

-100

0

100
-100 0 100

-100

0

100
-100 0 100

-100

0

100

-100 0 100

-100

0

100
-100 0 100

-100

0

100
-100 0 100

-100

0

100
-100 0 100

-100

0

100

-100 0 100

-100

0

100
-100 0 100

-100

0

100
-100 0 100

-100

0

100
-100 0 100

-100

0

100

-100 0 100

-100

0

100
-100 0 100

-100

0

100

Fig. 5.6: Identified solutions of the 2-D Yamabe’s equation (5.17).

Test Case 6. The high-dimensional Yamabe’s equation seeks u such that

−4(d− 1)

(d− 2)
∆u− 0.125u+

u
d+2
(d−2)

|x|3
=0, in Ω = {1 < |x| < 100},

u =1, on ∂Ω,

(5.20)

where d ≥ 3 is the dimension of the problem.
We continue applying the network (5.18) without structure probing initialization and

the network (5.19) with the structure probing initialization as solution networks to solve
Yamabe’s equation when d = 3 and d = 6. The initialization parameters are the same as in
the 2-D case.

Again, in our proposed framework of the network-based structure probing deflation with
a varying shift, we follow the four steps: 1) use the least-square method (2.2) to find the
first few solutions; 2) use the deflation without structure probing and varying shifts to find
other solutions; 3) use structure probing deflation without varying shifts to find more distinct
solutions; 4) finally, use structure probing deflation with varying shifts to find extra distinct
solutions. Following these procedures, we obtain 11 solutions when d = 3 and 9 solutions
when d = 6. The corresponding parameters are shown in Tables 5.8 and 5.9 for d = 3 and
d = 6, respectively. The solutions are visualized in Figures 5.7 and 5.8 for d = 3 and d = 6,
respectively. We would like to remark that both the structure probing initialization and
the varying shifts are key techniques to find more distinct solutions for high-dimensional
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u1 u2 u3 u4 u5

NI 20000 20000 20000 20000 20000

Np 10000 10000 10000 10000 10000

Ilr [10−2, 10−1] [10−2, 10−1] [10−2, 10−1] [10−2, 10−1] [10−2, 10−1]

network (5.18) (5.18) (5.18) (5.18) (5.18)

α / [0.01, 10] 1 0.1 0.01

deflation source / u1 u1,u2 u1,u2 u1,u2

u6 u7 u8 u9 u10

NI 20000 20000 20000 20000 20000

Np 10000 10000 10000 10000 10000

Ilr [10−2, 10−1] [10−2, 10−1] [10−2, 10−1] [10−2, 10−1] [10−2, 10−1]

network (5.19) (J = 4) (5.19) (J = 6) (5.19) (J = 4) (5.18) (5.18)

α 0.01 0.1 [0.01, 10] [0.01, 10] [0.01, 10]

deflation source u1,u2 u1,u2 u1,u4 u1,u2,u3 u1,u2,u5

u11

N 100

NI 20000

Np 10000

Ilr [10−2, 10−1]

network (5.19) (J = 4)

α [0.01, 10]

deflation source u1,u2,u6

Table 5.8: Parameters for the 3-D Yamabe’s equation (5.20) (pk = 2 for all deflation sources for
the solutions obtained by the deflation).

problems. Without any of them, we cannot find several distinct solutions even if we have
tried our best to tune parameters with commonly used random initialization in the literature.

In these tests, the deflation powers pk are set as 2 for all k whenever deflation is used.
In the case of d = 3, most networks are initialized using (5.18) or (5.19), except for u8, u9

and u10, which are found by using initial guesses 2 − u4, 2 − u3 and 2 − u5, respectively.
In the case of d = 6, we also try the initialization with a constant minus a known solution.
However, this initialization method does not lead to new solutions.

Test Case 7. In the last example, we consider the following reaction-diffusion system
applied in the modeling of the chemical reaction with two components [64] and irregular
patterns [69],

(5.21)

{
D1(u, v) := εu∆u− uv2 + F (1− u) = 0

D2(u, v) := εv∆v + uv2 − (F + k)v = 0
in Ω,

with Dirichlet boundary conditions

(5.22) u = 1 and v = 0 on ∂Ω.

In this case, Ω is set as a more complicated domain in R3 formulated by

(5.23) Ω = {x ∈ R3 : |x| < ρ(x) := 1 + 0.1 sin(5θ(x1 + ix2))},
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Fig. 5.7: Identified solutions of the 3-D Yamabe’s equation (5.20). We visualize these solutions by
projecting them in the first two coordinates.

u1 u2 u3 u4 u5

NI 20000 20000 20000 20000 20000

Np 10000 10000 10000 10000 10000

Ilr [10−2, 10−1] [10−2, 10−1] [10−2, 10−1] [10−3, 10−1] [10−3, 10−1]

network (5.18) (5.18) (5.18) (5.18) (5.18)

α / [0.01, 10] 0.1 10 [0.01, 10]

deflation source / u1 u1 u1 u1,u2

u6 u7 u8 u9

NI 20000 20000 20000 20000

Np 10000 10000 10000 10000

Ilr [10−3, 10−2] [10−3, 10−2] [10−2, 10−1] [10−2, 10−1]

network (5.18) (5.19) (J = 6) (5.19) (J = 6) (5.19) (J = 6)

α [0.1, 1] / [0.01, 10] 1

deflation source u1,u2 / u7 u7

Table 5.9: Parameters for the 6-D Yamabe’s equation (5.20) (pk = 2 for all deflation sources for
the solutions obtained by the deflation).
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Fig. 5.8: Identified solutions of the 6-D Yamabe’s equation (5.20). We visualize these solutions by
projecting them in the first two coordinates.

Fig. 5.9: The problem domain of the 3-D reaction-diffusion system.

where θ(z) means the argument of a complex number z. See Fig. 5.9 for the visualization
of Ω. Note the system (5.21) has a pair of trivial solutions u0 ≡ 1 and v0 ≡ 0.

In [74], the authors solve the problem (5.21) in a 2-D square by a spectral collocation
method, obtaining a vast number of solutions with residuals less than 10−9. However, it is
quite challenging to solve the problem (5.21) in a 3-D complicated domain by most conven-
tional approaches (e.g., FDM and spectral methods).

Our network-based strategy is to construct two special networks u(x;θu) and v(x;θv) to
approximate u and v, respectively. Specifically, we let

u(x;θu) = û(x;θu)(|x|2 − ρ2(x)) + 1,(5.24)

v(x;θv) = v̂(x;θv)(|x|2 − ρ2(x)),(5.25)

which automatically satisfy u(x;θu) = 1 and v(x;θv) = 0 on ∂Ω. If we use the original least
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Fig. 5.10: Selected solution pairs (u, v) of the 3-D reaction-diffusion system (5.21). We visualize
these solutions by projecting them in the first two coordinates.

squares method in (2.1), only the trivial solutions can be found. Therefore, we train the
networks by the following deflation

(5.26)

min
θu,θv

LND(θu,θv) :=

(
K∑
k=1

(
‖u(x;θu)− uk(x)‖−pkL2(Ω) + ‖v(x;θv)− vk(x)‖−pkL2(Ω)

)
+ α

)
·
(
‖D1(u(x;θu), v(x;θv))‖2

L2(Ω) + ‖D2(u(x;θu), v(x;θv))‖2
L2(Ω)

)
,

where {uk(x), vk(x)}Kk=1 are K pairs of solutions that have already been obtained. We start
the search by taking the trivial solutions u0 and v0 as deflation sources, and then take
identified solutions as new deflation sources for the next search. Hyper-parameters are set
as NI = 10000, Np = 10000, and Ilr = [10−5, 10−2]. Besides, we use a varying α with a range
[10−2, 1]. Deflation powers are set as pk = 2 for all sources. Finally, we find more than 100
distinct solutions, some of which are shown in Fig. 5.10. The residual errors of all identified
solutions for Equation (5.21) are below 1.0 × 10−3 and the corresponding values of the loss
function in (5.26) are below 0.5× 10−3.

6. Conclusion. In this paper, we proposed the structure probing neural network
deflation to find distinct solutions to nonlinear differential equations. The original optimiza-
tion energy landscape of network-based methods is regularized by neural network deflation
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so that known solutions are no longer local minimizers while preserving unknown solutions
as local minimizers. To obtain a new solution with the desired features, a structure probing
algorithm is applied to obtain an initial guess that is close to the desired solution. Finally,
special network structures that satisfy various boundary conditions automatically are in-
troduced to simplify the objective function of network-based methods. These techniques
form a new framework for identifying distinct solutions of nonlinear differential equations.
Compared to existing methods, the proposed neural network deflation is capable of solving
high-dimensional problems on complex domains with a lower computational cost and can
identify more distinct solutions. As a neural network-based PDE solver, structure probing
neural network deflation may not provide highly accurate solutions. But these solutions
are usually accurate enough for industrial applications and serve as a good initial guess for
conventional methods as in [43] to obtain highly accurate solutions efficiently.

Structure probing neural network deflation relies on the deflation operator proposed in
[29] based on conventional discretization methods. Although the application of neural net-
works has conquered some disadvantages of the conventional deflation method, e.g., we can
solve high-dimensional problems on complex domains and identify more solutions, the pro-
posed method in this paper still inherits some disadvantages of the conventional deflation
method. For example, when two solutions are very close to each other, the optimization
landscape of the deflated loss using one solution as the deflation source becomes very steep
at the other solution, making it very challenging to identify another solution. As in the
conventional deflation method, it is crucial to choose appropriate powers pk for deflation
sources as shown in our numerical tests. However, the parameter selection is still heuristic
and problem-dependent. Learning how to choose parameters automatically is an impor-
tant future direction. Network-based methods in general might need extra effort to deal
with boundary conditions, which is not an issue of conventional methods. Designing more
advanced optimization algorithms for constrained optimization in network-based methods
would also be interesting in the future.
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[29] P. E. Farrell, Á. Birkisson, and S. W. Funke. Deflation techniques for finding distinct solutions of nonlinear

partial differential equations. SIAM J. Sci. Comput., 37(4):A2026–A2045, 2015.
[30] M. C. Ferris and J. S. Pang. Engineering and economic applications of complementarity problems. SIAM Rev.,

39:669–713, 1997.
[31] B. Fornberg and J.A.C. Weideman. A numerical methodology for the Painlevé equations. J. Comput. Phys.,
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