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Abstract. The residual method with deep neural networks as function parametrization has been applied to
solve certain high-dimensional partial differential equations (PDEs) successfully; however, its convergence is slow
and might not be guaranteed even within a simple class of PDEs. To improve the convergence of the network-
based residual model, we introduce a novel self-paced learning framework, SelectNet, which quantifies the difficulty
of training samples, chooses simpler samples in the early stage of training, and slowly explores more challenging
samples, e.g., samples with larger residual errors, mimicking the human cognitive process for more efficient learning.
In particular, a selection network and the PDE solution network are trained simultaneously; the selection network
adaptively weighting the training samples of the solution network achieving the goal of self-paced learning. Numerical
examples indicate that the proposed SelectNet model outperforms existing models on the convergence speed and the
convergence robustness, especially for low-regularity solutions.
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1. Introduction. High-dimensional partial differential equations (PDEs) are important
tools in physical, financial, and biological models [40, 20, 65, 22, 62]. However, developing numerical
methods for high-dimensional PDEs has been a challenging task due to the curse of dimensionality
in the discretization of the problem. For example, in traditional methods such as finite difference
methods and finite element methods, O(NY) degree of freedom is required for a d-dimensional
problem if we set N grid points or basis functions in each direction so as to achieve O(%) accuracy.
Even if d becomes moderately large, the exponential growth N¢ in the dimension d makes traditional
methods immediately computationally intractable.

Recent research of the approximation theory of deep neural networks (DNNs) shows that deep
network approximation is a powerful tool for mesh-free function parametrization. The research on
the approximation theory of neural networks traces back to the pioneering work [9, 26, 1] on the
universal approximation of shallow networks with sigmoid activation functions. The recent research
focus was on the approximation rate of DNNs for various function spaces in terms of the number of
network parameters showing that deep networks are more powerful than shallow networks in terms
of approximation efficiency. For example, smooth functions [45, 43, 63, 18, 48, 61, 16, 15, 17],
piecewise smooth functions [52], band-limited functions [50], continuous functions [64, 56, 55]. The
reader is referred to [55] for the explicit characterization of the approximation error for networks
with an arbitrary width and depth.
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In particular, deep network approximation can lessen or overcome the curse of dimensionality
under certain circumstances, making it an attractive tool for solving high-dimensional problems.
For functions admitting an integral representation with a one-dimensional integral kernel, no curse
of dimensionality in the approximation rate can be shown via establishing the connection of network
approximation with the Monte Carlo sampling or equivalently the law of large numbers [1, 16, 15,
17, 50]. Based on the Kolmogorov-Arnold superposition theorem, for general continuous functions,
[46, 24] showed that three-layer neural networks with advanced activation functions can avoid the
curse of dimensionality and the total number of parameters required is only O(d); [49] proves that
deep ReLLU network approximation can lessen the curse of dimensionality, if target functions are
restricted to a space related to the constructive proof of the Kolmogorov-Arnold superposition
theorem in [4]. If the approximation error is only concerned on a low-dimensional manifold, there
is no curse of dimensionality for deep network approximation in terms of the approximation error
[7, 5, 55]. Finally, there is also extensive research showing that deep network approximation can
overcome the curse of dimensionality when they are applied to approximation certain PDE solutions,
e.g. [27, 29].

As an efficient function parametrization tool, neural networks have been applied to solve PDEs
via various approaches. Early work in [39] applies neural networks to approximate PDE solutions
defined on grid points. Later in [11, 37], DNNs are employed to approximate solutions in the whole
domain, and PDEs are solved by minimizing the discrete L? residual at prescribed collocation
points. DNNs coupled with boundary governing terms by design can satisfy boundary conditions
[47]. Nevertheless, designing boundary governing terms is usually difficult for complex geometry.
Another approach to enforcing boundary conditions is to add boundary residual errors to the loss
function as a penalized term and minimize it as well as the PDE residual error [23, 38]. The second
technique is in the same spirit of residual methods in finite element methods and is more conve-
nient in implementation. Therefore, it has been widely utilized for PDEs with complex domains.
However, network computation was usually expensive limiting the applications of network-based
PDE solvers. Network-based PDE solvers were revisited recently and have become a popular tool
especially for high-dimensional problems [13, 19, 25, 33, 59, 3, 66, 41, 2, 30, 28, 6, 54, 42]. Never-
theless, most network-based PDE solvers suffer from robustness issues: their convergence is slow
and might not be guaranteed even within a simple class of PDEs.

To ease the issue above, we introduce a novel self-paced learning framework, SelectNet, to
adaptively choose training samples in the residual model. Self-paced learning [35] is a recently
raised learning technique that can choose a part of the training samples for actual training over time.
Specifically, for a training data set with n samplings, self-paced learning uses a vector v € {0,1}" to
indicate whether or not each training sample should be included in the current training stage. The
philosophy of self-paced learning is to simulate the learning style of human beings, which tends to
learn easier aspects of a learning task first and deal with more complicated samples later. Based on
self-paced learning, a novel technique for selected sampling is put forward, which uses a selection
neural network instead of the 0-1 selection vector v. Hence, it learns to avoid redundant training
information and speeds up the convergence of learning outcomes. This idea is further improved in
[31] by introducing a DNN to select training data for image classification. Among similar works, a
state-of-the-art algorithm named as SelectNet is proposed in [44] for image classification, especially
for imbalanced data problems. Based on the observation that samples near the singularity of the
PDE solution are rare compared to samples from the regular part, we extend the SelectNet [44] to
network-based residual models especially for PDE solutions with certain irregularity. As we shall
see later, numerical results show that the proposed model is competitive with the traditional (basic)
residual model for analytic solutions, and it outperforms others for low-regularity solutions, in the
aspect of the convergence speed.
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The organization of this paper is as follows. In Section 2, we introduce the residual methods
and formulate the corresponding optimization model. In Section 3, we present the SelectNet model
in detail. In Section 4, we put forward the error estimates of the basic and SelectNet models. In
Section 5, we discuss the network implementation in the proposed model. In Section 6, we present
ample numerical experiments for various equations to validate our model. We conclude with some
remarks in the final section.

2. Residual Methods for PDEs. In this work, we aim at solving the following (initial)
boundary value problems, giving a bounded domain Q C R%:
e clliptic equations

(2.1)

e parabolic equations

8“5,;’ D pou(a,t) = F(o.b), in Q% (0,T),
(2:2) Bou(x,t) = go(z,t), on 9Q x (0,T),

u(z,0) = ho(z), in

e hyperbolic equations
2

TULD) Dot t) = f(ae.1), in 2 x 0.7),
(2.3) Byu(z,t) = go(x,t), on 90 x (0,7,

u(z,0) = ho(z), w = hy(z) in O;

where u is the solution function; f, gg, ho, h1 are given data functions; D, is a spatial differential
operator concerning the derivatives of x; B, is a boundary operator specifying a Dirichlet, Neumann
or Robin boundary condition.

In this method, the temporal variable ¢ will be regarded as an extra spatial coordinate, and it
will not be dealt with differently from z. For simplicity, the PDEs in (2.1)-(2.3) are unified in the
following form

Du(z) = f(x), in Q.
24 Bu(x) = g(x), in T,

where @ includes the spatial variable x and possibly the temporal variable ¢t; Du = f represents
a generic PDE; Bu = g represents the governing conditions including the boundary condition and
possibly the initial condition; ) and I' are the corresponding domains of the equations.

Now we seek a neural network u(x; ) approximating the solution u(x) of the PDE (2.4). Note
the residuals for the PDE and the governing conditions can be written by

(2.5) Ro(u(x;0)) := Du(x;0) — f(x), Rr(u(z;0)) = Bu(x;0) — g(x).

One can solve the PDE by searching for the optimal parameters of the network that minimize
the square sum of these two residuals, i.e.

(2.6) min [Rq (u(@; 0))[I5 + A Rr (u(; 0))IF,

where || - ||« is usually the L2-norm and ) is a parameter for weighting the sum, e.g.,

(2.7) min Egeq [|Du(:0) — ()] + NEger [|Bu(z;0) — g()].
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3. SelectNet Model. The network-based residual model has been applied to solve certain
high-dimensional PDEs successfully. However, its convergence is slow and might not be guaranteed.
To ease this issue, we introduce a novel self-paced learning framework, SelectNet, to adaptively
choose training samples in the residual model. The basic philosophy is to mimic the human cognitive
process for more efficient learning: learning first from easier examples and slowly exploring more
complicated ones. The proposed model is related to selected sampling [8, 32], an important tool of
deep learning for computer science applications. Nevertheless, the effectiveness of selected sampling
in scientific computing has not been fully explored yet.

In particular, a selection network ¢g(x;6s) (subscript s for “selection”) and the PDE solution
network u(a; ) are trained simultaneously; the selection network adaptively weighting the training
samples of the solution network achieving the goal of self-paced learning. ¢s(x; ;) is a “mentor”
helping to decide whether a sample x is important enough to train the “student” network u(x;6).
The “mentor” could avoid redundant training information and help to speed up the convergence.
This idea is originally from self-paced learning [36] and is further improved in [31] by introducing
a DNN to select training data for image classification. Among similar works, a state-of-the-art
algorithm named as SelectNet was proposed in [44] for image classification, especially for imbalanced
data problem. Based on the observation that samples near the singularity of the PDE solution are
rare compared to samples from the regular part, we extend the SelectNet [44] to network-based
residual models especially for PDE solutions with certain irregularity.

Originally in image classification, for a training data set D = {(x;,y;))}I";, self-paced learning
uses a vector v € {0,1}" to indicate whether or not each training sample should be included in the
current training stage (v; = 1 if the ith sample is included in the current iteration). The overall
target function including v is

(3'1) miny we{0,1}" sz yu wla )\Zvu

=1

where L(y;, p(x;;6)) denotes the loss function of a DNN ¢(x;;6) for classifying a sample x; to ;.
When this model is relaxed to v € [0,1]" and the alternative convex search is applied to solve the
relaxed optimization, a straightforward derivation easily reveals a rule for the optimal value for

®)

each entry v;” in the ¢-th iteration as

(3.2) vgt) =1, if L(yi, d(xs;0M)) < A, and UZ-(t) = 0, otherwise.

A sample with a smaller loss than the threshold X is treated as an “easy” sample and will be selected
in training. Let us assume that the variables v and 6 are trained alternatively. When computing
0(+1) with a fixed v®, the classifier is trained only on the selected “easy” samples. When computing
v with a fixed 841D the vector v help to adjust the training samples to be used in computing
0(+2) Tt was shown by extensive numerical experiments that this mechanism helps to reduce the
generalization error for image classification when the training data distribution is usually different
from the test data distribution [36]. In [31, 44], a selection network ¢4(x;6;) € [0,1] is trained to
select training samples instead of using the binary vector v with the following loss function:

(3:3) mings, Y ¢ (@i 0s)L(yi, d(i; 0 Aqus i 05)

1=1

The introduction of the selection network has mainly three advantages. First, it changes the discrete
optimization problem in (3.1) to a continuous optimization problem in (3.3) that is much easier to
solve. Besides, the selection network with values in [0, 1] can more adaptive adjust the weights to
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each sample. Finally, the number of parameters in the selection network can be much smaller than
the size of v, since usually a small selection network is good enough to decide weights roughly.

The self-paced idea can also be applied to the preceding residual model for solving PDEs. One
naive way is to rewrite the optimization (2.7) as

1N, 1. h2 L A 2. 2\/2
(3.4) ma}nn—lgviIDU(%@)—f(wi)l +n_2;1’j|8u(mi79)—g(mi)| )

where {x}}", C Q and {x?}}?, C 9 are random samples; v/ and v/ are adaptive binary weights
denoting if the samples are selected or not in the loss. Similar adaptive sampling techniques can be
found in [51, 14]. The problem of solving PDEs using deep learning is different from conventional
supervised learning, where sample data are fixed without the flexibility to be arbitrary in the
problem domain. The training and testing data distributions are the same and there is no limitation
for sampling when we solve PDEs. Therefore, appropriately selecting training data and assigning
weights v/ and v” in each optimization iteration can better facilitate the convergence of deep
learning to the true PDE solution.

Intuitively, a good strategy is to first choose “easy” samples to quickly identify a rough PDE
solution and then use more “difficult” samples with large residual errors to refine the PDE solution.
For example, in the early stage of the training, random samples are uniformly drawn in the PDE
domain; in the latter stage of the training, we can select samples with almost the highest residuals
for training. However, this naive selection strategy might be too greedy: large residual errors usually
occur where the PDE solution is irregular (e.g., near low regularity points), resulting in selected
training samples gathering around these “difficult” points with few samples in other regions. Note
that deep neural networks are functions globally supported in the PDE domain. Training with
samples restricted in a small area may lead to large test errors in other areas. In our experiments,
we observe that this naive selection strategy applied to (3.4) even works worse than the basic model
(2.7) (See the numerical example in Section 6.1.1).

Borrowing the idea in [31, 44], we introduce two neural networks, ¢, (x; 6.) and ¢/ (x;6), named
as the selection network for the PDE residual and the boundary condition residual, respectively, to
replace v’ and v” in (3.4). The introduction of selection networks admits three main advantages
over the naive binary weights as discussed previously for the models in (3.1) and (3.3). According to
the discussion in the last paragraph, the selection networks ¢ (x; 6%) and @7 (x; 6) should satisfy the
following requirements. 1) As weight functions, they are required to be nonnegative and bounded.
2) They should not have a strong bias for weighting samples in the early stage of training. 3)
They prefer higher weights for samples with larger point-wise residual errors in the latter stage of
training.

For the first requirement, ¢.(x;6.) and ¢ (x;0”) are enforced to satisfy

(3:5) mo < ¢(x;0)) < My, Va € Q and VO,
mo < ¢} (z;0)) < My, Yz €T and V6!,

where My > 1 > mg > 0 are prescribed constants. Note the conditions (3.5)-(3.6) hold automat-
ically if the last layer of activation functions of ¢.(x;0.) and ¢Z(x;6Z) is bounded (e.g., using a
tanh or sigmoid activation function) and the network output is properly rescaled and shifted as we
shall discuss later in the next section. Therefore, the corresponding weighted squared residual is
formulated by

(3.7) Ereq [¢4(2:00)[Dula: 0) — f(2)|*] + AEser [¢4 (@; 6)|Bu(; 0) — g(z)[] .
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For the second requirement, when the selection networks are randomly initialized with zero bias
and random weights with a zero mean and a small variance, the selection networks are random
functions close to a constant. Therefore, the selection networks have no bias in weighting samples
in the early stage of training.

The third requirement can also be satisfied. Based on the principle that higher weights should
be added to samples with larger point-wise residual errors, we can train ¢.(x;6.) and ¢Z(x;0)) via

(38)  max Eeeq [¢(m; 0)[Du(x; 0) — f(2)[*] + AEuer [¢{ (w; 05)|Bu(w;0) - g(x)|*]

sVs

subject to the normalizaton conditions,

(3.9) |Q|/¢Saz9 )dx =1, |F|/¢ x; 0 )d

Note in (3.8), to achieve the maximum of the loss function, ¢.(x; 0.) tends to take larger values where

|Du(x;0) — f(x)| is larger, and take smaller values elsewhere. Also, ¢,(x;6.) will not take large

values everywhere since it is normalized by (3.9). The same mechanism is also true for ¢ (x;0).

In the latter stage of training, ¢.(x;6.) and ¢! (x;0”) have been optimized by the maximization

problem above to choose “difficult” samples and, hence, the third requirement above is satisfied.
For simplicity, we can combine (3.8) and (3.9) as the following penalized optimization

(3.10) max Eyeq [¢(@;00)[Du(w;0) — f(2)*] + \Byer (¢ (2; 05)|Bu(=; 0) — g(=)|"]

- [<|@|/¢S df”'”) iy [otte 9”*’“’”)1

where € > 0 is a small penalty constant. When ¢.(x;6.) and ¢Z(x;0”) are fixed, we can train the
solution network u(ax; @) by minimizing (3.10), i.e

(3.11) min max Eyeq [6(2:00)[Du(x; 0) — f (@)

+ AEqer ¢ (z;6) | Bu(z; 0) — g( )\2]

(ﬁ/cg‘bg(“’“’;)dw > (jry [ e d“"‘lﬂ

which is the final model in the SelectNet method.

Although the introduction of SelectNet is motivated by self-paced learning in image classifica-
tion, surprisingly, SelectNet can also be understood via conventional mathematical analysis. The
square root of the non-negative selection networks can also be understood as the test function in
the weak form of conventional PDE solvers. In the SelectNet, we apply the idea of test functions to
both the PDE and the boundary condition, e.g., hoping to identify u(x;6) ensuring the following
two equalities for all non-negative test functions:

(Vi@ 00), Du(a; 0) = (Vol@:0), f( )
with (-, ) as the inner product of L?(Q) and

(Vo@D Buw:6)) = (Vol(:6D), g(x))

T
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with (-, )p as the inner product of L?(T'). Conventional methods apply test functions for the PDE
only and the test functions are not necessarily non-negative. In the SelectNet, the integration by
part is not applied so as to let the test function play a role of weighting, while conventional methods
use the integration by part to weaken the regularity requirement of the PDE solution. Only a single
test function is used in SelectNet with a maximum requirement to guarantee that the solution of the
min-max problem is the solution of the original problem (see Theorem 4.1 later), while conventional
methods use sufficiently many test functions that can form a set of basis functions in the discrete
test function space. The idea of using test functions in deep learning was also used in [66], where
the test function was used in a weak form with integration by part. The idea of using a min-max
optimization problem instead of the minimization problem to solve PDEs has been studied for many
decades, e.g. [21]. Maximizing over all possible test functions can obtain the best test function that
amplifies the residual error the most, which can better help the minimization problem to identify
the PDE solution. When an optimization algorithm is applied to solve the min-max problem, the
optimization dynamic consists of a solution dynamic that converges to the PDE solution and a test
dynamic that provide a sequence of test functions to characterize the error of the numerical solution
at each iteration. The training dynamic of the selection network in SelectNet approximates the
test function dynamic, and the training dynamic of the solution network in SelectNet approximate
the solution dynamic.

4. Error estimates. In this section, theoretical analysis are presented to show the solu-
tion errors of the basic and SelectNet models are bounded by the loss function (residual errors).
Specifically, we will take the elliptic PDE with Neumann boundary condition as an example. The
conclusion can be generalized for other well-posed PDEs by similar argument. Consider

{ —Au+cu= f, in Q,

4.1
(4.1 gg =g, on 0L},

where Q is an open subset of R? whose boundary 99 is C' smooth; f € L%*(Q), g € L*(09Q),
c(r) > o > 0 is a given function in L?(1).

THEOREM 4.1. Suppose the problem (4.1) admits a unique solution u, in C*(Q). Also, suppose
the variational optimization problem

(4.2) 5%1/{1/']( —521]{1[/|—Au+cu—f|2d$+/\/ |——g| dx,
has an admissible set N' C C%(Q) containing a feasible solution uy € N satisfying
(4.3) J(up) <6,

then

(4.4) lup — vsll g1 () < cmax (1,0 ') max(1, )\_%)(5%,

where ¢ > 0 is a constant only depending on d and Q. Furthermore, let S’ be a subset of {¢p €
C(Q2) : ¢ > 0} which contains ¢p(x) = 1 for all x € Q; let 8" be a subset of {¢p € C(IN) : ¢ > 0}
which contains ¢p(x) =1 for all x € 9. Suppose the variational optimization problem

(4.5) mlj]\a/ Jsr.sr(u) := min /(;5 | — Au+ cu — f| da:+/\/ <;5"| — g’dx
ue

NN SIS dire s
) 2
1 ¢'dx—1> + <— ¢"d:c—1> ,
(’Q\ /Q 1092 Jaq
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has a feasible solution us € N satisfying

(46) JS’,S”(US) < 5,
then
(4.7) lus — sl 1) < cmax(1,071) max(1, /\_%)5%.

Proof. Let vy, := up — u,. Starting from the identity
(4.8) — Avy, + cvp = —Auy, + cup — |,

we multiply v}, to both sides of (4.8) and integrate over Q. Since v, € C1(Q), by integration by
parts it follows

ov
(4.9) IVop 720 + ollonl 72 < /(_Aub + cup, — flopdz + / U > da.
Q a0 n

Hence, by the Cauchy-Schwarz inequality,

(4.10) min(l,a)”va?{l(Q) < |l = Aup +cub — fllrz@) - vbllzz@)

Ouy,
+ llobll 2280 - Ha = 9llz200)-

By the trace theorem, ||luy || 12(50) < ¢ [|vbl| g1 (o) for some ¢ > 0 only depending on d and 2. Then
we have

(411)  min(1,0)[lvn 1 )

ou
< [lobll1(0) <H — Aup, + cup, — fllp2) + C/Ha—; - ”L%m))

1
Ouy, 2
< ovll 1@ <|| — Aup, + cup, = |72y + 5~ 9”%2(aﬂ)> ;

with ¢ = v/2max(1,¢). Finally, by the hypothesis (4.3), (4.4) directly follows from (4.11).
Moreover, by taking ¢/ = 1, ¢" = 1 we directly have

(4.12) / | — Au+ cu — f*dz + /\/ @ — g)Pdx < Jsr.sn(us) < 6.
Q a0 On

The same estimate for ||us — u.|| g1 () can be obtained by similar argument. O

By using the triangle inequality, we can conclude the solutions of the basic and SelectNet models
are equivalent as long as the loss functions are minimized sufficiently. As an immediate result, we
have the following corollary.

COROLLARY 4.2. Under the hypothesis of Theorem 4.1, we have

(4.13) lup — us| g1 (o) < cmax(1, o) max(1, /\_%)5%.

5. Network Implementation.



SELECTNET FOR SOLVING HIGH-DIMENSIONAL PDES 9

5.1. Network Architecture. The proposed framework is independent of the choice of
DNNs. Advanced network design may improve the accuracy and convergence of the proposed
framework, which would be interesting for future work.
In this paper, feedforward neural networks will be repeatedly applied. Let ¢(x;6) denote such
a network with an input @ and parameters 6, then it is defined recursively as follows:

' =,

(5.1) et =oWle! + 0, 1=0,1,---,L—1,

o(x;0) = Whal 4 bt
where o is an application-dependent nonlinear activation function, and 6 consists of all the weights
and biases {W' b} satisfying

WO c Rmxd’ WL c Rle, bL c R,
(5.2) wWleR™m™  forl=1,--- L —1,
b e R™ forli=0,---,L—1.

The number m is called the width of the network and L is called the depth.

For simplicity, we deploy the feedforward neural network with the activation function o(x) =
sin(x) as the solution network that approximates the solution of the PDE. As for the selection
network introduced in Section 3, since it is required to be bounded in [mg, My], it can be defined
via
(5.3) ¢s(a;0) = (Mo — mo)os((;0)) + mo,
where og(z) = 1/(1 4 exp(—=z)) is the sigmoidal function, and ¢ is a generic network, e.g. a
feedforward neural network with the ReLU activation o(x) = max{0,x}.

5.2. Special Network for Dirichlet Boundary Conditions. In the case of homoge-
neous Dirichlet boundary conditions, it is worth mentioning a special network design that satisfies
the boundary condition automatically as discussed in [37, 3].

Let us focus on the boundary value problem to introduce this special network stucture. It is
straightforward to generalize this idea to the case of an initial boundary value problem and we omit
this discussion. Assume a homogeneous Dirichlet boundary condition

(5.4) u(x) =0, on 09,
then a solution network automatically satisfying the condition above can be constructed by
(5.5) u(w; ) = h(z)i(x;0),

where 4 is a generic network as in (5.1), and h is a specifically chosen function such as h = 0 on I".
For example, if €2 is a d-dimensional unit ball, then u(x;6) can take the form

(5.6) w(®;0) = (| — 1)i(a; 0).
For another example, if  is the d-dimensional cube [—1,1]%, then u(z;6) can take the form
d

(5.7) u(a; 0) = [ (7 — Dir(a; 0).

i=1

Since the boundary condition Bu = 0 is always fulfilled, it suffices to solve the min-max problem

/ / — 1 / / 2
(5:8)  min max Ercq [¢](@:0) Du(a:0) — f(@)]°] ~ 1<@ /Q ¢s<m;es>dm—1>

to identify the best solution network wu(x;6).
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5.3. Derivatives of Networks. Note that the evaluation of the optimization problem in
(3.11) involves the derivative of the network u(x;#) in terms of . When the activation function
of the network is differentiable, the network is differentiable and the derivative in terms of & can
be evaluated efficiently via the backpropagation algorithm. Note that the network we adopt in
this paper is not differentiable. Hence, numerical differentiation will be utilized to estimate the
derivative of networks. For example, for the elliptic operator Du := V - (a(z)Vu), Du(x; ) can be
estimated by the second-order central difference formula

(5.9) Du(x;0) N1 Za (x+ = hel)(u(a} + he;, 0) — u(x; 0))

—a(x — %hei)(u(a}; 0) — u(x — he;,0)),

up to an error of O(dh?).

5.4. Network Training. Once networks have been set up, the rest is to train the networks
to solve the min-max problem in (3.11). The stochastic gradient descent (SGD) method or its
variants (e.g., Adam [34]) is an efficient tool to solve this problem numerically. Although the
convergence of SGD for the min-max problem is still an active research topic [53, 10, 60], empirical
success shows that SGD can provide a good approximate solution.

Before completing the algorithm description of SelectNet, let us introduce the key setup of
SGD and summarize it in Algorithm 1 below. In each training iteration, we first set uniformly
distributed training points {z; }ZN:11 C @ and {m?}f\fl C I', and define the empirical loss of these
training points as

(5.10) ;) NZ¢ 100 [Du(x],0) — f(x))|?

+ —Zqﬁ @7;07)|Bu(@?, 0) — ()|

2 2
( qu mz ’ Hé ) ( qu” ;3 9;/ - 1) )

where 05 := [0, 60”]. Next, 65 can be updated by the gradient ascent via

s?Ys

(5.11) Os < 05 + 7V, J,
and 6 can be updated by the gradient descent via
(5.12) 0 60— 7Vl

with step sizes 75 and 7. Note that training points are randomly renewed in each iteration. In fact,
for the same set of training points in each iteration, the updates (5.11) and (5.12) can be performed
n1 and ng times, respectively.

6. Numerical Examples. In this section, the proposed SelectNet model is tested on
several PDE examples including elliptic/parabolic and linear /nonlinear high-dimensional problems.
The basic model (2.7) is also tested for comparison. For the basic and SelectNet models, we
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Algorithm 1 Residual Model with SelectNet

Require: the PDE (2.4)

Ensure: the parameters # in the solution network u(x; )
Set parameters n, ni, ny for iterations and parameters N1, Ny for sample sizes
Initialize u(z;0%°) and ¢(z; 62°)
fork=1,--- ,ndo

Generate uniformly distributed sampling points
{:1:21}5\21 C @ and {m?}f\fl crl
for j=1,--- ,n1 do
Update 0517 « gb=1i=1 4 7By, jgk=1i=1 gr-10)
end for
95,0 « 95—1,711
for j=1,--- ,no do
Update 9%F—13 ¢ gk—1d=1 _ 7k, J(pF0 gh—Li-1)
end for
9k,0 — 9k—1,n2
if Stopping criteria is satisfied then
Return 0 = 6%
end if
end for

choose the feedforward architecture with activation o(x) = max(z3,0) for the solution network,
and the feedforward architecture with ReLU activation for the selection network. AdamGrad [12]
is employed to solve the optimization problems, with learning rates

(6.1) 0 = 1073,
for the selection network, and
(6.2) 70 = 1073739/1000 " if n () < k<UD v =0,---, 1000,

for the solution network, where 0 = n(® < ... < p(000) — y are equidistant segments of total
iterations. Other parameters used in the model and algorithm are listed in Table 6.1.

We take the (relative) £2 error at uniformly distributed testing points {z;} C Q as the metric
to evaluate the accuracy, which is formulated by

S fula: 0) — ula:)|?\ 2

(6.3) ep(f) == SCDE

Here Q C Q is the domain for error evaluation. In all examples, we choose 10000 testing points
for error evaluation. Note that in high-dimensional cases, most of the random samples following a
uniform distribution is near the boundary. So instead of uniform sampling in the whole domain,
we take an annularly uniform strategy, which divides the domain into N, annuli {k/N, < |z| <
(k+1) /Na}év;o_ ! and generates N; /N, samples uniformly in each annulus. In our experiments, we
choose N, = 10. This sampling strategy is applied both in the training and testing phases.
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d | the dimension of the problem

m | the width of each layer in the solution network

ms | the width of each layer in the selection network
L | the depth of the solution network

L | the depth of the selection network

My | the upper bound of the selection network

mg | the lower bound of the selection network

n | number of iterations in the optimization

n1 | number of updates of the selection network in each iteration

ny | number of updates of the solution network in each iteration

N1 | number of training points inside the domain in each iteration

N5 | number of training points on the domain boundary in each iteration

€ | penalty parameter to uniform the selection network

A | summation weight of the boundary residual

Table 6.1: Parameters in the model and algorithm.

6.1. Elliptic Equations with Low-Regularity Solutions. First, let us consider the
nonlinear elliptic equation inside a bounded domain

—V - (a(z)Vu) + p|Vu* = f(z), inQ:={z:|z| <1},
(6.4) u=g(x), on JQ,

with a(z) = 14 3|z[%. In this case, we specify the exact solution by
i 2.5
(6.5) u(e) = sin(Z (1~ [a])??),

whose first derivative is singular at the origin and the third derivative is singular on the boundary.
Note the problem is nonlinear if © # 0.

6.1.1. Comparison with Binary Weighting. In the first test, we compare the ba-
sic/SelectNet models with the binary-weighted model (3.4) on the 10-dimensional problem with
1 = 0. The training and testing points are uniformly randomly generated in §2. During the train-
ing process, the binary-weighted model computes the residuals at all training points, then chooses
10% points having the largest residuals for actual training. The implementation parameters are
listed in Table 6.2, and the curves of the £2 error decay versus iterations are shown in Fig. 6.1. The
final £2 errors obtained by SelectNet model, the basic model, and the binary-weighted model are
6.652 x 1073, 1.132 x 1072, and 2.186 x 1072. It is clear the proposed SelectNet converges faster
than the basic model and the binary-weighted model in this example. Since the binary-weighted
model is worse than the basic model, we will only compare the SelectNet and the basic model
afterward.

6.1.2. High-Dimensional Test. In the second test, we solve the high-dimensional non-
linear problem with g = 1 for d = 10, 20 and 100. The implementation parameters and the minimal
errors obtained by the basic and SelectNet models are listed in Table 6.3 and 6.4. Since the true
solution vanishes numerically in most of the volume when d is large, we compute the relative ¢2
error in By 1(0) := {|z| < 0.1}, where the solution magnitude is numerically bounded away from
zero. The curves of error decay versus iterations are shown in Fig. 6.2. From these results, it is
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Parameters | SelectNet | Basic | Binary Weighting
Ny 10000 10000 10000
No 10000 10000 10000

n 20000 20000 20000
n 1 / /
2 1 1 1
1 1 1
€ 0.001 / /

m 100 100 100

L 3 3 3
ms 20 / /
L 3 / /
o, Mo] | [08,5] | ] /

Table 6.2: The parameters of the implementation for various models in the comparison test with
binary weighting.

100 4

101

2 Errorin Q

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

Fig. 6.1: ¢ errors v.s. iterations in the comparison test with binary weighting (Red: SelecNet
model; Blue: the basic model; Black: binary weighted model).

observed both models are effective on the nonlinear elliptic problem all dimensions, but SelectNet
has a clearly better performance than the basic model: its £2 error decay is numerically more stable
and its accuracy is one-digit better than the basic model. Besides, we present in Fig. 6.3 the
following surfaces at (z1, z9)-slice

e the numerical solution: wu(zy,z2,0,---,0;60)
e the modulus of the numerical residual error: |Du(x1,z2,0,---,0;0) — f(x1, 22,0, - ,0)]
e the selection network: ¢.(x1,x9,0,---,0;6.)

for the 20-dimensional case. It shows that the numerical residual error accumulates near the origin
due to its low regularity. On the other hand, the selection network attains its peak at the origin,
implying that the selection of training points is mainly distributed near the origin where the residual
error is mainly distributed. Note that the selection network is not supported locally near the low-
regularity point, which means that the selection network will not make the training of the solution
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Parameters | SelectNet | Basic
Ny 10000 10000
Ny 10000 10000

n 20000 20000
ny 1 /
no 1 1
1 1
€ 0.001 /

m 100 100

L 3 3
ms 20 /
Ly 3 /
[m(), MQ] [0.8, 5] /

Table 6.3: The parameters of the implementation for various models in the nonlinear elliptic ex-
ample.

Dimension SelectNet Basic
d=10 7.944 x 107* | 3.193 x 1073
d=20 |9.584 x10~% ] 1.707 x 1072
d=100 |9.257 x1073 | 1.862 x 107!

Table 6.4: Final ¢ errors obtained by various models in the nonlinear elliptic example.

network focus on the low-regularity point only, which is an advantage over the binary-weighted
model.

6.2. Parabolic Equations. In this section, SelectNet is tested on an initial boundary
value problem of the parabolic equation, which is given by

Ou(z,t) — Dyu(z,t) = f(x,t), in Q:=Q x(0,1),
(6.6) u(z,t) = g(x), on I x (0,1),
u(z,0) = h(x), inQ,

with Q := {2 : |z| < 1}. Two examples are presented in this section.

6.2.1. Equation with Non-constant Coefficient. First, let D,u = —V, - (a(x)V,u),
which has a non-constant coefficient a(z) = 1+ %|z|, and the exact solution is set by

(6.7) u(z,t) = exp(|z|v1 —t).

Note u is at most C° smooth at ¢t = 1 and |z| = 0. In the SelectNet model, time-discretization
schemes are not utilized. Instead, we regard t as an extra spatial variable of the problem. Hence the
problem domain Q x (0,1) is an analog of a hypercylinder, and the “boundary” value is specified
in the bottom Q x {t = 0} and the side 9 x (0,1). This example is tested for d = 10, 20 and 100,
by evaluating the relative £2 error in Q x (0,1). The implementation parameters and the errors of
the basic and SelectNet models are listed in Table 6.5 and 6.6. It is clearly shown SelectNet still
obtains smaller errors than the basic model under the same parameter setting. In Fig. 6.4 the
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0 |
10 \

10-1 4

12 error

1072 4
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0

Fig. 6.2: 2 errors v.s. iterations in the nonlinear elliptic example (Red: SelecNet model; Blue:

basic model).
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Modulus of Residual Error

100 4

1072 4

15
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;
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5000

(c) d =100

the

Selection Network

Fig. 6.3: The (x1,x2)-surfaces of the numerical solution, modulus of residual error and selection
network by SelectNet (d=20) in the nonlinear elliptic example.

curves of error decay are presented, and in Fig. 6.5 the (¢, z1)-surfaces of the numerical solution,
modulus of residual error and selection network for d = 20 are displayed, from that we can observe
the residual error is mainly distributed near the singular point = 0 and the terminal slice ¢ = 1.
Accordingly, the selection network takes its maximum in this region.

6.2.2. Allen-Cahn Equation. Second, we take Dyu = —A,u—u+u? (Allen-Cahn equa-
tion), and the exact solution is set by
(6.8) u(z,t) = et sin(g(l — |z[)25).
We solve a 100-dimensional Allen Cahn equation with initial and boundary conditions to test our
method. As in Section 6.1.2, the solution vanishes numerically in the outside region, so we take
the relative £2 error in By 1(0) x (0,1) for the evaluation metric. The implementation parameters
are shown in Table 6.7. Finally, the errors obtained by SelectNet model and the basic model are
6.358 x 1073 and 3.347 x 1072, respectively. The error curves versus iterations are shown in Fig.
6.6. It can be seen in the figure the error curve of the SelectNet decays faster to lower levels than
the basic model. Moreover, the (t,z1)-surface of the numerical solution, modulus of residual error
and selection network are shown in Fig. 6.7, from that we can observe the selection network takes
its maximum near the singular point @ = 0 and the initial slice ¢ = 0, where the highest residual
error is located.
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10° 10°
& 8 &
o 107! e ©
Q < 1071 =
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Fig. 6.4: % errors v.s. iterations in the first parabolic exzample (Red: SelecNet model; Blue: the

basic model).

Selection Network

Modulus of Residual Error

Numerical Solution

Fig. 6.5: The (t,x1)-surfaces of the numerical solution, modulus of residual error and selection

network by SelectNet (d=20) in the first parabolic example.

100 4

10-1 4

12 error

1072 4

7500 10000 12500 15000 17500 20000
Iterations

6 25‘00 50‘00
(a) d = 100
Fig. 6.6: 2 errors v.s. iterations in the Allen-Cahn example (Red: SelecNet model; Blue: the basic

model).
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Parameters | SelectNet | Basic
Ny 10000 10000
Ny 10000 10000

n 20000 20000

ny 1 /
no 1 1

10 10
€ 0.001 /

m 100 100
L 3 3
M 20 /
Ly 3 /
[m(), MQ] [0.8, 5] /

Table 6.5: The parameters of the implementation for various models in the first parabolic example.

Dimension SelectNet Basic
d=10 1.490 x 102 | 3.531 x 1072
d=20 2990 x 1072 | 8.748 x 102
d=100 |6.302x 1072 | 1.357 x 107!

Table 6.6: Final ¢ errors obtained by various models in the first parabolic example.

6.3. Hyperbolic Equations. In the last example, we test SelectNet by solving the initial
boundary value problem of the hyperbolic (wave) equation, which is given by

2
% — Ayu(z,t) = f(x,t), in Q x (0,1),
(6.9) u(z,t) = go(x,t), on 9N x (0,1),
Ju(z,0) .
U(Z’7O) = hO(x)a ot = hl(l’) m Qa
with Q := {2z : |z|] < 1} and exact solution is set by
(6.10) (e, t) = (exp(t?) — 1) sin(g(l — |2)%%).

Same as in preceding examples, we solve the problem of d = 10, 20 and 100 with annularly uniform
sampling and relative £2 error evaluation in By 1(0) x (0,1). The parameters and obtained errors
are listed in Table 6.8 and 6.9, which demonstrates the SelectNet still converges faster than the
basic model (especially when d is higher). Also, we display the curves of error decay in Fig. 6.8,
and the (t,z1)-surfaces of the numerical results when d = 20 in Fig. 6.9. The results in the
examples of parabolic and hyperbolic equations imply our proposed model works successfully for
time-dependent problems.

7. Conclusion. In this work, we improve the network-based residual models on generic
PDEs by introducing a selection network for selected sampling in the optimization process. The
objective is to place higher weights on the sampling points having larger point-wise residuals,
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Parameters | SelectNet | Basic
Ny 10000 10000
No 10000 10000

n 20000 20000
1 1 /
no 1 1
10 10
€ 0.001 /
m 100 100
L 3 3
ms 20 /
Ly 3 /
[mo, Mo [0.8,5] /

Table 6.7: The parameters of the implementation for various models in the Allen-Cahn example.

Numerical Solution Modulus of Residual Error Selection Network

Fig. 6.7: The (t,x1)-surfaces of the numerical solution, modulus of residual error and selection
network by SelectNet in the Allen-Cahn example.

Parameters | SelectNet | Basic
Ny 10000 10000
No 10000 10000

n 20000 20000
n1 1 /
no 1 1

10 10

€ 0.001 /
m 100 100

L 3 3
ms 20 /
Ly 3 /

[mo, M()] [0.8, 5] /

Table 6.8: The parameters of the implementation for various models in the hyperbolic example.
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Dimension SelectNet Basic
d=10 1.671 x 1072 | 5.200 x 1072
d=20 |3.281 x1072 | 9.665 x 102
d=100 |6.319x 1072 | 3.089 x 10!

Table 6.9: Final £ errors obtained by various models in the hyperbolic example.

10° 1077

100 4

12 error
12 error

\
101 .
\
b
] WA 101
M"\”‘*‘\w\ A

0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
Iterations Iterations Iterations

£2 Errorin Q x (0, 1)

-

o
D

5

(a) d =10 (b) d =20 (c) d = 100

Fig. 6.8: £2 errors v.s. iterations in the hyperbolic example (Red: SelecNet model; Blue: the basic
model).

and correspondingly we propose the SelectNet model that is a min-max optimization. In the
implementation, both the solution and selection functions are approximated by feedforward neural
networks, which are trained alternatively in the algorithm. The proposed SelectNet framework can
solve high-dimensional PDEs that are intractable by traditional PDE solvers.

In the numerical examples, it is demonstrated the proposed SelectNet model works effectively for
elliptic, parabolic, and hyperbolic equations, even if in the case of nonlinear equations. Furthermore,
numerical results show that the proposed model outperforms the basic residual model. In the
problems with low-regularity solutions, SelectNet will focus on the region which has larger errors
automatically, finally improving the speed of convergence.

In this paper, we apply neural networks with piecewise polynomial functions as activation
functions. If the floor, ReLU, Sign, and exponential functions are used as activation functions, [57,
58] showed that deep network approximation has no curse of dimensionality in the approximation
error for Holder continuous functions. But unfortuanately, efficient numerical algorithms for these
networks are still not available yet. It is interesting to explore the application of these networks to
approximate the solutions of high-dimensional PDEs in the weak sense as future work.
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