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ABSTRACT: We study heavy quarkonium production associated with gluons in eTe™ anni-
hilation as an illustration of the perturbative QCD (pQCD) factorization approach, which
incorporates the first nonleading power in the energy of the produced heavy quark pair. We
show how the renormalization of the four-quark operators that define the heavy quark pair
fragmentation functions using dimensional regularization induces “evanescent” operators

that are absent in four dimensions. We derive closed forms for short-distance coefficients

2
s

octet channels. Using non-relativistic QCD (NRQCD) to calculate the heavy quark pair

for quark pair production to next-to-leading order (a7) in the relevant color singlet and
fragmentation functions up to v* in the velocity expansion, we derive analytical results
for the differential energy fraction distribution of the heavy quarkonium. Calculations for
3S£1] and 1S[[)g] channels agree with analogous NRQCD analytical results available in the
literature, while several color-octet calculations of energy fraction distributions are new.
We show that the remaining corrections due to the heavy quark mass fall off rapidly in
the energy of the produced state. To explore the importance of evolution at energies much
larger than the mass of the heavy quark, we solve the renormalization group equation

[1]

perturbatively to two-loop order for the 35} case.
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1 Introduction

Heavy quarkonium production is a subject of continuing interest [1-3]. The production of a
heavy quarkonium state always involves an intrinsic hard scale, the heavy quark mass, mg.
In the presence of an even larger hard scale, Ef, such as transverse momentum or particle
energy, large logarithms In(E%/(2mg)?) can appear, which are fully perturbative but re-
quire resummation. The perturbative QCD (pQCD) factorization procedure developed in
refs. [4, 5] is an organization of high-energy quarkonium production into subprocesses of
different characteristic regions in momentum and coordinate space to make this resumma-
tion possible. Closely-related results have been derived from an effective theory viewpoint
in refs. [6, 7]. Recently, the formalism also has been applied to light meson production in
deep-inelastic scattering [8].

For quarkonium production at large transverse momentum, this pQCD factorization
approach provides a unified framework for leading-power (LP) and next-to-leading power
(NLP) behavior in momentum transfer for production cross sections. Suppressing convo-
lutions associated with the initial state, such factorized cross sections for the production

of heavy quarkonium H can be represented as

O'fQCD = Z 0i®z Disy + Z G06(x) @z Dogr)—H - (1.1)
i=q,q,9 K
LP NLP

The convolutions in this expression are in hadronic momentum fraction z, and variables,
u and v, which represent the fraction of the hadron’s total momentum carried by the
heavy quark in the amplitude and in its complex conjugate, respectively.! The first term
represents the LP production of a single parton i = ¢, ¢, g at short distances. The second
term describes the NLP production of a heavy quark pair in a specific spin and color state
k at short distances. The full expression for the factorized cross section in eq. (1.1) with
explicit convolutions is [4]
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where g is a factorization scale, and where here and below &« = 1 — v and v = 1 — v.

Throughout the paper, we work in a frame in which the heavy quarkonium momentum, P*,
is directed along the positive z-axis, and denote by (lower case) p#, a lightlike momentum

IThe variable v here should not be confused with the pair relative velocity in NRQCD.



with the same plus component,

2
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pr=(pt, 1 0
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P =" 00.)=p"aH, (1.3)

where 1 is the light-cone vector 7# = (1, 0, 0 ). The p™ component can be projected out
by the oppositely directed light-cone vector n* = (0, 1,0,), as pt =p-n withn-n =1
and n2 = n2 = 0. As indicated in eq. (1.2), the short-distance coefficients dé depend
only on the lightlike momenta pg and pg, related to p* by p = 2(pg + pQ) = zp.. That
is, the heavy quark is treated as massless in the short-distance coefficients. A proof of
this factorization at NLP was provided in ref. [4]. It should be noted that, rather than
the full set of NLP non-perturbative functions, the formalism includes only the heavy
quark pair fragmentation functions. This is justified under the reasonable assumption that
they give the dominant contributions at NLP when a heavy quarkonium is produced. As
is characteristic of factorized power corrections [9-16], the fragmentation functions in this
expression involve not only the momentum fraction carried by the pair, but also the relative
momentum of the constituents of the pair, the heavy quark and antiquark. The short-
distance functions, therefore, produce non-diagonal products of partonic states, in which
the heavy quark pair has the same total momentum, p. in eq. (1.2), shared differently
by the heavy quark and antiquark. The fragmentation function mediates between these
products of states, non-diagonal in u and v, and the full set of states that include the heavy
quarkonium, of momentum P.

Operator definitions for the fragmentation functions can be found in ref. [4], given as
Fourier transforms of matrix elements of four-quark operators, here suppressing gauge links,

D[QQ(H)]—)H(Za U, V3 Mm@, 1) =
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where C) and P() are members of a set of projections in color and Dirac spin space,
respectively. Explicit forms of projections will be given in section 2.

We will apply this formalism to heavy quarkonium production in association with
gluons for ete™ annihilation. For these processes, we provide the first closed expressions
for the NLP short-distance coefficients at next-to-leading order (NLO). We will encounter
a number of features that will recur in all the processes that can be factorized in this
manner, and will thus play a role in any program to develop a phenomenology of heavy
quark production that includes NLP mechanisms. In addition, once eTe™ annihilation
short-distance coeflicients are calculated, the asymptotic behaviors of exact calculations in
NRQCD at O(a2a?) allow us to check these short-distance coefficients explicitly, using the
formalism for NRQCD fragmentation functions developed in refs. [17, 18]. Previously, the



two formalisms were compared numerically for hadronic scattering in ref. [19], with good
results, but there is nothing like an analytical comparison.

The calculation of short-distance coefficients depends, of course, on the scheme used
to define the matrix elements in eq. (1.4), which involve four quark fields relatively on the
light cone. As in the case of single-parton fragmentation functions, such operator config-
urations require renormalization as “cut vertices” [20], as in ref. [4], and thus depend on
the renormalization scheme. In this paper, we will use a modified minimal subtraction
(MS) approach in dimensional regularization. The presence of the four-quark operator
then makes it necessary to include the effects of operators that are absent in a purely
four-dimensional calculation. This phenomenon is of great importance in the treatment
of amplitudes mediated by effective four-quark operators [21, 22]. In our case, we will
encounter “evanescent” fragmentation functions, associated with projections P that dis-
appear in four dimensions. We will see that the comparison to exact NRQCD calculations,
even at NLO, is ambiguous without a clear understanding of how these new functions enter
into the calculation of factorized cross sections.

In this work, we study the energy fraction, zy = 2Ey/Q, distributions of heavy
quarkonium H produced in gluon-associated processes, which only contributes at NLP up
to O(a?a?). Note that the Belle experiment is able to separate heavy quarkonium produc-
tion associated with and without c¢, o(ete™ — J/¢ +cc) and o(ete™ — J/¢ + Xz) [23],
and that the contributions without c¢ are mainly gluon-associated production at Belle’s
energy within the NRQCD formalism [24-29]. The LO color octet cross section begins at
order O(a?ay), where it would appear with an end-point enhancement [30] at 2z ~ 1. This,
however, has not been observed in the data [24-29]. We focus our study in the region =y
away from 1 and thus only calculate the real contributions of the NLO short-distance coeffi-
cients. For NRQCD calculations of the gluon-associated processes, there exist NLO numer-
ical calculations for both color-singlet channels and color-octet channels [26-28]. Closed
expressions for the xy differential distributions are also available for 35{1} [29, 31, 32] and
15’([)8] [33] to order O(a?a?). We will use these results to make explicit comparison to the re-
sults of pQCD factorization for these cases and see that the fixed order expression of pQCD
factorization can approach the high-energy limit of NRQCD even at moderate energies.

Perturbative QCD factorization can also go beyond NRQCD fixed order calculations
by resumming logarithms like In(E%/(2mg)?) through evolution equations [4]. We will
solve the evolution equations to two loops to test the significance of evolution for these
functions.

We begin in section 2 with a discussion of the factorization formalism of ref. [4], identi-
fying additional evanescent fragmentation functions associated with dimensional regulariza-
tion. We calculate the relevant short-distance coefficients for heavy quark pair production
in association with gluons at NLO in section 3. In section 4, using the fragmentation
functions of refs. [17, 18], we compare our results to the asymptotic behavior of NRQCD
calculations in the channels for which the O(a2a?) results are available and find agree-
ment. Lastly, in section 5, we study the approach to asymptotic behavior and evolution
for the 3S£1] channel. We also show NLO pQCD predictions for different NRQCD channels
at various center-of-mass (CM) energies, and include comparison to data from the Belle
collaboration [23].



2 NLP factorization and fragmentation functions

As shown for LP in ref. [34] and NLP in ref. [4], the perturbative short-distance coefficients
of the factorized single-particle inclusive cross section, eq. (1.2) are sensitive only to the
large lightlike momentum components of the parton(s) whose fragmentation produces the
observed hadron. For NLP involving a heavy quark pair, the corresponding contributions
to the cross section are convolutions in the longitudinal momenta of the heavy quark and
antiquark of the pair between the short-distance coefficients and the fragmentation func-
tions. The short-distance coefficients and fragmentation functions describe the production
of the pair, and its subsequent evolution into a heavy quarkonium, respectively. This NLP
contribution is only one of many, but it is reasonable to assume that it dominates the
class of NLP corrections simply because of the presence of the pair in heavy quarkonium

production.

2.1 Pinch surfaces and factorization

In this subsection, we review the underlying structure that allows us to separate and
normalize short-distance coefficients and fragmentation functions for NLP heavy quark
pair production. This requires the construction of the heavy quark pair fragmentation
functions at the partonic level, which begins with diagrammatic analysis.

The observation that underlies factorization procedures is that long-distance contri-
butions to cross sections for hard-scattering processes arise from well-defined regions in
phase space and loop momenta. These regions are associated with so-called “pinch sur-
faces” [35-37] in the massless limit. Each such region is associated with a specific power
behavior in the high energy limit, LP, NLP and so forth. The LP and NLP contributions
in particular can be factorized into perturbatively-computable hard parts (short-distance
coefficients), which determine the power behavior, and universal parton distributions for
incoming hadrons and fragmentation functions for observed hadrons, which absorb mass
and other long-distance dependence. At large momentum transfer and to NLP, even the
dependence on a heavy quark mass factorizes from the short-distance scattering [38]. In
this approximation, LP and NLP contributions can be significantly simpler to determine
than by derivation from full fixed-order calculations.

We recall first the procedure at LP. A generic pinch surface contributing to LP is
illustrated in figure la for gluon fragmentation. The momentum of the gluon passing the
horizontal dashed line in the figure represents a propagator near its mass shell. In the
region in question, the subdiagram below the cut describes the short-distance production
of a nearly on-shell gluon from a hard scattering. Subsequent fragmentation of the nearly
on-shell gluon into a heavy quarkonium over long times is represented by the subdiagram
above the line. Every pinch surface that contributes to the cross section at LP takes this
form (for a gluon or quark), with a short-distance piece, which is perturbatively calculable,
and a non-perturbative but universal function. This is what makes factorization possible.
Given this factorization, it is possible to improve systematically the calculation of the short-
distance coefficients, and as a result to determine systematically universal non-perturbative
fragmentation functions by comparison to experiment or other non-perturbative input.



Figure 1. Pinch surfaces of the (a) single-parton leading power fragmentation and (b) heavy
quark pair next-to-leading power fragmentation.

This program relies on the assumption that the calculation of the short-distance coefficients
is by construction independent of long-time dynamics, and can be carried out in an infrared-
regulated version of QCD. In particular, for LP fragmentation, we normally carry out the
computation of the short-distance coefficient in dimensionally-regularized QCD, taking the
observed final-state hadron to be a parton itself.
Schematically, all contributions to all pinch surfaces at LP for the production of a
hadron at high energy can be represented as
1
d‘fgi]f%g(p) ~ Z/ dz |:/He+e—%aX (g) 7:1—>H(P) (Za P):| dH(P)v (21)
a YTH
where we recall from eq. (1.3) that p# is the light-like projection of hadron momentum P*.
The function H.+.-_,x represents all diagrammatic contributions to the production of
parton a, below the dashed line in figure 1a, and 7,_, (p) those above. Here for simplicity
of notation, we take 0 < zy < 1 as the fractional momentum of the observed hadron H in
ete” annihilation, integrated over phase space dII(P).
The starting form for our discussion for the contributions from generic NLP pinch
surfaces involving the production of a heavy quark pair at short distances [4], illustrated
by figure 1b, is

1 1
NLP
do-c[3+e*]—>H(P) %/ dZ/O du dv Tr [,He*e*%[QQ]X(ananp/va/Q)

TH

X ﬁQQHH(p)(z,u,U;P)] dIIi(P)
1 1

~ / dz /0 du dv [Hab,cd;ij,kl(m,pQ,p’Q,p’@)
TH
x Tkl (5 a0, P)] dll(P). (2.2)

In the second expression we exhibit sums over two pairs of color indices (ab, cd) and two
pairs of spin indices (ij, kl) linking the long distance part 7 and the short-distance part H in



both the amplitude (ab,ij) and complex conjugate (cd, kl). The form of eq. (2.2) is already
suggestive of the factorized NLP cross section in eq. (1.2). Bridging the gap between the
two requires the identification of the dominant momentum dependence and the separation
of color and spin traces between the long- and short-distance coefficients. These steps are
described in ref. [4], and we will recall them here for their detailed implementation at NLO.

Consider first the treatment of momentum flow. As in eq. (2.1), the limit on the z
integral in eq. (2.2) refers to the production of a hadron integrated over phase space at fixed
fractional momentum xf;, while the u and v integrals go from zero to one, representing the
fraction of the heavy pair’s momentum carried by the heavy quark in the amplitude and
complex conjugate, respectively.

The hard functions H depend only on the light-like projections of the heavy quark and
antiquark momenta on either side of the (vertical) final state cut. Specifically, in terms
of the parameters «...v introduced above, these momenta are given in terms of p* from
eq. (1.3) the light-cone projection of the final state momentum, P*, by

u
Po=_7" py=_r"

[SE SRS ]

i~
=

Pl Ep" ps = (2.3)
That is, in addition to the pair spin-color state k, we must specify the momentum fractions
u and v carried by the quarks in the amplitude and complex conjugate in the partonic final
state. The factorized cross section will be a triple convolutions in z, u, and v.

We now turn to the separation of the sums over color and spin indices. Here, we follow
the method of ref. [4], modified for spin projections to accommodate dimensional regular-
ization. Quite generally, at fixed values of u and v, we can expand the perturbative long-
distance and short-distance functions into color singlet and octet matrices (components ab)
times Dirac matrices (components ij). For example, for the short-distance function, #,
we find [4]

(qu[Q@X(pQ,pQ,p’Q,p’Q)) Sab (5ch () (F1) g Mot (pQ PGP pQ)

ab,ij;cd,kl

8
+ Y (ta)y (ta)e Z (07);; (1) Ha.r (vapQ’p/Q’p/Q)’

A=1
(2.4)

where H, 1 are coefficients of the generators of spin state I and color state a. The two Dirac
matrices correspond to the amplitude and complex conjugate side of the short-distance
coefficients and they are diagonal [4] for unpolarized initial and final states. The t4 are
SU(3) generators in fundamental representation. In four dimensions, the I'; can be taken

from the usual basis of Dirac matrices in four dimensions:

F[ € {177#70—;LV77,UJ’Y5775} . (25)

We will use the structure of eq. (2.4) as a guide in the construction of factorizing projections

in color and spin.



2.2 Color projections

The long- and short-distance parts in eq. (2.2) are connected by two heavy quark pairs,
each of which can be in a singlet or octet state. The projection in eq. (2.2) is standard,
and the process may be represented explicitly by the relations

Z = Z Z Oaa’ Oy Oce! Odd

. . ! Wt ’
ab;e,d  abie,dal b d

= Z Z [ng,cdét[ll/]b’,c’d/ +Ct[18b],cdc~z[18’17’,c’d’:| . (26)

. ! Wt !
a,b;e,d a’ b’ d

Here we take the color projections C for the heavy quark pairs that enter 7 and isolate ones
that give singlet or octet pair production. Gauge invariance ensures that these projections
are diagonal between the amplitude and complex conjugate. Acting on 7 (above the dashed
line), these are [4]

ny dab ded
= T | ]
el = S VRt V(). (2.7)

ab,cd :N2 -1
c

Correspondingly, projections C acting on the hard subdiagrams are

511 dab Oed
Catea = [\/ﬁ} [\/ﬁ] ’
B =Y V2(ts)al[V2(ts)ed - (2.8)

B

We now turn to the factorization of the spin degrees of freedom.

2.3 Spin projections and dimensional regularization

The spin analog of the color decomposition given in eq. (2.6) in four dimensions is a Fierz
decomposition for each pair, with a normalization suitable to the basis in eq. (2.5),

Z - Z Z 03t O Okkr Our = Z Z Z (T (Fl)i’j’ (L) (FJ)k’l’ - (2.9)

Gkl gk ghE Lk, L RN LT

We shall see below that in calculations of 7 and H using dimensional regularization, we
need to expand the basis of Dirac structures to reflect the arbitrary number of dimensions
involved. The regularized cross section will include terms that are nonvanishing resulting
from the product of poles associated with collinear radiation, a long-time process, times
short-distance factors that vanish when the number of dimensions is taken to four. The
introduction of new, evanescent projections [21, 22] will enable us to identify such terms,
and organize them appropriately. In particular, this analysis will be necessary to reconcile
NLP factorization at next-to-leading order with existing NRQCD calculations in selected
channels, and to provide unambiguous definitions for short-distance coefficients for channels
in which explicit calculations have not been carried out.



The full extended Dirac algebra in D dimensions is given by linear combinations of the
elements of the sets

{FI} = {17’YM7O-MV7’VM/757757 {FfJ}}
{Tfj} _ {Fz A x ij} 7 (2.10)

where all of the (distinct) hatted indices my # 7hg--- # 1, are outside the usual four
dimensions. We assume that all our continued dimensions are spacelike and that the trace
of any product of Dirac matrices with all different indices vanishes, including a single
matrix. Even though we usually think of dimensional continuation as infinitesimal, as long
as € = 2 — D/2 remains variable, there is no limit to the size of the algebra generated this
way. Nevertheless, the number of elements of the algebra that can be realized in a given
calculation is finite, since there are no more Dirac matrices than the number of vertices
plus the number of propagators along the fermion lines in any given diagram.

We will use the full set of elements of the sets above, {I'r} including {I" fj} to realize
an orthonormal basis with which to expand both 7 and H. As a result, the traces that
link the long- and short-distance parts will be nonzero only when the Dirac structure of
the two factors matches exactly for the two functions. As we expand the short-distance
part to higher orders, the expansion has more and more terms from {I" I}}' For the project
at hand, however, we only encounter three Dirac matrices with the evanescent projections.
This makes the calculations described below more manageable than they might otherwise
have been.

To facilitate the discussion of the new evanescent projections for our NLO calculations,
we introduce the notation for any value of 1 and v,

1
=5 (0 =) (2.11)
Of special interest for us in this calculation are the matrices with one and two hatted
indices,
,ymﬁ — ’Ym’)/ﬁ
Y =y, (2.12)

where ™ # n again. From this point on, we will call states associated with these evanescent
projections, evaA and evaB, respectively.

As observed in ref. [4], in the frame where the heavy quarkonium moves in the z-
direction, as in eq. (1.3), the leading contributions of the long-distance functions 7 are
proportional to matrices in which large + components dominate, i.e. terms projected out
with I'; ~ 9t. Therefore, in the limit mg/Ey — 0, we require in eq. (2.9) I'y ~ 1t above the
cut and I'! ~ p below the cut. This is the case in arbitrary numbers of dimensions. The
observed momentum p* is kept in four dimensions, so that the full set of NLP matrices
below the cut is given by suitably normalized elements of the set

{16 b5, B Wﬁ} : (2.13)



in both for the amplitude and complex conjugate side. In the absence of polarizations in
the initial state, the expansion of the hard scattering in terms of Dirac matrices is diagonal
in these matrices, as anticipated in eq. (2.4) above. This diagonality is then carried over
to the general spin decomposition given by eq. (2.9), which ensures that the fragmentation
functions are also diagonal in the projections. New evanescent fragmentation functions
based on these Dirac matrices must also be added to achieve exact NLP factorization in
dimensional regularization. The first two matrices in eq. (2.13), which appear with both
singlet and octet color, correspond to longitudinal and scalar polarization configurations
for the pair. They are referred to as vector (v) and axial (a) projections. We can think of
the additional matrices with hatted indices as extensions of Py into D dimensions. For us,
~5 remains in four dimensions. Of course, for D = 4, only the first two of these structures
are necessary, and they appear in the Fierz identity, eq. (2.9). Transverse projections are
also possible, of course, but are associated with even powers of Dirac matrices, and vanish
in the hard part at NLP for the gluon-associated processes we consider [4].

The resulting, normalized spin projection operators for the v, a, evad, and evaB
fragmentation functions are given by

1
PO (p)ijan = o (v 1)y o (v-m)ye »
1
P (p)ijn = pn (v =55 pon (v - nys)
i1 mn i 1 mn
_ﬂélp‘n(ﬁy ny )ij \/§4p~n(7 ™)y, s

_ 2 7 1 mn) ) 1 ( mn)
”’lk_D—4\/§4p-n(V ny i V24p-n v -ny .
1

2 ) 1 N 7 .
(evaB) o . mn . mn

P (evaA) (p)

where repeated indices are summed.

The corresponding projection operators for hard, short-distance coefficients are given by

75(v)(l?)ji,kl = (v- p)ji (v Pt -

P(a) (p)ji,kl = (’7 : p75)ji (’Y : p75)kl

= (v-mm”)j,-f(v-mm”)kla

P (1) i = % (v : mmﬁ>ﬂ % (7 -mmﬁ> ;

B

In principle, there are separate evanescent functions for each combination of hatted

.E@

PEB) (p) i =

indices, but for four-dimensional final spin and momentum states, they are all related by
rotations. Using rotational invariance in dimensions beyond four, the functions are the
same for every value of the hatted indices. As a result we sum over all hatted indices,
dividing by the number of extra dimensions. Of course, this counting is only possible in

~10 -



integer numbers of dimensions, but it has an analytic continuation to any complex value
ofe=2-D/2.

The overall factors for fragmentation projections in eq. (2.14) evaA and evaB come
with overall counting normalizations (for the collinear fragmentation functions)

2 2
D1 and D-H(D=5) (2.16)

respectively. This counting normalization ensures the orthonormality condition

S PP ) = 8 (2.17)
ijlk

with s, s’ = v, a,evad, evaB. Aslong as this orthonormality condition is satisfied, the exact
normalizations of P and P are not important. However, since both ﬁ and m
are ~ %, depending on whether we choose to put this overall normalization with the hard
projections or fragmentation projections we change the order of € in the hard coefficients
or fragmentation functions. We choose to include these counting factors in the projec-
tors for the fragmentation functions, and use MS scheme for the evanescent as well as
four-dimensional fragmentation functions. This compensates for the suppression induced
by summing over the number of dimensions beyond four in eq. (2.14). For fixed hatted
indices and € independent normalizations, the corresponding fragmentation functions are
proportional to 1/e, just as for four dimensional projections. Of course, our final results
are scheme independent, but our choice is physically consistent with the above remark that
evanescent contributions come from order e short-distance parts convolved with poles in
long-distance fragmentation functions.

With these normalizations, we can generalize the Fierz identity in four dimensions to

Z = Z Z 5ii’5jj’ 5ll’5kk’ = Z Z Z P(I)(p)ij,lkﬁ(f)(p)j’i’,k’l’ +Ra

1,75k, i35k, 50K 1,5:k,0 1,3k I/ I=v,a,evaA,evaB
(2.18)

where the primed indices are contracted with the hard scattering, and the unprimed with
the fragmentation functions, and where the remainder, R, contributes only beyond NLP.
R includes the transverse projections, which may also be NLP for other processes. Again,
we can identify a finite list of projections because we are working at finite order in the hard
scattering at NLP. Now we can separate both color and spin traces in the integrand of
eq. (2.2), using eq. (2.6) and eq. (2.18), respectively, which, with standard approximations
on loop momenta, give us the NLP part of the factorization found in eq. (1.2) [4].

2.4 Operator definitions for partonic fragmentation functions

Each pair of projections, egs. (2.7) for color and (2.14) for spin, defines a fragmentation
function. The result is given above in eq. (1.4). Compared to ref. [4], we now include in
the set of projections the full list of D-dimensional Dirac structures in eq. (2.14).

As in the single-parton case, we will compute the short-distance coefficients for the
heavy quark pair states from IR regulated, D-dimensional partonic cross sections, using

- 11 -



perturbative and regulated partonic fragmentation functions. In these calculations, the
heavy quark mass is set to zero. In contrast to the single-parton case, however, although
the total momentum of the pair must be the same in the amplitude and complex conjugate
of figure 1b, the relative momenta of the quark and antiquark within the two pairs need
not be the same. This simply means that there can be different histories on how a heavy
quark pair reaches the final heavy quarkonium state. The partonic implementation of
the pair-to-hadron fragmentation function, eq. (1.4), is therefore slightly different than for
single-parton fragmentation.

To compute partonic short-distance coefficients, we define fragmentation functions that
can be directly applied to products of amplitudes in the infrared-regulated theory. These
partonic fragmentation functions depend on fractional momenta of the heavy quarks in the
final state. They are given by, again suppressing the gauge links,

D[QQ(N)]%[QQ](N/)(% u,v, ’LL/, 'U,) =

/ PrAY” ity / PRAYL it /)y / Py it/ (-uwys
2 2 2

x PR (p) Clly ST 00 (57 (0)[QQ) (', v) X)
X

x ([QQN(K, w) X Y03 (y )i (y~ +12)10) (2.19)

where p* is the lightlike projection of the heavy quark pair momentum, and in both final
states, pg + pg = p. In these matrix elements, the “heavy” quarks are treated as massless,
since they are designed to match the long-time behavior of the products of amplitudes in
the infrared-regulated theory.

The produced pair(s) QQ(x/,u') are labelled explicitly by the relevant heavy quark
momentum fraction. In each of these Fock states we take the final heavy quark and
antiquark momenta to be lightlike and parallel to the projection of the heavy quark pair’s
momentum, p

po =u'p, PO = @'p (amplitude),
po =1'p, Po = ?'p (conjugate). (2.20)

Normalizing the quark-pair states to the projection operators in eq. (2.14) we have at LO,
indicating its order in a with the superscript,

PO

Q0] (@0 (72 1 VU V) = O 6(1 = 2) 6w — ') (v — v') . (2:21)

This simple result makes the relation between the LO short-distance coefficients and the
Born cross section eq. (1.2) direct, as we will see below.

The partonic fragmentation functions in eq. (2.19) were employed in ref. [4] to identify
evolution kernels. Here, we use them to compute partonic fragmentation functions at order
o, and it is useful to have an explicit definition. In principle, it is possible to combine these
off-diagonal fragmentation functions into a more direct analog of the hadronic functions in
eq. (1.4). This would be carried out by combining linear combinations of states with fixed
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u’ and v’ into some “pure” partonic final state characterized only by the total momentum
of the pair. This is not necessary for our calculations here, however, so we will not develop
the formalism in this direction.

2.5 Partonic fragmentation functions at order o

At order ay, the partonic fragmentation functions for the four dimensional basis were
calculated in ref. [4] for the four-dimensional projections s = v,a of eq. (2.14). Here, we
give the set of partonic fragmentation functions needed for the factorized NLP cross section
at O(as). The only difference is in the Dirac projections, and we do not give the details of
the computation here. Recalling that our final states are always four-dimensional, we only
need fragmentation functions with ' = v,a in color octet or singlet for NLO calculations
of our process. The MS scheme results can be written as
pMS - oz, v ) = — <1 + 1n47re_7E) %Pﬁﬁ,ﬂ/ (2.22)

[QQ(K)] = QQ(x")] € 21
where the kernels P,_,,s for the non-evanescent states are given in the appendix of [4].

We extend the results of [4] with the relevant evanescent fragmentation functions of
our process, namely k = evaA[8], evaB[8] and k" = v, a in color singlet or octet state. Since
these are all off-diagonal splitting functions, at O(c«y), they are given by the real emission
diagrams in figure 2 for light-cone gauge. We find

1 z 1]

PevaA[S]—m[l] = 2N, (1 ) S_AC (223)
(1] z 1]

Pevaa(g)—af1] = AR 2)57A+ , (2.24)
[ 1 1 z 8]

Pevarig—ois) = N, | = Z)S_A_ : (2.25)
[ 1] 8

PevaA[8]—>a[8] - 2N, (1 _ Z) S—A+ ) (226)
[ 1] o

PevaB[8]—>v[1] = 2N, 2(1 — Z) —S_A~ (2.27)

PevaB[8]—>a[1] =0, (228)
1]z g

PevaB[S]%U[S] = 2N, ms_A_ y (229)

PevaB[g)—salg) = 0, (2.30)

where the functions S4 and A[im] are defined by

= (22 2) (3+0) o3

AU = 5w — 2) £ 5(a — 2@)][6(v — 20') £ 6(5 — 20)] (2.32)
Al — {(N2 2)[5(u — 2u')5(v — 20') + 8(7 — 2@ )5(B — 27')]

C

F 25(u — 2 )o(v — 20') + 6(a — 2 )8 (0 — z@')]} . (2.33)

~13 -



u'pT @ — v'pt o'pt
p+ ;/ \ / \
uptap?_|vpt o'pt

Figure 2. Real emission diagrams for computing partonic fragmentation functions at order « for
light-cone gauge. We label the flow of + components of momentum to make z,u,v,u’,v" variable
dependence explicit. For the full momentum dependence and details of the computation, see ref. [4].

As we will demonstrate below, these evanescent fragmentation functions are crucial in
our factorization to maintain scheme independence and agree with NRQCD calculation.

3 Cross sections and coefficient functions

With the order o pair fragmentation functions in hand, we are ready to derive the short-
distance coefficients at LO and NLO. We set the stage by exhibiting the short-distance
coeflicients in terms of partonic cross sections. We then compute the partonic cross sections
for the states of interest up to NLO. Finally, we use the partonic fragmentation functions
found in section 2 to derive expressions for the NLO short-distance coefficients.

3.1 Coefficient functions from cross sections

To compute the NLP short-distance coefficients d&g)e__> we replace the heavy

)
quarkonium H of eq. (1.1) by [QQ(x)] and compute the l[e?fg—(h;}nd and right-hand sides
to n-th order in az. We outline the procedure, in schematic notation, for the process under
consideration.

For an arbitrary differential cross section, we write in the condensed notation of

eq. (1.1),

0ot o~ 1000 (P4 0) = Y db e 1(p/2) = Dy i0q (e (2 1, v)
f
+ Y oo igawy) (/7 W) @z Diggue-ieaum) (0 v u, ), (3.1)
[QQ(x")]

where p is the final heavy quark pair’s momentum. In this expression, the arguments of
the functions and the corresponding convolution symbols are taken as in eq. (1.2). We
will suppress the explicit arguments of fractional momenta below. At lowest order for the
gluon-associated production process shown in figure 3, at O(a;) and with the final state
[QQ(k)]g, only the second term contributes,

(1) _ ~ (1) (0)
e adn - [ ZE 1 0 1o 10a()e D5 Pigguen-ieae) (32)
QQ(K'

Then, using eq. (2.21) for the zeroth order fragmentation functions, we arrive at

(1) e
A0 o 100N = Wete 100wy (3.3)
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The short-distance coefficient is therefore equal to the partonic cross section at lowest order.
Of course, for LO leptonic annihilation, « is always an octet configuration.

Evaluating eq. (3.1) at O(a?2) in the same way, but with two gluons in the final state,
gives

(2) _ (1) (1)
A0 o L1009 = Z 90 o iaaee @5 Pigae+10am)s

QG
~(2) (0)
: [ng)] B crei@aumnie @ Pioaw-eam) - (34)

Note again that we only compute the real diagrams at O(a?) as we focus on the region

zy away from 1. Then using eq. (2.21) for D), we solve directly for the short-distance

2
s

. (2) _ (@2 _ 5(1) _
46,70 0a0iss = Were—i0aus ~ 2n Detei0aunle

[QQ(x)]

coefficient at order o

0
Dz Piogen)—@am)s

(3.5)

where now x can be singlet or octet.? The subtraction term on the right-hand side removes
the long-distance behavior in the O(a?) cross section, which is due to the collinear emission
of a gluon by the pair, a process that requires times that are large compared to 1/Ey.

3.2 Partonic projections and phase space

We next establish the notation and projections necessary to calculate the partonic cross
sections on the right-hand side of egs. (3.3) and (3.5). As in the discussion of partonic
fragmentation functions, eq. (2.19), we will use the projection operators of eq. (2.15) to
define our partonic cross sections,

do ™ (p,u,v) = dUéTe)fﬁ[QQ](n)X(pv“’”)
L opem) —(m)
- 7622 e+e*4)[QQ}(H)X(p> U) M6+67*>[QQ}(H)X (p, U) de+1 ,
1 m
= 202 M2 (p,u, ) AT (3.6)

where the superscript m = 1 or 2 denotes the order of ag, which is also equal to the
number of gluons radiated, corresponding to the m + 1-particle phase space factor dll,,,41.
Here, the amplitudes M are computed perturbatively, by stripping the final-state spinors
for the pair and replacing them by a combination of the spin and color projections shown
above. In explicit calculations to produce spin state s, and color state I, we thus make the

replacement

i (uP, )\Q)ibv(fLP, )\@) [a (0P, )\Q)kcv<17P, A@)ldr = PO jinClhoss (3.7

ja

2From this point on, we omit gluons in the final states for convenience. Also, when there is no ambiguity,
we will often simply use & in place of QQ(x).
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kl i T kl +

ks P2 ks P2

Figure 3. Leading order Feynman diagrams for eTe™ — [QQ(k)]g.

4
upfr upy

Ky

Ky

’Ft,p{r

Figure 4. Four of the eight next-leading order Feynman diagrams for ete™ — [QQ(k)]gg at O(a?2).
The other four are from flipping the arrows on the fermion lines. Virtual diagrams only contribute
to (1 — xy) terms.

for s = v,a,evaA, evaB, and similarly for singlet and octet color states. The third line of
eq. (3.6) defines the “squared” amplitude in this context. As for the perturbative com-
putation of partonic fragmentation functions, only the total momentum of the pair is the
same in the amplitude and complex conjugate.

Finally, Lorentz-invariant phase space in eq. (3.6) is given in D = 4 — 2¢ dimensions,
not including the symmetry factors, by

dll,,

n dD_lpi DD
I1 m(%) 67 (k1 + ko — Xpi) (38)

final states,

—

where k; = (Ey,, k;) and p; = (E;, pi) label the momenta of the incoming particles and
the outgoing particles, respectively. For the LO diagrams of figure 3 and the NLO real
diagrams in figure 4, eq. (3.6) then becomes

1
1 1)12
doD) = 72Q2|Mg>| dil, , (3.9)
and
da@):iy/\/t(?n?dn?) 1 (3.10)
R @2 2) "

respectively. The extra 1/2 in eq. (3.10) is the symmetry factor associated with the two
gluons in the final state.
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We parameterize phase space in terms of fractional energies, labelling the pair’s total
energy as Fi. In particular, for three-particle phase space we use

T = 5 sz = 2. (3.11)

For an unpolarized initial state, the D-dimensional phase space factors can be integrated
over angles to give

AT\ T(1—¢) 1
dlly = = | =———5—dz16(1 — 12
2 <Q2) [z =26 s om0 =), (3.12)
Q? 4\ % 1 _ _ e 1-9
dlls =——= | — —y ‘(1- ‘(1 - ¢ “dxy d 1
3 =16 \0?) TE—20Y (1=y) ™ (I =) 2z “dardy, (3.13)
where we define
1—
y=—20<y<l. (3.14)
1

The limits y = 0 and y = 1 correspond to one of the two final state gluons in figure 4
carrying away maximal energy, i.e. zo = 1 and x3 = 1, respectively. This gives the
configuration in which the other gluon becomes collinear to the observed heavy quark pair,
giving rise to collinear singularities. We now turn to the calculation of matrix elements
and cross sections.

3.3 Dirac traces and cross sections

We continue by separating the squared S-matrix into the leptonic and hadronic tensors as
M = Ly HE (3.15)

where the superscripts, (m), indicate the perturbative order in the strong coupling. Here,
the leptonic part, taken at lowest order in QED coupling with spin averaging, given in
terms of electron and positron momenta k; is

2

= i

As noted above, we integrate over angles at fixed fractional momentum, z;.®> For our z;

L. (k1pkoy + k1yk2y, — Guw k1 - k2) . (3.16)

distribution, using current conservation, g, H*” = 0, with ¢" = (ki + k2)*, we can simplify
the hadronic tensor as

H’g,y,(m) =(¢"¢" — q2gul’)H(m) . (3.17)

K

We find for quarks with fractional change eg,

s _ O HE
: (3 —2¢)¢?
6262
— Q 2 2e\™M
=G 20g W) F™ (w1, y,u,v,6) (3.18)

3Technically, the cross section is also differential in u and v as discussed after eq. (3.6).
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where, in the second expression, we have factored out the scale, u, and coupling dependence
from —g,,, H" (M) to define F,gm).

We now combine the leptonic and hadronic tensors from eq. (3.16) and (3.18), respec-
tively, in the squared matrix element in eq. (3.15). These results are combined with two-
and three-particle phase space, egs. (3.12) and (3.13), in egs. (3.9) and (3.10) to derive
expressions for the two- and three-particle cross sections,

do ase?

. =09 QQQWF,gl)(:Ul,y,u,v, €)6(1 — ) (3.19)
do? 042622 1 47 pi? <l

= = S dy F?) “(1l—y) . (3.20
dxl 0] F(1—6)8 (Q2$%(1—JI1)> /0 yr, (xl,y,u,v,e)y ( y) I ( )

Here, we have introduced a convenient normalization,

_ 47Ta2 F(l - 6) 3 — 3¢ 47‘(#2 ¢
oo = 3Q2% T'(2 — 2¢) (3—26) ( Q? ) ) (3.21)

which reduces to the inclusive Born cross section for ete™ — u™p~ in D = 4 dimensions.

As follows from our use of the projection, eq. (2.18) in the computation of partonic
fragmentation functions above, we take 5 to be strictly 4-dimensional to carry out the
Dirac trace in computation of F,gm). This is consistent with Breitenlohner-Maison-'t Hooft-
Veltman (BMHV) ~5 scheme [39, 40]. For LO, the heavy quark pair state x can only be
octet and we find

32

sz[lg)] = ——(1-2u)1-2){1~¢), (3.22)
Fyg = m?-:i@ ) (3.23)
Fe(vliA[s] = ;1—?;1; ; (3.24)
Fe(iziB[B] = u?;;—} : (3.25)

Note that we have contributions from evanescent states, which, although of order e, will
be important in subtracting the full long-distance part from NLO partonic cross sections.
The corresponding LO cross sections in eq. (3.19) are

dﬁ% = a0 a;iéwuiivu — 2u)(1 - 20)(1 - (1 - 21), (3.26)
da%f[s} . ag;?g Fu?;—?;@ S 50
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We recall that, by eq. (3.3), the LO cross sections are identical to the LO short-distance
coefficients that we use in the computation of the NLO short-distance coefficients (see
eq. (3.5)).

Going on to NLO, we compute F, ,£2) for kK = v, a in color singlet or octet state. Although
the F,.EQ) may be computed for the evanescent states, they will be subleading. To be specific,
to compute non-evanescent d&é”), we need evanescent contributions to F,.gm) uptom =n—1.
To clarify the structure of the y integral, we rewrite F,.SZ) for kK = v,a in color singlet or
octet state as

FI£2) ('fl? y’ u’ U’ 6) = Xn(xl, y’ u’ v, 6) 9y

Q*y(1—y)
XHO(wlayauav)+6XH1(x17y7u7U) 2
_ Xn, 7 +O(2), 3.30
Qy(1—y) ) (330

where we have expanded to first order in € as the higher order terms in € do not contribute
to the NLO cross section in D = 4. For the term € x,1, we note that there are contributions
coming from the additional D — 4 components of the momentum py, denoted as py. When
there is 5 in the D-dimensional Dirac trace, such D — 4 components naturally appear in
the BMHYV scheme. As demonstrated in appendix A, they can simply be replaced by

7o @) (575 ) (3.31)

To be explicit, F,.gz) (z1,y,u,v,€) has ﬁ% dependent terms with some coefficient b that can
be replaced by eq. (3.31) as

) — % 1
[20) b2 1—a)———
(21, y,u,v,€) D b(:nl,u,v)Q2 01— — 5o b(z1,u,v) ( :E1)y(1 —)’
eb(xy,u,v)(1 —x;

- )+O@y (3.32)

The term —b(z1,u,v)(1 — 21) contributes to X, 1 in eq. (3.30) above.
Using our decomposition of F,gz) and also using the symmetry y < 1 — y, we can
explicitly separate eq. (3.20) into finite and pole pieces as

2 2.2 B
i) B (L () o 5
+ /dy W — X1, 1,u,v)]
= angeéj\/(ﬂfl U, v) [<1 +1n (WE>> X (21, 1, 0) + Y1, u,0)
Q? T € Q222 (1 — 1) RATL T KA1, s J
where
Nz u,v) = : (3.34)

z1(l—z)uavo(l —uxy) (1 —axy) (1 —vxy) (1 — vzp)
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To define the remaining functions on the right in eq. (3.33), we introduce the notation,

1 1
= (u - 2) and vy = <v - 2) , (3.35)

in terms of which they are given by

8

Xop)(z1,u,v) = — 5(1 —11)? (2 —21)*, (3.36)
20

Xog)(w1,0,0) = — ?(1 —21)%(2 — x1)? — 242 (:1:‘11 — 623 + 1623 — 20z + 10) uq /o vy )2

+ 9627 (ﬁ +3(1 — 1)) <u‘;’/2 V12 + U2 v:l))/2> — 38448 u‘;’ﬂ Ufﬂ , (3.37)
32

Xapy(@1,u,v) = — g-ﬁ (1 —21)%uy 2012, (3.38)
Xa[s](xl,u,v) =—6(2— xl)Q ((1 — x1)4 + 1) — %m% (1-— x1)2 Uy /2 V1 /2

+ 2427 (2 — 21)? (21 + (1 — 21)) (u%m + vf/Q)

— 9621 (1 —21)> +1) ufjpvi )y, (3.39)

2
}/v[l](l‘l,uyv) :(1 - .131) (2 — ;(:1)2 <3:E% + 4(1 — l‘l))
8 32
- 595% (1—z1) (2 —21)? (U%p + ”%/2) + 33311 (1 —a1)uijpvip, (3.40)
)
Yysy(1,u,0) =(1 — 21) (2 — 21)? (395% +10(1 — x1)>

+ 227 (2 — 3627 + 14427 — 21621 + 108) w1 /9 vy /9

- ?I? (1—21) (2 —21)° <U?/2 + U%/Q) + ?x‘f (1—z1) U%/Q U%/Q

— 827 (2} + 18(1 — 21)) <u‘;’/2 V19 + U1 /2 v:f/2> + 3228 u:f/2 v?/Q . (3.41)
Yo (21, u,0) 233*233% (1—1)*uypv1 )0, (3.42)
Yog (71, u,0) = — %(2 —x)? (111:11l — 3023 — 1822 + 961 — 48) + 8—30:L"%(1—x1)2u1/2 V12

+202(2 — 21)? (1122 +12(1 — a1)) (uf/Q n vf/Q)

— 8a7 (1127 + 38(1 — 1)) ul vt - (3.43)

3.4 Explicit short-distance coefficients

We can now present explicit results of short-distance coefficients differential in z;. From
eq. (3.3), LO short-distance coefficients differential in z; are identical to the corresponding
partonic cross section, i.e.

s deM)

=, 44
dml dml (3 )
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At NLO, we use eq. (3.5) to derive the z; differential results,

AN 4,2 dol) ©o (1).MS /
L T 2 dr @ = 5 Bt Do g (5 Vs 1)

(=wv,a,evaA,evaB

where we now make the MS scheme dependence explicit.

To compute eq. (3.45) we make use of the results in egs. (3.26)—(3.29) for the
Born cross sections at fixed v and v, and MS partonic fragmentation functions given in
egs. (2.23)—(2.30) and [4]. We give explicit subtraction terms for x = v,a in color singlet
or octet state

(1) .
Zdac (x:ﬂ u v’)@ )y DIMS ol )
- dr 5 y Wy zyu' v QQO)—QQ(K)\ Y
2.2
opae 1 B
= QSQ Q./\/(an,u,v) ((e + In4me 7E> Xu(z1,u,v) + Zn(xl,u,v)) , (3.46)

where N (x1,u,v) and Xg(x1,u,v) are defined above in eq. (3.34). The functions
Z(x1,u,v) define the extra finite pieces of the subtracton terms, and are given by

16

Zv[l](xlaua U) - ?(1 —1'1)2(2—1'1)2, (347)
40

Zyg)(T1,u,v) = 3(1 —21)%(2 — 1) + 2422 (:16‘11 — 623 + 1822 — 24z, + 12) uy /5 v1 /2

— 96z} (:r% +3(1 — 1)) (ui’/Q V12 + U2 vfﬂ) + 38429 ui’/2 Ui’/Q , (3.48)

80
Za[1] (z1,u,v) = gﬂf% (1- 3?1)2 U1/2 V1/2 (3.49)

200
Zajg)(@1,u,0) = 6(1 —21)*(2 —21)* (1 —21)> +4) + = (1—a1)%uy o012
— 242 (1 —21)3 (2 — x1) (u@2 + v%/2) + 9627 (1 — 21)° Ui ;o075 (3.50)

Then, combining the cross section in eq. (3.33) with its subtraction given by eq. (3.46),
according to eq. (3.45), our explicit NLO short-distance coefficients for vector or axial
states in MS scheme take the form

dePMS  gpaZel
dry = Q2 QN({L'I,U,U)
2
X {ln (Q%%ﬁ—mﬂ) Xi(z1,u,v) + Ye(z1,u,v) — Zy(z1,u,0)| . (3.51)

We note that omission of evanescent fragmentation functions from the sum over ( in

eq. (3.46) would change the values of Z,(x1,u,v), but would not change X (x1,u,v) since
doV)

dfz for evanescent state ( is linear in €. Therefore, at this order, evanescent subtractions

are not necessary in subtracting the poles. However, they subtract the finite terms that
are sensitive to long-distance dynamics, resulting from a long-distance pole times a term
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proportional to € in the hard-scattering function. In fact, at higher orders they would be
needed even to subtract the IR poles consistently. At higher loops, there are terms with
the same LO hard part proportional to €, multiplied by multiple poles of higher order
evanescent fragmentation functions.

4 Comparison to NRQCD

The determination of short-distance coefficients in the previous section is consistent with
any model of factorized long-distance behavior. Asnoted in the introduction, fragmentation
functions for the heavy quark pair have been computed in refs. [17, 18], assuming the
applicability of NRQCD factorization to the corresponding matrix elements. In this section,
we shall make use of this assumption, which is certainly valid at NLO. By combining the
fragmentation functions of refs. [17, 18] with the pQCD short-distance coefficients derived in
the previous section, egs. (3.44) and (3.51), we find cross sections for the relevant NRQCD
channels that can be compared directly to cross sections in NRQCD at O(a?a?).

For two of the channels, 3S£1] [29, 31, 32] and 15([)8] [33], we are lucky enough to have
explicit NRQCD calculations at O(a?a?) with which to compare. To this order, these chan-
nels begin at NLP, and we will see that the comparison is relatively direct. We expect and
will confirm that the cross sections derived as above, by combining pQCD short-distance
coefficients and NRQCD fragmentation functions in the 3S£1] and IS([)S} channels, have
high-energy behaviors that agree precisely with those of the NRQCD calculations. This
equality, while in principle straightforward, requires consistent renormalization procedures
along with systematic treatment of the evanescent partonic fragmentation functions intro-
duced in section 2. We begin our discussion by reviewing the relationship between NLP
factorization and fixed-order NRQCD calculations.

4.1 Relating NLP factorization to fixed-order NRQCD

Non-relativistic QCD can be applied with or without the presence of a perturbative scale
beyond the heavy quark mass. NRQCD treats the heavy quark mass, mg, as a hard scale,
separating amplitudes and cross sections for these processes into relatively short-distance
coefficients, associated with hard scales at and above O(mg), and universal long-distance
matrix elements (LDMEs) associated with soft scales at and below O(mgv). Schematically,
the cross section can be factorized at NRQCD factorization scale pp ~ mq as

oNraco = Y foaw)(ma: MA)<05Q(Z,) (1a)) (4.1)

where fQQ(V) is a perturbative coefficient describing the production of a heavy quark pair
in NRQCD state v, and (O) is the LDME describing the formation of the observed heavy
quarkonium H from the heavy quark pair state v. These LDMEs are scaled in powers
of the heavy quark pair’s relative velocity v < 1. Applications of NRQCD have resolved
tensions between theoretical predictions and experimental measurements, using a limited
number of LDMEs [2, 3]. Puzzles remain, however, especially involving polarization and
the tension between LDME values required to fit different production processes [2, 41, 42].
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Since these tensions often involve some larger perturbative scale, E, where heavy quark
pair fragmentation is important [19], it is natural to reconsider these cross sections in the
extended pQCD formalism discussed above.

We can carry out matching for our pQCD fragmentation functions in eq. (1.4) in terms
of the same universal LDMEs of NRQCD at the input scale pg ~ 2mg, [4, 5, 17, 18] as

DQQ(/{)AH(Zaua'U;mQa,UO) = ZCZQQ(@%QQ(V)(%u’fU;mQ)MOaMA)<OgQ(V)(MA)>? (42)

where k and v label a relativistic pQCD state and a non-relativistic NRQCD state, re-
spectively, also appearing in eq. (1.2) and in eq. (4.1). Here, the matching coefficients
dQQ(,{)%QQ(V)(z,u,U;mQ,,uo, i) are perturbatively computable. This matching is analo-
gous to the NRQCD treatment of single-parton fragmentation, as developed in refs. [43, 44],

for i = ¢,q,g. Using these models for fragmentation functions at u = ug, we can express
the single-particle inclusive cross section in the notation of eq. (1.1) at any fixed order? in
terms of a limited number of non-perturbative NRQCD LDMEs as

oloon = D Y 6i(po) @2 CZHQQ(V)(MO)<OSQ(V)>
1=q,3,9 V

~ 7 B H
+ DD 60000 (1H0) @z Ao -aw (10)(Ohan,)

=D D2 6ilr0) @2 digge) (10) T 50a0s) (H0) @zuw doc()—on) (Ho)

v \1=¢,9,9
X <OgQ(,j)> ) (4.4)

where we suppress dependence on variables other than the factorization scale p = uyg.
We note that at higher orders in ag, UIIJLIQCD in eq. (4.4) will require additional NLP terms
associated with the creation of light partons ff/, &ff/®z;u7vcsz/_,[QQ(V)], but will not change
the method described below.

Expanding in relative velocities up to v*, the full set of LDMEs associated with heavy
quark pair states is

3S£1] : 35{8}7 15([)8]’ 3P}8] ) (45)

This set provides predictions in terms of only a few NRQCD parameters. As emphasized
in refs. [17, 18], computing fragmentation functions using NRQCD in principle enables
us to go from fitting several non-perturbative LP and NLP fragmentation functions to
determining a small number of LDMEs. Our discussion here checks the consistency of this
procedure.

4Once again, we emphasize that the true motivation for NLP pQCD factorization comes from resum-
2
mation of large logarithms of In z—?. The fixed order expressions given here at u = po enable us to check
H
NLP factorization.
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Comparing the basic NRQCD relation, eq. (4.1) with the high-Fp factorization with
NRQCD input for the fragmentation functions, eq. (4.4), one can expect an order-by-order
relation between NRQCD and NLP factorization short-distance coefficient functions,

foaw)(ra) = D 6i(1o) ®= d;ogw) (1o 1)
i=4,q,9
. m2
) 60000 (10) ®ziuw doge)s0aw) (Hos 1a) + O <E§> ' (4.6)
K
Clearly, the full NRQCD calculation contains more information than the NLP factorized
cross section at the fixed order in a;. All such information, however, appears beyond NLP.
This was confirmed numerically for high-pr production at hadronic colliders in selected
channels by ref. [19], using LO pQCD short-distance coefficients. Such comparisons serve
both as a test of the NLP formalism, and as a tool for studying the approach to high-energy
behavior. In the remainder of this section, we use the results of section 3 to analytically
confirm eq. (4.6) for the channels 35{” and 15'([)8].

4.2 Input fragmentation functions and factorized cross sections

For a given NRQCD channel, we compute the fixed-order pQCD prediction of the xyx =
2Ey/Q differential version of eq. (4.4) to O(a?a?). To do so, we need matching coefficients
for fragmentation functions, d, in eq. (4.3) to O(as). As our gluon-associated process will
only involve NLP scaling to the order we consider, we only need to consider NRQCD
factorization of the pair fragmentation functions.

It will be convenient below to factor out mass and coupling dependence compared to
the d in eq. (4.2), defining perturbative coefficients d® by

3(0
,D[QQ(H)}%H(Z? U, V;MQ,s ;U'O) = Z <d[(Q)Q(m)]—>[QQ(V)} (27 U, v;mMmq, Ko, MA)

v

MS OB 60 (1))
Qs \ 5(1),MS < 00w
* <w> it miiga) (51 VMG 10, 1) + 0(@?)) x [méQL’Ll. (4.7)

Note that the input fragmentation function does not have v’ and v' dependence that is
present in the partonic fragmentation functions in eq. (2.22). This is because the final state
in the input fragmentation function is a heavy quarkonium. Of course, unlike the partonic
fragmentation function, the input fragmentation function is also a non-perturbative object
with perturbative matching coefficient extracted.

We now apply the notation of eq. (4.7) to the general cross section eq. (4.4) for heavy
quarkonium production at fixed zy. We can then isolate the contribution from a fixed
intermediate NRQCD state v to a heavy quarkonium production cross section, at fixed z g
at order O(a?a?), as

dO,(Q)yPQCD B dA(1>
ete=—[QQ()—~Hgg _ o ( _ ) (&) 5(1), M5 ,
dl’H - [Z d.Tl xr1= 2 ,U,’U,,LL() ®z;u,v T d[Q@(f»@)]—)[Q@(u)] (Z,u,’l),mQ“LL(),/LA)
MS H
dg M Ty 5(0),MS {Oragy (#a))
+Z d$1 (171 = 77“7117,“0) ®z;u,v d[QQ(N)]H[Q@(D)](z,u,v,mQ,umuA) méL‘Fl
2e? (01 (1))
ase . R .
=092 (kil)(wH;uo,uA) + kiz)(wH;uo,uA)) —eeml (4.8)
Q mQ
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The second relation defines the functions l;:,(,l) (xm; o, pa), which result from the convo-
lutions of 6 with dV and 6@ with d<0>, respectively. Their normalization is set by

2
separating the overall factor, og %%, with o( given in eq. (3.21) above.
Q

To facilitate the comparison of these results with direct NRQCD calculations, we
rescale NRQCD coefficients, f in eq. (4.1), with the same overall normalization as in

eq. (4.8),

da(Q)’ljRQCP ae? . <OH 5 (HA))
ete=—=QQv)gg—Hgg . S 2Q fu($Hv mg, :LLA) % . (4.9)
dryg Q me "

We conclude that for each channel v,

fu(va mQ, ) = /%£1)($H;M0, pa) + 7%1(/2) (xH; po, pa) + O(r) . (4.10)

This is the O(a?) version of eq. (4.6). Here, the measure of higher-power corrections to
the large- 'y behavior is given by

2
_ % . (4.11)
H
We will test eq. (4.10) below for channels in which an explicit NRQCD calculation is
available.

The first step in verifying eq. (4.10) is to recall explicit results for d® and dV. These
can be found in the appendices of [17, 18].> There, however, the d®) were presented using
the Kreimer 5 scheme of refs. [45-47] in MS subtraction scheme. To be consistent with our
factorization procedure for the pQCD short-distance coefficients above, we must recompute
these coefficients in the BMHV 5 scheme in MS subtraction scheme. To be self-contained,
we present all the functions d used in this paper, some of which are different from [17, 18]
due to the difference in 5 scheme. We present the ones needed for 35?1 and 15’([)8} here, but
list all the other relevant ones in appendix B. Suppressing the arguments, they are given as

o BV AP AP

d[QQ(v[l])HQ@@sM =310 (“ 2> 0 <U 2) 6(1—2), (4.12)

5(0) 1 1 1 B

d{@@(a[B})H[QQ(lsf])} =51’ (“ 2) 0 (” 2) 6(1—2), (4.13)
d[QQ(v[S])H[QQ@sP)],z;ﬂ 24 N2—-1"" (1-2) (n am3, (1 — 2)? + 2z z+1]/,

(4.14)

®The results in [17, 18] are given in terms of ¢; = 2u — 1 and (2 = 2v — 1.
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5(1),MS

[QQUENI-RQ(SEN2£1 8 (N2—1)27+

d(l),m

cz(l)’NTS

QSN [QA( S 241 8 (N2 — 1)2

where
Al =

Al =

87 _
A" —

G 1

(8] T
AVz(1=2)ln —5————
4mg(1 — 2)?

1

2
_ A[l] 1— 1 Ho 2
Q@) 0aes 1 ~ 22 N2 -0+ 2172 (n mmg(i—zp )

Cr 1 A[g]

2
z 0
© In -1,
1—=2 ( Amg (1 — z)? )

(o230 6-3) 200-3)
=0 s =3) 0= 5) o (a-3) -3

ol (=33 (-3) 0= -3)

e LR R (R F (B
H{or-a s (s 6-3)]
S (=363 0 (-39 (-3}

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

Note that Ai’g} in eq. (4.18) and (4.29) are identical to those found in egs. (2.32) and (2.33)
with v’ = v" = 1/2. Note also that we have dropped §(1— z) dependent terms in these NLO
matching coefficients. This is because the LO cross sections dé() /dx; are all proportional

to §(1 — x1). Then in eq. (4.8), any §(1 — z) terms in dV) contribute only at zz = 1, and

thus are not included in this study.

We also do not need to compute input fragmentation functions for evanescent interme-

diate states. We recall that the LO short-distance coefficient functions given in egs. (3.28)

and (3.29) for

evanescent states are proportional to e.

These terms contribute to the

partonic cross section at order ¢ because they multiply the infrared pole of the evanes-

cent partonic fragmentation functions. All input fragmentation functions calculated from

NRQCD, however, evanescent or four-dimensional, are finite after renormalization, and

the poles of the partonic calculation are replaced by finite logarithms. The corresponding

terms thus remain of order ¢, and vanish in four dimensions.

Convolving the short-distance coefficients and the d presented here, we can write ex-

plicit expressions for the 12:,(,1) (zm; po, pa) in eq. (4.8) for the relevant NRQCD channels.
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We find for 35! and 15,

. 256 (1 —mp) u2 3
Q) ~ 22 TPH) P 2 _9 2 4.93
SSP] (xHa Ho, ,u/\) 9 xH(Q — xH>2 n 4m2Q(1 — xH)Q + Ty Ty + 9 |- ( )

) 256 (1 —zp) yi3 i +27H — 2
RO __ 256 | 0 _ 4.24
3S£1] (I’Hﬂ /1'07/1’/\) 9 SUH(Q o xH)Q < L (E%{4(1 — Q;H) 4(1 — .IH) ’ ( )

(1) 2 4 i
RO (s oy ) = 12 (=) + 1) In [ — 20 ) _12),

S([)g] J:H(l—xH)(Q—xH)Q 4m2Q(1—$H)2
(4.25)
S (m; o, pA) = — 2 12((1— )t + 1)In ,u—%
g vl —2y)(2 — 2p)? E%4(1 —xp)
+ 232 — T8x% + 10222 — 48z + 12). (4.26)

The results for other NRQCD channels are included in appendix C.

As noted above on the right-hand side of eq. (4.10), the scale p in the functions k
is the pQCD factorization scale, which is not present in the NRQCD calculation on the
left-hand side. Therefore, we expect that the sum of the two terms on the right-hand
side is also independent of uy. We indeed find that the pg-dependence of k&l)(m 15 105 A)
and k:,(,2) (xm; o, pa) cancel. Although we factorized our pair fragmentation functions using
NRQCD at the input scale po ~ 2mg, the pp-independence allows us to choose any value
for our fixed order expression. This would be relevant at higher orders, where taking an
appropriate choice of pg, we can control whether large logarithms appear in the short-

distance coefficients or the fragmentation functions. In our case, we find that

i x d5® @4, DO 5In — 0 (4.27)

Y o do™ @, DY > — In (4.28)

4m22(1 —xp)? ’
and we take pug = Fp to remove large logarithms from the short-distance coefficients.
Notice that there are additional logarithms coming from the threshold limit zz — 1.
Meaningful comparison to the data near such endpoints can only be made after resumming
these large logarithms, which can be done in principle by combining threshold resummation
techniques to our work [48-52]. Aside from such threshold logarithms, now that large log-
arithms only remain in the fragmentation functions, one can try to evolve them to Ex and
resum the large logarithms of In(Ey/2mg). In this way, QCD factorization demonstrates
how the natural scale choice appears.

Of course, both NRQCD and QCD calculations also have a renormalization scale, p,.
In NRQCD calculations of gluon-associated e*e™ processes, the renormalization scale is
chosen to be p, = 2mg or pu, = Q/2. For example, refs. [26-28] calculate the total cross
section, integrated over energy Fp, and are thus left with only mg and @ as the relevant
scales. For our energy fraction distribution, we will identify the renormalization scale with
the factorization scale, pu, = po = Ep, for both NLP predictions and NRQCD calculations.
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4.3 Comparisons for 3S£1] and 15([)8} channels
We are now ready to compare to the NRQCD results in closed form for the channels 35%”
and 1S([)g] at O(a?a?).
From [29, 31, 32] for 3S£1] and more recently from [33] for 1S([)g}, we then find for xy < 1,
fgs[l] ($H7 meq, MA)‘IH?H =
1
9 2ra —xp)3(2 —xp)

5 {(27":17%{ —xg)rgV1—4r

X |4+ dra (5 + rad (T4 4ra?y)) — 12(1 + ra2) (1 + 2ra?)zy

reg oy —1

4(1 2 —
m:%{—i-:c_—l) (v =)

(

+ (13 + 14ra?))a?, — 437H] —In (
{ (rat; — Vrad (1 + drat (2 + rady))
— 2ra? (=5 4 2ra? + 6r’al) ey — (1 + rat (1 — 57"56%{))56%{} } , (4.29)

fls([)s] (@H, mQ, fa) oy 1 =

2
(1—raz?)3(1 +ray

2233 1n xi(l—x,)
—:cH>{12“ H T (Ut vy —an)

+ V1 — dr(z? — 6y — 24r2x + 50rz? — 18)}

2
\/ 4
+ (1 —ra2)3(xy — 27“:5%{)3(2 —xp)? { xH TxH

H

X 16722 (3 — 9ra?y + 9rialy + 24r328, — 28rial, + 9ro2ld)

—8(3 — 3ra?, — 9r¥ay + 1200328 — 94rtal, + 2702}y
+4(6 — 1572, + 1622} — 75r32% + 227128, 2%,
—2(3 4 90rz? 4 23r2aYy + 4328 a, + 2(12 4 25rx%, + 3r2at)al,
— (9 + 5ra¥)xly + 2y

rm%{—i—aur—l

12(1 — ra%)%1
1201 =) nraz%{—l—x_—l

x |4rad (1 — 2rad — 6r2xt + 2r32% — 3rial)

+ 8r’x (6 + r:cH + 3r? :rH)xH -2(1+ 127’35%1 + 157‘233%[ + 127’33321)1:%1

+2(3 4 9rad + 8rPat)ad — 2(2 + 3rad)xh + x%} } : (4.30)
where 7 is defined in eq. (4.11) and
1
25(27£L‘H:|:£CH\/174T). (4.31)

With finite heavy quark mass, xz has a range

Amq/Q < zg < 1+4m/Q*. (4.32)
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Expanding these results in r, we compare them to the corresponding sums of kM and k£®)
in egs. (4.23) to (4.26) away from xy = 1. The results are, as expected, consistent with
eq. (4.10),

s 64 4(1—zp) 1 4o, —132% + 1225 —4
= 1 - @
fgsgll(vavauA” H#1 9 |:$H(2_xH)2 n((l—[EH)T> mH(Q_xH)Q + (T)
~(1 (2
= ké;[l] (xHa T, /'L) + kigs)m (xH') T, M) + O(T) ) (433)
1 1
fy e (r, mas pin)| = 2 12 ((1—:I;H)4+1)ln -
LV TR P len AL 0 (T ) (2 — o )2 (1—an)r
— 23x%; + T8x% — 10222 + 48z — 24} + O(r)
Sy i o 4.34
15[8]($H77“a ) + 1618] (@w, 7, p) +O(r). (4.34)
0 0

In summary, for the cases where it can be checked, the pQCD factorization formalism
successfully reproduces the correct, and reasonably non-trivial, high-energy behavior of the
full calculation. The results of appendix C can also be used in eq. (4.8) to give new closed
expressions for the high energy behavior of the channels for which explicit calculations do
not exist.

5 Numerical results

In the following, we carry out a few numerical investigations of the results of the preceding
sections. We begin by studying the zy distribution in the 3S£1] channel, to illustrate the
approach of the fixed order pQCD cross section to the full NRQCD result as Epy increases
relative to my. In section 5.2, we study energy fraction xpy distributions of different
NRQCD channels for H = J/1, compare to the xy distribution of Belle data for J/v
production at @) = 10.6 GeV, and extrapolate to higher energies. In section 5.3, we explore
the significance of the logarithmic corrections associated with the evolution of the heavy

quark pair fragmentation functions.

5.1 Approach to full NRQCD result
Figure 5 shows the ratios of the pQCD functions, ]%5(;2[1] and ];225)[1] given in eqs. (4.23)
1 1
and (4.24), and their sum, to the corresponding full NRQCD function f, ) given in
1

eq. (4.29). Here, we set the charm quark mass mg = m, = 1.4GeV and we plot
the ratio over 4mg/Q < zmy < 1, for three representative values of the CM energy,
Q = +/q¢®> = 10, 30 and 100 GeV.

The divergence of the ratio in the small-zy limit is due to the vanishing of fB st in
eq. (4.29) for xg — 4mg/Q. The cross section no longer vanishes when power corrections
in O (%) are dropped, and thus the ratio produces a divergence. This is obviously a
region where such power corrections are dominant. Although the sum (/Af(l) + 127(2)) / f does
not change under different factorization scale choice u, we take y = Ep scale choice to
remove large logarithms from k@),
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Figure 5. The ratios of pQCD and NRQCD results, l%(i)/f for 3SP], from eqgs. (4.23), (4.24)
and (4.29), at CM energies 10, 30, and 100 GeV.
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Figure 6. F4own, defined in the text, plotted against % ~ Foax-

We observe from figure 5 that the sum (k) + k®)/f can reproduce the NRQCD
result quite accurately over a large range of xy already by @ = 30GeV. According to
eq. (4.33), the ratio of the sum (k) + k(2)/f approaches unity as the energy increases
at any fixed zz. These plots show how accurate the pQCD results are at these energies.
To quantify further how closely the pQCD result approaches the NRQCD result, we define
Egown and E,, as the minimum and the maximum value at which the ratio lies within
0.95 < (kM 4+ k@) /f < 1.05, respectively.

In figure 6, we plot Eqown as a function of % We find it more natural to plot it against
%, rather than @, since the maximum energy a heavy quarkonium can carry, Fpax =
% + QZQQ, is approximately % As shown in figure 6, the pQCD result approaches NRQCD

within 5 percent when Ey 2 4 GeV beyond % of about 10 GeV. Since the minimum energy
that a heavy quarkonium can have is Eni, = 2mg = 2.8GeV in the CM frame, the NLP
pQCD result approaches NRQCD rather quickly in this figure of merit.

In figure 7, we plot (Eup — Edown)/(Emax — Fmin) to show the percentage of the en-
ergy range that describes the NRQCD result within 5 percent as a function of % When
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Figure 7. The ratio, (Eyp — Edown)/(Emax — Pmin), showing the percentage of the energy range
that describes NRQCD result within 5 percent.

% ~ 25 GeV, more than 90 percent of the available range describes NRQCD result within
5 percent.

It is interesting to note that in the case of pp collisions at Tevatron energies, ref. [5]
carried out a similar factorized NLP analysis based on an order a; short-distance coefficient,
followed by order ay fragmentation. This is the analog of our kM term above alone. In
ref. [5], this term was sufficient to reproduce the O(a?) numerical NRQCD result reasonably
well over a large range of pr. The results here show a similar qualitative agreement from

k(@ when the factorization scale is chosen as w=FEq.

5.2 Distribution in z;/,

Next, we compare the x g distributions of the various NRQCD channels for H = J/1, as
computed from pQCD factorization through eq. (4.8). As noted in section 4, there are
full calculations only for 3S£1] and 15%8] channels in the literature, so that the remaining
pQCD-based curves we will exhibit are in this sense new. Our intention is to compare the

shapes, rather than the magnitudes of these contributions to the inclusive cross sections.

Nevertheless, evaluations of the cross sections due to the NRQCD channels require
specific values for the long-distance matrix elements. We make the following choices. For
the singlet, we adopt the value from ref. [53] of ©

J
<O[C;g(3s[1])] (1a)) = 0.22 GeV3. (5.1)
1

For the octet channels, we take the values suggested as maxima for the treatment of this
process in ref. [27], except that we also keep a nonzero 3S£8] matrix element for the purposes

®Note that there is an additional factor 1/2 difference in our choice of normalization in the definition of
singlet LDME.
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Figure 8. Numerical results for various NRQCD channels at various CM energies 10.6, 30, and
100 GeV with LDME choices described in the text. For Q = 10.6 GeV, Belle data is shown.

of comparison,

O () = (O (ua)) = 2.6 x 1072 GeV?,

[QQEST)] [QQ(SE)
2
J/ _ (M -2 3
and
J /4 _ J/Y
<O[QQ(3P£8])}(MA>> = (2J + 1)<O[QQ(3PCE8])}(MA)>' (5.3)

Figure 8 gives the x ;/,-distributions found from eq. (4.8) for CM energies of 10.6, 30 and
100 GeV for these choices of matrix elements. For 10.6 GeV, we can compare to Belle
data [23].7 From figure 8, we find that the color-singlet distribution has the same general
shape as the data, decreasing gently toward zero as x j/,, approaches unity. In contrast, all
the non-negligible color-octet curves provide end-point enhancements. The curves retain
these features at the higher energies. Meaningful comparisons to the data near such end-
points, however, can only be made after organizing large logarithms there [48-52]. Note
also that the true upper limit of xpy isat zg =1+ 4m2Q/Q2, but that our massless pQCD
calculation do not extend beyond xp = 1.

5.3 Leading logarithms at two-loop order for 3SP]

The results of section 5.1 suggest that pQCD factorization cross sections approach those
of NRQCD rather quickly. The relative ease of computation for pQCD factorization hard
parts, where m is taken to be zero, can facilitate the systematic computation of fixed order
NRQCD results at high energy. The pQCD factorization approach, however, provides not
only the asymptotic behavior for NRQCD calculations, but also evolution equations [4]
that organize logarithms of In(E%/(2mg)?) to all orders.

"We have transformed their momentum distribution to an z g distribution.
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To be specific, the heavy quark pair fragmentation functions satisfy the evolution
equations

0 le/ 1 1
7’2) — . — !/ d /
9l 2 D@l (51 s 15mQ) % / — /0 du/o v

X Dioqu)-n (s u's o' g mq)
x Tigami-iaae) (2/7 w i s as), - (5.4)

which resums logarithms coming from diagrams in which the pair coherently emits a gluon,
bringing it to a new state. The results for evolution kernels I' are related to the order a,
splitting kernels defined in eq. (2.22) by [4, 7]®

as
Teami-0aw) = (g) Prosr - (5.5)

Solving the pair evolution equations, (5.4) to all orders is nontrivial, and we are not aware
of a general formalism for doing so yet in the literature. However, with the tools at hand
we can provide explicit results for leading logarithms at two-loop order for the color-singlet
channel SSEI] to study the importance of resumming the logarithms, In(E%/(2mg)?). We
restrict ourselves to the color-singlet channel case as a test. Note that at the order we
consider for gluon-associated processes, the heavy quark pair can only be created at short
distances, and we need only the evolution of the heavy quark pairs among themselves by
eq. (5.4). The general problem includes mixing between the heavy quark pairs and the
single partons [4].

Equation (5.4) has the following two-loop order solution for the fixed heavy pair
NRQCD state 351", with 8y = 11N,/3 — 2N;/3,

=D

D{Q@(@HQ@(SS“]>HJ/¢(Z’“’"’;mQ’“) QAR -1Q@ESIM /5 (2 U V3 MQ; 1o)

as(u) | w? [ Po as(n) u}

14 22
27 ul +

" 2 4m g

0
z A
XD P (?’“’” v ”) Dt Diggwsi0aesih— w2 W Vi mes Ho)

| !
+2< i ) ZPK]—>H< UUU v>®z’;u’,v’

l //

Z/
Froow (z” v UH) D500 Pigaumisi@oesiy—ipZ 80" imes o), (5.6)

which can be easily checked perturbatively [56, 57]. As appropriate to our factorization,
we set our input scale pg = 2mg and the hard scale p = Epy. These choices remove
large logarithms from the short-distance coefficients and keep them in the fragmentation
functions. Their ratio specifies the logarithms we would like to resum, In(E?%/(2mg)?).

8Singlet to singlet evolution kernels are the well-known Efremov-Radyushkin-Brodsky-Lepage evolution
kernels at z = 1 [54, 55].
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The fragmentation functions at the input scale pg are found as in eq. (4.7), where we now
specify the NRQCD state v there to be 35%“,

. _ [ 50 )
D[QQ(R)}%[QQ(?’SF])H—>H(z’u’U’mQ’MO) - (d[QQ(n)]ﬁ[QQ(g’SF])H(z7u7v7mQ"u0’MA>

<O[Ié@(l,)} (pa))

due ; 0 2) TREWITTT (57
+<7T> Q000G (s )”( LU, V3 MQ, o, pa) + O(af) | m2QL+1 (5.7)

As we only concern ourselves with the leading logarithms, unsuppressed by further powers
of ag, we use the tree level matching d©. Since the only nonzero d®° ]y, 18
[QQ(K)]—=[QR(EST]

x = v[1], the final pQCD state in the kernel must always be v[1].

To get the xp distribution, we must do a further convolution ®..,, of the two-loop
solution in eq. (5.6) with short-distance coefficients computed in section 3. Again, because
we do not want further suppression in ay, we only need to convolve with the leading-order
short distance coefficients found in eq. (3.26) and (3.27),

~(1) ~(1)

daﬁei%QQ(v[g}Hg (3: TH , U v) and daﬁeiﬁQQ(a[g]Hg (:U = xi,u,v> ;o (5.8)
dx z dz z

and thus k in eq. (5.6) must be either v[8] or a[8]. From now on, we suppress the argu-
ments of the short-distance coefficients, splitting functions, and fragmentation functions
for simplicity.

Calculating the single logarithms from the perturbative solution gives an expected
result, in agreement with eq. (4.23),

~(1)

(as 1 ) dae*e*%QQ(v[S}H—g ( )

[QQEI)I-[QQESI—H

dr ®z;u,v PU[S}—H)[I} ®z’;u’,v

5 (1)
(0)

Cfas, 1N Dere 00wl g

- (mrln 4r> d Dz Falssolt) v Plogy) L ieaesi-u
2.2 o

Q128 (-wm) (1 Caqesty (5.9)
Q% 9 xzg(2—xzpg)? 4r meQ ’ '

where for convenience we have rewritten In(E%/(2mg)?) as In(1/(47)). At the next order,
there are double log terms associated with the running of the coupling in these terms,
found simply by multiplying additional factors

BO as 1
In — 5.10
2 4r 4y (5.10)

as can be seen from eq. (5.6).
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Figure 9. The effect of including the leading logarithm from evolution equation (5.4) on the
ratios of the full pQCD and NRQCD results, (IAC(I) + l%@))/f for the 35’&1] channel at CM energies
10, 30, and 100 GeV. We include the perturbative uncertainty bands by varying the factorization
scale from Ep/2 to 2Ey (yellow band). The central scale choice, 4 = Fp, is indicated by the
black-dashed curve.

Less trivial calculations involve the convolution of two evolution kernels, and we simply

report the results of our computation

Lfae 1)\2 40 .
s etTe™ v[8
o (% In E) § — QRS+ Qz5u,v Pv[8]~>n’ ®z’;u’,v’ Pn’av[l] ®z”;u",v” D(O)

2 ~ dz [QRENI=RQES! )+ H
H
Loy, LY e 16r Cagesy) 1
2\ 27 4r 0 Q% 27 mq za(2—xH)?

x [(9 (3% — 82 — 22% +4zn +4) Inzy + 32 (2% + 25 — 2) In(1 — za)

— (272 — T22% + 1da% + 1642y — 92) In(2 — zy) — 2(1 — zp) (1172% — 342zy + 120 + 1281n2) |,
(5.11)

1 (s 1)? d&i}*)e_ﬁQQ(a[g])-‘rg (0)
5 -1 Z Rzu,v Pa[S]—H@’ ®z’;u’,v’ Pn’—w[l] ®z";u”,v” D

o L ar da QRN ~+QQE )+ H
H
1fas, 1 ? ased 16m <O[Q@(3SP]>]> 1
= - —=1ln— o —_—
2\ 2 4r 0 Q% 27 mQ zu(2—xmH)?

x [— (92% — 5427 + 108z — 36) Inay + 32 (23 +xx — 2) In(1 — zp)
+ (92% — 86a% — 20y +92) In(2 — zp) — 2(1 — ) (92% — 5day — 24+ 1281n2) | . (5.12)

Physically, these contributions describe initial octet states, v[8] or a[8], evolving through
the allowed states x/, which themselves evolve to v[1], then to the color-singlet NRQCD
state 35{1}, and finally to hadron H. We can also vary the factorization scale from Ep/2
to 2Fy. We choose the renormalization and factorization scales to be equal.

In figure 9, we show numerically the impact of including the two-loop terms in the
leading logarithmic series. We indicate the central scale choice, u = Ep, by a black-dashed

curve and include the perturbative uncertainty bands by varying the scale up and down by

— 35 —



a factor of 2. For ease of comparison, we will continue to report our results as in figure 5,
as ratios with the full NRQCD results given in eq. (4.29). As noted before, the divergence
as zg — 4mg/Q is due to f vanishing in the lower limit, where the pQCD result does not
apply. Since Ep increases as () increases at a fixed zy, the logarithms In(E%/(2mg)?)
become larger at higher @) for a fixed zy. At Belle’s energy of @ = 10.6 GeV, Fyg and
2mg do not create a strong hierarchy and the resummation of such logarithms is not so
important. However, as can be seen from figure 9, the leading logarithms at two-loop order
modify the results up to ~ 30% already at Q = 30GeV. Such a large correction implies
that solving the evolution equation to resum the logarithms In(E% /(2mg)?) is crucial for
a reliable prediction at higher energies than at Belle.

6 Conclusions

In this paper, we presented the first NLO calculation of short-distance coefficients in the
context of NLP perturbative QCD factorization for heavy quarkonia, extending the quark
pair fragmentation formalism developed in ref. [4]. We calculated short-distance coefficients
as closed expressions for the physically-relevant x g distribution of heavy quarkonia in
ete™ annihilation. We showed that it is useful to include evanescent operators, which are
absent in the four-dimensional theory, when using dimensional regularization. At NLO,
the contribution from the evanescent operators organizes finite pieces that are associated
with long-distance dynamics. This organization is important to clarify comparisons with
fixed-order NRQCD calculations.

Combining our calculation of NLO short-distance coefficients with NRQCD factoriza-
tion of the heavy quark pair fragmentation functions [17, 18], we derived the high energy
behavior of the xy distributions in fixed-order NRQCD for various channels. We pre-
sented numerical results of these channels at various CM energies, which exhibit end-point
enhancements for the octet channels and a large contribution from the singlet channel
away from the tail. Using the singlet channel, we numerically illustrated that fixed-order
NRQCD results rapidly approach their high energy behavior and demonstrated the im-
portance of resumming logarithms of In(E%/(2mg)?) by studying the numerical impact of
including the leading logarithms at two-loop order.

We also showed explicit analytical agreement between our derived high energy behavior
and the fixed-order NRQCD calculations in the literature for the 35’@ [29, 31, 32] and
15([)8] [33] channels, illustrating the need for including the evanescent operators identified.
The formalism developed in our work provides the groundwork for explicit NLO and higher
order calculations of short-distance coefficients for many other factorized cross sections
at next-to-leading power. We anticipate applications to angular distributions in ete™
annihilation, and to many single-particle cross sections for heavy quarkonia in hadron-

hadron scattering.
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A D — 4 dimensional components in NLO cross sections

Our NLO process ee™ — QQ(p1) + g(p2) + g(p3) needs to take D — 4 dimensional mo-
mentum components into account correctly. Since the heavy quark pair is observed, p; is
a 4 dimensional momentum, whereas po and ps are not. That is,

P1=DP14, (A1)
p2 =p2.4 + P2, (A.2)
p3 =p3a— P2, (A.3)

where p; 4 and p; are 4-dimensional and D — 4 dimensional components of the momentum
p;, respectively.
The phase space factor from the eq. (3.8) can then be simplified to

dP1p, dP~1p, dPps
(27‘(‘)D712E1 (27T)D712E2 (27T)D712E3

__d"'p; > 'p2 28 (Q* (1 — 2y — +1 (1 —cosby) (A.4)
= (2r)P-12E, (2m)P-12E,"" LT g V)

dlls = (2m)PsP (g — p1 — p2 — p3)

where z; = 2E;/Q) and 6, is the angle in the D — 1 plane between the spatial components
of momentum p; and po, p; and po. The D —1 plane consists of ‘x-y-z’ axes and axes of the
remaining D — 4 hyperplane. po is in the D — 4 hyperplane and can be projected out from
the D — 1 plane by the following procedure. We first choose pj to point along the z-axis of
the D — 1 plane. Then the D — 2 dimensional transverse part of pa is |pa|sin€;. We then
define 65 as the angle such transverse vector makes with respect to the y-axis of the D — 2
plane. Then D — 3 dimensional transverse piece can be projected out by |pa|sin 6 sin 6.
Finally, we define #3 to represent the angle that the D — 3 dimensional transverse piece
makes with respect to the x-axis, giving us

= || sin? 0y sin® Oy sin® 03 = Q* (1 — 21) y (1 — y) sin® Oy sin? O3, (A.5)

where the last equality used the § function in eq. (A.4) and y = (1 — z2)/x1.
Working out the above phase space factor in eq. (A.4) in terms of these angles, we
arrive at

Q? 47r 1 _ - —€ . 1-2
dll; = T (1-y) (1 - € “dryd
3= 1602073 22" (I=y) (A —a1) "y “drrdy
(L
(T / dfs / dfs sin? =40y sin? 7 64

16(2m)3

EF
TrF
/d

— Q2 (1 — 331) Y (1 — y) sin? 0 sin? 93) . <A6)
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The second line integrates to unity for p3 independent terms, but integrates to

- ey (575, ) (A7)

for the integrand with p2. Therefore, we can replace p3 as in eq. (3.31) and use the first
line of eq. (A.6) as the phase space factor as in eq. (3.13).

B Matching coefficients of input heavy quark pair fragmentation func-
tions in BMHYV scheme

In this appendix, we summarize all the matching coefficients of input heavy quark pair
fragmentation functions used in this paper with BMHV ~5 and MS subtraction scheme.
The calculation of the same coefficients with Kreimer 75 and MS subtraction scheme can
be found in the appendices of [17, 18]. The additional t]erms in BMHV ~5 scheme are

indicated by the square brackets below. The factors A[i’8 with and without primes, are

defined in egs. (4.18)-(4.22)

dfg)Q(U[l])]%[QQ(?’SP])] - ia <” - ;) g <U - ;) (1—=2), (B.1)
Toaumiioaesth = ﬁé <“ - ;> ’ <” - ;) o1 =2), (B.2)
CZ[(;)Q(a[S])HQQ(lsgﬂ)] = 6%15 (“ - ;) g (U - ;) 6(1—2), (B.3)
CZ%@@[S})H[Q@@P(ES])] N %5/ (“ N ;) o <” N % > 0(1-2), (B.4)
df(g)éz(a[snw[cz@(sp{sb] - %5 <“ - ;) 0 (v - ;) 0(1-2), (B.5)
CZEg)Q(v[SDH[QQ@PQ[s])] - F1205/ (“ - ;> v (” - ;) 0(1-2), (B.6)
4(1),MS 2
dféz)éh(dvswnh[@@esw)},z;ﬂ - % N31_1 . (1i2) <ln 4m2QELf et 222 — 4z + 1) . (B.7)
MS 2
JE;)(:?BEIZB})H[QQ(’fS?])},z;él - % (N2 1_ 1)2A[§] (1 i 2) (ln 4m2Q (/10_ PE +222 — 42+ 1) ,
(B.8)
MS 2
d;é)éhfvs[@)]—ﬂQQ(lS([f])Lz;ﬁl - CE;F(]Vc?l_l)?A[E]Z(l —2) (ln élrn%(/io—z)Q —3+ [3]) , (B.9)

_ 2 2
7(1),MS — ﬁ A[S] 1— 1 Ho 527 —3
QOIS — QAP =41 24 (N2 — 1)2Z{ +1-2) (n g (1—2)? 31—z

, 2 1 Al 12
A (1 Fo = (1 0 1 B.10
oy <m4mé(1—z)2 1—=2 +1—z néLmé(l—z)2 o )
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7(1),MS

QAN -+1QQESs!M] #4124 N2 — 1
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[QQal8)~[QQESM 241 — 24 (N2 —1)2
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Cr 1 8] 13
= A 1- In—5—7— -1 B.14
+Z( Z) <n4m2Q(1—2)2 +[3] ’ ( )
Cr 1 G 13
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X |[In—F——5—-34+3] |, (B.16)
4mé(1 —2)?
op 1 A 12 1,
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+[4(1 - 27 ) +388 05 4 Ak z)} . (BI7)

Cp__ 1 8, Al8)" 13 3
d O T R AN N I P R
QO+ 10C P 1 — 60 (NZ—1)2 ¢ Z>{< - Tes ) B2z 2P

Q

+ Al (m W - ? + [3]) } . (B.18)

C Results of pQCD short-distance coefficients convolved with input
heavy quark fragmentation functions

In this appendix, we give the full results of high energy behavior of NRQCD for vari-

ous channels derived by convolution of perturbative QCD short-distance coefficients with

the input heavy quark fragmentation functions. The superscripts (i) in l%(i), an explicit

definition of which is given in eq. (4.8), indicate the order of ay for the short-distance
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coefficients.

XN _ 256 (1—=n) 13 ) 3
kSSP](xH,uo,uA)— 9 on@n)? In 51— ) +af —2en+ 5 |, (C1)

7.(2) ) _ 256 (1—=p) 1 _x%{+2acH—2
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