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Abstract

This paper is concerned with the large-scale regularity in the homogenization of elliptic
systems of elasticity with periodic high-contrast coefficients. We obtain the large-scale Lipschitz
estimate that is uniform with respect to the contrast ratio 62 for 0 < § < co. Our study also
covers the case of soft inclusions (6 = 0) as well as the case of stiff inclusions (§ = c0). The large-
scale Lipschitz estimate, together with classical local estimates, allows us to establish explicit
bounds for the matrix of fundamental solutions and its derivatives.

Keywords: Large-scale Estimate; High-contrast Coefficient; Perforated Domains.

MR (2020) Subject Classification: 35B27; 74Q05.

1 Introduction

This paper is concerned with large-scale regularity estimates in the homogenization of elliptic
systems of elasticity with periodic high-contrast coefficients. Let w be a connected and unbounded
open set in R?. Assume that w is 1-periodic; i.e., its characteristic function is periodic with respect
to Z1. We also assume that each of connected components of R? \ w is the closure of a bounded
open set Fj, with Lipschitz boundary, and that

in dist(Fy, F; . 1.1
gﬂ;t}dlst( i Fg) > 0 (1.1)
For 0 < § < o0, define
1) if v € F = ULFy,
A = 1.2
(@) {1 if o ¢ F (1.2)

We are interested in the large-scale regularity estimates, that are uniform in § > 0, for the elliptic

operator
Ly = —div(Ap2AV). (1.3)

Here and thereafter the coefficient matrix (tensor) A = A(z) = (afjﬁ(x)), with 1 < o, 3,4, <d, is
assumed to be real, bounded measurable, 1-periodic, and to satisfy the elasticity condition,
af (v) = af' (@) = agj(@),

(1.4)
rl€? < alferel < ralef?
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for any symmetric matrix £ = (%) € R4 where k1, ko are positive constants. Under these
assumptions we will show that if u € H'(Qr;R?) is a weak solution of Ls(u) = 0 in a cube
Qr = (—R/2, R/2)? of size R for some R > 4, then

1/2 1/2
sup (][ |Vu\2> <C (][ |Vu]2> , (1.5)
1<r<r-3 \Jq, Qriw

with a constant C independent of R and 4. Let Du denote the symmetric gradient of u; i.e.,
Du = (Vu+ (Vu)') /2,

where (Vu)T denotes the transpose of Vu. We also prove that for R > 4,

1/2 1/2
sup <][ |Du\2> <C <][ |Du|2> : (1.6)
1<r<R-3 . QrMNw

We remark that the operator Ls arises naturally in the modeling of acoustic propagations in porous
media, diffusion processes in highly heterogeneous media, and inclusions in composite materials
12, [T, 16, 26].

In the case 0 = 1, the regularity estimates for the elliptic system —div(A(x/e)V) = f in the
homogenization theory have been studied extensively in recent years (in this paper we have rescaled
the equation so that the microscopic scale ¢ = 1 and the domain is large). Using a compactness
method, the interior Lipschitz estimate and the boundary Lipschitz estimate for the Dirichlet
problem in a C%* domain were established by M. Avellaneda and F. Lin in a seminal work [7].
The boundary Lipschitz estimate for the Neumann problem in a C1® domain was obtained in [11].
We refer the reader to [20] for further references on periodic homogenization, and to [4] for related
work on the large-scale regularity in stochastic homogenization.

In this paper we will be concerned with the case § # 1, where, in the simpler scalar case, §2
represents the conductivity ratio (or the ratio of diffusion coefficients) of the disconnected inclusions
F = Uy F}, to the connected matriz w. Notice that the operator L; is elliptic, but neither uniformly
ind € (0,1) nor in § € (1,00). We mention that in the scalar case with 0 < § < 1, A =1
and w being sufficiently smooth, using the compactness method in [7], the WP and Lipschitz
estimates were obtained by L.-M. Yeh [22] 23] 24, 25]. Also see earlier work in [19] [I5] for related
uniform estimates in the case 6 = 0. In [I8] B. Russell established the large-scale interior Lipschitz
estimate for the system of elasticity with bounded measurable coefficients in the case § = 0, using
an approximation method originated in [6]. The case 0 < § < 1 was treated in [I7]. In the
stochastic setting with 6 = 0, S. Armstrong and P. Dario [3] obtained quantitative homogenization
and large-scale regularity results for the random conductance model on a supercritical percolation.

The following is one of the main results of this paper.

Theorem 1.1. Let 0 < § < oo. Assume that A satisfies the elasticity condition (1.4) and is 1-
periodic. Let u € H' (Qr;R?) be a weak solution of Ls(u) = 0 in Qg for some R > 4. Then (L.5)
and (1.6) hold for some constant C' depending only on d, ki1, k2, and w.

Note that Theorem includes the limiting cases of periodically perforated domains: 6 = 0
and § = co. In the case § = 0, which is referred to as the soft inclusions [26], we call u € H'(£;R?)
is a weak solution of Lo(u) = fx. in Q, if

/ AVu-Vodr = frudr
QNw

QNw
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for any v € H}(;R?). Formally, this means that —div(AVu) = f in Q Nw and (%)7 =0 on
QN Ow, where (%) _ =n-A(Vu)_ denotes the conormal derivative taken from w and n the outward
unit normal to OF. For convenience we will also assume that u is a weak solution of div(AVu) =0

in QN F. In the case § = oo, which is referred to as the stiff inclusions [26], a function u in
HY(Q;RY) is called a weak solution of Loo(u) = f in Q if Du=01in QN F, and

AVu-Vvdm:/f-vdx
Q

QNw

for any v € H}(Q;RY) with Dv = 0 in QN F. This implies that —div(AVu) = f in Q@ Nw and that

ika C Q,
ou
— | -¢do=— f-odx
/8Fk <3V)— I

for any ¢ € R, the space of rigid displacements, given by .

The large-scale uniform Lipschitz estimate in Theorem which holds under the assumptions
that A is bounded measurable and Jw is locally Lipschitz, is new in the case 1 < § < oo, even
when A is constant and w is smooth. Under the additional conditions that w is locally C** and A
is Holder continuous,

|A(z) — A(y)| < Mg|lz —y|°  for any z,y € RY, (1.7)

where My > 0 and o € (0,1), we may combine (L.5) with the local Lipschitz estimates for the
operator L5 to obtain a true Lipschitz estimate.

Theorem 1.2. Let 0 < 6 < oo and Q(zo, R) = 20+ Qr. Assume that A satisfies conditions ((1.4)),
(1.7), and is 1-periodic. Also assume that each Fy is a bounded CY* domain for some o € (0,1).
Let u € HY(Q(wo, R); RY) be a weak solution of Ls(u) =0 in Q(xo, R) for some R > 4. Then

1/2
V()| < C ][ ) (1.8)
Q(zo,R)Nw

where C' depends only on d, ki1, K2, w, and (o, Mp) in (1.7).

The Lipschitz estimate (1.8) as well as its small-scale analogue allows us to construct a d x d
matrix I's(z,y) of fundamental solutions for the operator L5 in R%, and obtain its estimates that
are uniform in ¢ € (0,00). In particular, we will show that if d > 3 and 1 < § < oo,

Ts(z,y)| < Clz —y*~7,
\VoTs(2, )| + |VyTs(2,y)| < Clo —y[* 7, (1.9)
VoV, Ts(z,y)| < Clz —y| ™,

for any x,y € R? and = # y, where C depends only on d, k1, k2, w, and (o, Mp). In the case
0 < 6 < 1, the estimates in continue to hold, provided that either |x — y|oo > 4 or x,y € w.
Here |7 — y|lo = max(|z1 — y1,...,|Tq — ya|) denotes the L> norm in R?. See Theorems
and We mention that in the scalar case with A = I and 0 < § < 1, explicit bounds
for fundamental solutions were obtained by L.-M. Yeh in [25]. As in the case 6 = 1 [ 13| 12],
estimates of fundamental solutions are an important tool in the study of optimal regularity problems
in the homogenization theory for solutions of Ls(u) = f. In particular, it allows us to extend the



Lipschitz estimate (1.8]) from solutions of Ls(u) = 0 to that of L£s5(u) = f. Indeed, under the same
assumptions on A and w as in Theorem we obtain

1/2 1/p
Vu(zo)| < C, (f |w|2> "R (][ |f|”> (1.10)
Q(zo,R)Nw Q(z0,R)

for 1 < § < oo, where u is a weak solution of Ls(u) = f in Q(xg, R) for some R >4 and p > d. If
0 <6 < 1, the estimate holds for solutions of L5(u) = fxw in Q(zo, R). See Theorem
We now describe our general approach to the proof of Theorem As we mentioned earlier,
the scalar case with 0 < 6 < 1 and A = I was studied in [22] 23] 24, 25], using a compactness
method of Avellaneda and Lin [7]. The compactness argument is fairly complicated to implement
for the operator Ls, as both the coefficient matrix A and the ratio 42 should be allowed to vary.
A more direct approach, which originated in [6], was used in [I8, I7] to treat the case 0 < § < 1
with bounded measurable coefficients. The approach relies on a result on the convergence rate,
uniform in §, for the operator —div(As2A(z/e)V) as € — 0. It is not clear how to extend either of
these two methods to the case 1 < § < co. In this paper we will adapt a more recent method of S.
Armstrong, T. Kuusi, and C. Smart [5], which is based on a Caccioppoli type inequality and the
fact that Aju is a solution whenever u is a solution, where A; denotes the difference operator,

Aju(z) = u(z + €j) — u(x) (1.11)

for 1 < j<dandej=(0,...,1,...,0) with 1 in the j'! place. The basic idea is to transfer the
higher-order regularity of u in terms of the difference operator to higher-order regularity of u at a
large scale through Caccioppoli and Poincaré’s inequalities. For elliptic systems the approach also
uses a discrete Sobolev inequality.

To carry out the approach described above, a key step is to establish a Caccioppoli inequality
for solutions of Ls(u) = 0 in Qg for R large. In the case 0 < § < 1, it can be shown by an extension
argument that

|Vul|? de < < lu|? dz, (1.12)
Q R Jo
R/2 R

which is more or less known [I8] [I7]. It is not known that (1.12]) holds for the case 1 < § < oo,
with constant C' independent of §. However, if § is sufficiently large or 6 = oo, we are able to show
that for any £ > 1 and R > 32,

Cy

C
/Q |Vu|? de < Ré/@ lu|? da + 2t 0 \Vu|? dz, (1.13)
R/2 R R

by some extension and iteration arguments. It turns out that the weaker version with £ =1,
together with the discrete Sobolev inequality, is sufficient to complete the proof of . We point
out that the method described above does not extend to the nonhomogeneous system Ls(u) = f
with nonsmooth f. We resolve this issue by introducing the matrix of fundamental solutions.

The paper is organized as follows. In Section [2] we give the proof of . The inequality
is proved in Section |3 while the proof of Theorem is given in Section {4} In Section |5( we
collect some known results on local estimates and give the proof of Theorem [1.2l The matrix of
fundamental solutions is introduced and studied in Section [f] Finally, we establish the Lipschitz
estimate for solutions of L5(u) = f in Section

Recall that Qp = (—R/2, R/2) and Q(xo,R) = 20 + Qg for R > 0 and zo € RY. We use
fE U= ﬁ fE u to denote the L' average of u over a set E. We use C to denote a positive constant
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that may depend on d, k1, k2, and w. If C depends also on other parameters, it will be stated
explicitly. We emphasize that the results in Sections 2 - 4 hold with no smoothness condition on A
or F = R%\ @ beyond that A is bounded measurable and F is locally Lipschitz. In Sections 5 - 7
we impose the Holder continuity condition on A and also assume that F is locally C'h.

2 Preliminaries

Throughout this paper we assume that w is a connected, unbounded and 1-periodic open set in R%.
Write
R\ w = UpFy, (2.1)

where each Fj, is the closure of a bounded Lipschitz domain F}, with connected boundary. We
assume that {F';} are mutually disjoint and satisfy the condition (1.1). This allows us to construct
a sequence of mutually disjoint open sets { F},} with connected smooth boundary such that F C Fy,

{co < dist(OFy, 0F}), (2.2)

co < dist(ﬁk, ﬁg) for k # ¢,

for some cg > 0. Note that by the periodicity of w, { F},} are the shifts of a finite number of bounded
Lipschitz domains contained in Q2. As a result, we may assume that {F}} are the shifts of a finite
number of bounded smooth domains contained in Q5.

Let R denote the space of rigid displacements of R%; i.e.,

R={u=E+Bz: EcR?and B" = -B}, (2.3)

where BT denotes the transpose of the d x d matrix B. The following extension lemma will be
useful for us.

Lemma 2.1. Let F}, and ﬁk be given above. There exists a linear extension operator

Py : HY(F}, \ Fi;RY) — H'(F; RY),

such that
Pi(u) =u  for anyu € R, (2.4)
1Pl 7y < C Il oy + 1Dl o) (2.5)
IVP@)l 2, < CIVlo o, (2.6)
IDPU@) oz < CIDUl 2, - (2.7)

where Du denotes the symmetric gradient of u and C depends only on d and w.

Proof. See [16l, pp.45-47]. Note that since ﬁk and F}, are shifts of a finite number of domains, the
constant C' does not depend on k. ]

Throughout the paper we assume that A is real, bounded measurable, 1-periodic, and satisfies
the elasticity condition (1.4)). It is well known that ((1.4)) implies

Ag-¢ < e +€TIIg+¢T) (2.8)
Te+ell < Ag ¢ (2.9)

for any d x d matrices ¢ and ¢ [16l, pp.30-31].



Lemma 2.2. Let 0 < 6 < oo and u € H'(;RY) be a weak solution of Ls(u) = f in Q. Then
/ |AsDul?|¢]? dz < C/ |Asul?|V|? dz + C’/ | f||ul|¢|? da (2.10)
Q Q Q
for any p € C}(Q), where C depends only d, k1 and ks. In the case § = 0, ([2.10)) holds for solutions

of Lo(u) = fxw in Q.

Proof. Assume 0 < § < oo. Let v = up?, where ¢ € C3(€2). Since

/ As2 AVu - Vodxr = / f-vdx,
Q Q
we see that

/ As2(AVu - Vu)p? do = —2/ As2(AVu - u(Vp))p dr —I—/ f-ude,
Q Q Q
from which the inequality (2.10]) follows by using (2.8))-(2.9)) and the Cauchy inequality. The fact

that |AVu| < C|Du| is also needed. The case 6 = 0 may be handled in the same manner. O

Lemma 2.3. Let u € H(F;; RY) be a weak solution of —div(AVu) = f in Fy. Then

vuPdr<c [ |Vu2da:+C/ ]2 da, (2.11)
Fy, Fp\F}, Fy,

\Dul? dz < c/~ - |Du2dar+C/ 2 da, (2.12)
Fy Fp\F}, Fy,

where C' depends only on d, k1, Ko, and w.

Proof. By Lemma there exists w € H'(F),; RY) such that w = u on F}, \ Fj and

HwHHl(ﬁk) < CHUHHl(ﬁk\Fk)'

Since div(AV(u — w)) = f — div(AVw) in Fy and u — w € H}(Fy;RY), by the classical energy
estimate,

IVull 2y < C{IfllL2emy) + IVl L2y }
< C{Hf”L?(Fk) + HuHHl(Fk\Fk)}'
Note that for any ¢ € R, u — ¢ satisfies the same condition as u. It follows that

[Vu = Vollr2g, < C{”fHLQ(Fk) + [lu— ¢\|H1(ﬁk\fk)}- (2.13)

By taking ¢ to be the L! average of u over ﬁk \ F';, and using Poincaré’s inequality we obtain (2.11]).

To see , we use
I Dull 2y < VU= Vollrzmy < CLIF N2y + llu— ¢||H1(ﬁk\ﬂ)}'

Since this holds for any ¢ € R, (2.12) follows by the second Korn inequality [16, p.19]. O



Remark 2.4. It follows from Lemma [2.3]that if £5(u) = 0 in Qg3 for some R > 0, then

/ \Vul|?dx < C |Vu|*dz  and / |Duf*dz < C | Du|? dz. (2.14)
QRr QR+3ﬂw

Qr QR+3Nw

To see this, it suffices to note that if Fi, NQr # (), then ﬁk \ F;, C Qri3Nw. Also, observe that by
Sobolev inequality, for any u € H'(Fy;R%),

/~ lu? dz < C’/~ |Vul|* dz + C’/~ ufda. (2.15)
Fk Fk Fk\Fk
This, together with (2.11f), implies that if L5(u) = 0 in Qpr+3 for some R > 0, then
/ lu|? dz < C |u2d$+/ |Vu|? dz. (2.16)
R QRr+3Nw QRy3Nw

The next theorem gives a Caccioppoli inequality, which is uniform in ¢ € [0, 1], for Ls.

Theorem 2.5. Suppose 0 < § < co. Let u € HY(Qar; R?) be a weak solution of Ls(u) =0 in Qar

for some R > 4. Then
C(1+ 62
/ |Vu|? de < (1;;>/ u|? de, (2.17)
R 2R

where C' depends only on d, k1, Ko, and w.

Proof. By the second Korn inequality,

/ |Vu|?> < C | Du? derC;/ lu|? d, (2.18)
R Qr R* Jor

where C depends only on d. In (2.10) we choose ¢ € C}(Q2r) such that ¢ = 1 in Qg3 and
V| < C/R. This gives

14 62
/ |Dul? dz < CH)/ lu|? d. (2.19)
R2
QR+3MNw Q2r
which, together with (2.18) and (2.14)), gives (2.17]). O

3 A Caccioppoli type inequality for 1 < < oo
We first consider the case 1 < § < oo.

Lemma 3.1. Let 1 < § < co. Let u € HY(Fj; RY) be a weak solution of —div(Ag2 AVu) = f in Fj.
Then

51 Dull sy < CL Loz + 100l 2 inmy) ) (3.1)

where p = % ford>3 and p > 1 for d =2. The constant C depends only on d, K1, ke, and w.

Proof. Let v € H}(Fj; R?) be an extension of u from F}, to Fy such that

loll sy < Cllwllan - (3.2)



Since

AVU~Vvd:c:/~ f-udz,

Fy,

/~ B AVu - Vodr + 62
Fi\F}, F

it follows that

DU d < Ol 10l o iy + CIDUN o g 1DV 2

< CU N o) + 1Dull o 7 1wl ()
where we have used Sobolev inequality and (3.2]). We now choose ¢ € R such that

Since u — ¢ satisfies the same conditions as u, we may deduce (3.1)), readily from ({3.3]), with u — ¢
in the place of w. 0

Lemma 3.2. Suppose 1 < § < co. Let u € H' (Qr;R?) be a weak solution of Ls(u) =0 in Qg for
some R > 16. Then, for (R/2) <r < R—-8 and0<e <1,

C C
/Q |Vul|? de < 5(R—7")2/Q |u|? dz + (6~|—52)/ \Vul|? dz, (3.4)

where C' depends only on d, k1, Ko, and w.

Proof. As in the proof of Theorem [2.5] it follows from the second Korn inequality and - that

C
/ Vultdz < C \Dul? d + ﬂ/ luf? da. (3.5)
” Qr

Qr+3mw

Since r > R — r, it suffices to bound the first term in the right-hand side of (3.5)). To this end, let
¢ be a function in C}(Qgr—_3) such that ¢ = 1 in Q13 and

[Vo| < C(R—r— 6)_1 <C(R- T)_l,

where we have used the assumption R —r > 8. Recall that if Fj; N Qr- 3 # (b, then Fk C Qg. For
cach Fy with F, C Qg, we let wy, € H} (F;de) be an extension of ug? — g from Fj, to F}, with
the property that

okl sy < Cllug? = gl ) (3.6)

where g, € R is to be determined. Extend wy from ﬁk to R4 by zero and let

¢ = up? — Z wy  in RY (3.7)
k

where the sum is taken over those k’s for which ﬁk C Qgr. Note that ¢(x) = gy if x € F), and
I, C Qg. Since ¢ € H&(QR;Rd), we have

/ AVu - Véda + 52/ AVu - Védz =0, (3.9)
QrMNw QRrNF

Since D¢ = 0 in F, we obtain
/ AVu-Veodr = 0.
QrMNw
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Thus,
AV - V(up?) dz| < / AV - Vuwy d
’/Qme u - V(up?) a:‘ zk:‘ . u - Vwy, dx

(3.9)
<C Z ||Du||L2(ﬁk\Fk) ||Dwk||L2(ﬁk\Fk)'
k

Note that by (3.6]),
1Ykl oy < Clue® = gillin iy < CID@R) 12,
where we have chosen g € R such that the last inequality holds. Consequently,

vakHLz(ﬁk\fk) < CHDUHH(F;C) + CHUVSOHL?(F,C)
< 05_2HDUHL2(E€\F1€) + CHuv‘/’HL?(Fk)a

where we have used (3.1)) for the last inequality. This, together with (3.9)), gives

‘/ AVu-V(uch)dx‘g(C52+a)/ |Du\2daz+C’51/ 2|V o|? da
QrNw

Qr Qr

for any 0 < € < 1, where we have used the Cauchy inequality. Hence,

/ \Dul? dz < (05_2—1—5)/ |Du|2d:n—|—c/ luf? da,
Qr+3Nw e(R=1)*Jop

R

which, combined with (3.5)), yields (3.4]). O

The following theorem provides a weaker version of the Caccioppoli inequality, that is uniform
for § € (1,00), for the operator Ly.

Theorem 3.3. Suppose 1 < § < co. Let u € H'(Qr;R?) be a weak solution of Ls(u) = 0 in Qr
for some R > 32. Then, for any £ > 1,

/ |Vul|? de < }f?/ lu|? da + % \Vu|? da, (3.10)
QRry2 Qr Qr

where C' depends only on d, k1, ke, £, and w.

Proof. The proof uses Lemma and an iteration argument. Let 7; = R(1 —27%) fori =1,2,....
It follows from ({3.4]) that for 0 < e < 1,

” i+1 — T4 Q

@ Ti+1 Qri-{»l

if Ti+1 > 16 and
(1/2)7’i+1 S T S Ti+1 — 8.

It is easy to verify that the conditions on r; are satisfied if 1 < i < k, where k is the largest integer
such that R27%~1 > 8. Thus, by an induction argument,

k —2yi—1
/ |Vu|? dz < 66‘02(54—005)/ ]u|2dx+(5+005_2)k/ |Vul|? d,
Q QRr

" i=1 (i1 —7i)? Qryyq



where Cy depends only on d, k1, ko, and w. Since rj41 —r; = 27"1R. we see that

k

4Cy o
Vul? dx < 45+4C(52Z/ ul? dx
/QR/2 [Vl e(e + Cyd2)R? ;( 0077) On [ul

+(5—|—C’052)k/ |Vu|? dz.
Qr

We now choose € = 272672 Tt follows that if 4C56~2 < 272¢, then

/ \vqudng?/ yu\2dx+(2—2f)k/ Vul? dz.
QRry/2 R Qr Qr

This gives ([3.10) for the case 62 > 2%+2(C), as 2F ~ R. Finally, we observe that the remaining case
1 < 62 < 2%+2( is contained in Theorem O

We now consider the case § = co. Recall that u € H'(Q;R?) is called a weak solution of
Loo(u) =01in Q if Du=01in QN F and

/ AVuy -Vodr =0 (3.12)
QNw

for any v € H}(Q;RY) with Dv =01in QN F.

Theorem 3.4. Let u € H'Y(Qr;R?) be a weak solution of Loo(u) = 0 in Qg for some R > 32.
Then, for any £ > 1,

/ |Vul|* de < 02/ \u|2dx+0%/ \Vu|? da, (3.13)
Qry2 R Jop LE o

where C' depends only on d, k1, ko, £, and w.

Proof. In view of the proof of Theorem it suffices to show that for (R/2) < r < R — 8 and

0<e<l,
/ |Vu|? de < 02/ |u\2d$+€/ |Vul|® d. (3.14)
Qr e(R=1)*Jou Qn

The proof of (3.14)) is similar to that of Lemma Indeed, by the second Korn inequality,

Vu|*dz < C Duzdaz—i—i ul? de, 3.15
r2
r Qr

QrNw

where we have used the fact Du = 0 in Q, N F. Let ¢ € C3(Qr_3) and ¢ € HE(Qr;R?Y) be the
same as in the proof of Lemma Note that ¢|p, € R for each Fy, (if FyNQpr—3 = 0, then ¢ = 0).
This allows us to use (3.12)) to obtain

/ AVu-Veodr =0.
QrNw

The rest of the argument is the same as in the proof of Lemma [3.2] without the terms involving
C6~2. We omit the details. O
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Remark 3.5. Let 1 < § < oo and u € H'(Qg;R?) be a weak solution of Ls(u) = 0 in Qg for some
R sufficiently large. It follows from Theorems |3.3| and (with £ = 1) that

1/2 1/2 1 1/2
sup (][ |Vu|2> §C<][ |Vu|2> +C sup inf (][ u—E|2)
s<r<R , R s<r<REERI T \JQ,

1/2
+€ sup (][ ]Vu|2)
S s<r<R r

for any s € [16, R], where C depends only on d, 1, k2, and w. Choose s so large that Cs~! < (1/2).
This yields

1/2 1/2 1 1/2
sup (][ \Vu|2) <C (7[ |Vu\2> +C sup inf — <][ lu — E]2> . (3.17)
s<r<R ” Qr s<r<REERIT \ JQ,

Note that if 1 <r < s, |QT’_1/2HUHL2(QT) < C\Qs\_l/QHUHLz(QS). As a result, we obtain

1/2 1/2 1 1/2
sup <][ \Vu]2> <C (][ ]Vu\2> +C sup inf — <][ lu — E]2> , (3.18)
1<r<R ; Qnr 1<r<REERIT \JQ,

where C' depends only on d, k1, k2, and w.

(3.16)

4 Large-scale estimates

In this section we give the proof of Theorem [I.I] As we mentioned in Introduction, the approach
is based on an idea from [5].
Let u € L'(Q2,) for some r € N, define

u(z) :/Y+z u(zx) dz, (4.1)

where Y = (0,1)?, for any z € Z¢ such that Y + 2z C Qo,..

Lemma 4.1. Let u € H(Q2,) for some r € N. Then

1/2 1/2
(f ruP) <C s \a<z>\+c(][ Wur?) , (4.2)
20 Y+ZCQ2r QQT‘

where C' depends only on d.

Proof. This follows by using Poincaré’s inequality on each unit cube Y + 2z C @2, to obtain

/ wlde < [a)PE+C [ |Vl de
Y+z Y+z

and summing the inequality over z. O

For a function f defined in R?% or Z9, let

Ajf() = fla+e)) — fla) (4.3)

11



for 1 < j < d, where e; = (0,...,1,...,0) with 1 in the 4t position. For a multi-index v =
(Y1,72, - - - s 7a), we use the notation A7f = AT'AJ*--- AV f. Let oFf = (AVf) 5=k and

o= (3 are)
Iyl=k

for an integer k > 0. The following discrete Sobolev inequality will be needed:

1/2

STRNTO/E=re) Sy il I SRR I (1.4)

2€Z9NQ4 g k=0 2€79NQyp

where R > 1 is an integer, N = [d/2] + 1, and C depends only on d. We refer the reader to [21] for
a proof of (4.4]).

Lemma 4.2. Let u € H(Q4g) for some integer R > 2. Then, for any integer r € [1,2R],

1/2 N 1/2 1/2
mf<f)\u—EF) <Cr Rk(f |vymﬁ> <+C<f‘|vmﬁ : (4.5)
EeR QQT kz_o 4R 2r

where N = [d/2] 4+ 1 and C depends only on d.

Proof. We may assume r < R—1; for otherwise, (4.5 (with N = 0) follows directly from Poincaré’s
inequality. By (4.2) we have

1/2 1/2
(f w-a0r) " <c sw @ -aoi+c(f )
2r ZEZdQQQT Q2r

12 (4.6)
<Cr sup |9(2)]+C <][ \Vu]2> .
ZGZdOGQT Q2r
To bound the first term in the right-hand side of (4.6)), we use (4.4]) to obtain
N 1/2
1
sup  |06(z)| < CY R 2 oo FaE) P (4.7)
ZGde§2R72 k=0 Zede§4R74
Note that
|A;0Fa(2)]? < / 0% u(z + ej) — OFu(x)|* dx
Y+z
1
< / / VO u(x + tej)|? dt dx
Y+zJ0
g/ |VoFu(z)|? da.
(0,2)d+2
It follows that
) 1/2 12
T Z |0 10(2) |2 <C <][ |Vokul? dm) .
2€ZNQup_4 Qar
This, together with (4.6))and (4.7]), gives (4.5). O
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Proof of Theorem [L.1l Let u € H'(Qr;RY) be a weak solution of Ls(u) = 0 in Qg for some
R > 4. Without loss of generality we may assume R is a large even integer.

We first point out that follows from . Indeed, let 1 < r < R — 3. Note that for any
¢ € R, we have Ls(u — ¢) =0 in Qpr. It follows that

(]é T Du|2>1/2 <c (]é V- ¢>\2)
. <]€2R_3 ’Du‘2)1/2’

where we have chosen ¢ € R so that the last inequality holds. This, together with (2.14)), gives
(1.6)). The rest of the proof is devoted to ([1.5]). In view of (2.14) it suffices to bound the left-hand
side of (1.5)) by the L? average of |Vu| over Qg.

Case I: 0 < § < 1. Note that L5(AVu) = 0 in Qr_ok for any multi-index v with |y| = k. It follows

from Theorem 2.5 that o
][ Vokul? < 2][ 0 uf? da
P p Q2p

1/2

IN

for 4 < p < (R — 2k)/2, where we have used the condition 0 < § < 1. This, together with the
observation that

][ |0%u|? dz < C (VOrF—tu|? dx (4.8)
Q2 Q2042
for k > 1, yields
C
][ |Vokul? < 2][ |Vok—Lu|? da. (4.9)
P Q29+2
By induction we obtain
Vokulde < < [vul?, (4.10)
Q P Jo
cR R

where C' and ¢ depend only on d, k, k1, k2, and w. By combining (4.10) with (4.5) we see that for
any r € [1,cR],

1 1/2 12 o 1/2
inf L (][ - E|2> <c <7[ |Vu]2> ;< (f |Vu|2> . (4.11)
EcRd T - R r Q-

By Poincaré’s inequality we see that the inequality above also holds for r € [cR, R]. Hence, if
1<s<R,

1 1/2 12 o 1/2
sup inf — (][ lu — E]2> <C (][ ]Vu\2> + — sup (f |Vu2> : (4.12)
s<r<REERI T \ JQ, Qr S s<r<R -

Note that by Theorem [2.5

1/2 1/2 1 1/2
sup <][ \Vulz) <C <][ ]Vu\2> +C sup inf — (][ lu — E]2> . (4.13)
s<r<R . Qr s<r<REERIT \ JQ,

Thus,
1/2 12 o 1/2
sup <][ |Vu]2> SC(J[ ]Vu\2> + — sup <][ |Vu\2> .
s<r<R r Qr 8 s<r<R r

13



Choose s > 1 so large that Cs™! < (1/2). This leads to

1/2 1/2
sup <][ \Vu]2) <C <][ ]Vu\2> .
s<r<R r Qr

The estimate for the case 1 < r < s follows from the case r = s.

Case IT: 1 < ¢ < 00. As in the case 0 < § < 1, L5(A%u) = 0 in Qr_ok for any multi-index v with
|v| = k. It follows from Theorems and (with ¢ = 1) that

|Voku|? < ¢ |0%u)? + ¢ IVoFu)? (4.14)
p? p?

P Q2p QQp

if 16 < p < (R — 2k)/2. This, together with (4.8) and a simple observation that
][ |Voku?> < C IVOF—1u|?,
Q2p Q2p+2

gives (4.9)). As a result, the inequality (4.12]) continues to hold for the case 1 < < oo. In view of
Remark the inequality (4.13]) also holds for 1 < § < co. The rest of the proof is the same as in
Case I. O

It follows from Theorem and Poincaré’s inequality that if Ls(u) =0 in Qg for some R > 1,

then
1/2 1/2 1/2
sup (][ ]u\2) <C <][ \u!2> + CR? <][ \Vu]2> , (4.15)
1<r<R , Qr Qr

where C' depends only on d, k1, k2, and w.

5 Local Lipschitz estimates

Throughout this section we will assume A satisfies the elasticity condition (1.4 and Holder conti-
nuity condition (|1.7]). The periodicity condition is not needed. For 0 < r < 4, let
Qf = {a: = (2 29) €Qr:1q > 1/1(3:’)},
Q, = {x =(2',29) €Qr 24 < z/J(x')}, (5.1)
I, = {x = (xlaxd) €EQr:xg= ¢(3«"/)}7

where 7 : R™1 — Ris a C'1¢ function for some o € (0, 1) such that ¢(0) = 0 and IVl o101y <
M. Let 0 < § < oo and u € H'(Q,;RY) be a solution of

—div(AVu) = 6 2f in Q,

—div(AVu) = f in Q,, (5.2)
yﬂ — & on I
8V+ - ov_ "

where 6871 = n - A(Vu)+ and =+ indicates the limit taken from QF, respectively. If § = 0, by a
solution of (5.2), we mean that —div(AVu) = f in Q;, —div(AVu) = 0 in @}, and that 2% =0
on I.. If § = oo, the equation (5.2) is understood in the sense that u|,+ € R and —div(AVu) = f

in Q.
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Lemma 5.1. Assume that A satisfies (1.4) and (I.7). Let 0 < § < 1 and u € HY(Q;R?) be a
weak solution of (5.2]) for some 0 < r < 4. Then

C’ 1/2 1/2 1/p
2 2 2 2 p
190l g,y < {5 <][r|u|> +(]é; |u|> +r (éT|f|) }
o N v 1p
< = P - P
9l = S8 (F 1) (f 1) o (f r)

where p > d and C depends only on d, p, k1, Ko, 0, My, and M.

(5.3)

Proof. The case 0 < g < d < 1 with a constant C depending on §y follows from the classical results
on Lipschitz estimates for elliptic systems with piecewise Holder continuous coefficients. Indeed,
since 1) is C%, the problem may be reduced to the case 1 = 0 by flatting the boundary. One
may further reduce the problem to the case of constant coefficients by a Campanato perturbation
argument. We refer the reader to [I4, [9] and their references for more recent development.

We now treat the case where ¢ is small. By rescaling we may assume r = 1. Let 0 < p < 1 and
0 <7 < o. Since div(AVu) = f in Q7 , by the classical C L7 estimates for Neumann problems,

o 1/2 1/p
+ ][ ul? +p? ][ fIP . 5.4
(L) ptT ( Q;' | ) Q;' | 54)

Let 1/2 < s <t < 1. By covering Q; with cubes of size p/2 = ¢(t — s) and applying (5.4) and
interior C1'7 estimates, we may deduce that

1/2 l/p
d
L Ot —s) i ][ WA f P
C"'(Itl (Ql Q;
] 1/2 1/p
< OF |Vl e + Ol — 5577 (f W’) +<f |f|p> ,
QT Q7

where t; = (t+ s)/2 and we have used the relation ad“ =52 oL 6“

—div(AVu) = 672f in Qf for 6§ > 0, a similar argument usmg CY7 estimates for the Dirichlet
problem gives

1/2 1/p
d_1_, _
IVu| - @) < CHVuHCT )+ Ct—s) 2 1 (iz* ]u\2> + 672 <]£2+ ]f]p> . (5.6)
1

1

IValler - >_CH —

IVuller o

H ov_
(5.5)

on I for the last inequality. Since

By combining (/5.5 with (5.6]) it follows that

1/2 1/2
TR
Vel eriqry < OO IVullgrgry + Ot — )75 (7[ —'“'2) o (7[ +'“'2> |
? (5.7)

J 1/p
Ot -5t (é |f|”> |
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which also holds for the case § = 0. Let s; = 1 — 27%. By taking s = s; and t = s;,1 in (5.7) and
using iteration, we see that

HVUHCT(Q*

1/2)
N ) . 1/2 1/2 1p
<O s e (L) e (f k) (L) 6
i=1 Qy QY Q1
+ C&*N||Vul| s

(Qnsy)

for any N > 1. Note that s;y; — s; = 271, Tt follows that if 2271752 < (1/2), we may let
N — oo in (5.8)) to obtain the first inequality in (5.3 with » = 1. The second inequality follows
from the the first and (5.6)). O

Remark 5.2. We may replace (5.3) by

1/2 1/2 1/p
voo_<052][v2> <][v2> (][ P) ,
IVl < { (f 1vue) " (f 1vue) " n (f 10

, 1/2 1/p ) 1/p
p - p
IVl gy < O3 (f, 1908) o (f 1) " wase (f 1)

To see this, in the proof of Lemma one replaces u in (5.4) and (5.5) by v — F and applies
Poincaré’s inequality.

(5.9)

Remark 5.3. Under the same assumptions as in Lemma we have

1/2 1/2 1/p
s =T (f, 1)+ (f, ) (f, )y
Joll g < { (qur e (f wE) (0
) 1/2 ) 1/p - 1/p
gz <3 (f, 18) 7 (]émp) e <]é+!f!p) ,

This follows readily from ([5.3)) and the Mean Value Theorem.

(5.10)

The next lemma treats the case 1 < § < oo.

Lemma 5.4. Assume that A satisfies (T.4) and (I.7). Let 1 < 6 < 0o and u € H(Q,;RY) be a
weak solution of (5.2]) for some 0 < r < 4. Then

C 1/2 1/2 1/p
\vUHLm(Q:/Q)sT{M (f we) o+ (f we) o (f 1) }
C ) 1/2 5 1/p ) 1/p
_ < — - p P
Vel < 53 (f, W) a7 <]éi|f|> r (]é )

where C' depends only on d, p, k1, ke, o, My, and M;.

(5.11)

Proof. The case 1 < § < oo follows from the proof of Lemmaby interchanging Q; with @, and
62 with 672. Recall that if § = oo, u or € R. As a result, the first inequality in (5.11]) holds by a
simple rescaling, while the second follows from the Lipschitz estimate for the Dirichlet problem. [
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Remark 5.5. One may replace (5.11)) by

1/2 1/2 1
IVl oot y < C 5—2(f'quP)/ +(fT‘VuP)/-+&QT(f uw>/p
P @) = Qr QF Qr

) 1/2 ) 1/p 1/p (5.12)
- P p
IVl iy < €4 (f 19l) a7 (f 1) Tn ()
This follows from Remark 5.3l
Remark 5.6. It follows from (5.11]) that if 1 < § < oo,
1/2 1/2 1/p
—9 2 2 —2..2
Il (gt ) < C {5 (f )+ (f ) w5 (f ) }
(5.13)

1/2 1/p 1/p
Hu||Lm<Q;/2)gc{(][ru|2> +5—2r2<72¢|f|p> +r2<]€2r|ﬂp> }

The following theorem provides the local Lipschitz estimate for solutions of Ls(u) = f in
Q(zg,r) = x0 + Qr (if § =0, we assume f =0 in Q(zg,r) N F).

Theorem 5.7. Assume that A satisfies (1.4) and (1.7). Let 0 < < 0o and u € H(Q(zg,r); RY)
be a weak solution of Ls(u) = f in Q(zo,r) for some zog € R and 0 < r < 2, where f €
LP(Q(xo,7); RY) for some p > d. Then

u(zo)| + r[Vu(zo)| <
1/2 1/p
C ][ |A52u\2> + Or? (7[ |f]p> if 0<6 <1 and zy € w,
Q(wo,r) Q(o.r) (5.14)

1/2 1/p
C (f |u]2> + Cr? (7[ \A(;gf]p> if0<d<1andxy € F,
Q(zo,r) Q(zo,r)
[u(zo)| + r[Vu(zo)| <
1/2 1/p
C <][ ]u|2> + Cr? (][ |A5_2f\p> if 1 < < oo and zp € w,
Q(zo.r) Q(xo,r) (5.15)

o 1/2 1/p
~ <][ \A52ul2> + Co 22 (][ \f]p) if 1 < < oo and xzg € F.
0% \ Qo) Qr

If 6 = 0o, we have

1/2 1/p
[u(@o)| + r[Vu(zo)| < C <][ IU\2> + Cr? <][ f\p> if xo € w
Q(zo,r) Q(zo,r)Nw

1/2
|u(zo)| + r|Vu(zo)| < C <][ \u|2> if xg € F.
Q(zo,m)NF

and

(5.16)

The constant C' depends only on d, p, K1, k2, w, and (o, My) in (1.7)).
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Proof. Note that —div(AVu) = f in Q(xo,7) Nw and —div(AVu) = 6-2f in Q(zo,r) N F. If
Q(zo,cr) C w or F for some small ¢ > 0, the estimates in (5.14)-(5.16) follow directly from the
interior estimates for solutions of —div(AVu) = f. In the case Q(zg,cr) N dw # 0, one may find
Yo € Ow such that zo € Q(yo,7/2) and Q(yo,7/2) C Q(xo,7). As a result, the estimates in (5.14)-

(5.16|) follow readily from (5.3)), (5.10]), (5.11) and (5.13]) by a simple localization argument. O
Proof of Theorem [1.2l Note that for all cases in Theorem [5.7| with f = 0,

1/2
|u(zo)| + r|Vu(zg)| < C (][Q( ) |u|2> (5.17)

for 0 < 7 < 1. Since u — E is also a solution for any F € R%, one may use Poincaré’s inequality to

obtain
1/2
|Vu(zo)| < C (7[ \vu|2> (5.18)
Q(zo,7)

for 0 < r < 1. Thus, if u is a weak solution of Ls(u) = 0 in Q(xg, R) for some R > 4, then

1/2 1/2
Vu(zo)| < C (7[ yw?) <c (7[ ywﬁ) ,
Q(z0,1) Q(z0,R)Nw

where we have used Theorem [I.1] for the last inequality. O

6 Estimates of fundamental solutions

Throughout this section we assume that d > 3, 0 < § < oo, and that A satisfies , , and
is 1-periodic. We also assume that each F} is a C1° domain for some o € (0,1). Under these
conditions, by combining the large-scale estimates in Section [ with the local Lipschitz estimates
in Section |5, we see that if u € H'(Q(zg, R); R?) is a weak solution of Ls(u) = 0 in Q(xo; R) for

some R > 0, then
1/2
Vaeo) <G (f Vi)
Q(l‘o,R)

where Cs may depend on §. It follows that the operator Ls possesses a fundamental solution
Ls(z,y) = (F?B(x,y))dxd in the sense that if

u(z) = /Rd Ls(z,y) f(y) dy (6.1)
for some f € C§°(R%RY), then v € L2 (R4 RY), Vu € L2(R% R4 and
As2 AVu - Vodx = frude (6.2)
Rd Rd

for any v € L2 (R%;RY) with Vo € L2(R%RY), where 2* = d%dQ. Moreover, there exists a constant
Cs such that [[s(z,y)| < Cslz — y|>~¢ and |V, Ts(z,y)| + |V Ts(z,y)| < Cslz — y|'~¢ for any
z,y € RY. We refer the reader to [I0] for the construction of I's(z,y) under a Hélder continuity
condition on weak solutions. Our goal of this section is to establish the explicit dependence of Cy
on J.
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Lemma 6.1. Let u be given by (6.1)) with f € C§°(w; R?). Then

8[| Dull 2y + VUl 2wy + ull 1 () < Clf 1 Lp () (6.3)

where p = %, p = dQ—_dQ, and C' depends only on d, k1, Ko, and w.

Proof. By letting v = w in (6.2)) we obtain

# [ 1DuP da+ [ 1Dufde < €1 flimo el (6.4)

2d

715 Next, let U be an extension of u from w to R? such that

where p =
VU 2y < ClIVullz2¢)  and  ||DU| r2gey < CllDull2()- (6.5)

The function U may be obtained by extending u from Fp \ F} to Fy, for each k, so that
IVl < OVl ooz, and 10U, < ClIDul a7, - (6.6)

See Lemma Since |u(x)| + |z||Vu(z)| = O(|z|*>~?) as |#| — co and d > 3, we see that

1

2/ (Jul* + |Vul*)dz — 0 as R — oo. (6.7)
B2 JQor\ar

The property (2.5)) also implies that U satisfies the condition (6.7). This allows us to apply the
first Korn inequality and Sobolev inequality in Qg and then let R — oo to deduce that

L2(]Rd) >~ LQ(Rd) LPI Ry = LQ(Rd). .
VU] < C|py| and  [|U|| pay < CIVU] (6.8)
As a result, we obtain

Ul o may < ClIVU | p2gay < CDU || p2(ray < CllDul|z2(w)- (6.9)

It follows that
IVull 22wy = VUl 12(w) < CllDull12(w),

el oy = 1000y < ClDul 200
Consequently, by (6.4) and the Cauchy inequality, we see that 6| Dul ;2(ry < C|| ]| r(.) and

(6.10)

IVull 2wy + l[ull Lo (o) < ClIDull 2wy < CllfllLe(w),
which completes the proof. O

Remark 6.2. Let u be given by (6.1)) with f = div(g), where g € C§°(w; R¥*9). Then
& [ Duf o+ [ 1Du do < Cllgliac | Vuliag,
F w

Using (6.10)), we obtain
Ol| Dull p2(ry + IVull 2wy + lull 1 () < Cllgllz2(w) (6.11)

where p’ = % and C depends only on d, k1, k2, and w.
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Remark 6.3. Suppose 1 < § < oo. Let u be given by (6.1)) with f € C5°(R%R?). By letting v = u
in (6.2) we obtain ||Du\|%2(Rd) < Ol f | oy lull o (ray- Using

ull oy < ClIVll2(gety < CllDullagasy,
we see that [|ull ;. ga)y < Cllfl|Lr(rae)-

Theorem 6.4. Let 0 < § < co. For x,y € R? with |z — y|so > 4, we have

IDs(z,y)| < Clz —y* ™, (6.12)
IVoLs(z,y)| + |VyDs(z, )| < Clz —y|' ™9, (6.13)
V.V, Ls(z,y)| < Clz —y| ™4, (6.14)

where C' depends only on d, k1, k2, w, and (o, Mp).

Proof. Fix zg,y0 € R? with 7 = |29 — yo|oo > 4. Let u be given by (6.1) with f € C§°(w N
Q(yo,7); R?). Since Ls(u) = 0 in Q(x,r), it follows from (5.17) and (&.15) that

1/2
uel <€ (f P
Q(z0,1/2)
1/2 1/2

C (7[ \u|2> +Cr <][ \Vu]2> (6.15)

Q(zo,r/4) Q(zo,r/4)

1/2 1/2

C 7[ |ul? +Cr ][ |Vu)? ,

Q(z0,34+r/4)Nw Q(z0,3+r/4)Nw

where we have used (2.14) and (2.16)) for the last inequality. We now use (6.3)) to bound the
right-hand side of (6.15)). This gives

IN

IA

_d
fu(xo)] < O {lull oy + [ Vll 2 }

d
< Cr' 72| fll o),

where p = 2% By duality it follows that

d+2-
1/p )
/ IUs(z0, )" dy < COrta (6.16)
wNQ(yo,r)

Note that if f = div(g), where g € C§°(w N Q(yo,7); R™*?), we may use (6.15) and (6.11)) to obtain
_d
u(zo)| < Cr' 2|9l r2(w)-

By duality we deduce that

1/2
(/ IV, Ts(z0,7)[2 dy) < Crl-s, (6.17)
wNQ(yo,r)

20



Also, note that by Theorem [T.2]

1/2
Vu(zo)| < C f VuP? | <o E gl
wNQ(zo,r)

Again, by duality, we obtain

1/2
(/ V2V, Ts(w0,y)]? dy> < Crt. (6.18)
wNQ(yo.r)

Now, let v(y) = I's(xo,y). Then L5(v) = 0 in Q(yo,7), where L} denotes the adjoint of L.
Since L} satisfies the same conditions as L5, we may use (6.15) to obtain

1/2 1/2
o) < (f o) wor(f Vof?
wNQ(yo,3+7/4) wNQ(yo,3+7/4)

< C’rZ*d,

which gives (6.12]). Also, note that by Theorem [1.2

1/2
V(o) < C <][ wa) . (6.19)
wNQ(yo,)

This, together with (6.17), gives |V, Ts(x0,y0)| < Cr!=¢. The estimate |V, I's(z0,y0)| < Cri=? fol-
lows from the fact that the fundamental solution I'j(z, y) for £} is given by the transpose of I'5(y, x).
Finally, the estimate for V,V,I's(xo, o) follows from (6.18)) and the fact that L£5(V I's(zo,-)) =0
in R\ {z0}. O

Next, we treat the case where 1 < § < oo and |z — Y| < 4.

Theorem 6.5. Suppose 1 < § < co. Then estimates (6.12)), (6.13) and (6.14) continue to hold for
z,y € R with |x — yle < 4.

Proof. The proof is similar to that of Theorem 6.4 Fix 2q,yo € R? with r = |2¢ — yo|eo < 4. Let
u be given by (6.1)) with f € C§°(Q(yo,7); R?). Since Ls(u) = 0 in Q(xo,7), in view of (5.15) and

Remark we obtain
1/2
fu(zo)| + r|Vu(zo)| < C (f |u|2>
Q(zo.r) (6.20)

_d
< Cr'7 2| £l Lo (ra)-

By duality it follows that

1/p'
/ ITs(z0,y)[”" dy < orls, (6.21)
Q(yo,r)
Since L5(I's(xo,-)) = 0 in Q(yo,7), the desired estimates follow readily from the first inequality in
(6.20). We omit the details. O]

It remains to handle the case where 0 < § < 1 and |z — y|so < 4.
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Lemma 6.6. Let 0 <6 <1 and

u(z) = /Rd Ls(x, y)As(y) f (y) dy (6.22)
for some f € C°(R%GRY). Then
[Asull o (rey + 1AVl 2ray < ClIf [ 1 (ra), (6.23)
where p = % and C' depends only on d, K1, ke, and w.

Proof. As in the proof of Lemma we have
[ull Lo (gay < ClIVul|p2ray < Cl|Dul|p2(ga)
and ||u||Lp/(w) +1IVul r2y < Cl|Dul| 2. It follows that
HAéUHLP’(Rd) + HAéVUHL?(Rd) < C5HDUHL2(Rd) + CHDUHLZ(UJ) (6.24)
< C|[AsDul 2Ry,

where we have used the assumption § < 1 for the last inequality. By letting v = w in (6.2)), we
obtain

||A5DU||%2(Rd) < CHA(SUHLP/(RGZ)||f”Lp(Rd)7
which, together with (6.24)), yields (6.23)). O

Theorem 6.7. Suppose 0 < § < 1. For z,y € R? with |x — y|oo < 4, we have

As(2)As(y)|Ts(z, y)| < Clz —y*~, (6.25)
As(@)As(){IVaTs(a, 9)| + [VyTs(a,9)|} < Cla —y|' ™, (6.26)
As(2)As(y)| VeV Ts(z, y)| < Cla —y| ™7, (6.27)

where C' depends only on d, k1, k2, w, and (o, Mp).

Proof. Fix xg,y0 € R? with r = |29 —yo|eo < 4. Let u be given by (6.22)) with f € C5°(Q(yo,7); RY).
Then Ls(u) = 0 in Q(zo,r). Since 0 < 6 < 1, it follows from (5.14) that

1/2
As(wo){|ulzo)| +r[Vu(zo)|} < C (]{2 |A6U|2>

xo,r (6.28)
_d
< Cr' 72| fll o ray,
where we have used (6.23)) for the last inequality. By duality this implies that
1/p’
’ _d
As(zo) / [As(y)Ls (o, y) " dy <Crl7a. (6.29)
Q(yo,m)
Since L3(T's(xo,-)) = 0 in R4\ {x0}, we may use the first inequality in (6.28) and (6.29) to obtain
As(0)As(yo) [Ts (w0, yo)|, < Cr?~7. (6.30)
which gives (6.25)). The estimates in also follow from the first inequality in (6.28)) and (6.29] -
Finally, (6.27)) follows from the first inequahty in (6.28) and (6.26]).
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We end this section with a decay estimate of DI's(x,y) for x € F, as § — oo.

Theorem 6.8. Let 1 < § < co. Let u € HY(Q(zo, R); R?) be a weak solution of Ls(u) = 0 in
Q(xo, R) for some xg € F and R > 5. Then

1/2
|Du(zo)| < % <][ !DU\de> : (6.31)
0% \ JQ(zo,R)

where C' depends only on d, k1, k2, w, and (o, Mp).

Proof. Suppose xg € F}, C Q(x0,2) for some k. It follows from (5.12)) and interior estimates that

1/2 12
|Vu(zo)| < C52 (/ |Vu]2dm> +C (/ |Vu)? dx) : (6.32)
Q(IO:Q) Fk

Choose ¢ € R such that u — ¢ L R in H'(Fy; Rd). Since u — ¢ satisfies the same conditions as u,
we may use (6.32]) with u — ¢ in the place of u. As a result,

[ Du(zo)| < [V(u— ¢)(o)]

1/2 1/2
<052 (/ Vuf? da:) +C ( | Dul? dat) ,
Q($072) Fk

where we have used the second Korn inequality as well as the fact [V¢| < C||Vul|p2(p,). This,
together with (3.1)) with f = 0, gives

1/2
| Du(zo)| < C5-2 <][ \vuy2>
Q(IO,S)

12 (6.33)
<052 ][ |Vu|? :
Q(=o,R)
where we have used Theorem for the last inequality. Choose % in R so that
IV (v = V) 22(Qo.r)) < ClIDullL2(Q(a0,R))-
It follows that
[Du(zo)| = [D(u —¢) (o)
1/2 1/2
<C6 2 ][ IV (u — )|? <Co 2 ][ | Dul? .
Q(zo,R) Q(zo,R)
where we have used (6.33]) with u — % in the place of u. O
Corollary 6.9. Let 1 < § < oco. Then
Ag2(2)|DaTs(2,y)| + Ag2(y) | DyTs (2, y)| < Cla —y[' ¢ (6.34)

for any x,y € R® with |x — y|s > 4.
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Proof. Since ¢ > 1, it follows by Theorems [6.4] and [6.5] that
VoTs(x, )| + [VyLs(z,y)| < Clo -y~
for any =,y € R? and x # y. This, together with Theorem gives ((6.34]). O

Remark 6.10. In this section we have assumed d > 3. Since the results in previous sections
hold for d > 2, the results in this section may be extended to the two-dimensional case. Some
modifications of the arguments are required.

Remark 6.11. In view of remainder estimates in [§, [I2] for the matrix of Green functions and its
derivatives with 6 = 1, it would be very interesting to establish similar estimates for § # 1, with
bounding constants uniform in §. Some partial results may be found in [25] for the scalar case with
0 < 0 < 1. We hope to return to this problem in a future study.

7 Lipschitz estimates for Ls(u) = f

The goal of this section is to prove ([1.10). The case 0 < § < oo follows readily from Theorem
and estimates of fundamental solutions in Section [6] To handle the cases § = 0 and § = oo, we use
an approximation argument.

Let © be a bounded Lipschitz domain in R%. We call  a type IT domain (with respect to w) if
F,NQ # () implies that F), C Q. In particular, if Q is a type II Lipschitz domain, then QN dw = 0.

Lemma 7.1. Assume that A and w satisfy the same conditions as in Theorem[I.1. Let 0 <6 <1
and Q be a type II Lipschitz domain. Let us € H'(Q;R?) be a weak solution of Ls(us) = fx. in
Q and ug € H'(Q;R?Y) a weak solution of Lo(ug) = fxw in Q, where f € L?(;RY). Suppose that
us = ug on 0. Then

[us — woll 1) < C6l|DuollL2(anF) (7.1)

where C' depends only on d, k1, ke, w and §2.

Proof. Let w = us —ug € H&(Q;Rd). Since g is a weak solution of Lo(ug) = fxw in Q,

/ AV - Vode = f-vdx (7.2)
QNw QNw
for any v € H(Q;R?). We also assume that —div(AVug) = 0 in F' N Q. Using

/ AVU5-Vvda:+52/ AVus - Vodr = f-vdax,

QNw QNF QNw

we obtain

AVw - Vwdz + 52/ AVw - Vw = —52/ AVug - Vw dz.

QNw QNF QNF

Hence, by (|1.4]) and the Cauchy inequality,

/ |Dw|2dx+52/ |Dw|? dx < 052/ | Dug|* da. (7.3)
QNw QNF QNF
Note that div(AVw) = 0 in Fj, for any Fj C . By Lemma we have
[Dwl|p2(r,) < CHDpr(ﬁk\Fky
As aresult, | Dw||r2onp) < Cl|Dwl|r2(0nw), where we have used the assumption that 2 is a type II

Lipschitz domain. This, together with (|7.3)) and the first Korn inequality [16, p.13], gives (7.1)). O
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Lemma 7.2. Assume that A and w satisfy the same conditions as in Theorem[I.1. Let 1 < § < 0o
and Q be a type II Lipschitz domain. Let us € H'(;R?Y) be a weak solution of Ls(us) = f in
and us € HY(4RY) a weak solution of Loo(use) = f in Q, where f € L2(4;RY). Suppose that
U5 = Uso 0N 0. Then

[us — ool 1 (@) < COH{ || Dusoll 22wy + 1F 22 } (7.4)
where C' depends only on d, k1, ke, w and §2.

Proof. Since us is a weak solution of Lo (us) = f, it follows that

AVuoo-Vvda;—/f‘vdw

QNw

for any v € H}(;R?) with Dv =0 in QN F, and that Dus, = 0in QN F. LetchHO(Q R9). For

each Fy C Q and g, € R, let wy, € H} (Fk,]Rd) be an extension of ¢ — gi from Fj, to F), with the
property that

lwill g1 5,y < Cllo = gellar(my)-

Extend wy, from ﬁk to R4 by zero, and define
v=¢— Y wy,
k

where the sum is taken over those k’s for which Fj, C Q. Note that v € H}(Q;RY) and v = g on
Fy.. Since  is a type II domain, it follows that Dv =0 on QN F. As a result, we see that

AVUOO-VquJ:—/f-qux‘

Q

—‘ AVum'ZVwkdx—/f'Zwkdx‘
QNw & Q k

< CZ ||Du00||L2(ﬁk\fk)||DwkHL2(ﬁk) + OZ HfHLz(ﬁk)HwkHLZ(ﬁk)
k k

< CZ (||Du00||L2(ﬁk\Fk) + Hf||L2(ﬁk))||¢ - ngHl(Fk)
k

< C(I1Dussll 200wy + 1 fllL2@) 1Dl L2(0nF)

where we have chosen g, € R so that ||¢ — gkl g1(r,) < Cl|D| 12(F,)- This, together with

‘ QNw

AVugs - Vo dx + 62 AVU5-V¢dJU=/ [ ¢,d,
QNw QNF Q

implies that

‘ AV (us — Uoo) - Vo da + 62 AV (us — uoo) - Vo daj‘
QNw QNF

< C(I1Ducoll L2(0rwy + 1 22(0)) 1Dl 200 F) -

By letting w = us — us and ¢ = w in the inequality above, we obtain
IDwl| 2(00w) + 81 Pw 1200y < C5 { Duss|l 200wy + £l 20 }

where we have also used the Cauchy inequality. Since § > 1 and w € Hg(Q;R?), the estimate (7.4)
follows by the first Korn inequality. O
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Theorem 7.3. Let d > 3. Assume that A satisfies (L.4), (1.7)), and is 1-periodic. Also assume
that each F, is a bounded C%° domain.

1. Let 0 < 6 < 1. Let u € H'(;RY) be a weak solution of Ls(u) = fxw in Q(xo, R) for some
R > 6, where f € LP(Q(zo, R);RY) for some p > d. Then

1/2 1/p
V()| < C <][ |Vu2> L OR (7[ |f|p> , (7.5)
Q(zO,R)ﬂw Q((E(),R)

where C' depends only on d, k1, ka2, p, w, and (o, My) in (1.7).

2. Let 1 <6 < oo. Let u € H' (R be a weak solution of Ls(u) = f in Q(zo, R) for some
R > 6, where f € LP(Q(xo, R); R?) for some p > d. Then

1/2 1/p
[Vu(zo)| < (f |Vu|2> +CR (f |fp> : (7.6)
Q(zo,R)Nw Q(zo0,R)

where C' depends only on d, k1, k2, p, w, and (o, Mp).

Proof. By translation we may assume xzg = 0. We consider 4 cases.

Case 1. Assume 1 < § < co. If f =0, this is given by Theorem In general, let
o@) = [ Tilw) i)y (77)
Qr
Then Ls(v) = f in Qpr, and by Theorems and

1/p
V0l o < CR (][ |frp) (7.8)
Qr

for p > d. Hence,

[Vu(0)] < [V(u—0)(0)] + Vo (0)]

1/2 1/p
<C V(u— 2) +C’R< p)
(]é| (u ) ]éRm
1/2 1/p
<C \Y 2> +CR< P) ,
(]é| ul ]éRm

where we have used the fact L5(u —v) =0 in Qpg.

Case 2. Assume § = co. In this case we use an approximation argument. Choose a type II Lipschitz
domain Q such that Qr_2 C Q C Qg. Let us € H(Q;R?) be a weak solution of Ls(us) = f in Q
such that us = v on 99Q. It follows by Lemma that us — u in H'(Q;R?), as § — oco. By the

proof for Case 1,
1/2 1/p
<][ yvu5\2> <C <][ qu5|2> +CR (7[ \f|p> ;
Qr Qr—2Nw Qr

for r € (0,1/4). The proof is complete by letting § — oo and then » — 0 in the inequality above.

1/2
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Case 3. Assume 0 < § < 1. If f =0, the estimate (7.5)) is given by Theorem [1.2] In general, let
vw)= [ Tole)f)dy
QrNw

Then Ls(v) = fxw in Qr, and by Theorems and

1/p
||A5VU||Loo(QR) <CR <][ |f|p> .
QRr

Observe that since div(AVv) =0 in Qg N F, it follows from Theorem [5.7| that

1/2 1/p
YVo(0)|] < C \V/ 2) +C’( P)
V0 (0) (f@r . ng‘f'
1/2 1/p
<C \V, 2) +c< p) ,
(f@r ol ]é 7]

where we have used ([2.11]) for the last inequality. Hence,
[Vu(0)] < |[V(u—=0)(0)] 4 [Vo(0)]

1/2 1/p
_ 2 P
§C<]2me|V(u v)|> +CR<][QR|f]>
1/2 1/p
2 p
gc(éwwu) +CR<]€2R\f|> .

Case 4. Assume § = 0. As in Case 2, this follows from Case 3 by using the approximation in
Lemma [7.2l We omit the details. O
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