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The correspondence principle suggests that quantum systems grow classical when large. Classical
systems cannot violate Bell inequalities, as entanglement can. Still, limited Bell-type inequalities
have been proved for certain large-scale systems. We generalize and simplify these results, proving
a nonlinear Bell inequality for macroscopic measurements. Our construction requires only bipartite
measurements of extensive observables that have clear physical significances, governs fermions and
bosons, and is robust with respect to errors whose variances scale as the system size. The result relies
on limitations on particles’ interactions. A product of singlets violates the inequality. Experimental
tests are feasible for photons, solid-state systems, atoms, and trapped ions. We operationalize the
inequality as a nonlocal game whose players’ probability of winning is not averaged over questions.
Consistently with known results, violations of our Bell inequality cannot disprove local hidden-
variables theories. By rejecting the disproof goal, we show, one can certify nonclassical correlations
under reasonable experimental assumptions.

Can large systems exhibit nonclassical behaviors? The
correspondence principle suggests not. Yet experiments
are pushing the quantum-classical boundary to larger
scales [1–6]: Double-slit experiments have revealed in-
terference of fullerene wave functions and of organic
molecules’ wave functions [1, 4]. A micron-long me-
chanical oscillator’s quantum state has been squeezed [5].
Many-particle systems have given rise to nonlocal corre-
lations [7–9].

Nonlocal correlations are detected with Bell tests. In a
Bell test, systems are prepared, separated, and measured
in each of many trials. The outcome statistics may vio-
late a Bell inequality. If they do, they cannot be modeled
with classical physics, in the absence of loopholes.

Bell inequalities have been proved for settings that in-
volve large scales [9–25]; see [26, 27] for reviews. These
works have enhanced our understanding of the correspon-
dence principle. Yet a large-scale Bell inequality has yet
to meet, according to our knowledge, all the desirable cri-
teria that emerge from the review [26]: bipartite (being
simpler than multipartite) measurements of macroscopic
observables that have clear physical significances, viola-
tions by easy-to-prepare quantum states, and sufficient
generality to govern bosons and fermions.

We derive a Bell inequality that meets all these crite-
ria. The inequality is violated by a product of N singlets,
which has been prepared with photons [28], solid-state
systems [29], atoms [30, 31], and trapped ions [32]. Vi-
olation of the inequality implies nonlocality if and only
if pairs of particles are prepared approximately indepen-
dently. Pairs’ independence is assumed also in [33–35]
but may be difficult to guarantee. Because of this as-
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sumption, violations of our inequality do not disprove
local hidden-variables theories (LHVTs), as no macro-
scopic system can [33–35]. By forfeiting the goal of a dis-
proof, we show, one can certify entanglement under rea-
sonable experimental assumptions. This certification is
device-independent, requiring no knowledge of the state
or experimental apparatuses, apart from particle-pair in-
dependence. Furthermore, our inequality is robust with
respect to errors, including violations of the indepen-
dence assumption, whose variances scale as N .
Aside from being easily testable with platforms known

to produce Bell pairs, our inequality can illuminate
whether poorly characterized systems harbor entangle-
ment. Such tests would be more challenging but offer
greater potential payoffs. Possible applications include
Posner molecules [36–39] and cosmological systems sim-
ulated with tabletop experiments [40].
The rest of this paper is organized as follows. We in-

troduce the setup in Sec. I. Section II contains the main
results: We present and prove the Bell inequality for
macroscopic measurements, using the covariance formu-
lation of a microscopic Bell inequality [41]. Section III
contains a discussion: We compare quantum correlations
and global classical correlations as resources for violating
our inequality, present strategies for combatting experi-
mental noise, reconcile violations of the inequality with
the correspondence principle [33–35], recast the Bell in-
equality as a nonlocal game, discuss a potential applica-
tion to Posner molecules [36–39], and detail opportuni-
ties.

I. SETUP

Consider an experimentalist Alice who has a system
A and an experimentalist Bob who has a disjoint system
B. Each system consists of N microscopic subsystems,
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indexed with i. The ith subsystem of A can interact with
the ith subsystem of B but with no other subsystems.
Our setup resembles that in [33].

Alice can measure her system with settings x = 0, 1,
and Bob can measure his system with settings y = 0, 1.
Each microscopic subsystem reports one of two outcomes,
0 or 1. The experimentalist observes the sum of the mi-
croscopic outcomes, the value of a macroscopic random
variable. Measuring A with setting x yields the macro-
scopic random variable Ax. By is defined analogously.

We will often illustrate with two beams of photons.
The polarization of each photon in beam A is entangled
with the polarization of a photon in beam B and vice
versa. Such beams can be produced through spontaneous
parametric down-conversion (SPDC) [42]: A laser beam
strikes a nonlinear crystal. Upon absorbing a photon, the
crystal emits two photons entangled in the polarization
domain: 1√

2
(|H,V⟩+ eiα|V,H⟩). Horizontal and vertical

polarizations are denoted by |H⟩ and |V⟩. The relative
phase depends on some α ∈ R. The photons enter differ-
ent beams. Each experimentalist measures his/her beam
by passing it through a polarizer, then measuring the
intensity. The measurement setting (Alice’s x or Bob’s
y) determines the polarizer’s angle. A photon passing
through the polarizer yields a 1 outcome. The intensity
measurement counts the 1s.

The randomness in the Ax’s and By’s is of three types:

(i) Quantum randomness: If the systems are quantum,
outcomes are sampled according to the Born rule
during wave-function collapse.

(ii) Local classical randomness: Randomness may taint
the preparation of each AB pair of subsystems.
In the SPDC example, different photons enter
the crystal at different locations. Suppose that
the crystal’s birefringence varies over short length
scales. Different photon pairs will acquire different
relative phases eiα [42].

(iii) Global classical randomness: Global parameters
that affect all the particle pairs can vary from trial
to trial. In the photon example, Alice and Bob
can switch on the laser; measure their postpolarizer
intensities several times, performing several trials,
during a time T ; and then switch the laser off. The
laser’s intensity affects the Ax’s and By’s and may
fluctuate from trial to trial.

Quantum randomness and global classical randomness
can violate our macroscopic Bell inequality. Assuming
a cap on the amount of global classical randomness,
we conclude that violations imply nonclassicality. Lo-
cal classical randomness can conceal violations achievable
by quantum systems ideally. Local classical randomness
also produces limited correlations, which we bound in
our macroscopic Bell inequality. We quantify classical
randomness with a noise variable r below.
Systems A and B satisfy two assumptions:

(a) A and B are do not interact with each other while
being measured. Neither system has information
about the setting with which the other system is
measured.

(b) Global classical correlations are limited, as quanti-
fied in Ineq. (2).

Assumption (a) is standard across Bell inequalities. In
the photon example, the beams satisfy (a) if spatially
separated while passing through the polarizers and un-
dergoing intensity measurements.

Assumption (b) is the usual assumption that param-
eters do not fluctuate too much between trials, due to
a separation of time scales. Consider the photon exam-
ple in item (ii) above. Let t denote the time required
to measure the intensity, to perform one trial. The trial
time must be much shorter than the time over which the
global parameters drift (e.g., the laser intensity drifts):
t≫ T . The greater the time scales’ separation, the closer
the system comes to satisfying assumption (b). (b) has
appeared in other studies of nonclassical correlations in
macroscopic systems (e.g., [33, 35]).

We fortify our Bell test by allowing for small global
correlations and limited measurement precision. Both
errors are collected in one parameter, defined as follows.
In the absence of errors, Ax and By equal ideal random
variables A′

x and B′
y. Each ideal variable equals a sum

of independent random variables. We model the discrep-
ancies between ideal and actual with random variables r,
as in

Ax = A′
x + rAx

. (1)

Our macroscopic Bell inequality is robust with respect to
errors of bounded variance:

Var (rAx
) ≤ ϵN, (2)

wherein ϵ > 0. Errors rBy
are defined analogously. They

obey Ineq. (2) with the same ϵ. Strategies for mitigating
errors are discussed in Sec. III.

Our macroscopic Bell inequality depends on the covari-
ances of the Ax’s and By’s. The covariance of random
variables X and Y is defined as

Cov (X,Y ) := E([X − E (X)][Y − E (Y )]), (3)

wherein E (X) denotes the expectation value of X. One
useful combination of covariances, we define as the
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macroscopic Bell parameter :1

B(A0, A1, B0, B1) :=
4

N
[Cov (A0, B0) + Cov (A0, B1)

+ Cov (A1, B0)− Cov (A1, B1)].
(4)

II. MAIN RESULTS

We present the nonlinear macroscopic Bell inequality
and sketch the proof, detailed in App. B. Then, we show
how to violate the inequality using quantum systems.

Theorem 1 (Nonlinear Bell inequality for macroscopic
measurements). Let systems A and B, and measurement
settings x and y, be as in Sec. I. Assume that the systems
are classical. The macroscopic random variables satisfy
the macroscopic Bell inequality

B(A0, A1, B0, B1) ≤ 16/7 + 16ϵ+ 32
√
ϵ. (5)

Proof. Here, we prove the theorem when ϵ = 0, when
the observed macroscopic random variables Ax and By

equal the ideal A′
x and B′

y. The full proof is similar but
requires an error analysis (App. B).

Let a
(i)
x denote the value reported by the ith A particle

after A is measured with setting x. A′
x and B′

y equal
sums of the microscopic variables:

A′
x =

N∑
i=1

a(i)x , and B′
x =

N∑
i=1

b(i)x . (6)

Because a
(i)
0 and b

(i)
0 are independent of the other vari-

ables,

Cov (A′
0, B

′
0) =

N∑
i=1

Cov
(
a
(i)
0 , b

(i)
0

)
. (7)

Analogous equalities govern the other macroscopic-
random-variable covariances.

Let us bound the covariances amongst the a
(i)
x ’s

and b
(i)
y ’s. We use the covariance formulation of the

Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) inequal-

1 Calculating B requires knowledge of N , the number of particles
in each experimentalist’s system. N might not be measurable
precisely. But knowing N even to within

√
N suffices: Taylor-

approximating yields 1

N+
√
N

= 1
N

(
1− 1√

N

)
. The correction

is of size 1√
N

≪ 1. Furthermore, uncertainty about N may be

incorporated into a noise model with which a macroscopic Bell
inequality can be derived (App. A).

ity (see [41, 43] and App. C),2

Cov
(
a
(i)
0 , b

(i)
0

)
+Cov

(
a
(i)
0 , b

(i)
1

)
+Cov

(
a
(i)
1 , b

(i)
0

)
− Cov

(
a
(i)
1 , b

(i)
1

)
≤ 4/7. (8)

Combining Eq. (7) and Ineq. (8) with the definition of
B(A′

x, A
′
y, B

′
x, B

′
y) [Eq. (4)] gives

B(A′
0, A

′
1, B

′
0, B

′
1) =

4

N

N∑
i=1

[
Cov

(
a
(i)
0 , b

(i)
0

)
(9)

+ Cov
(
a
(i)
0 , b

(i)
1

)
+Cov

(
a
(i)
1 , b

(i)
0

)
− Cov

(
a
(i)
1 , b

(i)
1

) ]
≤ 16/7. (10)

We now show that a quantum system can produce cor-
relations that violate Ineq. (5). The system consists of
singlets.

Theorem 2. There exist an N -particle quantum system
and a measurement strategy, subject to the restrictions in
Sec. I, whose outcome statistics violate the nonlinear Bell
inequality for macroscopic measurements. The system
and strategy achieve

B(A0, A1, B0, B1) = 2
√
2 (11)

in the ideal (ϵ = 0) case and

B(A0, A1, B0, B1) ≥ 2
√
2− 16ϵ− 32

√
ϵ (12)

in the presence of noise bounded as in Ineq. (2).

Proof. As in the proof of Theorem 1, we prove the result
in the ideal case here. Appendix D contains the error
analysis. Let each of A and B consist of N qubits. Let
the ith qubit of A and the ith qubit of B form a singlet, for
all i: |Ψ−⟩ := 1√

2
(|01⟩ − |10⟩). We denote the 1 and −1

eigenstates of the Pauli z-operator σz by |0⟩ and |1⟩. Let
x and y be the measurement settings in the conventional
CHSH test ([43], reviewed in App. C). If the measurement
of a particle yields 1, the particle effectively reports 1;
and if the measurement yields −1, the particle reports 0.
Measuring the ith particle pair yields outcomes that

satisfy

E
(
a
(i)
0

)
= E

(
a
(i)
1

)
= E

(
b
(i)
0

)
= E

(
b
(i)
1

)
=

1

2
. (13)

2 In the original statement of Ineq. (8), the right-hand side (RHS)

equals 16/7. The reason is, in [41], a
(i)
x , b

(i)
y ∈ [−1, 1]. We assume

that each variable ∈ [0, 1], so we deform the original result in two
steps. First, we translate [−1, 1] to [0, 2]. Translations preserve
covariances. Second, we rescale [0, 2] to [0, 1]. The rescaling
halves each a and b, quartering products ab, the covariances,
and the 16/7 in Ineq. (8). The resulting 4/7 is multiplied by a 4
in Ineq. (9), returning to 16/7.
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As shown in App. D,

E
(
a
(i)
0 b

(i)
0

)
+ E

(
a
(i)
0 b

(i)
1

)
(14)

+ E
(
a
(i)
1 b

(i)
0

)
− E

(
a
(i)
1 b

(i)
1

)
= 2 sin2(3π/8)− 1

2
.

Combining these two equations yields

Cov
(
a
(i)
0 , b

(i)
0

)
+Cov

(
a
(i)
0 , b

(i)
1

)
(15)

+ Cov
(
a
(i)
1 , b

(i)
0

)
− Cov

(
a
(i)
1 , b

(i)
1

)
= 2 sin2(3π/8)− 1.

= 1/
√
2. (16)

Following the proof of Theorem 1, we compute

B(A′
0, A

′
1, B

′
0, B

′
1) (17)

=
4

N

∑
i

[
Cov

(
a
(i)
0 , b

(i)
0

)
+Cov

(
a
(i)
0 , b

(i)
1

)
+Cov

(
a
(i)
1 , b

(i)
0

)
− Cov

(
a
(i)
1 , b

(i)
1

) ]
(18)

= 2
√
2. (19)

III. DISCUSSION

Six points merit analysis. First, we discuss the equiv-
alence of local quantum correlations and global classical
correlations as resources for violating the macroscopic
Bell inequality. Second, we suggest strategies for mit-
igating experimental errors. Third, we reconcile our
macroscopic-Bell-inequality violation with the principle
of macroscopic locality, which states that macroscopic
systems should behave classically [33–35]. Fourth, we
recast our macroscopic Bell inequality in terms of a non-
local game. Fifth, we discuss a potential application to
the Posner model of quantum cognition [36–39]. Sixth,
we detail opportunities engendered by this work.

Violating the macroscopic Bell inequality with
classical global correlations: Violating the in-
equality (5) is a quantum information-processing (QI-
processing) task. Entanglement fuels some QI-
processing tasks equivalently to certain classical re-
sources (e.g., [44]). In violating the macroscopic Bell in-
equality, entanglement within independent particle pairs
serves equivalently to global classical correlations. We
prove this claim in App. E. The reason is the inequal-
ity’s nonlinearity in the probabilities according to which
the Ax’s and By’s are distributed. This result elucidates
entanglement’s power in QI processing.

Two strategies for mitigating experimental im-
perfections: Imperfections generate local classical (ii)
and global classical (iii) randomness, discussed in Sec. I.
Local classical randomness can conceal quantum vio-
lations of the macroscopic Bell inequality, making the
macroscopic Bell parameter B (4) appear smaller than

it should. Global classical randomness can lead classical
systems to violate the inequality. These effects can be
mitigated in two ways.
First, we can reduce the effects of local classical ran-

domness on B by modeling noise more precisely than
in Sec. I. A macroscopic Bell inequality tighter than
Ineq. (5) may be derived. We illustrate in App. A, with

noise that acts on the microscopic random variables a
(i)
x

and b
(i)
y independently. Second, we can mitigate global

classical randomness by reinitializing global parameters
between trials. In the photon example, the laser can be
reset between measurements.
Reconciliation with the principle of macro-

scopic locality: Macroscopic locality has been pro-
posed as an axiom for distinguishing quantum theory
from other nonclassical probabilistic theories [33–35]
(see [45, 46] for a more restrictive proposal). Suppose
that macroscopic properties of N independent quantum
particles are measured with precision ∼

√
N . The out-

comes are random variables that obey a probability dis-
tribution P . A LHVT can account for P , according to
the principle of macroscopic locality.
The violation of our macroscopic Bell inequality would

appear to violate the principle of macroscopic local-
ity. But experimentalists cannot guarantee the ab-
sence of fluctuating global parameters, no matter how
tightly they control the temperature, laser intensity, etc.
Some unknown global parameter could underlie the Bell-
inequality violation, due to the inequality’s nonlinearity.
This parameter would be a classical, and so local, hidden
variable. Hence violating our macroscopic Bell inequal-
ity does not disprove LHVTs. Rather, a violation signals
nonlocal correlations under reasonable, if not airtight,
assumptions about the experiment (Sec. I).
Nonlocal game: The macroscopic Bell inequality

gives rise to a nonlocal game. Nonlocal games quan-
tify what quantum resources can achieve that classical
resources cannot. The CHSH game is based on the Bell-
CHSH inequality ([43, 47, 48] and App. C): Players Alice
and Bob agree on a strategy; share a resource, which
might be classical or quantum; receive questions x and y
from a verifier; operate on their particles locally; and re-
ply with answers ax and by. If the questions and answers
satisfy x ∧ y = a + b (mod 2), the players win. Players
given quantum resources can win more often than classi-
cal players can.
Our macroscopic game (App. F) resembles the CHSH

game but differs in several ways: N Alices and N Bobs
play. The verifier aggregates the Alices’ and Bobs’ re-
sponses, but the verifier’s detector has limited resolution.
The aggregate responses are assessed with a criterion sim-
ilar to the CHSH win condition. After many rounds of
the game, the verifier scores the player’s performance.
The score involves no averaging over all possible question
pairs xy. Players who share pairwise entanglement (such
that each Alice shares entanglement with only one Bob
and vice versa) can score higher than classical players.
Toy application to Posner molecules: Fisher has
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proposed a mechanism by which entanglement might en-
hance coordinated neuron firing [36]. Phosphorus nuclear
spins, he argues, can retain coherence for long times when
in Posner molecules Ca9(PO4)6 [49–55]. (We call Pos-
ner molecules “Posners” for short.) He has argued that
Posners might share entanglement. Fisher’s work has in-
spired developments in quantum computation [38, 56],
chemistry [37, 55], and many-body physics [57–59]. The
experimental characterization of Posners has begun. If
long-term coherence is observed, entanglement in Pos-
ners should be tested for.

How could it be? Posners tumble randomly in their
room-temperature fluids. In Fisher’s model, Posners can
undergo the quantum-computational operations detailed
in [38], not the measurements performed in conventional
Bell tests. Fisher sketched an inspirational start to an
entanglement test in [39]. Concretizing the test as a
nonlocal game was proposed in [38]. We initiate the con-
cretization in App. G. Our Posner Bell test requires mi-
croscopic control but proves that Posners can violate a
Bell inequality, in principle, in Fisher’s model. Observing
such a violation would require more experimental effort
than violating our inequality with photons. But a Posner
violation would signal never-before-seen physics: entan-
glement amongst biomolecules.

Opportunities: This work opens up four avenues of
research. First, violations of our inequality can be ob-
served experimentally. Potential platforms include pho-
tons [28], solid-state systems [29], atoms [30, 31], and
trapped ions [32]. These systems could be conscripted
relatively easily but are known to generate nonclassical
correlations. More ambitiously, one could test our macro-
scopic Bell inequality with systems whose nonclassicality
needs characterization. Examples include the cosmic mi-
crowave background (CMB) and Posner molecules. De-
tecting entanglement in the CMB faces difficulties: Some

of the modes expected to share entanglement have such
suppressed amplitudes, they cannot be measured [60].
Analogs of cosmological systems, however, can be real-
ized in tabletop experiments [40]. Such an experiment’s
evolution can be paused. Consider pausing the evolu-
tion before, or engineering the evolution to avoid, the
suppression. From our Bell test, one might infer about
entanglement in the CMB. A Posner application would
require the elimination of microscopic control from the
Bell test in App. G, opportunity two.

Third, the greatest possible macroscopic Bell param-
eter B achievable by any quantum system merits iden-
tification. This upper bound would serve as a quantum
nonlinear Bell inequality [34, 61–63]. Which quantum
state achieves the bound would further illuminate non-
classical correlations.

Fourth, which macroscopic Bell parameters B can
probabilistic theories beyond quantum theory realize?
Other theories can support correlations unrealizable in
quantum theory [64, 65]. These opportunities can help
distinguish quantum theory from alternative physics
while illuminating the quantum-to-classical transition.
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Appendix A EXAMPLE NOISE MODEL

The bounds presented in Theorems 1 and 2 are worst-case bounds. They hold for any noise that satisfies the
variance bounds of Eq. 2. However, experimental assumptions can often constrain noise further. A noise-specific
analysis can lead to bounds that separate classical from nonclassical correlations when the general bounds cannot.
We illustrate with noise that acts on the microscopic random variables independently.

For concreteness, we analyze errors that occur when photon beams are produced via SPDC (Sec. I). We do this
for two reasons. First, we hope to demonstrate that a macroscopic Bell test is physically viable. Second, ideas in
this analysis may generalize to other physical setups. This section will provide a template for device-specific noise
analysis.

We begin by reviewing the setup. Photon beams are produced when a laser shines on a nonlinear crystal. The
crystal down-converts some fraction of the incident photons: Upon absorbing one photon, the crystal emits two. The
two photons travel in different paths, and their polarizations become maximally entangled. If this process occurs
frequently enough,3 two distinct beams of photons, whose polarizations form Bell states, result.
This process can involve two sources of randomness. First, imagine placing a perfect-efficiency detector right next

to the crystal, in the path of one of the beams. The detector’s clicking rate is expected to obey a Poisson distribution.
The distribution governs the number of photon pairs produced by the crystal per unit time. This number is a random

3 Coincidence rates of ≈ 10 per second were reported in [42].
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variable whose randomness is global and classical, or is of type (iii) (Sec. I). Second, photons can be lost between being
produced in the crystal and being measured by Alice’s or Bob’s post-polarization detector. Dust on the polarizer could
absorb a photon, for example, or the detector could have subunit efficiency. This randomness is local and classical,
or of type (ii). We model the randomness of both types, then use the model to prove tighter analogs of Theorems 1
and 2.

Our first step in tightening the classical bound (Theorem 1) is to identify the most general form that the macroscopic
random variables A0, A1, B0, and B1 can assume. Let M be the number of photons in the laser beam that strikes
the crystal (per unit time). We call these “incident photons.” Assume that each incident photon down-converts with
probability λ, independently of the other possible down-conversions.4 The total number of photon pairs produced is

represented by a random variable
∑M

i=1 ei. The ei’s are independent Bernoulli random variables, each with mean λ.
Down-conversion is improbable [66], so λ is small: λ≪ 1.

The random variable a
(i)
x describes the value that would be reported if the ith incident photon participated in a

down-conversion event and the resultant photon in Alice’s beam were measured with measurement setting x. The

random variable b
(i)
y is defined analogously. The ith possible down-conversion event can add a photon to Alice’s beam.

Suppose that Alice measures with setting x. Whether that photon is lost before detection is represented by l
(i)
a,x. This

random variable equals 0 if the photon is lost and equals 1 otherwise. The random variable l
(i)
b,y is defined analogously.

These variables govern the macroscopic random variables:

Ax =
M∑
i=1

eia
(i)
x l(i)a,x , and By =

M∑
i=1

eib
(i)
y l

(i)
b,y. (A1)

How the total particle number, N , should be defined is ambiguous. Several possibilities suggest themselves. We
choose a definition that leads to strong bounds: In the ideal quantum experiment in Sec. II, each microscopic random
variable has a probability 1/2 of reporting 1 and a probability 1/2 of reporting 0. Hence E (A0) = E (A1) = E (B0) =
E (B1) = N/2. We turn this observation into a definition:

N = E (A0) + E (B0) . (A2)

Proceeding from definitions to bounds, we compute the macroscopic random variables’ covariances. For all x, y ∈
{0, 1},

Cov (Ax, By) =

M∑
i=1

Cov
(
eia

(i)
x l(i)a,x, eib

(i)
y l

(i)
b,y

)
(A3)

=

M∑
i=1

[
E
(
eia

(i)
x l(i)a,xb

(i)
y l

(i)
b,y

)
− E

(
eia

(i)
x l(i)a,x

)
E
(
eib

(i)
y l

(i)
b,y

)]
(A4)

=

M∑
i=1

[
λE
(
a(i)x l(i)a,xb

(i)
y l

(i)
b,y

)
− λ2E

(
a(i)x l(i)a,x

)
E
(
b(i)y l

(i)
b,y

)]
(A5)

= λ

M∑
i=1

E
(
a(i)x l(i)a,xb

(i)
y l

(i)
b,y

)
+O(Mλ2). (A6)

The macroscopic random variables have averages of the form

E (Ax) =

M∑
i=1

E
(
eia

(i)
x l(i)a,x

)
= λ

M∑
i=1

E
(
a(i)x l(i)a,x

)
. (A7)

Substituting into Eq. (4), we form the macroscopic Bell parameter:

B(A0, A1, B0, B1) =
4
∑M

i=1

[
λE
(
a
(i)
0 l

(i)
a,0b

(i)
0 l

(i)
b,0 + a

(i)
0 l

(i)
a,0b

(i)
1 l

(i)
b,1 + a

(i)
1 l

(i)
a,1b

(i)
0 l

(i)
b,0 − a

(i)
1 l

(i)
a,1b

(i)
1 l

(i)
b,1

)]
+O(Mλ2)

λ
∑M

i=1 E
(
a
(i)
0 l

(i)
a,0 + b

(i)
0 l

(i)
b,0

) . (A8)

4 We are assuming that the possible down-conversions are inde-
pendent. This assumption can be approximately satisfied if the
time scale over which global parameters change ≫ the down-

conversion time scale. Small deviations from this assumption
can be accommodated with the bound in App. B.
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We will bound the RHS under the assumption that the microscopic variables are classical. Then, we will show that
the bound can be violated with a quantum state.

Classical bound: We bound the numerator of Ineq. (A8) using a general inequality. For any variables
a0, a1, b0, b1 ∈ {0, 1},

a0b0 + a0b1 + a1b0 − a1b1 ≤ a0 + b0. (A9)

Let ax = a
(i)
x l

(i)
a,x and by = b

(i)
y l

(i)
b,y. Applying Ineq. (A9) to the numerator of Ineq. (A8) yields

E
(
a
(i)
0 l

(i)
a,0b

(i)
0 l

(i)
b,0 + a

(i)
0 l

(i)
a,0b

(i)
1 l

(i)
b,1 + a

(i)
1 l

(i)
a,1b

(i)
0 l

(i)
b,0 − a

(i)
1 l

(i)
a,1b

(i)
1 l

(i)
b,1

)
≤ E

(
a
(i)
0 l

(i)
a,0 + b

(i)
0 l

(i)
b,0

)
. (A10)

We substitute into the numerator in Ineq. (A8), then cancel the E (. . .) in the denominator. The classical macroscopic
random variables satisfy5

B(A0, A1, B0, B1) ≤ 4 +O(Mλ2/N). (A11)

We can understand this result as follows. The randomness in N serves as noise. It raises the macroscopic Bell
bound (A11) above the main-text macroscopic Bell bound (5) and even above the quantum bound (12). In this
setting, however, a quantum bound lies above the classical (A11).

Quantum violation of the classical bound: We can relax our assumptions, because experiments will replace
this calculation. Once experimentalists observe covariances that violate Ineq. (5) or Ineq. (A11), they can conclude
that the particles are nonclassical, if the global correlations are small enough to be unlikely to have caused the
violation. The experimentalists need not worry about precisely why the violation occurred.

We therefore simplify by assuming that la,0, la,1, lb,0, and lb,1 obey Bernoulli distributions with the same mean, γ.
The macroscopic Bell parameter becomes

B(A0, A1, B0, B1) =
4
∑M

i=1

[
γE
(
a
(i)
0 b

(i)
0 + a

(i)
0 b

(i)
1 + a

(i)
1 b

(i)
0 − a

(i)
1 b

(i)
1

)
+O(λ)

]
∑M

i=1 E
(
a
(i)
0 + b

(i)
0

) . (A12)

If the experimentalists follow the quantum strategy in Sec. II, the microscopic random variables satisfy [Eq. (14)]

E
(
a
(i)
0 b

(i)
0 + a

(i)
0 b

(i)
1 + a

(i)
1 b

(i)
0 − a

(i)
1 b

(i)
1

)
= 2 sin2(3π/8)− 1/2 (A13)

and [Eq. (13)]

E
(
a(i)x + b(i)x

)
= 1. (A14)

We substitute into the numerator and denominator of Eq. (A12). The quantum strategy achieves a macroscopic Bell
parameter of

B(A0, A1, B0, B1) = 2γ[4 sin2(3π/8)− 1] +O(λ). (A15)

A quantum system can violate the classical bound (A11) if

γ >
2 +O(Mλ2/N)

4 sin2(3π/8)− 1 +O(λ)
≈ 0.828 +O(Mλ2/N). (A16)

Photons can violate the noise-specific macroscopic Bell inequality (A11) if ≳ 83% of the photon pairs created arrive
at the detectors.

A similar condition arises in the standard Bell test: The standard test suffers from a detection loophole if the
detector misses too many incident photons. As with the detection loophole, a Bell test remains possible here even
if too many photons are lost [even if the system disobeys Ineq. (A16)]. Formulating the Bell test would require a
more-detailed noise model.

5 The correction in Ineq. (A11) is small when Alice and Bob
measure as dictated in the “Quantum violation of the classical
bound” section below: The correction decomposes as Mλ2/N =(

Mλ
N

)
λ. The final λ ≪ 1 by assumption. M denotes the num-

ber of photons in the laser beam that hits the crystal, λ denotes

the probability that a given laser-beam photon down-converts,
and N denotes the number of photons in Alice or Bob’s beam.
Hence N ≈ λM .
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Appendix B PROOF OF NONLINEAR BELL INEQUALITY FOR MACROSCOPIC MEASUREMENTS

We now prove Theorem 1 in full generality, building on the proof in Sec. II. The added analysis introduces robustness
against weak global classical correlations [randomness of type (iii), according to Sec. I].

Proof. First, we review notation. Second, we bound the observed Bell correlator B(A0, A1, B0, B1), using (i) the ideal
Bell correlator B(A′

0, A
′
1, B

′
0, B

′
1) and (ii) the bound (2) on global correlations.

Recall the definitions given in Sec. II. A0, A1, B0, and B1 represent the macroscopic random variables observed by
the experimentalists. A′

0, A
′
1, B

′
0, and B

′
1 represent the random variables that the experimentalists would measure if

all global parameters were fixed to their ideal values. In the photon example, the laser’s intensity, the laser-crystal
alignment, etc. would remain constant across trials. Equation (1) relates the measured variables to the ideals via the
error variable r. Inequality (2) bounds the error’s variance.

We aim to bound the observed correlator B(A0, A1, B0, B1) in terms of the ideal correlator B(A′
0, A

′
1, B

′
0, B

′
1) and

ϵ. Algebraic manipulation gives

Cov (Ax, By) = Cov
(
A′

x + rAx , B
′
y + rBy

)
(B1)

= Cov
(
A′

x, B
′
y

)
+Cov

(
A′

x, rBy

)
+Cov

(
rAx

, B′
y

)
+Cov

(
rAx

, rBy

)
. (B2)

Random variables X and Y have a covariance Cov (X,Y ) bounded in terms of the variables’ variances: Let X :=
X − ⟨X⟩ and Y := Y − ⟨Y ⟩. The original variables have the covariance

Cov (X,Y ) = E (XY) ≤
√

E (X 2)E (Y2) =
√
Var (X)Var (Y ). (B3)

The bound follows from the Cauchy-Schwarz inequality. We apply Ineq. (B3) to each of the final three covariances in
Eq. (B2):

|Cov (Ax, By)− Cov
(
A′

x, B
′
y

)
| =

⏐⏐⏐Cov (A′
x, rBy

)
+Cov

(
rAx

, B′
y

)
+Cov

(
rAx

, rBy

) ⏐⏐⏐ (B4)

≤
√

Var (A′
x)Var

(
rBy

)
+
√
Var (rAx

)Var
(
B′

y

)
+
√
Var (rAx

)Var
(
rBy

)
(B5)

≤ (ϵ+ 2
√
ϵ)N. (B6)

The final inequality follows from Ineq. (2) and Var (A′
x) ≤ N . This latter inequality holds because A′

x equals a sum

of N independent terms a
(i)
x . Each a

(i)
x ∈ {0, 1} and so has variance ≤ 1. We combine Ineq. (B6) with Eq. (4) and

the triangle inequality to conclude that

|B(A0, A1, B0, B1)− B(A′
0, A

′
1, B

′
0, B

′
1)| ≤ 16ϵ+ 32

√
ϵ. (B7)

According to the sketch of the proof of Theorem 1 [Ineq. (10)],

B(A′
0, A

′
1, B

′
0, B

′
1) ≤ 16/7. (B8)

Combing Ineqs. (B7) and (B8) gives

B(A0, A1, B0, B1) ≤ 16/7 + 16ϵ+ 32
√
ϵ, (B9)

the desired result.

Appendix C BACKGROUND: CHSH GAME

Before describing the CHSH game, we establish a more general framework for two-party nonlocal games. Nonlocal
games illustrate how players given quantum resources can outperform players given only classical resources. A two-
party nonlocal game involves two players, Alice and Bob. They share some resource—typically, classical shared
randomness or a quantum state. They cannot communicate after agreeing on the strategy they will follow. The game
begins when a verifier sends Alice a question, or symbol, x, and sends Bob a question y. Using only the questions and
possibly measurements of the shared resource, the players respond with symbols a and b. The verifier substitutes x,
y, a, and b into a function. If the function’s value satisfies some predetermined criterion, the players win the game.

Every nonlocal game has a list of winning response pairs ab for every question pair xy. The players aim to maximize
their probability of responding with a winning ab, knowing the winning response lists and the distribution from which
the questions are drawn. The maximal win probability is called the game’s value.
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The CHSH game is described as follows in this language. Questions x and y are drawn from {0, 1}. Winning
responses are a, b ∈ {0, 1} such that

x ∧ y = a+ b (mod 2). (C1)

The ∧ denotes the logical AND. Table I summarizes the winning response pairs.

y\x 0 1

0 00 11 00 11

1 00 11 01 10

TABLE I: Diagrammatic specification of the CHSH game: Each column corresponds to one possible value of Alice’s
question, x, and each row corresponds to one possible value of Bob’s question, y. Each cell contains the winning response
pairs ab.

The CHSH game illustrates the separation between what players can achieve when sharing only classical resources
and what players can achieve when sharing entanglement. Suppose that x and y are selected uniformly randomly.
Players given only classical resources have a probability ≤ 3/4 of winning a random round. Players who measure a
shared entangled state have a probability sin2(3π/8) ≈ 0.854. Both facts are proved below.

Theorem 3. A classical strategy based on shared randomness can win the CHSH game with probability at most 3/4.

Proof. Classical players can achieve the value (the optimal win probability) with a deterministic strategy. We prove
this claim with a fairly standard minimax argument: Let ω denote the game’s value. Assume that some randomness-
based strategy achieves ω. Let r denote the random seed. By assumption,

Er

⎛⎝Ea,b

⎛⎝ ∑
a,b : x∧y=a+b

P (a, b |x, y, r)

⎞⎠⎞⎠ = ω. (C2)

P (a, b |x, y, r) denotes the probability that the players respond with a and b, conditioned on the questions x and y
and on the random seed r. Some value r0 of r maximizes the inner expectation value, by the average’s convexity.
Fixing r = r0 results in a deterministic strategy that achieves the game’s value, ω, as claimed.
Restricted to deterministic strategies, the players have few options. Given a question i, a player must respond with

some fixed output. Define ai as Alice’s response to the question i, and define bi as Bob’s response to i. In the CHSH
game, the winning responses satisfy ai, bi ∈ {0, 1},

a0 + b0 = 0 (mod 2), (C3)

a1 + b0 = 0 (mod 2),

a0 + b1 = 0 (mod 2), and

a1 + b1 = 1 (mod 2).

Linear algebra over F2 shows that these equations cannot all be satisfied simultaneously. Hence any deterministic
classical strategy must lose on at least one of the four question pairs. Such a strategy wins a random round with
probability ≤ 3/4.

Constructing a deterministic classical strategy that achieves a win probability of 3/4 is straightforward [47, 48]. The
construction shows that the CHSH game’s classical value is 3/4.

Next, we construct a quantum strategy that has a superclassical probability > 3/4 of winning the CHSH game. Our
presentation is nonstandard but will prove useful later. We begin by reviewing notation and facts about maximally
entangled two-qubit states.

Let |Ψ−⟩ := 1√
2
(|01⟩ − |10⟩) denote the singlet and |Ψ−(θ)⟩ := 1√

2

(
|01⟩ − eiθ|10⟩

)
. We denote the operator that

rotates one qubit about the z-axis through an angle θ by Rz (θ) := e−iθσz/2.

Lemma 1. Rotations compose as

1. [Rz(θ1)⊗Rz(−θ2)]|Ψ−⟩ = (phase)|Ψ−(θ1 + θ2)⟩.

Consider preparing a pure two-qubit state |ψ⟩, then measuring σx⊗σx. A classical two-bit string results. Let PXX (S|ψ)
denote the string’s probability of being in the set S. If Seven := {00, 11} and Sodd := {01, 10},
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2. PXX(Seven |Ψ−) = 0,

3. PXX(Seven |Ψ−(π)) = 1, and

4. PXX(Seven |Ψ−(θ)) = sin2(θ/2).

Proof. Identities 1–3 can be verified by direct calculation. To prove identity 4, we note that |Ψ−(θ)⟩ equals a linear
combination of |Ψ−⟩ and |Ψ−(π)⟩. Furthermore, ⟨Ψ−|Ψ−(π)⟩ = 0. Hence |Ψ−(θ)⟩ = α|Ψ−⟩+ β|Ψ−(π)⟩, and

PXX(Seven |Ψ−(θ)) = |α|2 = |⟨Ψ−|Ψ−(θ)⟩|2 (C4)

=
1

4
|1− exp(iθ)|2 (C5)

=
1

2
[1− cos(θ)] = sin2(θ/2). (C6)

These facts underlie a strategy for winning the CHSH game, using quantum resources, with a greater probability
than is achievable with only classical resources. The quantum strategy consists of the following steps:

1. Alice and Bob prepare |Ψ−⟩, and each player takes one qubit. The players agree on how each will generate a
response, given any possible question.

2. Upon receiving question i, Alice rotates her qubit with Rz(θi). Upon receiving question i, Bob rotates his qubit
with Rz(−θi). The rotation angle θi depends on the question and the strategy.

3. Each player measures his/her qubit’s σx. The outcome is sent to the verifier as a response.

We now identify angles θi that lead to a superclassical probability of winning the CHSH game.

Lemma 2. A quantum strategy with rotation angles θ0 = −3π/8 and θ1 = 9π/8 wins the CHSH game with probability
sin2(3π/8) ≈ 0.854.

Proof. We verify the claim computationally. Upon receiving the question pair 00, the players win with a probability

PXX(Seven |Ψ−(3π/4)) = sin2(−3π/8). (C7)

Upon receiving 01 or 10, the players win with a probability

PXX(Seven |Ψ−(3π/4)) = sin2(3π/8). (C8)

Finally, upon receiving 11, the players win with a probability

PXX(Sodd |Ψ−(9π/4)) = 1− PXX(Seven |Ψ−(9π/4)) (C9)

= 1− sin2(9π/8) (C10)

= sin2(3π/8). (C11)

Hence the players have a total win probability, averaged over the possible question pairs, of sin2(3π/8).

A wide range of rotation angles can achieve superclassical win probabilities. For example, θ0 = π/2 and θ1 = 3π/4
lead to a win probability of ≈ 0.802.

Appendix D DETAILS: QUANTUM VIOLATION OF THE NONLINEAR BELL INEQUALITY FOR
MACROSCOPIC MEASUREMENTS

Here, we complete the proof of Theorem 2. In App. D 1, we prove Eq. (14). Appendix D 2 shows that the proof in
the main text is robust with respect to small experimental imperfections.
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D 1 Proof of Eq. (14)

Let |Ψ−⟩ := 1√
2
(|01⟩− |10⟩) denote the singlet. We simplify notation by omitting superscripts from the microscopic

responses, e.g., a
(i)
x . Recall that ax, by ∈ {0, 1}. Consequently, for any x, y ∈ {0, 1}, each expectation value E (axby)

contains only one nonzero term, the term in which ax = by = 1. These equalities are satisfied when Alice’s ith

microscopic system and Bob’s ith microscopic system output 1s. Consequently, E (axby) equals the probability that
ax = by = 1:

E (axby) = P (ax=by=1) . (D1)

We calculate E (axby) when Alice and Bob follow the CHSH strategy outlined in App. C. The probability that Alice
and Bob send responses 11, given questions xy, is

P (ax=by=1) = |⟨−−|Rz(θx + θy)|Ψ−⟩|2. (D2)

Since ZZ|Ψ−⟩ = −|Ψ−⟩,

|⟨−−|Rz(θx + θy)|Ψ−⟩|2 = |⟨−−|Rz(θx + θy) (ZZ) |Ψ−⟩|2 (D3)

= |⟨−−| (ZZ)Rz(θx + θy)|Ψ−⟩|2 (D4)

= |⟨++|Rz(θx + θy)|Ψ−⟩|2. (D5)

Hence the LHS of Eq. (D2) decomposes in terms of Eq. (D5) and the LHS of Eq. (D3):

P (ax=by=1) =
1

2

[
|⟨++|Rz(θx + θy)|Ψ−⟩|2 + |⟨−−|Rz(θx + θy)|Ψ−⟩|2

]
(D6)

=
1

2
PXX(Seven |Ψ−(θx + θy)). (D7)

Substituting in from Eq. (C7) gives

P (a0=b0=1) =
1

2
PXX(Seven |Ψ−(3π/4)) (D8)

=
1

2
sin2(3π/8). (D9)

Similarly, by Eq. (C8),

P (a1=b1=1) = P (a0=b1=1) =
1

2
PXX(Seven |Ψ−(3π/4)) (D10)

=
1

2
sin2(3π/8). (D11)

Finally, Eq. (C11) implies that

P (a1=b1=1) =
1

2
PXX(Seven |Ψ−(9π/4)) (D12)

=
1

2
sin2(9π/8) (D13)

=
1

2
− 1

2
sin2(3π/8). (D14)

Combining Equations (D9), (D11), and (D14) with Eq. (D1) yields

E (a0b0) + E (a1b0) + E (a0b1)− E (a1b1) = P (a0=b0=1) + P (a1=b0=1) + P (a0=b1=1)− P (a1=b1=1) (D15)

= 2 sin2(3π/8)− 1

2
. (D16)



12

D 2 Analysis of experimental error in quantum violation of the macroscopic Bell inequality

In the sketch of the proof of Theorem 2, we showed that [Eq. (19)]

B(A′
0, A

′
1, B

′
0, B

′
1) = 2

√
2. (D17)

The macroscopic random variables A′
0, A

′
1, B

′
0, B

′
1 were produced by noise-free measurements of perfectly prepared

Bell states.

Noise can taint the setup, as discussed in Sec. I. To recap, we define

Ax = A′
x + rAx

. (D18)

The random variable rAx
represents noise whose variance is bounded: Var (rAx

) ≤ ϵN . Ax represents the macroscopic
outcome of a measurement made in the presence of noise. By and rBy

are defined analogously.

In App. B, we showed that [Eq. (B7)]

|B(A0, A1, B0, B1)− B(A′
0, A

′
1, B

′
0, B

′
1)| ≤ 16ϵ− 32

√
ϵ. (D19)

Rearranging gives

B(A0, A1, B0, B1) ≥ B(A′
0, A

′
1, B

′
0, B

′
1)− 16ϵ− 32

√
ϵ. (D20)

Substituting in from Eq. (D17) gives

B(A0, A1, B0, B1) ≥ 2
√
2− 16ϵ− 32

√
ϵ, (D21)

the desired result.

Appendix E EQUIVALENCE OF LOCAL QUANTUM CORRELATIONS AND GLOBAL CLASSICAL
CORRELATIONS AS RESOURCES FOR VIOLATING THE MACROSCOPIC BELL INEQUALITY

We formalize the discussion in Sec. III with a theorem. To state the theorem cleanly and to avoid confusion with
Ax and By, we introduce experimentalists Carol and Dan. Each has a system of N particles. Carol measures with
settings x = 0, 1, and Dan measures with settings y = 0, 1. The macroscopic outcomes are the values of random
variables Cx and Dy.

Like Alice and Bob, Carol and Dan obey assumption (a) in Sec. I. But Carol and Dan’s systems can share global
correlations, violating assumption (b). We assume that Carol and Dan’s measurements suffer from no other errors.

Theorem 4. Carol and Dan can, with 2N ≫ 1 particles, produce correlations that satisfy

B(C0, C1, D0, D1) = 2N. (E1)

Proof. Carol and Dan can implement a probabilistic strategy, flipping an unbiased coin. If the coin falls heads-up,
they fix their particles to output 1s, regardless of measurement settings. If the coin falls tails-up, all particles are
fixed to output 0s. A straightforward calculation gives

Cov (C0, D0) =
N2

2
−
(
N

2

)2

=
N2

4
. (E2)

Similar calculations describe the other covariances, so

B(C0, C1, D0, D1) =
4

N

(
3N2

4
− N2

4

)
= 2N. (E3)
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Appendix F MACROSCOPIC CHSH GAME

We develop a macroscopic analog of the CHSH game, reviewed in App. C. Just as the CHSH game is built on the
Bell-CHSH inequality, the macroscopic CHSH game is built on the macroscopic Bell inequality proven in Theorem 1.
The macroscopic CHSH game differs from the microscopic CHSH game in three ways:

1. The macroscopic game is multiplayer. It involves 2N players, N Alices and N Bobs, who cannot communicate
with each other. Each receives a question and responds. However, the verifier aggregates the Alices’ responses
and aggregates the Bobs’ responses. We also place an important restriction on the players. We assume each
Alice plays the game independently from all players except one Bob, and vice versa. This means each Alice
can share randomness or entanglement with at most one Bob. The game’s Alices play the same role as the
microscopic particles in the main text. In the main text’s photon-beam example, photons serve as the game’s
Alices and Bobs, and the beams serves as the game’s aggregate Alice and aggregate Bob.

2. The game is multiround; several question-and-answer sessions take place. We assume the players lack memories,
following the same strategy in every round.6 The verifier evaluates the players’ performance after analyzing all
the rounds’ outcomes.

3. The verifier assigns to the players a score in [0, 1], rather than a win or a loss.

The rest of this appendix is organized as follows. We formulate the game in App. F 1. In App. F 2, we upper-
bound the score achievable by players given only classical systems. We show how to violate the bound, using quantum
systems, in App. F 3.

F 1 Definition of the macroscopic CHSH game

The macroscopic CHSH games is a multiround nonlocal game played with N memoryless Alices and N memoryless
Bobs. In every round, the verifier randomly picks a question pair xy from the set {00, 01, 10, 11}. The question x is
sent to every Alice, and the question y is sent to every Bob. Each Alice responds with one bit, as does each Bob. The
verifier keeps a transcript of the questions and responses. After all the rounds, the verifier scores the game as follows:

1. The verifier calculates the average number Ax of Alices who answer 1 to question x and the average number By

of Bobs who answer 1 to question y, for all questions x, y ∈ {0, 1}.

2. The verifier assesses each round, using the following procedure. Label the round’s questions x and y. Let Ax

denote the number of Alices who reply 1 to x, and let By denote the number of Bobs who reply 1 to y. (Ax

and By are values of random variables.) The verifier checks whether Ax and By satisfy two criteria, motivated
below:

(a) If either number of 1s lies too close to the mean, the players lose the round: |Ax − Ax| <
√
N , or

|By −By| <
√
N .

(b) Otherwise, the verifier checks whether

sgn(Ax −Ax) sgn(By −By) = (−1)x∧y (mod 2). (F1)

If this equation is true, the players win the round. If not, they lose.

3. The verifier assigns the players a score for the entire game: The verifier identifies the question pair xy = x0y0
on which the players won least frequently. The fraction of x0y0 rounds on which the players won becomes their
score.

6 This requirement might seem strong from a nonlocal-games per-
spective. However, it is natural from the perspective of the
macroscopic Bell test, presented in the main text, equivalent
to our nonlocal game. We illustrate with the photon beams in-
troduced in Sec. I. To perform the macroscopic Bell test, one
evaluates the macroscopic Bell parameter (4) after running mul-

tiple trials. Multiple trials manifest, in the photon-beam exam-
ple, as sequential measurements of Alice’s beam’s intensity and
of Bob’s beam’s intensity. Alice’s sequential measurements are
measurements of independent sets of photons. The photons’ in-
dependence is equivalent to the players’ amnesia in the nonlocal
game.
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A few comments about this game are in order. First, we discuss the single-round win conditions, oppositely the
order in which they are presented. Consider assigning the aggregated Alices a 1 if far more than the average number
of constituent Alices respond with 1s and assigning the aggregated Alices a 0 if far fewer than the average number
respond with 1s. Assign the aggregated Bobs a 1 or a 0 analogously. Condition 2b confirms that the aggregated Alices
and aggregated Bobs satisfy the CHSH win condition (C1) in one round.

Condition 2a ensures that the players fail a round if their responses lie too close to the average responses. In the
absence of this condition, the macroscopic CHSH game would reduce to the microscopic game: Imagine eliminating
condition 2a and aggregating responses via sgn(Ax − Ax) and sgn(By − By). The players could follow a strategy
according to which N−1 Alices (Bobs) responded deterministically. The final Alice’s (Bob’s) response would determine
whether the number of 1s received were higher or lower than the average, determining the aggregate response. A
microscopic response would control the macroscopic response.√

N was chosen for the following reason. Each Ax and By is a sum of independent and identically distributed (i.i.d.)

random variables. Consider the limit as N → ∞. Consider the probability that Ax or By assumes a value N1/2+ϵ

away from its mean. This probability vanishes for all ϵ > 0, by the central limit theorem. Hence fluctuations ∼
√
N

are the largest—most easily visible—fluctuations that can occur. The verifier must be able to detect these largest
fluctuations and need not resolve finer fluctuations. A similar criterion is introduced in [35].

Second, we elucidate how the macroscopic Bell inequality’s nonlinearity manifests in the macroscopic CHSH game.
The inequality and the game distinguish classical randomness from pairwise entanglement (entanglement shared by
each Alice with exactly one Bob and vice versa), without violating the principle of macroscopic locality [33–35].
The inequality succeeds by depending on probabilities nonlinearly (Sec. III). Therefore, also the game should involve
nonlinearity. Each strategy specifies a set of four conditional probability density functions (PDFs), P (a, b |xy=00),
P (a, b |xy=01), P (a, b |xy=10), and P (a, b |xy=11). The score is a function of the four PDFs and is nonlinear in each
PDF. The reason is step 1: The verifier calculates average aggregate responses, then compares the actual aggregate
responses with the averages.

This use of averages implies that the players should lack memories: Suppose that the players had only classical
resources but had memories. The players could use different strategies in different rounds. Mixing strategies would
change the averages, allowing players to win rounds that they would lose if they followed either strategy consistently.

F 2 Upper bound on the score achievable by classical players of the macroscopic CHSH game

We bound the classical players’ score as follows. The random variables A0, A1, B0, and B1 are distributed according
to a multivariate Gaussian, by the central limit theorem. If these variables have limited variances and covariances,
they are unlikely to satisfy the win criteria, (2a) and (2b). We prove this fact for x∧y = 0 in Lemma 3 and for x∧y = 1
in Corollary 1. The proofs consist of technical calculations regarding tails of multivariate Gaussians. Combining the
lemma and corollary with Theorem 1 leads to Theorem 5: Every classical strategy has small covariance on at least
on question pair. Hence the score achievable by classical players obeys an upper bound.

Lemma 3. Let X and Y denote random variables distributed according a multivariate Gaussian with variances
σ2
X ≤ N/4 and σ2

Y ≤ N/4 and with covariance Cov (X ,Y) ≤ N/7. The probability that X and Y both far exceed their
means is small:

P
(
X − E (X ) ≥

√
N ∧ Y − E (Y) ≥

√
N
)
≤ 0.0051. (F2)

Proof. The proof is computational. For ease of notation, we shift X and Y so that each has mean 0. Let Y(x′) denote
the random variable Y conditioned on the event X = x′. We expand the probability in Eq. (F2):

P
(
X ≥

√
N ∧ Y ≥

√
N
)
= P

(
X ≥

√
N
)
P
(
Y ≥

√
N
⏐⏐X ≥

√
N
)

(F3)

=

∫ ∞

√
N

P (X = x′)P
(
Y(x′) ≥

√
N
)
dx′. (F4)

=

∫ ∞

√
N

∫ ∞

√
N

P (X = x′)P(Y(x′) = y′)dx′dy′. (F5)

The theory of multivariate Gaussians implies that Y(x′) is distributed according to a Gaussian with variance

σY(x′) =

√
σ2
Y − Cov (X ,Y)

2

σ2
X

(F6)
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and mean

E(Y(x′)) =
x′Cov (X ,Y)

σ2
X

. (F7)

We substitute the probabilities’ Gaussian forms into Eq. (F5). If erf(z) := 2√
π

∫ z

0
dt e−t2 denotes the error function,

P
(
X ≥

√
N ∧ Y ≥

√
N
)
=

∫ ∞

√
N

1√
2πσ2

X
exp

(
− (x′)2

2σ2
X

)∫ ∞

√
N

1√
2πσ2

Y(x′)

exp

(
− [y′ − E(Y(x′))]2

2σ2
Y(x′)

)
dy′dx′ (F8)

=

∫ ∞

√
N

1√
2πσ2

X
exp

(
− (x′)2

2σ2
X

)
1

2

[
1− erf

(√
N − E(Y(x′))√

2σY(x′)

)]
dx′ (F9)

=

∫ ∞

1

1√
2πσ2

X /N
exp

(
− (x′)2

2σ2
X /N

)
1

2

[
1− erf

(
1− E(Y(x′))√
2 σY(x′)/

√
N

)]
dx′. (F10)

By assumption, σX ≤
√
N/2, σY ≤

√
N/2, and Cov (X ,Y) ≤

√
N/7. By the Cauchy-Schwarz inequality,√

σ2
Xσ

2
Y ≥ Cov (X ,Y) [Ineq. (B3)]. We numerically optimize the probability (F10) subject to these constraints [67].

The probability maximizes when σX , σY , and Cov (X ,Y) assume their maximum possible values: σX = σY =
√
N/2,

and Cov (X ,Y) = N/7. The maximum probability lies slightly below 0.0051.

Corollary 1. Let X and Y denote random variables distributed according to a multivariate Gaussian with variances
σ2
X ≤ N/4 and σ2

Y ≤ N/4 and with covariance Cov (X ,Y) ≤ −N/7. The probability that X far exceeds its mean while
Y lies far below its mean is small:

P
(
X − E (X ) ≥

√
N ∧ Y − E (Y) ≤ −

√
N
)
≤ 0.0051. (F11)

Proof. Apply Lemma 3 to the random variables X and −Y .

Theorem 5. Classical players can achieve an average score of at most 0.0102 in the macroscopic CHSH game, if the
number 2N of players is sufficiently large.

Proof. By the multivariate central limit theorem, the random variables A0, A1, B0, and B1 come to obey multivariate
Gaussian distributions in the large-N limit. Let xy denote an arbitrary question pair. If x ∧ y = 0, the players can
win in two ways: (i) The number Ax of Alices who respond 1 lies far above the mean number Ax who respond 1.
Meanwhile, the number By of Bobs who respond 1 lies far above the mean number By. That is,

Ax −Ax ≥
√
N ∧ By −By ≥

√
N. (F12)

(ii) Ax lies far below its average, while By lies far below its average:

Ax −Ax ≤ −
√
N ∧ By −By ≤ −

√
N. (F13)

The players’ probability of winning via (i) was bounded in Lemma 3. Their probability of winning via (ii) is the same,
by the multivariate Gaussian’s symmetry. Hence the players’ total probability of winning on xy : x ∧ y = 0 is

P
(
Ax − E (Ax) ≥

√
N ∧By − E (By) ≥

√
N
)
+ P

(
Ax − E (Ax) ≤ −

√
N ∧By − E (By) ≤ −

√
N
)

(F14)

= 2P
(
Ax − E (Ax) ≥

√
N ∧By − E (By) ≥

√
N
)
. (F15)

The second line follows from the multivariate Gaussian’s symmetry.
Now, suppose that x∧ y = 1. The players win if the number Ax of Alices who reply 1 lies far above/below its mean

while the number By of Bobs who reply 1 lies far below/above its mean:

Ax −Ax ≥
√
N ∧ By −By ≤ −

√
N , or (F16)

Ax −Ax ≤ −
√
N ∧ By −By ≥

√
N (F17)
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These two events have equal probabilities of occurring. Hence the players have a win probability of

2P
(
Ax − E (Ax) ≥

√
N ∧By − E (By) ≤ −

√
N
)
. (F18)

We now invoke the macroscopic Bell inequality. For simplicity, we have not defined noise or classical global
correlations in the game. We therefore set ϵ = 0 in Theorem 1. The theorem, with the definition (4), implies
that

Cov (A0, B0) + Cov (A0, B1) + Cov (A1, B0)− Cov (A1, B1) ≤ 4N/7. (F19)

A minimimax argument gives

min {Cov (A0, B0) ,Cov (A0, B1) ,Cov (A1, B0) ,−Cov (A1, B1)} ≤ N/7. (F20)

Therefore, some question pair xy satisfies either x ∧ y = 0 and Cov (Ax, By) ≤ N/7 or x ∧ y = 1 and Cov (Ax, By) ≥
−N/7. Furthermore, each Ax and each By is a sum of N independent random variables, each of which has a variance
of ≤ 1/4. Hence

Var (A0) ,Var (A1) ,Var (B0) ,Var (B1) ≤ N/4. (F21)

Consider the (Ax, By) that achieves the minimization in Ineq. (F20). It satisfies the assumptions in Lemma 3 and
Corollary 1. By the lemma and Eq. (F15), and by the corollary and Eq. (F18), this (Ax, By) satisfies the win conditions
with probability ≤ 2× 0.0051 = 0.0102. The score equals the minimum, over all xy pairs, of the probability that the
players win on xy. Hence the score ≤ 0.0102, as claimed.

F 3 Superclassical score in the macroscopic CHSH game

We have upper-bounded the score achievable by classical players of the macroscopic CHSH game. Now, we show
that players can violate this bound, given quantum resources. The proof is constructive; we exhibit a superclassical
strategy. It is built on the strategy shown, in App. C, to win the microscopic CHSH game with a superclassical
probability.

Theorem 6. Players given quantum resources can achieve a score of ≥ 0.0150 in the macroscopic CHSH game.

Proof. As in the proof of Theorem 2, each Alice-Bob pair adopts the conventional CHSH strategy (App. C): Each pair
shares a singlet. When Alice measures any observable, she has a probability 1/2 of obtaining +1, and responding 1 to
the verifier, and a probability 1/2 of obtaining −1, and responding 0. The same is true of Bob. Hence the aggregated
Alice responses and the aggregated Bob responses obey

E (A0) = E (A1) = E (B0) = E (B1) = N/2 (F22)

and

Var (A0) = Var (A1) = Var (B0) = Var (B1) = N/4. (F23)

According to Equations (7), (D1), (D9), (D11), and (D14), A0, A1, B0, and B1 satisfy also

Cov (A0, B0) = Cov (A0, B1) = Cov (A1, B0) = −Cov (A1, B1) (F24)

=

N∑
i=1

Cov
(
a
(i)
0 , b

(i)
0

)
(F25)

=

N∑
i=1

[
E
(
a
(i)
0

)
E
(
b
(i)
0

)]
(F26)

=

N∑
i=1

[
P
(
a
(i)
0 = b

(i)
0 = 1

)
− 1

2
· 1
2

]
(F27)

= N

[
1

2
sin2

(
3π

8

)
− 1

4

]
(F28)

= N/(4
√
2). (F29)
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We can numerically bound the mean score averaged over instances of the (multiround) game. The computation
bounding the mean win probability on the question pair 00 is given here. The other calculations are similar and
produce identical results.

By the multivariate central limit theorem, the joint distribution over the random variables A0 and B0 is a multi-
variate Gaussian with means N/2 and covariance matrix

Σ =

(
N
4

N
4
√
2

N
4
√
2

N
4

)
. (F30)

The players win if A0 and B0 both lie above or both lie below their means by at least
√
N . This event occurs with

probability

P
(
A0 ≥ N/2 +

√
N ∧ B0 ≥ N/2 +

√
N
)
+ P

(
A0 ≤ N/2−

√
N ∧ B0 ≤ N/2−

√
N
)
≥ 0.0150. (F31)

The bound was computed numerically [67].

Appendix G TOY APPLICATION TO POSNER MOLECULES

In Sec. III, we introduced a potential application of the macroscopic Bell inequality to Posner molecules. Posners are
beginning to be characterized experimentally. If they are found to retain coherences, entanglement should be tested
for [39]. How can it be, since the operations conjectured to be performable on Posners differ from the operations used
in conventional Bell tests [38]? We begin answering that question here, though further work is needed. We construct a
partially macroscopic Bell test implementable with the operations conjectured to be performable on Posners [36, 38].
The test relies on macroscopic intensity measurements but microscopic manipulations of Posners.

The background needed to understand this appendix can be found in the following places. First, information about
Posners appears in [38], particularly in Sections 2.1, 3.1, 3.2, 3.4, and 3.7. Second, useful background appears in this
paper’s Sec. III, App. C, and App. G 1. Third, calculations involving Posner states were performed with code that
was originally written by E. Crosson for [38] and was repurposed with her permission [67].

The rest of this appendix is structured as follows. The first two sections offer a warmup: Appendix G 1 overviews
the tools used. Appendix G 2 introduces a strategy for winning the CHSH game with a superclassical probability,
using a finely controlled system of a few Posners. We sketch a many-Posner Bell test in App. G 3. In App. G 4, we
analyze the sketch, identify its shortcomings, and discuss opportunities for sharpening it.

G 1 Preliminaries needed for the Posner Bell test

In Sec. G 1 i, we discuss the operations needed to perform our Posner Bell test. In Sec. G 1 ii, we introduce four
facts that underlie the analysis of the Posner Bell test.

G 1 i Operations needed to implement the Posner Bell test

These operations can be performed in principle, if Fisher conjectures correctly about Posner biochemistry [36].
That is, these operations can be implemented within the Posner model of quantum computation, or with Posner
operations, defined in Sec. 3.4 of [38]. However, some operations require impractical microscopic control.

1. Preparation of singlets of phosphate nuclear spins: We assume that phosphates’ phosphorus nuclear
spins can be prepared in the singlet state, |Ψ−⟩ = 1√

2
(|01⟩ − |10⟩) (see Sections 2.1 and 3.4 of [38]). Such

a singlet has been conjectured to form when the enzyme pyrophosphatase hydrolyzes a diphosphate into two
phosphates [36, 37].

2. Controlled Posner formation: We assume that Posners can be formed with phosphates laid out in arbitrary
arrangements, subject to the restrictions of the Posner’s geometry (see Sections 3.1.2–3.1.4, 3.4, and 3.7 of [38]).
This assumption may seem unreasonable. We can mitigate the unreasonableness slightly, because the assumption
is required only for setting up the Posner Bell test. The ability to detect and postselect on Posners in desired
geometries would suffice.
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In particular, we assume the ability to create two Posners that share six singlets in a geometrically symmetric
arrangement. This “six singlets shared” state is presented in Sec. 3.7 of [38] and reproduced here in Fig. 1. We
denote this state by |ψent

AB⟩, wherein A and B label the Posners.

3. τ rotations: A Posner has a sixfold rotational symmetry. Consider the operator that represents a rotation
about the symmetry axis. The operator has eigenvalues τ = 0,±1. The Posner Bell test requires the ability to
map some states of a Posner to another τ sector. Such a rotation can be accomplished via multiple mathematical
operations, we found via direct calculation [67]. One operation is a rotation of one of the Posner’s qubits with
the Pauli z-operator, σz. We focus on this implementation for concreteness.

We assume the existence of an operator Rz(θ) that represents the desired rotation. For specificity, we assume
that the rotated qubit is the qubit labeled 1 in [38] (see Fig. 1 in the present paper). When we need to distinguish
between Posners, we use the notation Rz(θ)A to denote the operator Rz(θ) applied to Posner A.

Rz(θ) can be effected physically, e.g., as described in Sections 3.4 and 3.8 of [38]: Let phosphate 1 form a
Posner A with other phosphates and with calcium ions. Applying a magnetic field to A will rotate all six qubits,
with [Rz(θ)]

⊗6. If the pH rises, Posner A will likely hydrolyze, or break apart. The pH can then be lowered.
Phosphate 1 can find new phosphates with which to form a Posner B. Posner B will have undergone Rz(θ)B .
Other means of effecting Rz(θ) may be possible.

4. Posner-binding measurement: Suppose that Posners A and B approach each other such that their symmetry
axes are parallel and point oppositely each other. We call this arrangement the prebinding orientation, follow-
ing [38]. Quantum-chemistry calculations suggest that the Posners can bind together [55]. This measurement
projects Posners A and B into the subspace labeled by τA+ τB = 0 (if the Posners bind) or onto the orthogonal
subspace (if the Posners do not). Following [38], we denote by ΠAB the projector onto the Posner-binding
subspace.

We assume that an experimentalist can observe the number of such bindings. A method is proposed in [39]:
Calcium indicators are added to the Posner-containing test tube. Bound-together Posners would move slowly,
becoming susceptible to attack by hydrogen ions H+ and magnesium ions Mg2+. These ions could outcompete
the positively charged calcium ions Ca2+ in binding to the negatively charged phosphate ions PO3−

4 . The invaders
would hydrolyze the Posners, breaking the molecules into their constituent ions. The calcium indicators would
bind to the calcium ions Ca2+, then fluoresce. An experimentalist could detect the fluorescence.

Our proposal sharpens the inspirational sketch, in [39], of a test for entanglement between Posners. There, Posners
in different test tubes were imagined to share entanglement. Posners in each test tube would bind, and each test tube
would fluoresce. The intensities of the test tubes’ fluorescence were imagined to exhibit correlations. We add that,
to infer that Posners shared entanglement, one must observe not just any correlations between the intensities. Some
correlations produceable with entanglement can be recapitulated with classical resources. We begin constructing a
means of observing nonclassical correlations, using the macroscopic Bell inequality (Theorem 1).

FIG. 1: Symmetric “six singlets shared” configuration of two Posner molecules: Reprinted from [38], with
permission from Elsevier.
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G 1 ii Four facts that underlie the Posner Bell test

First, all the phosphorus nuclear spins in the state |ψent
AB⟩ are in copies of |Ψ−⟩. Each phosphate in Posner A is

entangled with the phosphate at the corresponding position in Posner B. As shown in App. C,

[Rz(θ1)⊗Rz(−θ2)]|Ψ−⟩ = [Rz(θ1 + θ2)⊗ 1]|Ψ−⟩. (G1)

The Posner analog (operation 3 in App. G 1 i) has the form

[Rz(θ1)A ⊗Rz(−θ2)B ]|ψent
AB⟩ = Rz(θ1 + θ2)A|ψent

AB⟩. (G2)

Second, |ψent
AB⟩ is a superposition of states in which the Posners’ τ values sum to zero. This fact was first pointed

out in [38]: Consider Posners that occupy the state |Ψent
AB⟩ and the prebinding orientation. The Posners were observed

to have a unit probability of binding (under the assumptions of Fisher’s model).
Third, suppose that Posners A and B occupy the state |ψent

AB⟩, while Posners A′ and B′ occupy the state |ψent
A′B′⟩.

Suppose that A assumes the prebinding orientation with A′ and that B assumes the prebinding orientation with B′.
A pair’s binding is represented with a bit value 0, and a pair’s not binding is represented with a 1. The two pairs’ bits
have even parity in two cases, if both pairs bind or both pairs fail to bind. If the bits have even parity, the four-Posner
state is projected with

Πeven = ΠAA′ΠBB′ + (1−ΠAA′)(1−ΠBB′). (G3)

The binding-measurement outcomes have even parity, we claim:

|Πeven|ψent
AB⟩|ψent

A′B′⟩|2 = 1. (G4)

Either both pairs bind or both fail to bind. Equation (G4) can be checked computationally [67] and with the following
logic: In |ψent

AB⟩, τA + τB = 0. In |ψent
A′B′⟩, τA′ + τB′ = 0. Hence τtotal = τA + τA′ + τB + τB′ = 0. In contrast, any state

in the image of the projector 1−Πeven = ΠAA′(1−ΠBB′) + (1−ΠAA′)ΠBB′ has a τtotal ̸= 0.
Fourth, we continue to consider the four-Posner state |ψent

AB⟩|ψent
A′B′⟩. Consider rotating a qubit with Rz(θ1)A. The

state of Posners A and B is rotated out of the τA+τB = 0 sector. This claim can be checked via direct calculation [67].
The even-parity-binding probability, |ΠevenRz(θ1)A|ψent

AB⟩|ψent
A′B′⟩|2, decreases as the rotation angle θ1 grows. We solve

for this relationship numerically [67] and present the results in Fig. 2.

0 1 2 3 4 5 6
Rotation angle (θ1 )0.0

0.2

0.4

0.6

0.8

1.0
Even-parity-binding probability

FIG. 2: Probability of even-parity binding vs. rotation angle: Probability
⏐⏐ΠevenRz(θ1)A|ψent

AB⟩|ψent
A′B′⟩

⏐⏐2 that Posner
A binds to Posner A′ while B binds to B′, after a qubit in A is rotated through an angle θ1.

G 2 Nonlocal game for a system of few Posners

We define the game in Sec. G 2 i. The game is adapted from the original CHSH game (App. C): As in the original
game, the Posner game’s players use singlets and rotations. But Posner-holding players cannot measure σx ⊗ σx.
So they share 12 singlets, rather than one, and perform Posner-binding measurements, rather than measuring Pauli
operators. Section G 2 ii shows that Posners can win the game with a superclassical probability, in principle, if
Fisher’s model is correct. This result is not obvious: The quantum operations undergone by Posners in Fisher’s model
are nonstandard and might not contain a universal gate set [38]. Our proof rests, however, on fine control over the
operations conjectured to be implementable.
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G 2 i Procedure for the Posner Bell test

We consider two experimentalists, Alice and Bob. Each can perform the operations described in App. G 1. Before
the test begins, the players prepare two copies of the two Posner-state |ψent⟩. Posner A shares entanglement with
Posner B, and A′ shares entanglement with B′. Alice takes A and A′, while Bob takes B and B′. Alice and Bob
separate, and each experimentalist receives a question from a verifier. The experimentalists aim to produce responses
that win the CHSH game (App. C) with a superclassical probability.

Alice and Bob’s procedures are almost identical, but we describe Alice’s approach first. If Alice receives the question
0, she rotates Posner A with Rz(−π/8)A. If she receives a 1, she rotates with Rz(3π/8)A. Afterward, she performs
the Posner-binding measurement between Posners A and A′. If the Posners bind, she sends the verifier a 1. If the
Posners fail to bind, she sends a 0.

Bob’s procedure is similar. However, he rotates Posner B with Rz(π/8)B , given the question y = 0, and rotates
with Rz(−3π/8)B , given y = 1. His binding measurement is on Posners B and B′.

G 2 ii Analysis of the Bell test for a few Posners

If Posners share entanglement, we now show, they can outperform classical resources in the CHSH game, in principle,
under Fisher’s assumptions.

Claim 1. Alice and Bob can win the nonlocal game for a few Posners with a superclassical probability of ≥ 79.5%,
given fine control over the operations implementable in principle in Fisher’s model.

Proof. Assume that Alice rotates Posner A with an angle θ1, while Bob rotates B with an angle θ2. By the test’s
construction, the experimentalists’ probability of sending the verifier an even-parity response pair is

|Πeven [Rz(θ1)A ⊗Rz(θ2)B ] |ψent
AB⟩|ψent

A′B′⟩|2 = |Πeven [Rz(θ1 − θ2)A] |ψent
AB⟩|ψent

A′B′⟩|2. (G5)

The equality follows from Eq. (G2). We evaluate this probability for all possible question pairs in Table II [67].

Questions θ1 − θ2 Even-parity-response probability

00 −π/4 0.934

01 π/4 0.934

10 π/4 0.934

11 3π/4 0.620

TABLE II: The probability that players provide an even-parity response pair ab to the possible question pair xy in the
few-Posner CHSH game. The first bit in the “questions” column labels the question x sent to Alice. The second bit labels the
question y sent to Bob.

In each round of the CHSH game, the verifier selects the question pair uniformly randomly. The winning response
pairs for the question pairs 00, 01, and 10 have even parity. The winning response pair for the question pair 11 has
odd parity. Therefore, the overall win probability for the few-Posner game is

3

4
× 0.934 +

1

4
× (1− 0.620) > 0.795. (G6)

The angles used by Alice and Bob (Sec. G 2 i) differ from the angles used in the conventional CHSH game (App. C).
The reason is, in the conventional game, Alice and Bob share a singlet, |Ψ−⟩ := 1√

2
(|01⟩ − |10⟩). In the Posner game,

Alice and Bob share entangled a pair of Posners. For the game’s purposes, the Posners’ τ degrees of freedom resemble
qubits in the maximally entangled state |Φ+⟩ := 1√

2
(|00⟩ + |11⟩). If Alice and Bob shared a copy of |Φ+⟩ in the

conventional CHSH game, they would use the rotations in App. G 2 i. This small-scale Posner Bell test informs our
macroscopic Posner Bell test, introduced next.
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G 3 Sketch of macroscopic Posner Bell test

We envision a three-dimensional tank of aqueous fluid. A glass plate coincides with the xy-plane. Along the x-axis
is a slit in which pyrophosphatase enzymes are lodged. Diphosphate ions are poured above the xy-plane and waft
downward on currents propelled from above.

The diphosphates can traverse the plane only through the enzymes. Suppose that an enzyme hydrolyzes a diphos-
phate, breaking the diphosphate into two phosphates (PO3−

4 ). The phosphorus (31P) nuclear spins form a singlet,
1√
2
(|↑↓⟩ − |↓↑⟩), according to the dynamical selection rule posited by Fisher and Radzihovsky [36, 37]. We assume

that, during the hydrolyzation and release, the enzyme changes shape, such that the diphosphate can enter the fluid
below the xy-plane.
Below the xy-plane, two currents sweep fluid away from the x-axis. One current sweeps toward the +y-axis, where

Alice collects the fluid. The other current sweeps toward the −y-axis, where Bob collects the fluid. Alice and Bob
share singlets. Alice and Bob add calcium ions, Ca2+, to their fluids. Posners form. Each players divides his/her
fluid among 3 test tubes. Alice holds test tubes A1, A2, and A3. Bob holds test tubes B1, B2, and B3.

A verifier sends a question x = 0, 1 to Alice and a question y = 0, 1 to Bob (App. F). Alice and Bob agreed, before
collecting the Posners, to follow the strategy for winning the few-Posner Bell test with a superclassical probability
(App. G 2): Upon receiving x = 0, Alice applies a magnetic field to test tube 1. The field implements the rotation
Rz(−π/8) on all the Posners in the test tube. If Alice receives x = 1, she applies a field that implements Rz(3π/8).
Bob’s strategy is similar but involves opposite signs: Given y = 0, he applies a magnetic field that implements Rz(π/8)
on all the qubits in his 1 test tube. Given y = 1, he applies Rz(−3π/8).
Each player lowers the pH in test tubes 1 and 2. The H+ ions outcompete positively charged Ca2+ ions in binding

to the negatively charge phosphorus ions (PO3−
4 ). The protons hydrolyze the Posners. Each player mixes his/her 1

and 2 test tubes, then raises the pH. New Posners form. Some Posners contain phosphorus nuclei whose spins are
rotated relative to the spins of the Posner’s other phosphorus nuclei.

Each player mixes his/her combined 1 and 2 test tubes with test tube 3, whose qubits have not been rotated. Then,
each player adds calcium indicators to the test tube and lowers the pH. Posners are hoped to approach each other
in the prebinding orientation. In Fisher’s model, some fraction of these Posners will bind. The fraction depends on
the entanglement and on the binding of Posners in the other player’s test tube. The bound-together Posners move
slowly, forming easy targets for H+ ions. The ions hydrolyze the bound-together Posners, flooding the test tubes with
calcium. The calcium binds to the calcium indicators, which fluoresce.

Alice and Bob measure the fluorescence’s intensity. After completing many trials, they compute the covariances
between their intensities, then estimate the macroscopic Bell parameter [Eq. (4)]. A superclassical value (Sec. 1)
certifies entanglement between Posners, if the experiment satisfies the assumptions in Sec. I. The experiment sketched
here likely does not satisfy the assumptions. We delineate reasons, and opportunities for improving the sketch, in the
next section.

G 4 Analysis of sketch of Posner Bell test

Much work remains to be done to shore up the Posner Bell test theoretically and to ensure its experimental
feasibility. First, the macroscopic Bell inequality needs extending. Theorem 1 relies on each particle’s interacting
with, at most, one other particle. Each Posner can share entanglement with up to six other Posners. The extension
from one to six requires a change to the inequality but maintains interactions’ locality.

Second, much could go awry during an implementation of the protocol in Sec. G 3. A not-necessarily-complete
list of loopholes include the following: (i) Enzymes might release separated phosphates into the fluid above the glass
plane. (ii) A current could sweep two entangled-together phosphates toward the same test tube. (iii) The phosphates
will assume random locations in the Posners. The “six singlets shared” states (Fig. 1) might form rarely. (iv) The
entangled phosphates spend time outside the Posners conjectured to protect coherence. The phosphorus nuclear spins
might decohere before Alice and Bob can complete their trial. Time scales must be estimated and compared, as in
Section 3.8 and App. K of [38]. (v) Posners in the same test tube might have a low probability of assuming the
prebinding orientation. The overall binding rate might therefore be too low. (vi) H+ ions can hydrolyze not only
bound-together Posners, but also individual Posners. Individual Posners’ hydrolyzation will add noise to the intensity
measurements.
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