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Abstract

The incompressible two-phase flow problem is solved by a method that combines cell-centered finite volume with
discontinuous Galerkin in non-overlapping subdomains. The primary unknowns are the wetting phase pressure and the capillary
pressure. The nonlinear equations are solved fully implicitly at each time step. Fluxes at the interface between subdomains are
defined implicitly to allow for seamless propagation of saturation fronts. Numerical results show the robustness and efficiency
of the method for homogeneous and heterogeneous porous media.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

This work formulates a numerical method for solving the incompressible two-phase flow problem in porous
media. Simulation of multiphase flow at the Darcy scale is an essential part of reservoir management for the oil
and gas industry. Petroleum engineers are concerned with the accurate prediction of the propagation of the injected
and resident phases into the reservoir. Reservoirs are characterized by strong rock heterogeneities, which may pose
a challenge for numerical modeling. Conservation of mass for each phase yields a mathematical model that is a
coupled system of nonlinear partial differential equations. Since the mathematical model is based on mass balance
for each phase, the numerical methods are required to be locally mass conservative in a discrete sense. Finite
difference methods, finite volume methods, mixed finite element methods and discontinuous Galerkin methods
are known to be locally mass conservative methods for elliptic problems. These methods have been applied to the
multiphase flow problem in porous media (see for instance [1–3]) and they each have pros and cons. Finite difference
and finite volume methods are mostly used with piecewise constants whereas mixed finite element methods and
discontinuous Galerkin methods are easily employed with high order polynomial approximations. Ideal numerical
methods for modeling two-phase flow in porous media should have negligible numerical diffusion, they should be
robust and accurate on structured and unstructured grids (even with highly distorted grid cells); they should handle
heterogeneities and anisotropy; and finally their computational cost should be reasonable.
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We propose a multinumeric method that partitions the domain into subdomains and employs in each subdomain
either finite volume or discontinuous Galerkin. The resulting method benefits from the positive features of the two
types of discretization at a total reduced computational cost. In parts of the domain where more accuracy is required,
the discontinuous Galerkin discretization is employed whereas in other parts of the domain finite volume methods
are used. The idea of combining discontinuous Galerkin and cell-centered finite volume has been proposed in the
literature for simple model problems. In [4,5], we formulated the multinumeric method on Voronoi meshes for
convection–diffusion problems. A theoretical convergence was proved in [6] for transport equations. However, we
point out that in this proposed work, the numerical fluxes at the interface between the discontinuous Galerkin and
finite volume subdomains differ from those used in [4–6].

Reservoir simulators used by practitioners in the oil and gas industry are mainly based on two-point flux cell-
centered finite volume (FV) methods because of the simplicity of these methods and their low computational
cost [7–9]. However, such finite volume methods are numerically diffusive, they suffer from grid distortion and
they cannot handle full anisotropy. It is worth noting that several finite-volume schemes, different from the simple
two-point flux methods, have been proposed in the literature to address the issues of grid distortion and anisotropy
(see [10,11] and references herein). The class of interior penalty discontinuous Galerkin (DG) methods has been
applied to multiphase flow in porous media [12–17]. They have very little numerical diffusion, they do not suffer
from grid distortion and they can handle full anisotropy. Their main drawback is their high computational cost. An
important motivation for having different discretizations in different domains is that this approach takes advantage
of both the accuracy of DG in regions of interest, such as regions containing local features (channels, barriers,
pinch-outs, wells), and the efficiency and low cost of two-point flux FV in the rest of the domain. By increasing
the order of approximation in the DG regions, we can obtain higher accuracy locally without having to change the
grid. In addition, since DG methods are variational methods, they do not suffer from grid distortion. This allows
the use of unstructured grids that coincide with local features (pinch-outs for instance) in the DG regions whereas
a much simpler Cartesian grid can be used in the FV regions.

Another important consideration, besides the choice of the spatial discretization and order of polynomial
approximation, is the choice of time-stepping and linearization of the discrete equations [18–20]. The IMPES
method solves for one pressure implicitly and one saturation explicitly in time; the semi-implicit method solves
each equation implicitly and sequentially; the fully implicit method solves for both unknowns at once. The most
popular choice of primary unknowns is one phase pressure and one phase saturation. Other choices used in the
literature include two pressures [21]. Recently, Bastian proposed to solve for the wetting phase pressure and the
capillary pressure with a fully implicit discontinuous Galerkin scheme [16] and showed that the method performs
well for highly heterogeneous media. Following [16], we will solve the discrete equations fully implicitly for the
wetting phase pressure and capillary pressure.

An outline of the paper is as follows. Section 2 defines the mathematical model for two-phase flow with the
physical wetting phase pressure and capillary pressure as primary unknowns. The multinumeric scheme is introduced
in Section 3. Numerical results in Section 4 show the robustness and accuracy of the algorithm. Conclusions follow
in Section 5.

2. Model problem

The incompressible two-phase flow problem in a porous medium is modeled by a system of mass balance
equations for each phase, coupled with closure relations.

∂(φραsα)
∂t

− ∇ · (ραλαK∇ pα) = 0, α = w, n, (1)

sw + sn = 1, (2)

pc = pn − pw. (3)

The saturation and pressure of the wetting phase (resp. non-wetting phase) are denoted by sw, pw (resp. sn, pn).
The difference between phase pressures is the capillary pressure, pc, which is a given function of the wetting phase
saturation [18]. The Brooks–Corey and Van Genuchten models are popular choices for the capillary pressure [22,23].
Our proposed method can handle either one, and for convenience, we have chosen the Brooks–Corey model:

pc =
pe

sθw
, (4)
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where the entry pressure pe and the exponent θ are given constants. We can solve for the wetting phase saturation
as a function ψ of capillary pressure. To have well-defined values, the function ψ is regularized (as in [16]):

sw = ψ(pc) =

⎧⎨⎩ 1 − θ
pc−pe

pe
if pc < pe,(

pe
pc

)θ
if pc ≥ pe.

(5)

The absolute permeability of the medium is denoted by K and the phase mobility, λα , is defined by:

λα =
krα

µα
, α = w, n. (6)

The total mobility λt is the sum of the phase mobilities (λt = λw + λn). The porosity φ and absolute permeability
K are positive functions that vary in space. The phase density ρα and phase viscosity µα are positive constants.
The phase relative permeability krα is a function of the wetting phase saturation. We select for primary unknowns
the wetting phase pressure and the capillary pressure. After manipulation (see [16]), the system (1)–(3) is rewritten
as:

−∇ · (λt K∇ pw + λn K∇ pc) = 0, (7)

−
∂(φψ)
∂t

− ∇ · (λn K∇ pc) + ∇ ·

(
λn

λt
u
)

= 0. (8)

Note that it is guaranteed that λt is strictly positive. The velocity u = −λt K∇ pw is the wetting phase velocity
up to a multiplicative scalar. The functions λw, λn, λt and ψ are nonlinear functions of pc. The system (7)–(8)
is completed by initial and boundary conditions. The boundary of the domain is partitioned into Dirichlet and
Neumann boundaries, ΓD and ΓN respectively.

pw = gw, pc = gn − gw, on ΓD, (9)

−λw K∇ pw · n = jw, −λn K∇(pc + pw) · n = jn, on ΓN. (10)

Finally, a wetting phase saturation is prescribed in the domain at the initial time, which yields an initial capillary
pressure denoted by p0

c . For simplicity, gravity is neglected and only a single capillary pressure law is used in the
whole domain. The scheme proposed in the following section can be extended to account for gravity and varying
capillary pressure laws.

3. Multinumeric DG-FV scheme

In this section, we introduce a fully discrete scheme for (7)–(10) that combines the interior penalty discontinuous
Galerkin and the cell-centered finite volume methods.

3.1. Notation and discrete spaces

The domain Ω is subdivided into M non-overlapping subdomains Ωi . On each subdomain, the discrete solution
will either be a DG solution or a FV solution. We denote by ΩFV (resp. ΩDG) the union of the subdomains where
the finite volume (resp. discontinuous Galerkin) method is used. Let T FV

h be a shape-regular mesh of ΩFV, and let
T DG

h be a shape-regular mesh of ΩDG. We assume that T FV
h is made of rectangular elements in 2D and boxes in

3D. There is no restriction on the shape of elements in ΩDG. Let h denote the maximum diameter of the elements
in T FV

h ∪T DG
h . The interface between the subregions is denoted by ΓDF; we assume the meshes T FV

h and T DG
h align

on ΓDF. We denote by Γ FV
h,0 the set of all interior faces of T FV

h and by ΓDG
h,0 the set of all interior faces of T DG

h .
We denote by Γ FV

D and Γ FV
N the set of all Dirichlet and Neumann boundary faces on ∂ΩFV

∩ ∂Ω . Similarly, we
denote by ΓDG

D and ΓDG
N the set of all Dirichlet and Neumann boundary faces on ∂ΩDG

∩ ∂Ω . Finally we will use
the notation:

Γ FV
h = Γ FV

h,0 ∪ Γ FV
D ∪ Γ FV

N , (11)

ΓDG
h = ΓDG

h,0 ∪ ΓDG
D ∪ ΓDG

N . (12)
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Fig. 1. Flux definitions and directions for element Ei j ∈ ΩFV.

The discrete approximations of wetting phase pressure and capillary pressure belong to the space of discontinuous
linears in the DG region and discontinuous constants in the FV region. Let Pr (E) be the space of polynomials of
degree r on one mesh element E . The discrete space Xh is defined by:

Xh =
{
v ∈ L2(Ω ) : v|E ∈ P1(E), ∀E ∈ T DG

h ; v|E ∈ P0(E), ∀E ∈ T FV
h

}
. (13)

It is also possible to choose piecewise polynomials of degree r ≥ 2 in the DG regions. For convenience, we
employ piecewise linears in this work. As usual for discontinuous polynomial approximations, we introduce jump
and average of functions across faces. For each interior face e, we fix a unit normal vector ne. If the face e belongs
to the interface ΓDF, the normal vector is chosen so that it points from the DG region to the FV region. This choice
is only a matter of convenience. The normal vector coincides with the outward normal vector to ∂Ω if e belongs to
the boundary. Let us denote by E−

e and E+
e the mesh elements that share the face e with the unit vector ne pointing

from E−
e to E+

e . We can now uniquely define the jump [·] and average {·} operators.

[v]|e = v|E−
e

− v|E+
e
, {v}|e = δ−

e v|E−
e

+ δ+

e v|E+
e
, v ∈ Xh .

The scalars δ−
e , δ

+
e are positive weights that sum to one. It has been observed in the literature that the amount of

overshoot and undershoot in the DG solutions is greatly reduced if the weights depend on the permeability field.
Therefore, following [24] we define:

δ−

e =
K |E+

e

K |E−
e

+ K |E+
e

, δ+

e =
K |E−

e

K |E−
e

+ K |E+
e

. (14)

We observe that we recover the usual arithmetic average with weights equal to 1/2 if the permeability is constant in
the domain. By convention, the notations [·] and {·} are used on boundary faces and in this case, jump and average
operators coincide with the trace operator. Finally we will use the harmonic average function H:

H(a, b) =
2ab

a + b
, ∀a > 0, b > 0.

3.2. Nonlinear forms in finite volume subdomains

We will describe the cell-centered finite volume method for two-dimensional domains for simplicity [25]. The
method is defined similarly in three dimensions. Let Ei j ∈ T FV

h be a rectangle (xi−1/2, xi+1/2) × (y j−1/2, y j+1/2)
with center of gravity (xi , y j ) and let us denote by vi j the restriction on Ei j of a test function v ∈ Xh . Furthermore,
we define the mesh spacing in the x and y directions for Ei j as

hx
i = xi+1/2 − xi−1/2, h y

j = y j+1/2 − y j−1/2. (15)

The diffusive fluxes from (7) are discretized by finite difference. Fig. 1 shows the element Ei j with its discrete
fluxes Fi−1/2, j , Fi+1/2, j , Fi, j−1/2, and Fi, j+1/2 along the right, left, top, and bottom edges of element Ei j , respectively.
We will explicitly define the flux along the right vertical edge, denoted by ei+1/2, j . The fluxes on the other three
edges are defined in a similar manner.

For the diffusive term −∇ · (Kλt∇ pw), the finite volume flux on ei+1/2, j is defined following [25]:

Fw
i+1/2, j =

⎧⎨⎩−h y
jH

(
(Kλt )i j

hx
i
,

(Kλt )i+1, j
hx

i+1

) (
(Pw)i+1, j − (Pw)i j

)
if ei+1/2, j ∈ Γ FV

0,h ,

−2
hy

j
hx

i
(Kλt )i j

(
gw(xi+1/2, y j ) − (Pw)i j

)
if ei+1/2, j ∈ Γ FV

D .
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Analogously, we define the flux Fc
i+1/2, j corresponding to the finite volume discretization of the term −∇ ·

(Kλn∇ pc) on the edge ei+1/2, j .

Fc
i+1/2, j =

⎧⎨⎩−h y
jH

(
(Kλn)i j

hx
i
,

(Kλn)i+1, j
hx

i+1

) (
(Pc)i+1, j − (Pc)i j

)
if ei+1/2, j ∈ Γ FV

0,h ,

−2
hy

j
hx

i
(Kλn)i j

(
gc(xi+1/2, y j ) − (Pc)i j

)
if ei+1/2, j ∈ Γ FV

D .

Define the total flux as the sum of the two diffusive fluxes:

Fi+1/2, j = Fw
i+1/2, j + Fc

i+1/2, j , (16)

and extend it to zero for faces on the Neumann boundary. We can now write the finite volume discretization of (7):

aF(Pc, Pw, v) =

∑
Ei j ∈T FV

h

(
−Fi−1/2, j + Fi+1/2, j − Fi, j−1/2 + Fi, j+1/2

)
vi j , (17)

for all Pc, Pw, v in Xh .
We discretize the fluxes for the hyperbolic term in (8) similarly. As above, let us write the finite volume flux for

the vertical edge ei+1/2, j . If that edge is an interior edge, the upwinding term is defined below:(
λn

λt

)↑

i+1/2, j
=

⎧⎨⎩
λn(ψ((Pc)i j ))
λt (ψ((Pc)i j )) if (Pw)i+1, j < (Pw)i j ,

λn(ψ((Pc)i+1, j ))
λt (ψ((Pc)i+1, j )) if (Pw)i+1, j ≥ (Pw)i j .

(18)

For an edge ei+1/2, j that belongs to Γ FV
D , the upwinding is defined as in (18) with the values (Pw)i+1, j and

(Pc)i+1, j replaced by gw(xi+1/2, j , y j ) and
(
gn(xi+1/2, j , y j ) − gw(xi+1/2, j , y j )

)
respectively. The finite volume flux

corresponding to ∇ · ((λn/λt )u) in (8) is therefore defined on ei+1/2, j by:

Gw
i+1/2, j =

⎧⎪⎨⎪⎩
−h y

j

(
λn
λt

)↑

i+1/2, j
H

(
(Kλt )i j

hx
i
,

(Kλt )i+1, j
hx

i+1

) (
(Pw)i+1, j − (Pw)i j

)
if ei+1/2, j ∈ Γ FV

h,0 ,

−2
hy

j
hx

i

(
λn
λt

)↑

i+1/2, j
(Kλt )i j

(
gw(xi+1/2, y j ) − (Pw)i j

)
if ei+1/2, j ∈ Γ FV

D .

Define

G i+1/2, j = Gw
i+1/2, j + Fc

i+1/2, j , (19)

and extend it to zero for Neumann faces. Similarly, we define the fluxes G i−1/2, j ,G i, j+1/2 and G i, j−1/2 for the other
edges of the element Ei j . We then write the finite volume discretization for the diffusion and convection terms:

bF(Pc, Pw, v) =

∑
Ei j ∈T FV

h

(
−G i−1/2, j + G i+1/2, j − G i, j−1/2 + G i, j+1/2

)
vi j , (20)

for all Pc, Pw, v in Xh .

3.3. Nonlinear forms in discontinuous Galerkin subdomains

We employ the incomplete interior penalty discontinuous Galerkin method for discretizing the elliptic operators
in (7), (8) in the DG subdomains and we employ an upwind technique for the nonlinear hyperbolic operator in (8).
We skip the derivation of the forms for simplicity [26]. The DG form for (7) is

aD(Pc, Pw, v) =

∑
E∈T DG

h

∫
E
(λt (ψ(Pc))K∇ Pw + λn(ψ(Pc))K∇ Pc) · ∇v +

∑
e∈ΓDG

h,0 ∪ΓDG
D

∫
e

σ0

h
[Pw][v]

−

∑
e∈ΓDG

h,0 ∪ΓDG
D

∫
e
{λt (ψ(Pc))K∇ Pw · ne}[v] −

∑
e∈ΓDG

h,0 ∪ΓDG
D

∫
e
{λn(ψ(Pc))K∇ Pc · ne}[v], (21)
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for any Pc, Pw, v in Xh . The penalty parameter σ0 is defined by [16]

σ0|e = 2H
(
λt (ψ(Pc|E+

e
))K |E+

e
, λt (ψ(Pc|E−

e
))K |E−

e

)
, e = ∂E+

e ∩ ∂E−

e . (22)

The DG form for (8) is

bD(Pc, Pw, v) =

∑
E∈T DG

h

∫
E
λn(ψ(Pc))K∇ Pc · ∇v +

∑
e∈ΓDG

h,0 ∪ΓDG
D

∫
e

σ1

h
[Pc][v]

−

∑
e∈ΓDG

h,0 ∪ΓDG
D

∫
e
{λn(ψ(Pc))K∇ Pc · ne}[v] +

∑
E∈T DG

h

∫
E
λn(ψ(Pc))K∇ Pw · ∇v

+

∑
e∈ΓDG

h,0 ∪ΓDG
D

∫
e

(
λn(ψ(Pc))
λt (ψ(Pc))

)↑

Ue[v], (23)

for any Pc, Pw, v in Xh . The discrete flux is defined by

Ue = −{λt (ψ(Pc))K∇ Pw · ne} +
σ0

h
[Pw], e ∈ ΓDG

h,0 , (24)

Ue = −λt (ψ(Pc))K∇ Pw · ne +
σ0

h
(Pw − gw), e ∈ ΓDG

D . (25)

The upwind value on a face e ∈ ΓDG
0,h is defined as follows:(

λn

λt

)↑

=

{ λn(ψ(Pc))
λt (ψ(Pc))

⏐⏐
E−

e
, if Ue > 0,

λn(ψ(Pc))
λt (ψ(Pc))

⏐⏐
E+

e
, if Ue ≤ 0.

(26)

The upwind value on a boundary face e ∈ ΓDG
D is defined as in (26) with the function Pc|E+

e
replaced by (gn − gw).

Finally, the penalty parameter σ1 in (23) is given by:

σ1 = 4{λn(ψ(Pc))}H(K |E−
e
, K |E+

e
). (27)

3.4. Discretization of fluxes at the interface between FV and DG subdomains

The main contribution of this work is to couple two different discretization methods through appropriate handling
of the fluxes across the interface ΓDF. Multiplying (7) by a test function v ∈ Xh , integrating by parts, and extracting
the terms involving the interface ΓDF we obtain:

−

∑
e∈ΓDF

∫
e
λt K∇ pw · ne[v] −

∑
e∈ΓDF

∫
e
λn K∇ pc · ne[v]. (28)

We point out that the choice of the normal vector on e on ΓDF means that the jump [v] in (28) is equal to the
difference (v|ΩDG −v|ΩFV). Let us fix e ∈ ΓDF and for readability, let us denote by EDG and EFV the mesh elements
that belong to the DG and FV regions respectively such that e = ∂EDG

∩∂EFV. It is clear that the direct computation
of the gradient ∇ pw is feasible in the DG region but that it reduces to zero in the interior of elements in the FV
region. We naturally propose to approximate the gradient by a first order finite difference, which is straightforward
because the mesh elements in the finite volume region are rectangles or boxes.

Kλt∇ pw · ne ≈ δDG K |EDGλt (ψ(pc|EDG ))∇ pw|EDG · ne + δFV K |EFVλt (ψ(pc|EFV))
pw|EFV − pw|EDG

h̃
. (29)

The parameter h̃ is the distance between the center of gravity of EFV and the face e; therefore it takes piecewise
constant values over the interface ΓDF. The weights δDG, δFV follow (14) with δDG = δ−

e and δFV = δ+
e . Similarly,

we have for the diffusive flux Kλn∇ pc · ne:

Kλn∇ pc · ne ≈ δDG K |EDGλn(ψ(pc|EDG ))∇ pc|EDG · ne + δFV K |EFVλn(ψ(pc|EFV ))
pc|EFV − pc|EDG

h̃
. (30)
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Based on these approximations, we define the form γDF that couples the DG and FV solutions for (7).

γDF(Pc, Pw, v) = −

∑
e∈ΓDF

∫
e
δDG

(
λt (ψ(Pc|EDG ))(K∇ Pw)|EDG + λn(ψ(Pc|EDG))(K∇ Pc)|EDG

)
· ne[v]

+

∑
e∈ΓDF

∫
e

(
δFV K |EFVλt (ψ(Pc|EFV ))

h̃
+
σ0

h

)
[Pw][v] +

∑
e∈ΓDF

∫
e

(
δFV K |EFVλn(ψ(Pc|EFV))

h̃

)
[Pc][v], (31)

for any Pw, Pc, v in Xh . We define the penalty parameter σ0 by the harmonic average of the product of permeability
and total mobility:

σ0 = 2H
(
K |EDGλt (ψ(Pc|EDG )), K |EFVλt (ψ(Pc|EFV ))

)
. (32)

We remark that the traces of the unknowns on the DG element are linear polynomials on a given edge whereas the
traces of the unknowns on the FV element are constants. Numerical quadrature is used to compute the integral on
each edge in (31).

We now consider the interface fluxes arising from (8). The diffusive term −∇ · (Kλn∇ pc) is handled as above.
For the advective term, ∇ · ((λn/λt )u), we employ an upwind technique to evaluate the nonlinear term λn/λt . We
define the form ηDF that couples the FV and DG solutions for (8).

ηDF(Pc, Pw, v) = −

∑
e∈ΓDF

∫
e
δDGλn(ψ(Pc|EDG ))(K∇ Pc)|EDG · ne[v]

+

∑
e∈ΓDF

∫
e

(
λn

λt

)↑

UDF[v] +

∑
e∈ΓDF

∫
e

(
δFV K |EFVλn(ψ(Pc|EFV ))

h̃
+
σ1

h

)
[Pc][v], (33)

for any Pw, Pc, v in Xh . Using the same notation used above, e = ∂EDG
∩ ∂EFV, we define the penalty parameter

σ1 by:

σ1 = 2(λn(ψ(Pc|EDG )) + λn(ψ(Pc|EFV )))H(K |EDG , K |EFV ). (34)

The discrete flux UDF is defined on e ∈ ΓDF by

UDF = −δDGλt (ψ(Pc|EDG ))(K∇ Pw)|EDG · ne

−

(
δFV K |EFV

λt (ψ(Pc|EFV ))

h̃
+
σ0

h

)
(Pw|EFV − Pw|EDG ). (35)

The upwind value on a face e ∈ ΓDF is defined as follows:(
λn

λt

)↑

=

{
λn(ψ(Pc))
λt (ψ(Pc))

⏐⏐
EDG , if UDF > 0,

λn(ψ(Pc))
λt (ψ(Pc))

⏐⏐
EFV , if UDF ≤ 0.

(36)

3.5. Fully discrete scheme

We employ a first order backward Euler time stepping method. The time interval (0, T ) is partitioned into uniform
intervals with length equal to the time step ∆t > 0. Let tℓ denote the time ℓ∆t . The fully discrete scheme is: find
(Pℓ+1

w , Pℓ+1
c ) ∈ Xh × Xh for ℓ ≥ 0 satisfying:

aD(Pℓ+1
c , Pℓ+1

w , v) + aF(Pℓ+1
c , Pℓ+1

w , v) + γDF(Pℓ+1
c , Pℓ+1

w , v) = L1(v), (37)

−

∫
Ω

φ
ψ(Pℓ+1

c ) − ψ(Pℓ
c )

∆t
v + bD(Pℓ+1

c , Pℓ+1
w , v) + bF(Pℓ+1

c , Pℓ+1
w , v) + ηDF(Pℓ+1

c , Pℓ+1
w , v) = L2(v), (38)

for all v in Xh . The initial value P0
c is the L2 projection of p0

c in Xh . The right-hand side forms L1 and L2 are
defined below. They contain the boundary data.

L1(v) = −

∫
ΓDG

N ∪ΓFV
N

( jw + jn)v +

∫
ΓDG

D

2K
h
λt (ψ(gn − gw)) gwv. (39)

L2(v) = −

∫
ΓDG

N ∪ΓFV
N

jnv +

∫
ΓDG

D

K
h
λn(ψ(gn − gw)) (gn − gw)v. (40)
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Table 1
Physical parameters used in the conver-
gence rate study.

Parameter Value

µw 10−3 Pa s
µn 9 × 10−4 Pa s
K 3.72 × 10−13 m2

φ 0.2
krn (1 − sw)2

krw s2
w

pe 755 Pa
θ 2.5

Table 2
DGFV convergence rates for sinusoidal exact solution.

h ||pw − Pw||L2(Ω) Conv. rate (pw) ||pc − Pc||L2(Ω) Conv. rate (pc)

1/10 1.19 × 10−1 – 1.01 × 10−1 –
1/20 5.27 × 10−2 1.18 4.89 × 10−2 1.05
1/40 2.59 × 10−2 1.02 2.42 × 10−2 1.01
1/80 1.30 × 10−2 0.99 1.21 × 10−2 1.00
1/160 6.48 × 10−3 1.00 6.04 × 10−3 1.00

Remark. We note that neither slope limiter nor H(div) projection of velocity is used. We observe throughout our
simulations, the overshoot and undershoot associated with the DG method remain bounded and stable.

Remark. Scalar absolute permeability is used in place of matrix-valued permeability for simplicity. It is
straightforward to employ matrix-valued permeabilities in regions that are interior to the DG subdomains, as it
was done for diffusion problems in [4]. However, we do not recommend allowing for matrix-valued permeability
in the FV subdomains, because this requires careful construction of grids and this defeats the purpose of using the
DG-FV approach.

4. Numerical results

The multinumeric scheme has been implemented in the DUNE framework [27–30]. The nonlinear system is
solved by inexact Newton where the Jacobian is approximated by a finite difference. The linear solver is BiCGStab
with AMG preconditioner and SSOR smoother. For all the numerical tests, the domain is Ω = [0, 1] × [0, 0.6]
and it is partitioned into a structured mesh of square elements. We recall we solve for the discrete wetting phase
pressure and capillary pressure at each time step. We will show in this section snapshots of the non-wetting phase
saturation, which are obtained from (2) and from the discrete capillary pressure (see (5)).

4.1. Convergence rate study

We verify the accuracy of the proposed method for smooth solutions by computing convergence rates. The
interface ΓDF is the vertical segment {0.5} × [0, 0.6] and the subdomains are ΩDG

= (0, 0.5) × (0, 0.6) and
ΩFV

= (0.5, 1) × (0, 0.6). Physical parameters are given in Table 1, and Dirichlet boundary conditions are assigned
along all boundaries. Functions are evaluated and integration is performed using Gauss quadrature points.

The first set of exact solutions considered is:

pw(x, y) = 2 + sin(2πx) sin
(

2π
0.6

y
)
, pc(x, y) = 2 + cos(2πx) cos

(
2π
0.6

y
)
.

Table 2 displays the numerical errors and convergence rates. The coarsest mesh is of size h = 0.1, and each
successive refinement divides each element into four elements. We observe the method converges with order one.
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Table 3
DGFV convergence rates for the time-dependent sinusoidal exact solution.

h ∆t ||pw − Pw||L2(Ω) Conv. rate (pw) ||pc − Pc||L2(Ω) Conv. rate (pc)

1/10 1 1.13 × 10−1 – 1.02 × 10−1 –
1/20 1/2 5.21 × 10−2 1.12 4.91 × 10−2 1.05
1/40 1/4 2.55 × 10−2 1.03 2.42 × 10−2 1.02
1/80 1/8 1.27 × 10−2 1.01 1.21 × 10−2 1.00
1/160 1/16 6.37 × 10−3 1.00 6.04 × 10−3 1.00

The second set of exact solutions considered is:

pw(t, x, y) = 2 + sin(2πx) sin
(

2π
0.6

y
)

+ t, pc(t, x, y) = 2 + cos(2πx) cos
(

2π
0.6

y
)

+
t2

2
.

Table 3 displays the numerical errors and convergence rates. As before, the coarsest mesh is of size h = 0.1,
and each successive refinement divides each element into four elements. As the mesh is successively refined, the
time-step ∆t is also decreased by a factor of 2 each time, with the final time T being set at T = 1 s. We again
observe the method converges with order one.

4.2. Homogeneous medium

We consider two choices for the multinumeric method. First, the domain Ω is split into two subdomains:
ΩDG

= [0, 0.5] × [0, 0.6] and ΩFV
= [0.5, 1] × [0, 0.6]. This means that we use the discontinuous Galerkin

method on the left-half of the domain and the finite volume method on the right. This is denoted as the “DGFV”
method. Second, we set ΩFV

= [0, 0.5] × [0, 0.6] and ΩDG
= [0.5, 1] × [0, 0.6]. Here, we use the FV method on

the left-half of the domain and the DG method on the right; this is denoted as the “FVDG” method. In both cases,
ΓDF

= {0.5} × [0, 1].
The Neumann boundary is the union of [0, 1] × {0} and [0, 1] × {0.6}. The Neumann boundary data is set to

zero: jw = jn = 0. The Dirichlet datum (see (9)) is:

gw = 2 × 104 Pa, gn − gw = 1.896 × 103 Pa, on {0} × [0, 0.6], (41)

gw = 0 Pa, gn − gw = 7.87 × 102 Pa, on {1} × [0, 0.6]. (42)

The Dirichlet boundary conditions on pc means that the non-wetting phase saturation is prescribed equal to 0.9 on
the left boundary {0} × [0, 0.6] and equal to 0.1 on the right boundary {1} × [0, 0.6]. Table 1 shows the physical
parameters used in this example. Finally for discretization parameters, the mesh consists of 40 × 24 squares of side
h = 0.025. The final time is T = 25 000 s and the time step is ∆t = 100 s.

We compare the numerical solutions obtained from (37)–(38) with the solutions obtained by either using the
finite volume method everywhere in Ω (referred to as “all FV” method) or the discontinuous Galerkin method
everywhere (referred to as “all DG” method). The non-wetting saturation profiles along the line y = 0.3 are shown
in Fig. 2 for the three methods: all FV, all DG and DGFV. We observe as expected that before the front reaches the
interface, the DG and DGFV saturation fronts are sharper than the FV saturation front. The DG solution exhibits
a small undershoot whereas the FV saturation is bounded from below by zero. Once the DGFV saturation front
passes through the interface, the undershoot disappears. The proposed scheme does not use any slope limiting or
any H(div) projection of the velocity. We also note that the location of the front for the DGFV solution coincides
with the location of the front for the DG solution whereas the location of the front for the FV solution is slightly
behind.

Similarly, Fig. 3 shows the saturation profiles for FVDG, all FV and all DG. We observe that the FV and FVDG
saturation fronts coincide before the front reaches the interface. Once the front is located in the DG region, a small
undershoot appears at the front and disappears at later times.

The results for the homogeneous medium show the accuracy of the proposed coupled FV and DG scheme.
Computational times are displayed in Table 4 for the DGFV scheme and the DG scheme ran on a single processor
with different mesh sizes. The code was run on an Intel Xeon E5-2650 v2 2.60 GHz processor. Table 4 shows that
the DGFV multinumeric method is between 29% and 46% faster than the DG method.
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Fig. 2. Saturation curves for three methods: DGFV, DG, FV at times 5500 s, 11 000 s, 16 500 s, and 22 000 s.

Table 4
Timing results for the DGFV method compared to the DG and FV methods, for
different levels of mesh refinement.

Mesh spacing Method Unknowns Simulation time

0.1
All FV 60 0.75 s
DGFV 150 5.06 s
All DG 240 9.39 s

0.05
All FV 240 4.12 s
DGFV 600 28.13 s
All DG 960 39.50 s

0.025
All FV 960 7.39 s
DGFV 2400 103.13 s
All DG 3840 155.50 s

4.3. Porous medium with low permeability block

The permeability field takes the value K1 in most of the domain and the value K2 in a rectangular inclusion of
width 0.1 and height 0.3. The inclusion is placed symmetrically around three different points: (0.25, 0.3), (0.45, 0.3)
and (0.5, 0.3). These three set-ups are referred to as case A, case B and case C. Fig. 4 displays the set-up for the
interface ΓDF (which is the vertical segment {0.5} × [0, 0.6]) and the permeability inclusion. The permeability in
the inclusion is K2 = 10−3 K1, with K1 = 3.72 × 10−13 m2.

We choose θ = 2 for (4). The remaining physical parameters are the same as in the previous section. Figs. 5 and
6 show the saturation contours for the non-wetting phase at different times, t = 6200, 12 500, 18 700 and 25 000 s,



B. Doyle, B. Riviere and M. Sekachev / Computer Methods in Applied Mechanics and Engineering 370 (2020) 113213 11

Fig. 3. Saturation curves for the FVDG, DG, FV methods at times 5500 s, 11 000 s, 16 500 s, and 22 000 s.

Fig. 4. Porous medium with lower permeability block (K2 = 10−3 K1) at three different positions with respect to interface: case A (left),
case B (center) and case C (right).

for case A where the lower permeability region is entirely in the left region. As in the previous section, we refer to
the DGFV method the coupled method for which the left region is ΩDG and the right region is ΩFV. If we switch
the allocation of the methods to the domains, we obtain the FVDG method. Fig. 5 shows time snapshots for the
DGFV method whereas Fig. 6 displays snapshots for the FVDG method.

Figs. 7 and 8 show the saturation contours for Case B obtained with DGFV and FVDG respectively. Figs. 9
and 10 show the saturation contours for Case C obtained with DGFV and FVDG respectively. The location of
the saturation front naturally depends on the location of the lower permeability block. The three different cases
show the robustness of the multinumeric scheme with respect to the location of the interface in the domain with
non-homogeneous permeability.

4.4. Heterogeneous porous medium

In this example, the permeability field is varying in space following [31]. In Fig. 11, the permeability in the gray
squares is K1 = 3.72 × 10−13 m2 and the permeability in the black squares is K2 = 10−4 K1. We choose θ = 2
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Fig. 5. Non-wetting phase saturation contours with DGFV method: ΩDG is the left subdomain. Permeability inclusion corresponds to case
A. Snapshots at t = 6200, 12 500, 18 700 and 25 000 s.

Fig. 6. Non-wetting phase saturation contours with FVDG method: ΩFV is the left subdomain. Permeability inclusion corresponds to case
A. Snapshots at t = 6200, 12 500, 18 700 and 25 000 s.

for (4). The other physical parameters are the same as in Table 1. Boundary conditions and spatial discretization
parameters are the same as in Section 4.2.

First we partition the domain such that the interface is the vertical segment {0.5} × [0, 0.6]. Fig. 12 shows the
saturation snapshots at times t = 7500, 15 000, 22 500 and 30 000 s. The method DGFV is employed. We observe
the saturation avoids the small regions where the permeability is much smaller than in the rest of the domain.
Snapshots of the pressure are shown in Fig. 13).

Similarly, Fig. 14 (resp. Fig. 15) shows the contours of the saturation (resp. pressure) at the same times for the
FVDG method. As expected, the saturation fronts are more diffusive if they are located in the FV region.

We now change the partition of the domain and select for ΩDG an inner square that encloses the regions with
smaller permeability (see the location of the interface ΓDF in Fig. 16).
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Fig. 7. Non-wetting phase saturation contours with DGFV method: ΩDG is the left subdomain. Permeability inclusion corresponds to case
B. Snapshots at t = 6200, 12 500, 18 700 and 25 000 s.

Fig. 8. Non-wetting phase saturation contours with FVDG method: ΩFV is the left subdomain. Permeability inclusion corresponds to case
B. Snapshots at t = 6200, 12 500, 18 700 and 25 000 s.

The non-wetting phase saturation contours are shown at times 7500 s, 15 000 s, 22 500 s, and 30 000 s in Fig. 17.
The pressure contours are given in Fig. 18. Results are consistent with the ones obtained above. However there are
some differences in the location of the front at time t = 30 000 s. Table 5 gives the computational times for the
multinumeric solution and for the DG solution. There is a significant gain in using the multinumeric solution: it is
68% faster than the DG solution.

4.5. Heterogeneous medium with channels

In this example, the domain contains three channels in which the permeability is significantly higher than in
the surrounding rock. The permeability in the rock matrix varies in space between 10−13 m2 and 5 × 10−13 m2
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Fig. 9. Non-wetting phase saturation contours with DGFV method: ΩDG is the left subdomain. Permeability inclusion corresponds to case
C. Snapshots at t = 6200, 12 500, 18 700 and 25 000 s.

Fig. 10. Non-wetting phase saturation contours with FVDG method: ΩFV is the left subdomain. Permeability inclusion corresponds to case
C. Snapshots at t = 6200, 12 500, 18 700 and 25 000 s.

Table 5
Timing results for the multinumeric method compared to
the DG and FV methods.

Method Unknowns Time to solution

All FV 960 130.96 s
Multinumeric 2160 1650.56 s
DG 3840 5154.73 s
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Fig. 11. Permeability field: gray squares have a permeability K1 =3.72e−13 m2 and black squares have a permeability K2 = 10−4 K1.

Fig. 12. Non-wetting phase saturation snapshots for DGFV for heterogeneous medium at times 7500 s, 15 000 s, 22 500 s, and 30 000 s.

Fig. 13. Wetting phase pressure snapshots for DGFV for heterogeneous medium at times 7500 s and 30 000 s.

whereas the permeability in the channels is equal to 10−10 m2. Further, we partition the domain such that the DG

method is used in a neighborhood including each channel and the FV method is used elsewhere. Fig. 19 shows

the permeability field in the rock matrix, the location of the channels and the partition of the domain into ΩFV and

ΩDG. The physical parameters are the same as in Table 1. Boundary conditions and spatial discretization parameters

are the same as in Section 4.2.
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Fig. 14. Non-wetting phase saturation snapshots for FVDG for heterogeneous medium at times 7500 s, 15 000 s, 22 500 s, and 30 000 s.

Fig. 15. Wetting phase pressure snapshots for FVDG for heterogeneous medium at times 7500 s and 30 000 s.

Fig. 16. Permeability field: gray squares have a permeability K1 =3.72e−13 m2 and black squares have a permeability K2 = 10−4 K1.

Figs. 20 and 21 show the saturation and pressure snapshots at times t = 4000, 6000, 13 000, and 20 000 s,
respectively. As expected, the injected phase floods the channel closest to the inflow boundary. As time advances,
the saturation fronts are further advanced in the regions of the rock matrix where the permeability is larger. We
also observe that the changes in the wetting phase pressure contours occur at a slower time scale. We compare
the computational times for the multinumeric scheme with the DG scheme in Table 6. Results show that the
multinumeric method is 86% faster than the DG method.
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Fig. 17. Non-wetting phase saturation snapshots for heterogeneous medium when using DG for inner region at times 7500 s, 15 000 s,
22 500 s, and 30 000 s.

Fig. 18. Wetting phase pressure snapshots for heterogeneous medium when using DG for inner region at times 7500 s and 30 000 s.

Fig. 19. Permeability field and domain partition. Channels are the black regions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

In the final test, we repeat the simulation with one change of parameter. We now select a smaller value for θ = 1.

Fig. 22 shows the contours for the non-wetting phase saturation and wetting phase pressure at time t = 6000 s. We

observe a more diffuse saturation front in this case, compared to the case θ = 2.5 (Fig. 20).
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Fig. 20. Non-wetting phase saturation snapshots for channel scenario at times 4000 s, 6000 s, 13 000 s, and 20 000 s.

Fig. 21. Wetting phase pressure snapshots for channel scenario at times 4000 s, 6000 s, 13 000 s, and 20 000 s.

Fig. 22. Non-wetting phase saturation and wetting phase pressure snapshots for channel scenario at time 6000 s, when the parameter θ = 1.
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Table 6
Timing results for the multinumeric method compared to
the DG method, for the channel flow scenario.

Method Unknowns Time to solution

Multinumeric 1440 732.99 s
DG 3840 5160.94 s

5. Conclusions

This paper formulates a method that combines the interior penalty discontinuous Galerkin method with the
cell-centered finite volume method for the incompressible two-phase flow problem. Meshes for the finite volume
subdomains consist of rectangles or boxes whereas meshes for the discontinuous Galerkin subdomains are allowed
to be structured or unstructured. The interface between the subdomains is treated implicitly by carefully designing
the numerical fluxes between the two types of discretizations. The resulting fully implicit scheme solves for the
wetting phase pressure and the capillary pressure. Numerical results for homogeneous and heterogeneous media
show the robustness and efficiency of the multinumeric method. In our paper, the DG subdomains are selected
such that they contain regions where the permeability is highly heterogeneous. In practice, DG regions should be
regions where higher accuracy is needed and where FV solutions are too numerically diffusive. For instance, if
there is a strong anisotropy in certain regions, or if there are local features such as pinch-outs or channels. In this
case knowledge on the geological structure of the domain is the criterion to use for the allocation of DG and FV
elements. In addition, it would be of interest to dynamically partition the domain so that the saturations fronts are
located in DG elements. Away from the fronts, the FV elements would be used. In that case, the selection criterion
is based on the magnitude of the gradient of the saturation.
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