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AThouless pump can be regarded as a dynamical version of the integer quantum Hall effect. In a finite-
size configuration, such a topological pump displays edge modes that emerge dynamically from one bulk
band and dive into the opposite bulk band, an effect that can be reproduced with both quantum and classical
systems. Here, we report the first unassisted dynamic energy transfer across a metamaterial, via pumping of
such topological edge modes. The system is a topological aperiodic acoustic crystal, with a phason that can
be fast and periodically driven in adiabatic cycles. When one edge of the metamaterial is excited in a
topological forbidden range of frequencies, a microphone placed at the other edge starts to pick up a signal
as soon as the pumping process is set in motion. In contrast, the microphone picks no signal when the
forbidden range of frequencies is nontopological.
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More than 35 years ago, Thouless asked himself what
happens with a filled sea of fermions when the underlying
potential is slowly and periodically modulated in time [1].
He predicted that a precise nonfluctuating number of
particles will be effectively transported from one side of
the system to the other and that this number is determined
by a topological invariant computed for a virtual system of
one dimension higher than the original. The effect has been
directly demonstrated recently, with both fermions and
bosons [2,3]. It is now well established [4,5] that augmen-
tation of a parameter space to a d-dimensional quantum or
classical system can give access to topological effects that,
in normal conditions, are observed in dþ 1 or higher
dimensions. The prototypical example is the periodic one-
dimensional Rice-Mele model [6], where an adiabatic
deformation of the parameters leads to a virtual two-
dimensional system whose energy bands support nontrivial
Chern numbers [4]. As a result, the system displays chiral
edge bands when driven in an adiabatic cycle and edge-to-
edge topological pumping becomes possible.
The existing experimental works on edge-to-edge topo-

logical pumping can be classified into three groups. The
ones in the first group [7–12] report only renderings of the
resonant spectra as functions of the adiabatic parameters.
The parameters are not varied continuously but rather the
measurements are interrupted and the systems are adjusted
by hand or other means to achieve the next parameter
values. Acquisition of the spectra for a single adiabatic
cycle can take days. In the experimental works from the
second group [13–19], the systems with different adiabatic
parameters are rendered and coupled in space and the
profiles of the resonant modes are mapped in space rather
than time. The connection with a real dynamical Thouless

pump is done through a mathematical argument that
involves simplifications and assumptions [13]. Last, the
experimental works in the third group [20,21] report
assisted dynamical edge-to-edge pumping. We call it
assisted primarily because energy was pumped into the
mode to keep it alive as it traversed from one edge to
another. Without such external intervention, the pumping
would have succumbed to the dissipation and nothing
would have been observed at the receiving end of the
system. These experiments also contain a large number of
active components controlled by an expensive layer of
electronics, whose complexity grows with the size of the
system. For this reason, the system in [20] had only eight
unit cells. While valuable demonstrations, these approaches
do not offer yet a path toward practical implementations.
We demonstrate an unassisted edge-to-edge topological

pumping of sound, where the human intervention is
completely absent once the mode is loaded at one end
of the system. The key innovation is the use of an aperiodic
metamaterial structure that has a simple built-in mechanism
that implements global structural changes resulting in rapid
and repeated cyclings of its phason. This mechanism is
simply the relative sliding of two coupled incommensurate
periodic acoustic crystals. All the previous experi-
mental works based on aperiodic structures employ the
quasiperiodic pattern originally proposed in [13], where the
dynamical matrices can be directly connected with
the Aubry-André and Harper models [22,23]. This is not
the case for an incommensurate bilayered acoustic crystal,
yet we show in the Supplemental Material [24] that its
dynamical matrix belongs to an algebra isomorphic to that
of magnetic translations. As such, the spectral gaps carry
Chern numbers and the bulk-boundary correspondence

PHYSICAL REVIEW LETTERS 125, 224301 (2020)

0031-9007=20=125(22)=224301(5) 224301-1 © 2020 American Physical Society

https://orcid.org/0000-0002-0443-7213
https://orcid.org/0000-0001-8940-6629
https://orcid.org/0000-0001-6334-7333
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.224301&domain=pdf&date_stamp=2020-11-23
https://doi.org/10.1103/PhysRevLett.125.224301
https://doi.org/10.1103/PhysRevLett.125.224301
https://doi.org/10.1103/PhysRevLett.125.224301
https://doi.org/10.1103/PhysRevLett.125.224301


principle is the same as for the Chern insulators. However,
our topological system is distinct from the standard Chern
mechanical crystals [25–27] because one dimension is
virtual.
Using the phason of a quasiperiodic structure to generate

topological edge modes is an appealing strategy because the
bulk resonant spectrum is independent of the phason [24],
hence all the bulk spectral gaps are preserved during the
phason cycles. This remarkable characteristic is unmatched
by any other design principle [28]. Furthermore, no fine-
tuning of the systems is required [7], because the presence of
topological edge modes steams from the aperiodic pattern
alone. In [29],we supplied an algorithmicmethod to generate
an aperiodic system with phasons living on generic topo-
logical spaces. In particular, [29] identified the phason space
for incommensurate bilayered patterns. The principles dis-
covered in [7] and [29] made the present work possible.
Our main results are summarized in Fig. 1, where we

present direct evidence of energy transfer from one end of a
bulk structure to the other end, even though the frequency
of the source falls in a forbidden wave-propagation range.
This energy transfer happens in pumping conditions and
when the source frequency is in a topological spectral gap
of the metamaterial. In contradistinction, when the fre-
quency is adjusted in a nontopological spectral gap, there is
no energy transfer even though same conditions of pump-
ing are applied. Our experimental platform consists of the
two incommensurate periodic arrays of acoustic resonators

described in Figs. 1(a)–1(c). The dimensions have been
optimized to maximize the size of the topological gap. This
type of patterned resonator was theoretically studied in
[29], where it was found to support topological spectral
gaps and topological edge modes. However, to our knowl-
edge, this is the first time coupled incommensurate chains
are experimentally used to engineer chiral edge bands for
topological pumping.
The key to our experimental designwas the replacement of

any elaborate interconnections between acoustic resonators
with a thin uniform spacer, extending from one end of the
structure to the other. The resonators are attached to and
coupled through this spacer. Note that this type of coupling
does not allow fine-tuning but, as we mentioned, that is not
necessary when using aperiodic principles, as long as the
coupling is strong [7]. Furthermore, edges can be created by
simply filling the spacer with solid material. The adiabatic
parameter of the system is φ ¼ x=d2, where x and d2 are
specified in Fig. 1(c). Note that φ lives on the circle, which is
only a part of the total phason space. (The total phason space
looks like the figure eight, see [24].) The advantages of our
design are (a)φ can be driven in an adiabatic cycle by simply
sliding the top array while holding the bottom one fixed;
(b) since the bottomarray is fixed,we can continuously pump
energy at one edge (and only on the that edge) by placing a
source on the first bottom resonator; (c) the left and right
edges can be independently adjusted to achieve the optimal
dispersion of the edge modes.

(a) (d) (e) (f)

(g)

(h)

(b)

(c)

FIG. 1. Dynamic topological pumping. (a) Photograph of a fully assembled acoustic bilayer consisting of top and bottom periodic
arrays of cylindrical acoustic resonators with incommensurate lattice constants. The labels Si and Mi indicate the positioning of the
speaker and microphone during various experiments referenced in the text. The middle red bar indicates the presence of an inner
chamber, which connects the top and bottom resonators and is referred to as the spacer. For dynamical pumping, additional resonators
are mounted on the top left side. (b) Photograph of the inner structure, with the spacer now fully visible. (c) Cross section showing only
the domain of wave propagation, together with relevant parameters. Note that the very left resonator is completed decoupled from the
main structure. (d) Bulk resonant spectrum as function of top and bottom relative alignment, when the top and bottom lattice constants
are equal. In this case, all spectral gaps are trivial. (e) Bulk resonant spectrum as a function of d2=d1. In this case, additional gaps open in
the spectrum, which are all topological. (f) Schematic of the pumping process as well as a simulation of the air pressure at the beginning
of the pumping cycle. (g) Microphone reading when the source frequency is adjusted in a topological gap. (h) Microphone reading when
the source frequency is adjusted in a nontopological gap.

PHYSICAL REVIEW LETTERS 125, 224301 (2020)

224301-2



The numerically simulated topological pumping process
is reported in Fig. 2, where we also explain its mechanism.
Sure enough, the left and right chiral edge bands are present
in the topological gap. Note their particular and optimal
dispersion, which made the dynamical pumping possible.
Indeed, it is important that the right chiral edge band
emerges from the top bulk band shortly after the left chiral
edge dived into the same band. This is because the
nonadiabatic effects cannot be prevented when the pump-
ing of energy is through the bulk states. As such, one has to
optimize the pumping cycle such that there is a rapid
change of the mode character from left localized to
extended and to right localized, exactly as it can be seen
in Figs. 2(c)–2(h), where our pumping cycle was broken
down into steps. In a standard topological edge-to-edge
pumping, the mode self-oscillates after being loaded at the
left edge, hence the pumping cycle must be performed fast
enough to overcome dissipation.
Given the particular engineering of our system, the

pumping cycle can be performed extremely fast and
repetitively, even without any external intervention. This
enabled us to achieve the first unassisted dynamical energy
pumping via topological edge modes. Its dramatic

manifestation is documented in Fig. 1(g), where a receiver
placed opposite to an acoustic source is shown to pick up an
acoustic signal when the excitation frequency is in a
topological resonant gap. In this experiment, ten resonators
were added beyond the edge to the left side of the top array,
which resulted in the ten pumping cycles visible in
Fig. 1(g). The time period of the pumping cycle is
approximately 0.12 s in Fig. 1(g). We have experimented
with the time period of the cycle and found that the energy
transfer is completely cut out when the period is about 1 s.
This demonstrates that the pumping process is indeed
essential for the energy transfer across the acoustic meta-
crystal. Furthermore, when the source frequency is adjusted
in a nontopological spectral gap, the receiver picks no
signal whatsoever. We have experimented with different
source frequencies inside the nontopological gap and we
can confirm that the receiver does not pick any signal even
when the frequency is very close to the bulk spectrum. This
demonstrates that the chiral edge bands, formed inside the
topological spectral gap, play an essential role for the
energy transfer phenomena detected in our experiments.
The sound of the pumping reported in Fig. 1(h) can be

played from the audio files available in the Supplemental
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FIG. 2. Principles and mechanism of our dynamical pumping. (a) The configuration of the system at the beginning of a pumping cycle.
The top array is uniformly displaced to the right and, after a total displacement d2, the system returns in its original configuration and
completes a full pumping cycle. A speaker is inserted in resonator S1 and is kept on at all times, while a microphone is inserted in the
resonator M0. (b) Simulation of the resonant spectrum as a function of displacement. Chiral left and right edge bands are observed,
which both connect two disjoint parts of the bulk spectrum. (c)–(h) Rendering of pumping mechanism: The left edge mode is loaded
when the source frequency matches the mode frequency (c); the mode self-oscillates while its frequency is pushed up (d); the character
of the mode changes from left localized to delocalized (e); the character of the mode changes again from delocalized to right localized
(f); the mode self-oscillates as its frequency is pushed down (g); the cycle repeats itself as the top array is further pushed to the right (h).
The microphone starts to pick signal after the event (e). The simulations in panels (c)–(h) show the spatial profile of the resonant mode
highlighted in the subpanel below it. The shown microphone outputs are not from real measurements. The pumping parameter is φ in all
panels.
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Material [24]. As one can see, there is a stark difference
between the two pumpings reported in Fig. 1. Taking into
account all the above facts, there can be no doubt that the
energy transfer across the metacrystal was through a classic
topological pumping process.
As we already mentioned, the resonator coupling

through the spacer does not allow fine-tuning but that is
not necessary when using aperiodic principles, as long as
the coupling is strong [7]. To understand the mechanism of
topological gap generation in our system, we show first in
Fig. 1(d) the evolution of the simulated resonant spectrum
with respect to the relative alignment of two identical arrays
of resonators. As expected in any one-dimensional periodic
system, gaps appear in the resonant spectrum and, as the
system switches between period one and period two, some
of these spectral gaps close while others remain open.
Regardless of that behavior, all these gaps are topologically
trivial because the resonant bands seen in Fig. 1(d) result
from dispersion-induced thickening of the discrete reso-
nances of the individual resonators. However, when the
lattice constant of the bottom array is varied and the system
becomes aperiodic, these trivial bands are seen in Fig. 1(e)
to become fragmented in subbands, exactly as it happens
when a magnetic field is turned on a two-dimensional
electronic system [30]. In the Supplemental Material [24],
we in fact show that the dynamical matrix behind the
resonant spectrum belongs to an algebra of observables

generated by two operators obeying the same commutation
relations as the magnetic translations. The conclusion is
that the spectrum seen in Fig. 1(e) is a representation of the
Hofstadter butterfly [30]. In particular, the subbands carry
nonzero Chern numbers [7,29] and the presence of the
chiral edge bands can be explained by the standard bulk-
boundary correspondence [31,32].
The simulated bulk spectrum is reproduced with high

fidelity by the experimental measurements, as demonstrated
in Fig. 3. In particular,well defined bulk-spectral gaps can be
identified in the measured local density of states, which are
well aligned with the theoretical predictions. The frequency
5.4 kHz used for topological pumping in Fig. 1(g) falls in the
middle of one such gap. Furthermore, the signature of the
nonzeroChern numbers, that is, the chiral edge bands, is also
detected experimentally, as reported in Fig. 4. By comparing
the panels (a) and (b), one can see that the experiment
reproduces the simulations with very high fidelity.
Having demonstrated an unassisted energy transfer via a

topological pumping process, we have laid down a set of
specific principles which could facilitate the engineering of
the effect in many other contexts. The most important one is
that fine-tuning is not necessary which, together with the
many different ways of engineering phason spaces [29],
relaxes the design constraints, hence giving scientists better
chances for finding optimal and practical metastructures.
While for metamaterials this process is now more or less
straightforward, it will be extremely interesting if these
aperiodic principles can be successfully applied to meso-
scopic systems and achieve electron pumping in conven-
tional insulators.

All authors acknowledge support from the W.M. Keck
Foundation. E. P. acknowledges additional support from
the National Science Foundation through the Grant
No. DMR-1823800.
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Fig. . Continues on facing page.

FIG. 3. Experimental mapping of the bulk resonant spectrum.
(a) Simulated resonant spectrum reproduced from Fig. 1(e), with
arrows indicating the topological gaps. The vertical marking
identifies d1 ¼ 20 mm and d2 ¼ 16 mm used in experiments.
(b) Measurement of the space-resolved density of states (see
Supplemental Material [24] for experimental protocols). (c) Col-
lapse of the data in panel (b) on the frequency axis. Two spectral
gaps can be clearly identified in the experimental data, which are
well aligned with the theoretical calculations.

(a) (b) (c)

FIG. 4. Experimentalmeasurement of the topological edgebands.
(a) Simulated resonant spectrum for the finite acoustic metacrystal
shown in Fig. 1(a), as function of the pumping parameter. The latter
is the ratio between the displacement x, shown in Fig. 1(c), and d2.
(b) Experimental measurement of the resonant spectrum as a
function of the pumping parameter. (c) Bulk-spectrum measure-
ments reproduced from Fig. 3(c), used here to pinpoint the position
of the bulk bands shown by dashed lines.
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