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Abstract A relief cutting method, or kerfing, is considered to create flexible freeform surfaces from relatively
stiff and thick panels. The flexibility and moldability are achieved by introducing slender components within
the panel, forming kerf patterns, and hence reducing the second moment and polar moment of an area of the
solid panel. This paper presents a systematic study on the deformations of kerf unit-cells and of kerf panels.
Two different kerf patterns, i.e., square and hexagon, with various cut densities are studied. The effects of
different cutting density and kerf patterns on the stretching, bending, and twisting deformations are examined.
Understanding the influence of kerf patterns and cut densities on various deformation mechanisms will guide
the design of freeform complex shapes out of kerf panels. Experimental tests were performed on unit-cells
under different boundary conditions, e.g., uniaxial and biaxial stretching and bending. The tests were also
performed on kerf panels with different kerf patterns and varying cut densities. We used a nonlinear beam
element in order to describe the deformations of the slender components within the kerf patterns. We compared
the overall deformations in the kerf unit-cells and panels from the beam element model and experimental tests.
Using the kerfing technique allows for generating flexible structures with complex geometries from mass-
produced panels of standard shape and size. When using the kerfing method to achieve the desired surface
topology, the stresses, strains, and displacements in the surface will depend on the kerf pattern, cut density,
and constituent behavior.

1 Introduction

With recent advances in differential geometry, computational geometry, and computer graphics, various forms
of complex shapes can be designed which push further architectural design beyond simple geometries. For
example, Pottmann et al. [17] presented a computational method based on parallel meshes in creating freeform
structures comprising of arrangements of prismatic beams. Postle [16] utilized the concept of pair of splines
within developable surfaces for generating curved structures from folding of planar sheet materials. Andrade
et al. [1] proposed an automatic generation of cladded panels of honeycomb patterns with directional variation
and spatial scale in order to create surfaces with complex shapes. The honeycomb patterns give flexibility in
shaping the geometry. Despite advances in computational and design tools for generating freeform structures,
several challenges still remain with regard to constructing such complex structures. There are currently limited
materials, i.e., steel, concrete, wood, aluminum, and glass, which are suitable for building constructions. These
materials possess sufficient strength for structural integrity, but they are relatively stiff making it difficult to
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Fig. 1 Flexible kerf MDF panel from originally rigid panel

form them into complex shapes. Even when it is possible to form complex shapes like in sheet metal forming,
the cost of fabricating individual panels of unique shapes is extremely high. For materials that are fabricated
with molds, the idea of reusable molds will potentially reduce the construction cost and waste. However, the
reusable mold is still labor intensive. The complexity in generating freeform shapes is further alleviated by the
large variations in the mechanical and non-mechanical behaviors of different materials. It is then necessary to
simultaneously perform structural analyses while designing complex freeform structures.

One of the practical methods to create flexible surfaces from relatively stiff planar materials like metals,
wood, and medium-density fiberboard (MDF) is relief cutting or kerfing. This approach allows for utilizing
mass-produced materials of standard shape and size in generating flexible surfaces with complex geometries.
The mechanism is based on introducing slender components within the panel, forming kerf patterns, and hence
reducing the second moment and polar moment of an area of the solid panel. The out-of-plane deformations in
the kerf panels are dominated by bending and twisting of the cut components in different directions. Figure 1
illustrates several examples of shape reconfigurations in a kerf panel out of MDF. There have been several
kerfing patterns currently available. IvaniSevi¢ [10] designed an interlocked Archimedean spirals pattern, which
can form double curvature panels. Hoffer et al [9] and Kalantar and Borhani [12], taking the advantage of
wooden properties, used the kerfing of wood to design of a curved pavilion. Bending of the corners is achieved
due to the compliant characteristics in the kerf regions. Based on the 2D meander pattern, Zarrinmehr et al. [24]
used a remeshing method to develop an algorithm for generating more general shapes of kerf pattern, in which
local properties of these patterns can be controlled to acquire the desired stiffness. A similar approach has also
been done by Greenberg and Korner [6], where they created planar structures with variable stiffness by varying
the cut density gradients. Guzelci et al. [8] investigated different methods and cut patterns of planar materials
in achieving bending (curvature changes). They focused on the geometrical aspects and aimed to determine
correlations between bending behaviors and geometrical parameters. It was concluded that the topological
cut patterns played an important role in determining bending and flexibility of the planar surface. In addition
to the geometrical aspects, the mechanical behaviors of the planar materials are crucial in determining the
flexibility/bending of the structures, which so far has not been considered. The same cut patterns done on MDF
and aluminum plates of the same geometrical parameters will lead to different deformation behaviors.

Although there have been several studies on utilizing the kerfing method to create flexible structures in
architecture and construction field, a systematic investigation on the mechanics of kerf structures is still lacking.
This paper presents a systematic study on the deformations in the unit-cells of kerf systems that experience
stretching, bending, and twisting. The effects of different cutting density and kerf patterns on the deformations
of the unit-cells are examined. Mechanical tests on unit-cells of two kerf patterns with different cut densities
are also performed. It is then possible to attain various deformed configurations in kerf panels by arranging the
unit-cells with different densities in forming flexible panels. We then present designs and analyses of curved
structures out of kerf panels. Some of the kerf panels are tested to examine their overall deformations. With
understanding the unit-cell deformations and arranging them in different orders and configurations, designers
could predict the final shape of the panels after prescribing forces. A more comprehensive study can also include
design optimization for the kerf patterns and cut densities in order to achieve freeform complex geometries.
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Recent studies on using metamaterials by Zehnder et al. [25], Konakovic-Lukovic et al. [14], and Guseinov
et al. [7] present programmable surfaces that can be reconfigured from a planar surface. In Guseinov et al.
[7], the design criteria include both temporal and spatial variations, and the deformations are achieved by
non-mechanical stimuli. Including the design optimization is beyond the scope of this study.

2 Kerfing patterns on medium-density fiberboard (MDF) panels

In this study, we consider two cut patterns, i.e., square interlocked Archimedean spiral and hexagon spiral, see
Figs. 2 and 3. The advantage of these patterns is that they are relatively easy to arrange to form flexible panels
in order to achieve desired freeform shapes. A relatively stiff flat panel of MDF is used. The thickness of the
panel is 0.125 inches. The MDF is formed by chopped wood fibers that are pressed together and bonded with
polymeric resin. Their in-plane mechanical properties can be considered isotropic. The mechanical properties
in the panel thickness direction might be different than the in-plane properties, as suggested by the numerical
simulations of microstructures of MDF [21]. However, there have been no experimental data on the mechanical
properties of MDF fibers in the thickness directions. The basic mechanical properties of the MDF panel,
obtained from the manufacturer, are as follows: the extensional (elastic) modulus is 580ksi (4 GPa), Poisson’s
ratio is 0.25, the tensile strength is 2.6ksi (18 MPa), and the ultimate tensile strain is 0.5%. In this study the
MDF is considered as a linear elastic isotropic material, and hence, the shear modulus is 232ksi (1.6 GPa). It
is noted that in Fig. 2 (left) the sharp corners result in breaking of the cut patterns (shown by yellow arrows),
which are more pronounced for the pattern with higher cut density. This is due to high stress concentrations
occurring in the regions with a relatively small cross-sectional area and sharp junction. In order to mitigate
the stress concentration effect, a square kerfing pattern with a fillet radius at the junction is considered (shown
with a red arrow in Fig. 2 right).

While kerfing technique promotes flexible surfaces, it generally reduces the load carrying ability of the
panels. Higher density cuts lead to more flexible and lower load bearing systems. When designing desired
geometrical shapes, we can consider the kerf panels with distributions of cut densities to have a balance
between flexibilities and load bearing. For this purpose, we study unit-cells of the same pattern with different
cut densities, see Figs. 2 and 3. These different densities are named as low density (LD), medium density (MD),
and high density (HD), associated with the number of the cutline layers in a unit-cell model. The LD cell has
the lowest number of cut lines, while the HD cell has the highest number of cut lines. The unit-cells with square
cut pattern have the side length of 1 inch and the thickness of 0.125 in. Fillets of 0.02 in. radius are included to
these unit-cell models for all corners in order to improve their performance by avoiding failure at the junctions
(sharp corner). The unit-cells with hexagon pattern have the side length of 1 in. and thickness of 0.125 in. In all
unit-cells, the kerfing patterns are formed by arrangements of straight prismatic bars with a rectangular cross
section. The pattern with HD cut leads to slenderer bars with a relatively small cross-sectional area, low second
moments and polar moment of an area, and low torsional rigidity, resulting in more compliant behaviors.

Unit-cell

Fig. 2 Square interlocked Archimedean spiral pattern on an MDF panel (left); unit-cells with different cut densities (right)
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Unit-cell

Fig. 3 Hexagonal spiral pattern on MDF panel (left); unit-cells with different cut densities (right)

3 Experimental tests

A custom-built mechanical testing system is used to perform the uniaxial, biaxial, and bending tests on the
unit-cell specimens, see Fig. 4. Motorized linear actuators (DS4 series, Kollmorgen Corp., Radford, VA), each
equipped with a 10-mm lead and coupled with a servomotor (AKM23D, Kollmorgen Corp., Radford, VA.
Each servomotor (AKM23D, Kollmorgen Corp., Radford, VA), are driven by a servo drive (AKD-P00306,
Kollmorgen Corp., Radford, VA) in order to provide displacements. A 100-Ibs load cell (Honeywell Sensotec,
Model 31, Columbus, Ohio) is used to measure the load. A +/- 2-inch linear variable differential transformer
(Honeywell Sensotec, MVL7C, Columbus, Ohio) is used to measure the axial displacement. The system is
able to perform both load and displacement control. A custom-designed serrated clamp was used to grip the
specimens.

One arm of the specimen was fixed, while the opposite arm was stretched by the linear actuator in order
to perform a uniaxial test. Three measurements on the initial grip distance were taken after the specimen
was mounted, and an average was calculated. Ink was marked at the clamping sites to check slippage. For
each pattern, three specimens were tested until failure. Two of them were stretched at a displacement rate
of 0.0151n/s, and one was at a displacement rate of 0.0015in/s. There were no apparent differences in the
responses from these two rates, as will be seen later in the experimental results. The remaining tests were done
at the displacement rate of 0.015 in/s. For the biaxial test, all the four arms were simultaneously stretched along
the axes’ directions. For the bending test, the specimen was rotated so that the plane normal direction was in
the direction of the rod axis. Two arms were gripped, and the rod pushed the center of the panel (see Fig. 4).
The unit-cells of the square pattern were subjected to uniaxial, biaxial, and bending tests, while the unit-cells
with the hexagon pattern were subjected to uniaxial and bending tests.

We also performed a bending test on kerf panels with square and hexagon kerf patterns in order to create
a dome shape. The testing setup is shown in Fig. 5. The same device was used for testing with custom-built
grips and push rod to deform the center of the panel.

4 Modeling and simulation

In order to analyze the deformations of the kerf unit-cells and panels, we consider representing the segments
(prismatic bars) in the kerf systems with beam elements of a solid rectangular cross section, see the illustration
in Fig. 6. The side length s is equal to 1 inch. The actual unit-cell model is generated using 3D continuum finite
elements, while the simplified model is generated using beam finite elements. Each beam has a thickness of
0.125in, which is the thickness of the MDF panel, and the width of the beam depends on the cut density and
pattern of the kerf panel. The width of the beam is defined based on the number of cutline and the gap from
laser cutting the specimen, which is around 0.0251in. Tables 1 and 2 present the cross-sectional dimensions
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Fig. 4 Experimental test setup for unit-cells

of the beam for the square and hexagon patterns with different cut densities. Depending on the deformations
prescribed to the unit-cell and panels, each beam can experience axial stretching, transverse shearing, bending,
and/or twisting. For example, when uniaxial and biaxial loadings are imposed on the unit-cells, each beam is
subjected to axial stretching, transverse shear, and/or bending about the out-of-plane axis. When the unit-cell
is subjected to bending, each beam can experience transverse shearing, bending about the in-plane axis, and/or
twisting. Table 3 depicts illustrations of local deformations of a unit-cell under different loading conditions.
For a relatively slender beam, i.e., the length is much larger than the cross-sectional dimension, the contribution
of the transverse shear deformation is negligible.
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Fig. 6 Geometrical models for square and hexagonal unit-cell (MD pattern). The actual unit-cell model using 3D continuum
(left) and the simplified model using beam (right) elements
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Table 1 Geometrical properties of the beam cross sections in unit-cells with a square pattern

Unit-cell Area (in?) Second moment Second moment Polar moment of
of area of area area
111 (x10° in%) Iy (x1073 in%) I, (x107% in*)
LD 0.125 x 0.1000 1.0417 1.6276 0.3073
MD 0.125 x 0.0583 0.2064 0.9489 0.1305
HD 0.125 x 0.0375 0.0549 0.6104 0.0782

Table 2 Geometrical properties of the beam cross sections in unit-cells with a hexagon pattern

Unit-cell Area (in?) Second moment Second moment Polar moment of
of area of area area
I (x1073 in%) I (x1073 in%) I, (x107 in*)
LD 0.125 x 0.1000 1.0417 1.6276 0.3073
MD 0.125 x 0.0633 0.2642 1.0303 0.1453
HD 0.125 x 0.0450 0.0949 0.7324 0.0956

Table 3 Local deformations of beam segments in square unit-cell of medium-density cut

Uniaxial loading

Biaxial loading

Mid-span Bending

Y
B,V

A: axial stretch
B: in-plane bending

V:in-plane transverse
shear

A, B, V

A: axial stretch
B: in-plane bending

V:in-plane transverse
shear

B: out of-plane bending
T: twisting

V: out of-plane
transverse shear

4.1 Beam element model

We consider a general beam element that can undergo axial stretching, transverse shearing, bending about
two lateral axes, and twisting. Depending on the density of the cut, some beam can be considered slender in
which the transverse shear deformation is negligible, while some can form a thick section where the influence
of transverse shear strain on the lateral deformations cannot be ignored. As will be discussed later, in the
LD unit-cells some regions form a stocky section, which cannot be represented by a beam element. It is
also noted that the beam elements, depending on their locations and loading conditions, can experience large
deformations, mainly due to rotations. Even when undergoing large deformations, the strain or stretch of the
material elements along the beam is rather small due to the use of MDF which has a relatively high elastic
modulus. For references on the formulations of beam elements undergoing large deformations, governed by
rotations, the readers can refer to Simo (1985), Reissner [18], Saje and Srpcic [19], Irschik and Gerstmayr
[11], and Cesarek et al. [3].
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The kinematics representation of the beam in the undeformed and deformed configurations is given in
Fig. 7. The position of point P in the beam, in an undeformed configuration, is given as:

X(8) =X, (8) + $1T1(S) + $2T2(S) ey

where X,,(§) is the position of the centerline of the beam along the arc length S. The planes through X, (S)
normal to N are the cross section of the beam. A fiber within the cross section is defined by the unit vector
fields T (S) and T>(S), and {N(S), T(S), T2(S)} is an orthonormal frame, where N = T| x T,. Here N is
the normal unit vector to the cross section, and in the undeformed state, it is tangent to the line of the centerline
X, (S). Also S; and S are the lateral axes of the beam cross section, and S3 is the axial axis of the beam. The
corresponding curvatures Ki, Ko, and twist T in the undeformed configuration are then defined by:

dT, dT,
Ki=N—; Ky =N—, 2
1 s 2 1S ()
;g T2 _ o dTy )

- A T rase

For an initially straight and untwisted beam, the unit-vector fields remain constant with the length S, and
therefore, K| = K, = T = 0.
In the deformed configuration, the position of point P is given as:

X(S8) = x,(8) + S1t1(S) + S262(S) + w(S)e(S1, S2)n(S) 4)

where X, (S) is the position of the centerline of the deformed beam. The unit vector n is normal to the cross
section of the deformed beam, and it is not tangent to X, (S), and n = t; X ty, where fibers within the cross
section of the deformed configuration are defined by the unit vector fields t;(S) and t;(S). It is assumed that
the fiber within the cross section of the beam does not experience stretch and only a fiber along the longitudinal
axis of the beam experiences stretch. The last term of Eq. (4) is the contribution of warping in case of twisting
of a noncircular cross section. Here w(S) is the warping amplitude; ¢(S7, S2) is the warping function of the
cross section. From the vector position in Eq. (4), we can then determine the axial stretch along the centerline
A, transverse shear strains yls , yg , twist T, curvatures «, k2, and bicurvature y as follows:

A= il , )
ds

y= x—l‘i—’z’.tl; ys = A_l%.tz, (6)

= —tl.i—t; _ 2.%‘, %

K1 = n.%; Ky = .%, ()

X = 3—?- ©)

For a solid cross section, twisting is not from a distributed torque; the bicurvature, which is an axial strain
variation along the centerline due to warping, is zero. From Eqs. (7) and (8), we can write:

dt dt
d—; = —xon + 1t; d—; = Kk1n—+ tty. (10)

Finally, the displacements of point P can be determined by u = x — X.
In order to determine the strains in the beam, we obtain the deformation gradient F as follows:

. dx dS i dx dS; " dx d$; (11
~dSdX  dS; dX O dS, dX

Once the deformation gradient is defined, we can determine the axial and shear strains in the beam element.
In this study, we consider MDF kerf panels. The material stiffness of MDF is relatively high, in which the

fibers within the cross section and along the beam longitudinal axis experience a relatively small stretch. The
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Fig. 7 Kinematic representation of a beam element in undeformed and deformed configurations
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Fig. 8 Square pattern comparisons

beams within the kerf unit-cell and panel can undergo large deformations, which are dominated by the large
curvature (large rotation). The axial stretch along the centerline is A ~ 1.

The axial and shear strains in the beam with regard to the beam local cross-sectional normal and lateral
directions are given as:

1 1 1
e=e=0—-1= 28 (2 —K)+ 50k —Ki)+ —x¢ (51, 5), 12)

Yi=y=vi+vi=vi+v,
N=vn=VYh+tVh=v+v (13)
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5 Uniaxial loading hexagonal pattern (MD)
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Fig. 9 Hexagonal pattern comparisons

LD square MD square HD square
Fig. 10 Models for LD, MD, and HD unit-cells using beam elements
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Fig. 11 Uniaxial responses of the square unit-cells

where the shear strains due to the transverse shear deformation are given in Eq. (6) and the shear strains due to
twisting are composed of the components from free warping and constrained warping, which are given below:

f
=va = V31— )’3[71’ (14)
Vs = Vi = 7’3); - V3pz-

The amplitude of warping in Eq. (4) can be expressed as w = w y —w,, where w 7 is due to free (unconstrained)
warping and w, is associated with prevented (constrained) warping. The shear strains due to twisting from the
free and constrained warping are rewritten as:
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t—T 0 d 0
V3J;: <_52+—(p)=wf <_S2+_(p>? V3pl =w _(/?1

A 35 85 Pasy’ 15)
roT—=T a9 a p a¢p
V32 ) ( e 8S2) o ( o 95> =0
The shear strains from twisting from Eqs. (14) and (15) are
0 0
ylt:wf _S2+_(p _wp_(ps
’ 8S1 8S1
(16)
2=\ T s, Pas,

For a slender beam, the transverse shear strains y;, y, are relatively small and often ignored. For an initially
straight beam element with solid cross section, the axial strain in Eq. (12) reduces to:

1 1
£ =833 =& — XS1K2+XS2K1 (17)

where ¢, is the axial strain of the centerline. With A & 1, the axial stretch of the centerline can be dropped
from Eq. (17).

The MDF panel is assumed linear elastic and isotropic with regard to its mechanical properties. The
corresponding axial and shear stresses of the beam element are:

o=Ee 11 =Gy; =Gy (18)

Finally, equilibrium equations are applied to the beam element, which are summarized below:

N=/odA; F =/l’1dA; F =/t2dA;

A, Ao A,
M = /SzadA; My = —/SlodA; T =/(—Sz‘c1 + S11m) dA; (19)
Ao Ao Ao

W= f(p(Sl,Sz)adA =0
A()

where N, Fj, and F; are the axial (normal) force, shear force along S| axis, and shear force along $; axis,
respectively, and Ay is the cross-sectional area of the undeformed beam. The two bending moments rotating
about the S7 and S, axes are M| and M, respectively, and the twisting moment rotating about the S3 axis is
T. It can be shown that for a solid rectangular cross section the bimoment W is zero. Also, for a rectangular
cross section, the first moments of an area with respect to the S and $> axes and the second moments of an
area for cross-coupling in bending are zero. Thus, the equilibrium equations in Eq. (19) reduce to:

N=EA,(A—1); Fi=kGA,y}: Fr=kGAyy}:
My = Eljik1; My = Elpky; (20)
T =Gwsl, +GwlJ

where I1; = f ($2)2dA and I, = f (S1)2d A are the second moments of an area, I, = f (S1)? + (82)%dA
Ao Ao Ao
is the polar moment of an area, and J = Af (—Sng‘”l + 51 ;Twz)dA is the torsional constant due to warping.
0
In Eq. (20), k is the correction factor for the transverse shear deformations from imposing uniform transverse
shear stress and strain distributions instead of the actual nonlinear distributions. For a rectangular cross section,
k=75/6.
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Fig. 12 Biaxial responses of the LD, MD, and HD square unit-cells

4.2 Simulation of unit-cell deformations

ABAQUS finite element (FE) analysis is considered for the deformations of the kerf unit-cells and panels.
We first compare the responses analyzed using the beam element to those of using a three-dimensional (3D)
continuum element, C3D8. The 3D continuum element allows for generating the unit-cell with precise shapes
and sizes, including detailed model of the patterns. However, it can be computationally expensive, especially
when one wants to generate a large-scale panel with complex deformed shapes. The use of beam elements
will definitely reduce computational cost, especially when large-scale structural analyses are considered, with
a caveat that precise geometrical shapes cannot be modeled. The B31 element in ABAQUS can incorporate
axial stretching, transverse shearing, bending, and twisting of a noncircular cross section where warping can
occur. We use the kerf unit-cells with MD cut to compare the force—displacement responses, mimicking the
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Fig. 13 Bending responses of square unit-cells

experiments, from the 3D continuum and beam elements (Figs. 8 and 9), which show a linear response.
We determine the overall stiffness (force recorded divided by the prescribed displacement) to examine the
responses under different loading conditions, i.e., axial and biaxial loadings and bending. Overall, the axial
and biaxial responses from the beam and 3D elements match very well. Slight mismatches are seen in the
bending behaviors. When the unit-cells are subjected to axial or biaxial loadings, the beam elements are
dominated by bending about the out-of-plane (S;) axis in which they can be adequately modeled as slender
beams. When the unit-cell is subjected to bending, the beam elements are dominated by bending about the
in-plane axis (S2) and twisting. Bending about the in-plane axis occurs on a rather thick section, and hence,
the transverse shear effects might not be negligible. Tables 1 and 2 summarize the cross-sectional dimensions,
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Fig. 14 Square cross section from beam model

second moments of an area, and polar moment of area of the beam elements in the unit-cells with different
kerf patterns and cut densities. The material properties are discussed in Sect. 2. Further comparisons between
the responses obtained from beam and continuum 3D elements for different loading conditions can be found
in Chen [4], which shows a relatively small difference in the overall deformed shapes obtained from 3D
continuum and beam elements.

The rest of the analyses will use beam elements in determining the deformations of the kerf unit-cell
and panels. Figure 10 shows the beam element models for the unit-cells with different cut densities and kerf
patterns. We also include the elements for the grip segments and prescribe the boundary conditions through these
grip segments in order to mimic the experiments. Figures 11, 12, and 13 summarize the force—displacement
responses of the square unit-cells with different cut densities (LD, MD, and HD) under uniaxial tension,
biaxial tension, and bending, respectively. Overall, the simulations can capture the experimental responses,
and deviations are seen for the bending cases. The simulations only consider linear elastic behaviors and do not
include failure in the specimens. During loading, prior to visible damage, the force—displacement responses are
fairly linear, and when a visible damage occurs the load continues to drop. Figure 14 illustrates the von Mises
stress contours corresponding to the peak loading of the experiments. The stress indicates that there are regions
with stress around or larger than 2.6 ksi, which is a failure stress of the MDF. The observed specimen failures
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Fig. 15 Uniaxial responses of hexagonal unit cells

during testing are consistent with the stress patterns. In the uniaxial test, the specimen failed along the vertical
bars in the middle of the unit-cell. In the biaxial test, the specimen failed at the four corners in the middle of the
unit-cell. During the bending test, we observed that the push rod was not necessarily in contact with the four
corners in the middle of the unit-cell, especially in the HD specimen. This might cause the slight mismatch
between model and simulation. The mismatch in the bending response from the experiment and simulation
from the LD specimens could be attributed to the rather short span of beam length (/) with large width (w),
where [ /w could be close to or less than one. In such situation, a beam element model is no longer applicable.
This effect is quite negligible when the LD unit-cells were subjected to uniaxial and biaxial loadings since the
deformations are mainly in the beams of relatively longer spans. To highlight the local deformations of beam
segments in the unit-cell model under different loading conditions, Table 3 summarizes the deformations for the
square unit-cell with MD cut. Under a uniaxial loading, the vertical beams are dominated by axial stretching,
while the horizontal beams are undergoing in-plane bending and in-plane transverse shearing. For the biaxial
loading, nearly all beam segments experience axial stretch, in-plane bending, and in-plane transverse shearing.
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Fig. 16 Bending responses of hexagonal unit cells

Under a bending condition, in which the unit-cell is constrained at the two ends along the x-axis and out-
of-plane lateral deformation is prescribed to the four central corners, some of the beam segments experience
out-of-plane bending and out-of-plane transverse shearing while other beam segments undergo out-of-plane
bending and twisting.

Figures 15 and 16 show the responses from the hexagon unit-cells with different cut densities. Again, the
beam elements can capture the overall deformations of the unit-cells, except for bending of the LD unit-cell.
Figure 17 depicts the von Mises stress contour from the uniaxial tension (top) and bending (bottom). We also
observed that failure in the specimens during testing is consistent with the regions of high stresses. As expected,
the cut with higher density gives more flexible deformations due to significantly low second moments and polar
moment of an area of each beam segment between the cut lines. Adding more cut lines will certainly create
more flexible structures. However, increasing cut lines leads to smaller area of each beam segment between
the cut lines, hence reducing load carrying capability of the overall structures. Similar to the square unit-cell
response, the simulation shows linear behaviors, which are attributed to the use of a linear elastic constitutive
model for the beam element model. The experiments show linear responses only up to a certain load level, and
nonlinear responses are seen followed by failure of the specimens.
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We summarize the overall stiffness (force/displacement) from the unit-cells of square and hexagon patterns
with different cut densities and under various loading conditions, as shown in Figs. 18 and 19. As expected,
higher density cut leads to more compliant responses, as indicated by low stiffness. The hexagon patterns yield
more flexible responses compared to the square patterns. This is due to more cut lines in the hexagon unit-
cells, and hence, rather slender beam elements are used to form the hexagon unit-cells. We also compared the
stiffness from the experimental and numerical results. Overall, they agree well, except that large mismatches
are seen for LD unit-cells under bending, as described above. When designing a kerf panel, regions with LD
cuts are generally under very low or negligible deformations, and LD cuts are often used to generate smoother
transitions within the panel. Under very small deformations, the beam elements can capture the deformations
in the LD unit-cells under all loading conditions.

4.3 Designing freeform shapes an MDF kerf panel

Based on the understanding of the unit-cell deformations, we can design kerf panels of complex geometries
(freeform structures). As noted from the unit-cell studies, higher cut densities lead to more flexible systems that
are easily deformed to complex shapes, but they experience larger stresses, reducing the load bearing ability of
the systems. In designing kerf panels for generating freeform shapes, we can vary the cut densities within the
panels, i.e., regions with high curvatures will require high-density cuts. If we restrict the design to developable
surfaces from a planar surface, which is done by an isometric mapping, then the surfaces can be achieved
without local distortion or cutting. In the developable surfaces, in which the Gaussian curvature is zero, we
can achieve the shapes without inducing distortion and hence no stresses induced to the beam segments.
When the surfaces are not developable, indicated by nonzero Gaussian curvatures, it is then necessary to
examine the stresses in the beam segments of the kerf panels and redesign the shape accordingly in order to
avoid regions with over-stressed conditions. We present two cases of simple surfaces with nonzero and zero
Gaussian curvatures as to illustrate the advantage of dealing with developable surfaces, the consequence of
non-developable surfaces, and the corresponding stresses in the beam segments in both cases.
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Fig. 18 Comparisons of stiffness in the square unit-cells with different cut densities under various loadings from simulation (top)
and experiment (bottom)

The desired freeform shapes can be determined by defining a mapping function yx (X) that maps a particle at
aposition X in the undeformed state to the deformed state x. From the mapping function, we can define various
measures of curvatures and the corresponding deformation gradient F = a)égz( ) = g—; Once the deformation
gradient is obtained, the corresponding strain measures and hence stresses in the kerf panel can be calculated,
see a similar discussion in Sohrabi et al. [22] for truss systems. In a relatively thin plate, large deformations
are dominated by large rotation while the plate experiences relatively small strains [2,5,13,23]. In this study,
we attempt to design kerf panels of specific shapes while keeping the maximum stresses way below 2.6 ksi
(the failure stress of the MDF). We present surface geometry analyses as a first step to examine the type of
surfaces, whether they are developable measured by zero Gaussian curvature. The corresponding surfaces out
of kerf panels are then modeled using the beam elements, and we further study the corresponding stresses in
the beam elements of the deformed kerf panels.

Consider an initially flat surface with in-plane dimensions defined by X and X» axes and the out-of-plane
direction defined by X3 axis. Given an explicit function for the out-of-plane displacement that determines
a freeform shape u3 = h(X1, X2), we can compute the principal curvatures (k1, k2) and also the Gaussian
curvature kg = k1.k2 within the freeform shape. When the Gaussian curvature is equal to zero, the panel can
be deformed to the freeform shape without distorting it, i.e., no stretching and tearing of the material, and
hence, the stresses within this freeform surface will be equal to zero. When the Gaussian curvature within the
freeform shape is nonzero, we then need to determine the maximum stresses in the surface and redesign the
shapes in order to meet the maximum stress limit.
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The principal curvatures are determined as follows:
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We present two examples of rather simple freeform shapes, i.e., dome and saddle shapes, in order to clearly
illustrate the design and analysis of kerf panels in generating freeform structures.

1. Dome shape
The dome shape is formed by the following mapping function:

x1=X1; x=X2;, x3=X3-+ e—A[(X1)2+(X2)2]’

23
—L1/2<X1 <L1/2; —Ly/2<X>=<Ly/2 @y
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Fig. 20 Dome amplitude and Gaussian curvature

where L1xL, is the planar dimension of the flat surface, and A is a constant that determines the sharpness of
the dome. Let us consider a flat panel of 15 x 15, inches and with A = 0.04, the dome shape, and corresponding
Gaussian curvature is shown in Fig. 20. The nonzero values of the Gaussian curvature are mostly in the center
region of the panel. In designing the kerf panel to create the dome shape, we consider a square pattern. The
HD cut is used for the regions of high curvature (kg > 10~%) while regions with zero curvature are designed
with LD cut. We also consider transition regions from LD to HD with the MD cut. Figure 21 top shows the cut
density distribution in a kerf panel with a square pattern that will be deformed into a dome shape. The kerf panel
out of MDF with the corresponding cut density distribution is shown in Fig. 5. In this study, determining the
curvature threshold for the cut density distribution is rather arbitrary, and the cut densities are placed manually.
In the future, we plan to automatically generate the desired freeform shapes, the corresponding kerf patterns,
and the cut density distributions that meet the design criteria.

The kerf panel is then subjected to a bending deformation to generate the dome shape by applying out-of-
plane displacement to the center of the panel, corresponding to the mechanical test in Fig. 5. Figure 21 middle
depicts the out-of-plane force—displacement responses from experiment and simulation. The corresponding
von Mises stress contour is also shown in Fig. 21 bottom. The dome amplitude is limited in order to avoid a
nonlinear material response and failure. A slight stiffening in the response is attributed to the deformations of
the HD cut at early loading, followed by the deformation in the MD cut at later stage of loading. The regions of
LD cut experience no deformation, as expected. A dome shape out of a hexagon pattern is depicted in Fig. 22.
Similarly, the dome amplitude is limited so that the maximum stresses in the beam elements are much smaller
than the failure stress of the MDF. The force—displacement response from the simulation is comparable to the
experimental result. At a larger displacement, a deviation in the model and experiment is seen. The stiffening
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Fig. 21 Dome shape of a kerf panel with a square pattern. Top: panel with different cut densities; middle: the load—displacement
response; bottom: von Mises stress contour

in the experiment at larger displacement is associated with the contact of six center tips of the kerf segments
which is not seen in the square pattern. The model does not include any contact surfaces.

2. Saddle shape
The saddle shape is obtained from the following mapping function:

x1=X1; x=X; x3=X3+AX1X>

24
—L1/2<X1<Li/2; —Ly/2<X;<Ly/2. o

With A = 1, the principal curvatures and Gaussian curvature are determined, as summarized in Fig. 23. It
is seen that to achieve the saddle shape with the mapping function in Eq. (24), the panel can be deformed
without inducing any distortion to the material, and hence, the stresses will be zero. This is in accordance with
the zero Gaussian curvature. Unlike in the dome shape, we cannot use the Gaussian curvature to determine
the distribution of cut densities. In order to determine the distribution of cut densities within the panel, we
consider another geometrical measure that depends on the gradient of the out of plane displacement k7 =
(%)2 + (%)2. Figure 24 shows the saddle shape displacement from the mapping function in Eq. (24) and
the corresponding parameter k7. The parameter «7 will be used to distribute the cut densities within the panel.
The regions with high values (> 500) will have HD cut, and regions with low values (< 50) will have LD cut,
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Fig. 22 Dome shape of a kerf panel with a hexagon pattern. Top: panel with different cut densities; middle: the load—displacement
response; bottom: von Mises stress contour

and the remaining will be with MD cut. The cut densities are also shown in Fig. 24. The saddle shape that is
formed by the kerf panel is shown in Fig. 25. It is seen that the von Mises stresses are zero throughout the
panel, except small values close to the locations where loads are prescribed.

It is noted that we use the Gaussian curvature kg and another geometrical parameter «r of surfaces to
manually estimate locations in the kerf panel with HD cuts and examine the capability of the beam element
models in estimating the overall deformations of the kerf panels. In the future, we plan to include an optimization
method to our kerf panel analyses in order to automatically generate the desired freeform shapes and their
corresponding kerf patterns and cut density distributions that meet the design criteria.

5 Conclusions

We have presented experimental work and simulation on understanding the mechanical responses of kerf
panels. Unit-cells of two kerf patterns, i.e., square and hexagon, out of MDF with different cut densities
have been subjected to uniaxial and biaxial stretching and out-of-plane bending. The mechanical responses of
the kerf unit-cells were simulated using a beam element model that accounts for axial, bending, twisting, and
transverse shear deformations. A linear elastic constitutive material model was considered for the beam model.
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The simulations can capture the responses of the unit-cells under different loading conditions. As expected, the
beam element model shows linear responses of the unit-cells, and the nonlinear responses in the experiments
are associated with damage and breaking of the specimens. Furthermore, we have tested and simulated a dome
shape of kerf panels with square and hexagon patterns. Again, the responses from simulation and experiment
correlate well.

In the low-density cut of unit-cell models, both for square and hexagon patterns, mismatches in the bending
response from experiment and simulation are observed. In the low-density cut, the segments in the kerf pattern
about the bending axis are quite stocky, in which beam elements are not suitable in capturing their deformations.
The low-density cuts give the stiffest responses for all loading conditions when compared to the medium and
high-density cuts, which are expected. In designing kerf panels of freeform shapes, the use of low-density cuts
will be in the regions of very low curvatures, and they are mostly used for improving load bearing.

We have also demonstrated the design and analysis of simple shapes of the panels, of dome and saddle
shapes, using the kerfing method in order to highlight the differences in the deformation behaviors between
developable and non-developable surfaces. We have presented arrangements of cut densities in achieving the
desired shapes. It is also noted that in case the Gaussian curvature of the panel is zero, i.e., in the saddle shape,
the kerf panel can be deformed without inducing any stresses, which should be expected. The kerfing technique
is not limited to only achieving simple shapes, it can be easily deformed to more complex shapes. In addition,
a continuous transition in cut densities can also be achieved by parameterizing multiple design variables. In
the future, an optimization method will be incorporated to the kerf panel analyses in order to automatically
generate the desired freeform shapes and their corresponding kerf patterns and cut density distributions that
meet the design criteria.
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