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Abstract 

Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use 

of spin waves (magnons) to transmit, store, and process information. The rapid advancements of 

this field during last one decade in terms of upsurge in research papers, review articles, citations, 

proposals of devices as well as introduction of new sub-topics prompted us to present the first 

Roadmap on Magnonics. This a collection of 22 sections written by leading experts in this field who 

review and discuss the current status besides presenting their vision of future perspectives. Today, 

the principal challenges in applied magnonics are the excitation of sub-100 nm wavelength 

magnons, their manipulation on the nanoscale and the creation of sub-micrometre devices using 

low-Gilbert damping magnetic materials and its interconnections to standard electronics. To this 

end, magnonics offers lower energy consumption, easier integrability and compatibility with CMOS 

structure, reprogrammability, shorter wavelength, smaller device features, anisotropic properties, 

negative group velocity, non-reciprocity and efficient tunability by various external stimuli to name 

a few. H ence, despite being a young research field, magnonics has come a long way since its early 

inception. This Roadmap asserts a milestone for future emerging research directions in magnonics, 

and hopefully, it will inspire a series of exciting new articles on the same topic in the coming years.  
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The concept of spin waves was first introduced by F. Bloch in 1932 [1] and further developed by 

H olstein & Primakoff [2] and Dyson [3] who laid the foundation of spin waves theory. Although effects 

of periodic modulation on wave propagation was known since the late 19th century, and concept of 

pass and stop bands was introduced for electromagnetic wave propagation in 1950s [4], it was 

introduced in the magnetic system after two decades [5]. Subsequently, different kinds of periodic 

modulation have been introduced. H owever, the invention of photonic crystal [6] has fuelled intense 

interest in spin waves in periodic magnetic media in the late 1990s [7] and a new field named 

magnonics was born. In 2001, the term magnonic crystal was coined by Gulyaev and Nikitov [8] and 

later by Puszkarski and Krawczyk as the magnetic counterpart of photonic crystals. [9] 

Magnonics deals with the excitation, propagation, control and detection of spin waves (quanta of 

which are called magnons) through periodic magnetic media consisting of either passively (patterned 

structures, modulated magnetic properties) or actively (spin texture, electric field, magnetic field) 

controlled modulation. It is analogous to photonics or phononics but it has several advantages over 

its photonic or phononic counterparts. These include lower energy consumption, easier integrability 

and compatibility with CMOS structure, programmability, shorter wavelength, smaller device 

features, anisotropic properties, negative group velocity, non-reciprocity and efficient tunability by 

various external stimuli to name a few. H ence, despite being a young research field, magnonics has 

come a long way since its early inception. A flurry of research on propagating and confined spin waves 

have unravelled a plethora of fundamental physics and a handful of prototype devices and concepts 

such as magnonic memory, logic, transistor, transducers, RF components (filters, diodes and 

circulators), all-magnon circuits and neuromorphic computing have been unearthed. This brings us to 

the important milestone of preparing a roadmap of magnonics research in the coming years.  

This is the first roadmap on magnonics. Three roadmaps of Magnetism have already been published 

by IOP in 2014, 2017 and 2020, where few aspects of magnonics and spin dynamics have been 

discussed. H owever, a comprehensive roadmap solely dedicated to magnonics has been long due. 

Magnonics community organize the international workshop titled “Magnonics:  F rom F undamentals 

to A pplications”, every two years which has become a benchmark conference not only for the 
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magnonics community but also for researchers working in related fields like spintronics, microwave 

electronics, nanomagnetism, etc. In addition, an “ I nternational A dvanced S chool on Magnonics” is 

organized every two years. Further, Magnonics sessions regularly feature at the major international 

conferences (e.g. MMM, Intermag, JEMS, APS meetings, etc.). The number of research papers and 

citations in this field has steadily increased over last three decades and experienced huge upsurge 

during the last one decade. H ence, the time is ripe to prepare a roadmap on magnonics. 

 
Fig. 1. The many branches of magnonics. 

 

This roadmap aims to encompass the state of the art in the field of magnonics [10, 11] and to move 

forward in the quest for new concepts, phenomena and techniques for the ultimate goal of 

translational research in the coming years. We search for ways to conjugate the substantial 

knowledge-base made in the conventional and emerging topics of magnonics (e.g. spin textures, 

strong coupling, topology, biology, spin-orbit effects) and lead towards hybrid magnonics, where more 

than one effects/ stimuli can drive each other or have interconversion for discovering novel 

phenomena, as well as developing more robust and efficient devices (Fig. 1). The Roadmap is an 

interdisciplinary collection of sections written by leading experts in the field where classical magnonics 

merges with quantum effects, e.g. spin-orbit coupling, the spin H all and spin pumping effect, 

Dzyaloshinskii-Moriya interaction (DMI), superconductivity, nonlinearity, topology, etc. 

The roadmap contains a discussion of fabrication techniques of planar and three-dimensional 

magnonic structures using top-down and bottom-up approaches besides patterning of spin textures 

(section 1). The research on planar magnonic crystals (MC) have matured substantially during the last 

one decade and the future challenges lie in extensive research in unconventional structures, quasi-
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periodic lattices, controllable modulators, vortex and skymion lattices, etc. (section 2). Efforts on the 

extension of planar MC towards the third dimensions has just started [12], which promises very 

complex spin-wave dispersion and confinement effects (section 1, 2, 5). The 3rd dimension can be 

exploited to control the in-plane propagation of spin waves, offering a robust route for designing non-

reciprocal magnonic spectra with chiral properties without the need for DMI and sophisticated 

material growth. 3D integrations with respect to 2D systems permit to fit more functionality into a 

smaller space, allowing a large number of vertical connections between the layers, and an increase of 

the density of elements for the fabrication of scalable and configurable magnonic networks. 

Moreover, curved surfaces and 3D micro- and nano-objects exhibit peculiar and unexpected spin 

textures which are normally not observed in planar nanostructures and allows for the exploitation of 

magnon’s chirality and the resulting non-reciprocity of the magnon dispersion (section 5). One of the 

most fundamental topics of magnonics is magnon Bose-Einstein condensation (BEC). Beyond 

conventional parametric pumping, kinetic instability regime, rapid cooling, spin pumping effect have 

been explored to attain more efficient magnon-BEC. On the other hand, various indirect confirmation 

of magnon supercurrent, which is considered to be a key element of information transfer from 

magnon-BEC, has been obtained, e.g. by observation of quantized vortices in a two-component Bose-

Einstein condensate by using Brillouin light scattering (BLS) spectroscopy (section 4). 

A very important aspect of modern magnonics is to use exchange-dominated short-wavelength 

magnons as it promises high-speed magnonic devices and data processing. H owever, conventional 

microwave antenna-based excitation is inefficient and new approaches such as resonant and non-

resonant magnonic nanogratings, ferromagnetic coplanar waveguides, parametric pumping, spin-

transfer torque and spin textures will be useful. Some important issues like using topologically 

protected magnetic states as nanochannels of low damping and magnon-qubit coupling scheme 

involving short-wavelength magnons for integrated hybrid quantum systems have been discussed in 

section 6. Optically inspired magnonics, based on spin-wave nano-optics and easy local modification 

of ‘ optical’ properties can be useful for miniaturization of devices using short-wavelength magnons in 

metallic ferromagnets, but high damping and low dynamic range limit the maximum achievable device 

size (section 8). Anti-damping torque from the spin-orbit effect can play a crucial role in damping 

modulation (section 9, 12) [13]. V oltage-controlled magnonics can offer energy-efficient alternatives 

in beyond-CMOS computing and a two-pronged approach can be taken to this end, using magnon 

straintronics (section 7) and voltage-controlled magnetic anisotropy (section 17). While the former 

depends on inverse magnetostriction (V illari effect), the latter works on the change in electronic 

occupation at the ferromagnet/ oxide interface and the ensuing orbital hybridization. Both the effects 

can excite and control spin waves and produce dynamic magnonic crystals and magnonic 
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nanochannels. Spin-orbit coupling (SOC) effects can play a big role in energy-efficient magnonics, and 

effects like perpendicular magnetic anisotropy (PMA), spin H all effect (SH E), Rashba effect, spin 

pumping, spin caloric effect and DMI have already been extensively used in various branches of 

magnonics ranging from magnon-BEC to magnonic devices. They have their origin both in the intrinsic 

and extrinsic mechanism, where the latter can be efficiently engineered to externally control 

magnonic systems made of SOC materials. The SH E can cause auto-oscillation by completely 

compensating damping and this auto-oscillation in a nano-notch SH E oscillator have shown to 

efficiently emit unidirectional propagating spin waves into a magnonic waveguide. The propagation 

length of emitted spin waves has been enhanced by up to a factor of three by the spin current injected 

over the entire length of the waveguide. H owever, nonlinear scattering of propagating spin waves 

from magnetic fluctuations and spatial self-localization of oscillations, preventing the emission of 

propagating spin waves both caused by the pure spin current are important issues to be addressed in 

future (section 9).  

Spin wave non-reciprocity is both fundamentally and technologically important and it occurs when 

spin-wave propagation changes or becomes forbidden upon inversion of the propagation direction 

and requires a breaking of the time-reversal symmetry (section 15). V arious effects such as surface 

acoustic wave, dipolar interaction, gradient magnetic field and interfacial DMI can give rise to such 

non-reciprocity. Such non-reciprocal propagation can continuously tune the magnonic band structure 

and bandgap in magnonic crystal with interfacial DMI (section 12). The introduction of periodic DMI 

can cause indirect magnonic gaps, flat bands and complex temporal evolution of the spin waves, and 

can be regarded as a chiral magnonic crystal, where topological magnons should be observed (section 

15). Interfacial DMI also plays important role in stabilizing chiral spin textures, which can affect the 

magnon propagation giving rise to the topological and magnon H all effect. Spin textures play a key 

role in magnonics due to their stability and resilience combined with a remarkable degree of tunability 

and scalability towards nanoscale dimensions. Some prominent examples are spin-wave channelling 

within domain walls, reconfigurable magnonic crystal and reprogrammable spin-wave circuits (section 

10). A related field is the graded-index magnonics where tailored graded magnonic landscapes from 

nonuniformity of internal magnetic field can be exploited to create practical devices such as magnonic 

Luneburg lens. H owever, development of designer magnonic landscapes with low damping is a major 

challenge ahead (section 11). Antiferromagnetic and TH z magnonics offer ultra-high frequency 

devices. In antiferromagnets, the TH z eigenfrequency stems from the very high sublattice exchange 

field, while laser-induced spin current in a ferromagnet/ nonmagnet thin films can also cause TH z spin-

wave emission due to the confinement of exchange standing spin waves in nanometer-thick layer. 

Synthetic antiferromagnets and angular momentum compensated ferrimagnets also exhibit exotic 
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spin dynamics. Magnetic damping measurements and direct observation of antiferromagnetic 

magnon modes are crucial future challenges, while magnon current driven by all-electronic on-chip 

TH z sources may enable novel energy-efficient spin memories operating at TH z frequencies (section 

13 and 14). Spin-wave power flow and caustics will be important in magnonic computing which may 

require the creation of multiple spin-wave beams and methods to tune the focusing on a small and 

local scale. Magnon focusing can occur by playing with the curvature of the isofrequency curve, viz . 

by tuning internal system parameters such as magnetic anisotropy, interfacial DMI, nanostructuring 

or by external control such as electric field, magnetic field, spin-polarized current etc. (section 16). 

Cavity magnonics is an emerging field that emphasizes strong coupling between cavity photons and 

magnons because of their coherence over large distances, whereas magnons and phonons also 

generate indirect interactions between tiny magnets over large distances. A coherent magnon-photon 

coupling causes photon-magnon mode repulsion. Some challenges in this field are to customize and 

load cavities, chiral interaction leading towards designing chiral magnonic molecules and increased 

nonlinearity for creating tripartite entanglement between magnons, photons and phonons (section 

18).  

Topologically protected magnon modes hold great promises due to their inherent robustness against 

defects and imperfections and their generic chirality, whereas possible applications in advanced and 

quantum information processing due to lower dissipation and possible coherent control of magnons.  

H owever, their experimental confirmation is still limited to the magnon H all effect and observation of 

topological magnon bands. To this end, one of the major challenges will be to find systems with strong 

DMI for the generation of a Berry curvature of the magnon bands leading towards a transverse 

deflection of the exchange dominated magnon current so that it can be detected at higher 

temperatures and occurred on shorter time scales (section 19). Superconductor/ Ferromagnet (S/ F) 

hybrid systems at low temperatures offer highly interesting physics, e.g. spin-polarized triplet 

supercurrents via spin mixing and spin rotation processes in proximity coupled S/ F interface and a 

fluxon-induced magnonic crystal in proximity decoupled S/ F bilayer system in out-of-plane magnetic 

fields, when the superconductor attains a mixed state having Abrikosov vortices. S/ F heterostructures 

can also allow for highly efficient magnon-photon coupling, which is important for quantum cavity 

magnonics (section 20). Biologically encoded magnonics is still in its infancy, which takes the approach 

of using microorganisms having the genetic machinery to form dedicated ensembles of physically 

separated magnetic nanoparticles (magnetosomes) for orientation by the Earth's magnetic field. Their 

GH z frequency dynamic response shows coherent oscillation inside each nanoparticle and dipolar spin 

wave along the particle chain. Magnetotactic bacteria like magnetotactic spirilla and magnetotactic 

cocci can be genetically or mechanically modified to form magnetosome chains with sharp kinks, 
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which can be used for developing magnonic gates (section 22). Despite showing initial promises, these 

systems will require extensive refinements for being used in devices.  

The overriding aim of magnonics is to deliver high-frequency and nanoscale on-chip devices and 

circuits. Magnonic data processing has potential advantages like using the spin-wave bus, 

miniaturization to the atomic scale, large coherence length, broad bandwidth, reconfigurability, 

dynamic control and non-linearity, and various classes of magnonic devices have been developed or 

proposed. These include RF components, e.g. reconfigurable filters, delay lines, phase shifters, Y-

circulators, multiplexers, wake-up receivers, signal-to-noise enhancers, and spectrum analysers, 

interference-based Boolean logic and majority gates, all-magnon circuits, unconventional spin-wave 

computing, neuromorphic and quantum computing (section 21). A realistic magnonic computer, 

however, will require magnonic logic circuits, interconnects, and magnonic memory but in its current 

status a competitive replacement of all aspects of the state-of-the-art charge-based computing 

systems by its magnonic counterpart seems elusive. A hybrid spin-wave— CMOS system with local spin 

wave islands embedded in a CMOS periphery seems more realistic if the signal conversion between 

magnonic and electric domains can be efficient. It also has potential for area reduction. There are 

major challenges for magnonic logic to be integrated alongside CMOS in practical microelectronic 

applications. Alongside magnonic logic satisfying all criteria for circuit design, development of energy-

efficient scalable transducers and efficient periphery to interface between transducers and magnonic 

circuits with the larger CMOS part of the chip is required (section 3).  

Finally, imaging spin waves with high spatial resolution is an important issue. Whereas near-field BLS 

and TR-MOKE microscopes can go below 100-nm resolution at the expense of measurement 

sensitivity, progress in X -ray and photoelectron microscopy and nitrogen vacancy (NV ) centre 

magnetometry may offer better spatial resolution for the measurement of short-wavelength 

magnons, spin wave caustics and other nanoscale spin wave phenomena. Emergent and associated 

fields like two-dimensional magnonics in van der Waals magnets [14], hybrid magnonics including 

strong magnon-phonon coupling [15], spin-torque and spin-H all nano-oscillators [16], neuromorphic 

computing [17], etc. are making fast progress and would surely be topics of future magnonics 

roadmaps.                 

Thus, despite having great deal of success in both fundamental and application fronts, magnonics 

faces many stern challenges in developing new materials and structures, improving energy efficiency, 

scalability and integration of devices to practical circuits. This roadmap points towards all the major 

issues that must be addressed in the coming years to make magnonics a competitive technology.          
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N ov el fabrication techniq ues for M agnonics 
S.Ladak1 and A. O. Adeyeye2 
1. School of Physics and Astronomy, Cardiff University, U.K. 
2. School of Physics, University of Durham, U.K. 

 
 Status 
 Top-down fabrication processes has 
yielded a revolution in electronics, 
enabling a plethora of technological 
developments associated with 
computing and communication. 
Lithographically defined magnetic 
structures followed suit from the 
1970s, providing new avenues for 
studying solid-state magnetic 
phenomenon. The use of quantized 
spin-waves to transmit and store 
information is a paradigm-shifting 
approach to next generation 
computing and communication 
technologies. By the time such 
developments were first proposed, 
advanced lithography and processing 
was well established as a platform for 
producing well-defined 
nanostructures with high quality 
interfaces, allowing rapid growth in 
understanding of how spin-waves and 
their quasi-particles, can be 
harnessed within simple devices. 
Moving beyond simple lithographic 
processes allows the tuning of 
magnonic phenomena by nanoscale 
control of material interfaces, 

studying their interaction with non-trivial spin textures and by realising complex three-dimensional 
networks. A simple but powerful means to realise a one-dimensional magnonic crystal is to produce 
periodic variations in film thickness via chemical etching. Such processes are not simple to implement 
with technologically relevant materials such as yttrium iron garnet (YIG). In a pioneering study, 
Chumak et al.[1] used orthophosphoric acid in order to realise a structured YIG film, with periodic 
grooves etched into the surface (Fig 1a).  Microstrip antennas, placed 8mm apart, were used for 
excitation and detection, in the presence of a bias field applied along the strip length, allowing study 
of backward volume magnetostatic waves. Fig 1b shows the transmission characteristics of the grating 
as a function of groove depth. Clear stop bands are observed with the rejection efficiency and the stop 
band width increasing with groove depth. The results were understood in the context of a simple 
model, which approximated the grating with a series of transmission line segments, each with 
different propagation constants. Standard lithographic processes and processing can also be used in 

Figure 1: (a) A structured YIG film with periodic grooves with embedded 
microstrip antennas. (b) Transmission spectra showing stops bands as function 
of groove depth. (c) Novel methodology for producing binary magnetic 
nanostructure arrays. (d) SEM of binary Ni80Fe20-Ni islands. (e) Co tetrapod 
structure fabricated with two-photon lithography and electrodeposition. (f) 
Micro-magnetic simulation showing spatially uniform mode at junction. (g) 
Schematic showing thermally assisted magnetic scanning probe lithography. (h) 
Spatial map showing spin-wave excitation across a straight Néel domain wall.  
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original ways in order to realise novel magnetic systems with bespoke dynamic response. By 
harnessing state-of-the-art deep ultraviolet lithography and angled deposition [2] (Fig 1c), Ding et al. 
realised periodic arrays of binary magnetic nanostructures consisting of overlapping Ni80Fe20-Ni80Fe20 
or Ni80Fe20-Ni islands as shown in Fig 1d. Dynamic properties of the arrays were measured using V NA-
FMR. The Ni80Fe20 and Ni80Fe20-Ni80Fe20 structures exhibited a single resonant frequency whilst the 
Ni80Fe20-Ni binary structures showed two distinct frequencies corresponding to a low frequency mode 
from Ni elements and a high frequency mode from the Ni80Fe20 contribution. The work shows simple 
variations in electron-beam lithography and processing can be a powerful means to control high 
frequency response.  Another intriguing concept that utilises standard processing aims to produce 
microwave-magnon transducers. H ere, Yu et al. patterned a lattice of Ni81Fe19 nanodisks (350nm) 
between a YIG film and coplanar waveguides[3]. The higher frequency resonant response of the 
nanodisks at saturation was then exploited to produce exchange-dominated spin waves with 
wavelength below 100nm within the YIG film.  
  
Recent work has shown 3D nanostructured magnetic materials can yield a range of interesting 
phenomena, not seen in conventional planar geometries [4]. With respect to magnonic structures two 
aspects are particularly important. Firstly, the realisation of simple 3D cylindrical structures upon the 
nanoscale is a means to realise spin-Cherenkov effects, allowing controlled spin-wave emission. 
Secondly, the controlled production of 3D lattices upon the nanoscale is a route to bespoke 3D 
magnonic crystals. One means of realising such 3D structures is via two-photon lithography (TPL), a 
powerful technique which when combined with growth and processing can yield magnetic materials 
of arbitrary 3D geometry at a resolution of approximately 100nm. Proof-of-principle has recently been 
obtained in a pioneering study [5] by Sahoo et al., where TPL was used in combination with 
electrodeposition in order to realise complex 3D structures. Figure 1e shows an example 3D Co 
tetrapod structure, where individual wires had feature sizes of ~ 500nm. Optically pumped, time-
resolved magneto-optical Kerr effect (MOKE) was used to probe the magnetisation dynamics at the 
tetrapod junction, allowing the identification of three precessional modes at 1 GH z ,10 GH z and 30 
GH z. Finite element simulations were used to visualise the profiles showing a spatially uniform mode 
(Fig 1f) at 30 GH z whilst those at lower frequency were dipolar dominated with nodal planes spreading 
along two perpendicular directions. The study shows experimentally accessible techniques such as 
MOKE can be used to measure magnetisation dynamics in complex 3D structures.  
 
An exceptionally novel approach to magnonic waveguide fabrication harnesses the patterning of spin-
textures rather than physical structures. A key advantage here is the resolution that can be obtained, 
which surpasses physical lithography techniques and in addition, the waveguides can be reconfigured. 
Such a route was demonstrated experimentally by Abisetti et al. who used thermally assisted magnetic 
scanning probe lithography in order to produce reconfigurable spin-wave channels [6] within an 
exchange bias magnetic multilayer (Fig 1g). H ere, scanning of a heated tip in the presence of an 
external field allows the controlled formation of domains and their associated domain walls which 
were then harnessed for spin-wave transport. By patterning Néel domain walls into a number of 
configurations and utilising a microstrip antenna for excitation, the authors were able to show via 
transmission x-ray microscopy, channelled spin-wave excitation (Fig 1h).  
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  Alternative approaches, 
including bottom-up fabrication 
processes have also been pursued 
to realise magnonic structures. In 
particular, harnessing self-
assembly driven by biological 
organisms and their associated 
processes is a promising avenue 
of research. Zingsem et al. utilised 
such an approach [7], harnessing 
the natural capability of 
magnetotactic bacterium to grow 
magnetite crystal chains (Fig 2a). 
A resonant microcavity at 9.1 GH z 
was used to excite and detect 
magnetostatic spin waves as a 
function of external field 
magnitude and angle (Fig 2b/ 2c). 
The band deformation and band 
gap were found to be a complex 
function of magnetite particle 
orientation and local 
arrangement which, in itself, 
could be controlled by genetic 
engineering, paving the way to 
biomagnonics. 

 
 The pyrolysis of ferrocene is a promising bottom-up methodology for realising iron filled carbon 
nanotubes [8] (FeCNT). Micro-manipulation was used to place FeCNTs upon patterned 
microresonsators in order to measure FMR or onto a substrate with microwave antennas for BLS 
measurements.  A high resolution TEM image of a typical FeCNT is shown in Fig 2d. Both pristine and 
FIB cut FeCNTs were studied resulting in diameters varying between 20 - 41nm and lengths varying 
between 0.73 – 14.5µm. The thermal spin-wave spectrum of longer FeCNTs, as measured by micro-
BLS, is shown in Fig 2e. The peaks originating from the FeCNT are found to be discontinuous across its 
length, indicating there are points with either degraded magnetisation or geometric gaps. 
Micromagnetic simulations which implemented geometric gaps (20nm) between segments allowed 
reproduction of key experimental results. Overall, the single crystal nature of the nanotubes, along 
with the narrow linewidth, make such systems promising candidates for magnonic applications.  
 
Self-assembly of magnetic nanoparticles is a promising bottom-up approach in realising truly 3D 
magnonic crystals but defining the precise 3D geometry such that it can be implemented into devices 
is challenging. Okuda et al. [9] utilised an approach whereby protein/ inorganic Fe nanoparticle 
composite systems were first prepared by fixing hydrated apoferritin crystals. Focussed ion-beam 
milling was then used to machine the composites into a micro-cube (Fig 2f), which was integrated with 

Figure 2: (a) Magnetite crystal chain grown by magnetotactic bacteria. (b) Angular 
dependence of magnetite crystal chain FMR spectra and (c) two single spectra recorded 
at 0° and 90°. (d) TEM of a single Fe filled carbon nanotube suspended across micro-
resonator. (e) Thermal spin-wave spectrum of FeCNT obtained using BLS. (f) Schematic 
of Fe3O4 crystal monomer (left), crystals (middle) and an SEM of the machined Fe3O4 
crystal upon a coplanar waveguide. (g) Spin-Cherenkov effect in magnetic nanotube.  
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a co-planar waveguide. Preliminary ferromagnetic resonance data showed a peak at approximately 15 
GH z, though this was substantially broadened at 5K due to nanoparticle anisotropy variation.  
 
Current and Future Challenges 
The main challenges in magnonic sample fabrication remains the achievement of high-quality periodic 
nanostructures, with excellent interfacial characteristics, which can be scaled up and combined with 
standard lithographic processes to enable mass device production. Techniques that harness top-down 
processes have the best hope for scaling to device level. H ere, there is still a great deal of research to 
be done upon investigating optimum materials, geometries and then designing optimal device 
architectures. The realisation of 3D nanostructures, such as nanotubes (Fig 2g), may be important for 
harnessing spin-Cherenkov effects [10] in order to realise tuneable spin-wave emission. H ere a key 
challenge is both producing high quality 3D structures, with high precision as well as interfacing to on-
chip magnonic circuitry. TPL and electrodeposition is a powerful methodology for producing 3D 
magnetic nanostructures. A key challenge is reaching the relevant length scales. H ere, the 
implementation of shorter wavelength lasers and spatial light modulators allows the writing of sub-
100nm features  with multiple foci, allowing rapid manufacture. Bottom-up technologies are also 
promising for realising 3D structures, though more work is needed to control the precise geometry. 
Additionally, more efficient means need to be determined for such structures to be implemented onto 
the relevant electronic chips. For example, micro-manipulation though fine for prototypes is largely 
inefficient. One approach may start with the relevant device architecture and make use of a suitable 
“seeding” such that self-assembly only occurs upon the required parts of the planar device.  
 
Concluding Remarks 
A variety of promising fabrication methodologies are being explored for magnonics each with specific 
advantages and disadvantages. Further optimisation of individual techniques as well as the possibility 
of combining different approaches will yield a range of cutting-edge magnonic systems, ultimately 
paving the way to scalable devices.  
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2. Magnonic Crystals and Quasicrystals 
Maciej Krawczyk1, Joachim Grä fe2 

1 Adam Mickiewicz University, Poznan, Poland 
2 Max Planck Institute for Intelligent Systems, Stuttgart, 
Germany 

Status 
The term magnonic crystal, the spin wave analogon to crystals for electrons or photonic crystals for 
photons, has first been coined in 2001 independently by Puszkarski et al. and Nikitov et al. [1]. Similar 
to any crystal, the fundamental ingredient for a magnonic crystal is a periodic modulation of the spin 
wave potential. According to the Bragg law and the Bloch theorem, such a periodic modulation of the 
potential consequently results in the formation of a spin wave band structure. 
 
While the spin wave potential can be affected by changes in local field, anisotropy, thickness, damping 
or strain, the easiest way is a full modulation of the saturation magnetization by removal of the 
material, i.e. patterning holes and groves [2, 3]. Consequently, such a strong modulation has been 
utilized to demonstrate gratings and the formation of a full spin wave band structure in regular 
crystals [3] in one, and subsequently, in two dimensions. At the same time lithographic capabilities 
evolved from microstructured Yttrium Iron Garnet (YIG) [4] to nanopatterned metallic thin films [3]. 
In the past years, aperiodic structures moved more and more into the spotlight and magnonic 
quasicrystals were realized. Both in one- and two-dimensional systems [2] (cf. F i g u r e  1 ).  Thereby, the 
mode localization of waves in quasicrystals were directly imaged, gaining general insights into this 
class of materials. 
 
At the same time as experimental techniques like Brillouin Light Scattering (BLS), Magneto-Optical 
Kerr Effect (MOKE) microscope, Scanning Transmission X -ray Microscopy (STX M) and electrical 
spectroscopy evolved and got optimized for magnonics research, analytical and computational 
techniques were developed to fully capture magnonic crystals. Prominently, these include plane-wave 
theory for two- and three-dimensional systems [5] and extensions were also found for quasiperiodic 
systems [2]. These proved to be especially powerful, as they allow for modelling of large systems that 

Figure 1:  A magnonic quasicrystal, consisting of permalloy stripes arranged in a Fibonacci sequence. ( a )  Integrated density of states (IDOS) 
measured by BLS and calculated by finite element simulation (FEM). ( b )  STX M measurement of the spin wave phase and amplitude at an 
excitation frequency of 4.2 GH z. ( c )  3D rendering of a snapshot of the out of plane magnetization component mz  of the STX M movie. 
Reproduced from [2]. 
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had been computationally prohibitive for micromagnetic simulations; while the latter focused on 
ultra-nanoscale systems to further fundamental understanding with strong magnonic modulation. 
 
H owever, research into magnonic crystals goes beyond being yet another wave in a periodic potential. 
Contemporary micro- and nanolithography allows precise spatial patterning on the length scale of 
wavelength, while observation techniques like BLS [3] or more recently STX M [2] allow direct imaging 
of the spin waves themselves (cf. F i g u r e  1 ). Furthermore, exchange, magnetostatic, anisotropy 
energies are main factors shaping the dispersion relation and their tunability provide an extensive 
playground for new physics. 
 
 
Current and Future Challenges 
Q uasiperiodicity offers new dimensionality in design of collective spin wave excitation spectra. The 
discrete spectra feature self-similarity provide extended and localized states. Localized waves 
controlled by the magnetic field orientation were already detected. They promise for short 
wavelength wave excitation and broadband RF operation, yet, future studies need to demonstrate 
such quasiperiodic utility.  H ere, the influence of extended coupling of elements separated by large 
distances, negative group velocity, non-reciprocity, and chirality provide a test bed for new ideas, 
hardly accessible for other types of waves. The combination of these features with quasiperiodicity 
awaits discovery. 
 
Moving towards the third dimension is a topic in many branches of solid-state physics and technology, 
from microelectronics, through photonics to magnonics. Thinking beyond planar magnonic structures, 
the third dimension can be exploited to control the in-plane propagation of spin waves, offering a 
robust route for designing nonreciprocal magnonic spectra with chiral properties without the need for 
DMI and sophisticated material growth. In magnonic crystals it can be further exploited to control in-
plane coupling between the patterned elements, enhancing the group velocity and non-reciprocity; 
and guiding the waves in circuits for magnon spintronic applications. This bottom-up approach can be 
continued towards forming full magnonic 3D crystals (see Section 5). New deposition approaches, like 
focused electron beam induced deposition and atomic layer deposition, offer fabrication of various 3D 
shapes in a periodic arrangement. Due to their shape anisotropy and small size, their magnetic 
elements are in a monodomain state and can work as discrete magnetic dipole arranged in a 3D 
lattice [6]. 
 
A further 3D design aspect are artificial spin ice systems with frustration at the vertexes of the 
elements. This is still a big challenge as even in planar artificial spin ice, the collective dynamics and 
guiding spin waves along controllable paths are in an infancy state of development [7, 8]. A real 
breakthrough is needed to provide a feasible approach for controlled coupling between spin wave 
dynamics of nearest, but also next- and next-next-nearest elements to achieve collective excitation in 
the whole array. 
 
For the realization of sophisticated magnonic lattices with extended tunability, advances in 
preparation techniques are necessary to move beyond the strong modulation used in the past (see 
Section 1). Thus, mild and gradual techniques for changing saturation magnetization, anisotropy, and 
damping are needed (see Section 11). First steps towards this end have been undertaken in terms of 
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doping or thermal gradients; additional promising approaches include localized strain modulation (see 
Section 7), graded and combinatorial material deposition [9]. 
 
Furthermore, magnetic textures could be envisioned to also achieve such mild modulations. To this 
end, it has been shown that magnetic force microscopy tips and soft x-ray beams can be used to write 
arbitrary magnetization textures in specific materials[10]. This brings us to another broad area in the 
future of magnonics, which is the control of spin waves by magnetization textures rather than material 
structuring. In this case, the spin waves can follow paths designed on demand by a local change of the 
magnetization texture (see Section 10). This is also true for periodic and other types of regular 
magnetization patterns, like stripe domains, and well forgotten bubble domains. The sign of possible 
magnonic band structure formation in stripe domain structures in multilayers with perpendicular 
magnetic anisotropy has been shown. 
 
Another approach toward reconfigurable magnonic crystals are controllable modulators. These 
prepatterned structures modulate the potential for magnons by a non-magnetic stimulus like a 
current or voltage (see Section 17). Fist steps in this direction have been taken by utilizing 
superconductor hybrids and mediation by magnon-fluxon interaction [11] (see Section 20). This 
opened up a vast field of control effects like piezoelectricity or voltage-controlled magnetic anisotropy 
and control mechanisms that have quasiparticle-magnon interactions for future reserach. 
 
Chern numbers and Zak phase describe the topology of the crystal's bands. Whenever the sum of the 
Chern numbers of the bands up to the band gap edge differ from zero, the states localized at the edge 
of the magnonic crystal are topologically protected [12]. This property, common for other types of 
waves, has been predicted theoretically for magnonics, but is awaiting experimental demonstrations. 
The wealth of magnetization textures in magnetic material makes magnonics most suitable to offer 
reprogrammable topological properties for guiding waves (see Section 19). 
 
V ortex and skyrmion lattices were and are, respectively, hot topics in magnetic community. Their 
collective excitations can be tuned and shaped in a broad range, however the transmission of spin 
waves through these complex textures is so far limited due to scattering and damping. This loss is a 
bottleneck in the study and potential applications of magnonic crystals, especially in metallic films. 
Just recently, the technology for patterning of insulating ferromagnetic samples has been developed 
offering structure sizes below 100 nm, but still low magnetization saturation limit some potential 
applications [12]. Traditional antiferromagnetics as well as synthetic antiferromagnets may offer a 
viable alternatives for RF applications, because they feature higher operation frequencies and CMOS 
compatible processing, respectively. 
 
H owever, when adding gain, for instance by external microwave field, these systems can preserve 
parity-time (PT) symmetry, and the loss starts to play significant role. In photonics the PT-symmetry 
and breaking PT-symmetry opened the large area of new physics, with fascinating exceptional points 
were the dispersion branches start to overlap. In magnonics, this research has just started and it can 
be expected to become some of the leading directions in the coming years. Additionally, to patterned 
structures, the gain-loss will be explored in stripe domains and other regular magnetization textures. 
Moreover, nonlinearities and their periodicity in space and time will be exploited in the context of 
magnonic crystals. Recently, the existence of magnonic space time crystals has been observed [4]. In 
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analogy to conventional magnonic crystals, it can be expected that they form a band structure in space 
and time, that offers additional degrees of freedom. 
 
Concluding Remarks 
While ferromagnetic films with periodic corrugation for steering spin waves were introduced in the 
seventies of the previous century, but band properties of spin waves were investigated only from the 
beginning of the 21st century. This strongly contributed to the rise of magnonics as emerging field in 
physics and technology. The richness of ways for magnetic film modulation – including patterning, 
modulation with ions or light, complex magnetization textures – make wave dynamics in magnonic 
crystals an intriguing topic of research. Fascinating aspects like negative group velocity; anisotropic 
dispersion relation; chirality and nonreciprocity; topology in dynamics mixed with topologically 
protected static magnetization configuration; reconfigurable textures; and different types of 
interactions can be immersed into one magnonic system. A uniqe combination of this vast toolbox of 
parameters for control and direct observability of spin waves exerts a fascination on fundamental 
researchers and makes magnonic crystals and quasicrystals a prospective topic of research. 
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3. Magnonic Circuits 
Christoph Adelmann1, Sorin Cotofana2, Azad Naeemi3 
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Status 

I n the last decade,  tremendous progress has b een made in the field of magnonic logic devices and 
gates [ 1 ] . T he current status and the roadmap for devices are summariz ed in section 2 1 . V arious spin-
wave-b ased logic devices have b een proposed and ex perimentally demonstrated,  e.g. interferometer-
b ased logic gates [ 2 ]  or spin-wave majority gates [ 3 -5 ] . Practical applications of such logic devices and 
gates will however req uire their comb ination in circuits and,  ultimately,  in computing systems 
containing b oth logic and memory. H owever,  comparatively little work has b een devoted to magnonic 
circuits and systems [ 3 , 6 -8 ] . C urrently,  no complete proposal of a realistic “ magnonic computer” ,  
including magnonic logic circuits,  magnonic interconnects,  and magnonic memory,  ex ists and it is 
unclear if magnonics can competitively replace all aspects of state-of-the-art charge-b ased computing 
systems  

Beyond logic gates,  interconnects are the key elements of any circuit. I nterconnects transport 
signals to cascade different gates or provide clock as well as power. I n today’ s circuits b ased on C MO S  
technology,  more energy is typically dissipated in interconnects b y moving data around rather than in 
transistors b y processing information. T he fraction of the power dissipated in interconnects may b e 
even larger for spin-b ased logic if communication happens via spin currents,  domain wall propagation,  
or b y converting b ack and forth spin signals to electrical signals [ 9 ] . I n magnonic circuits,  it is natural 
to employ spin waves as information carriers. H owever,  when compared to electromagnetic waves,  
spin waves are slow and lossy,  and as such communication over large distances cannot b e competitive 
with electric or optical interconnects. O n the other hand,  in magnonic circuits,  the b oundary b etween 
computation and communication may disappear. I f losses can b e kept under control,  communication 
may not req uire ex tra energy cost. U nlike optical waveguides,  magnonic circuits can scale to nanoscale 
dimensions. C urrently,  these considerations point towards a hyb rid systems concept with local spin-
wave islands emb edded in a C MO S  periphery ( see F ig. 1 ).  

Previous b enchmarking of such hyb rid spin-wave— C MO S  systems has suggested sub stantial 
potential for power reduction with respect to C MO S  [ 7 -9 ]  if the signal conversion b etween magnonic 
and electric domains can b e sufficiently efficient. T his indicates that magnonic logic circuits may find 
application in future ultralow power electric systems. Moreover,  such hyb rid systems have potential 
for area reduction even for relax ed lithography specifications,  hence potentially reducing cost. T he 
main drawb ack of magnonic circuits is that they can b e ex pected to b e considerab ly slower than C MO S  
circuits,  although they may still outperform current C MO S  counterparts in terms of the area-delay-
power product [ 8 ] .  

C urrently,  no ex perimental proof-of-concept magnonic circuits have b een realiz ed. Missing 
elements are efficient transducers to convert signals at the inputs and outputs of the magnonic circuit 
b etween the spin-wave domain and the charge- or voltage-b ased periphery,  and methods to restore 
signals in magnonic circuits to compensate for spin-wave amplitude variations. I n these fields,  
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sub stantial advances are req uired to realiz e the prospect of hyb rid spin-wave-C MO S  systems for 
microelectronic applications. 

 

 
 
Current and Future Challenges 

T o progress from magnonic logic devices and gates to circuits,  many challenges lie ahead that must 
still b e overcome. C hallenges ex ist in the magnonic circuits themselves,  at the interface b etween 
magnonic and C MO S  parts of the system,  as well as in the C MO S  periphery.  

T he design of spin wave circuits using a set of logic gates req uires that the gates satisfy several 
criteria. T he logic gates need to b e cascadab le,  i.e. the output signal of a gate must b e usab le as input 
signal for a sub seq uent gate. I n typical circuits,  logic gates need to b e connected to several sub seq uent 
gates,  req uiring fan-out as well as gain. T he logic levels must b e rob ust and should not degrade within 
the circuit,  i.e. 0  and 1  logic levels should remain clearly separate. F inally,  the calculation in a circuit 
should b e unidirectional and spin-wave logic gates should not b e influenced b y signals propagating 
b ackwards from the output towards the input ports ( input/ output isolation). 

C urrently,  concepts of spin-wave logic gates do not satisfy ( clearly) all the ab ove criteria and 
therefore,  the realiz ation of practical complex  spin-wave circuits has remained elusive. T he main 
challenges to realiz e magnonic circuits concern the propagation of spin waves as well as the cascading 
of logic gates. D uring propagation,  spin waves attenuate due to magnetic damping and therefore the 
logic signal degrades. T his limits the length of interconnects,  increases power dissipation,  and 
ultimately determines how many logic gates can b e cascaded in a circuit. I deal materials for such logic 
gates comb ine very low losses with fast spin-wave group velocity and the ab ility to b e co-integrated 
with C MO S  on a S i wafer. T o scale the logic gates footprint,  the spin waves have to propagate in 
nanoscale waveguides within potentially complex  geometries,  which may also lead to losses e.g. when 
spin waves propagate around b ends. I f several interconnect layers are req uired,  spin-wave vias are 
req uired that transmit information b etween the different layers. Propagation losses can b e 
compensated b y repeater stages or amplifiers,  which however will increase clocking complex ity and 
dissipate additional energy,  therefore increasing the overall energy consumption of the circuit and 
system. N o ultralow energy repeater or amplifier has b een ex perimentally demonstrated to date. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Block diagram of a hybrid spin-wave— CMOS system including a spin wave circuit as well as a CMOS periphery to enable the 
usage of voltage signals for input and output. Reprinted from Ref. [7]. 
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I n addition,  many spin-wave-b ased logic gate concepts are not directly cascadab le,  e.g. due to the 
usage of hyb rid charge-spin-wave signals [ 1 , 2 ]  or ill-defined output amplitudes for majority gates using 
phase encoding [ 1 -3 ] . W hile fan-out can b e achieved b y suitab le gate designs ( see F ig. 2 a) [ 1 0 ] ,  spin-
wave logic gates are typically passive and do not show gain. G ain can b e achieved b y spin-wave 
amplifiers or in signal repeater concepts,  although at the ex pense of additional energy consumption. 
T he development of a complete cascadab le spin-wave circuit concept is one of the key challenges in 
this field. 

A  second major challenge is the efficient transduction at the interface b etween spin-wave- and 
charge-b ased domains of the system. C onventional approaches to generate spin waves using inductive 
antennas are neither efficient nor scalab le. Magnetoelectric transducers b ased on the coupling 
b etween spin waves and voltage signals using multiferroics or piez oelectric/ magnetostrictive 
compounds have b een proposed as much more efficient transducers b ut significant ex perimental 
progress is still needed to demonstrate b oth their scalab ility as well as their energy efficiency. S uch 
devices are rendered even more complex  due to the targeted nm scales and G H z  freq uencies. I n 
addition to generation,  also the detection of spin waves is still a major challenge. S pin-wave 
transducers typically generate weak electric signals,  which req uire sensitive detectors,  e.g. sense 
amplifiers,  which are however power-hungry [ 1 1 ] . I n addition,  transducers need to b e ab le to read the 
result of the magnonic circuit sufficiently rapidly to limit additional delays. T his will also req uire large 
transducer signals compatib le with C MO S  circuits to improve the signal-to-noise ratio. A lternatively,  
spin waves can b e detected b y switching a metastab le nanomagnet ( see F ig. 2 b ) [ 1 2 ] . S imulations have 
indicated that this can also b e sensitive to the spin-wave phase even in the presence of thermal noise. 
H owever,  major b reakthroughs in material growth and processing are needed b efore such concepts 
can b e realiz ed ex perimentally. 

 

 
F inally,  the design of peripheral C MO S  circuits that interface efficiently with magnonic circuits is 

only emerging. T his work will have to go hand in hand with the development of transducers and future 
b reakthroughs will b e needed to ob tain an efficient environment,  in which magnonic circuits can b e 
emb edded. T his research topic has b een less in the focus of interest than the magnonic circuits 
themselves;  however,  it will b e eq ually critical for the realiz ation of the vision of magnonic circuits 
integrated in commercial ultralow power applications. 
 
Concluding Remarks 

 

 

 

 

 

 

 

 

 

 

 

 

I 1

I 2

I 3 I 4

O 1 O 2

( b)

Figure 2.  (a) Fan-out enabled spin-wave majority gate with different input (I) and two output (O) ports. [10]. (b)  Non-volatile clocked 
spin wave interconnect using metastable nanomagnets to detect spin waves with phase sensitivity [12]. 
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C urrently,  we b elieve that there are three major challenges that need to b e overcome b efore magnonic 
logic can b e integrated alongside C MO S  in practical microelectronic applications. Present concepts for 
magnonic logic gates need to b e completed to satisfy all criteria to enab le circuit design. E nergy-
efficient scalab le transducers need to b e demonstrated to enab le low-power generation and detection 
of spin waves in scaled waveguides. F inally,  an efficient periphery needs to b e developed so that the 
transducers and magnonic circuits can interface with the larger C MO S  part of the chip. R ecent 
b enchmarking suggests that such hyb rid spin-wave-C MO S  circuits and systems show great promise for 
ultralow power applications,  which is a clear motivation for research to overcome these challenges 
[ 1 , 7 , 8 ] .  
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4. Magnon Bose-Einstein condensation and 

supercurrent transport 
V italiy I. V asyuchka and Burkard H illebrands 
University of Kaiserslautern, Germany 

Status 
Novel physical phenomena constitute a driving force for the successful development of the fascinat-

ing and dynamic field of magnonics. One very promising direction is the investigation and utilization 
of magnon macroscopic quantum states. Magnons are bosons, and thus they are able to spontane-
ously form a spatially extended, coherent macroscopic quantum state— magnon Bose-Einstein con-
densate (BEC) [1]. The magnon BEC in a magnetic medium is established as one single quantum state 
with the lowest energy as a result of the thermalization process in an overpopulated magnon system. 
The condensation of magnons can occur even at room temperature due to specific properties of mag-
nons as such as the small effective mass, nonlinearity, a large number of thermal excitations at non-
zero temperatures, the simplicity of the magnon injection into a magnetic system and control of their 
population. 

During the last decades, many efforts have been made to observe the magnon condensation in sol-
ids. One of the best examples of a magnetic medium, where the magnon BEC was achieved, is the 
insulating ferrimagnet Yttrium Iron Garnet (YIG) possessing an extremely low magnetic damping. The 
main approach to reach the magnon BEC in YIG was based on the increase of the magnon density 
above the thermal equilibrium level. Just a few percent excess of magnons over their thermal level is 
sufficient to achieve the condensation in YIG. For this, various methods of magnon injection into YIG 
have been employed (see Fig. 1). H ere, the most interesting studies related to magnon BEC formation 
are listed. 
• Microwave parametric pumping.  

The most effective and popular way to increase the density of magnons to reach the magnon BEC is 
parametric pumping. When the applied strong microwave electromagnetic field exceeds a threshold 
value, the conversion of microwave pumping photons into magnons at half of the pumping frequency 
occurs. The majority of the magnon BEC experimental investigations were conducted using the para-
metric pumping technique (see e.g. [1-3]). It is important to note that the magnon condensation in an 
overpopulated magnon gas is also a threshold process. Typically, it happens in YIG films, when the 
applied pumping power exceeds the threshold of parametric pumping by two or three orders of mag-
nitude. 
• Kinetic instab ility regime.  

Usually, the formation of the magnon condensate is accompanied by multistep cascade processes of 
magnon-magnon scattering events, which transfer parametrically pumped magnons down to the bot-
tom of a magnon spectrum. Recently, it was demonstrated that the kinetic instability process provides 
favourable conditions for a more efficient magnon condensation process compared to the cascade-
only scenario [4]. In this regime, the direct one-step transfer of the parametrically injected magnons 
to the lowest energy states surpasses the multistep scattering process and is followed by a thermali-
zation of low-energy magnons into the BEC state. 
• S pin pumping via spin-S eeb eck effect.  

A novel method of magnon injection, based on the process of spin pumping, when a spin angular 
momentum is transferred over the interface between a nonmagnetic metal and a magnetic material, 
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is very promising for the formation of magnon BEC [5]. The case of the spin Seebeck effect is especially 
interesting [6], when a magnon flow is generated by a temperature gradient across the interface be-
tween a nonmagnetic metallic layer and a magnetic insulator. It has been demonstrated for the case 
of YIG/ Pt nanowires, cooled to cryogenic temperatures, that the magnon current induced by the spin 
Seebeck effect leads to excitation of YIG magnetisation auto-oscillations and generation of coherent 
microwave radiation [6]. This achievement paves the way for the spin-caloritronic-based magnon BEC. 
• R apid cooling mechanism.  

V ery recently, a new and universal approach to enable Bose–Einstein condensation of magnons by 
rapid cooling has been demonstrated [7]. For this, a disequilibrium of magnons with the phonon bath 
is introduced via heating of a magnetic sample to an elevated temperature with a following rapid 
decrease in the phonon temperature. This decrease is very fast compared to the relaxation time of 
the magnon system. It results in a large excess of incoherent magnons in the system and in subsequent 
Bose–Einstein magnon condensation. 

 

 
Current and Future Challenges 

An extraordinary potential for the field of magnonics is the use of macroscopic quantum phenomena 
such as the magnon BEC for information transfer and processing. The following non-comprehensive 
list of items highlights the most promising directions dealing with the current challenges and simulta-
neously defining new problems for the future: 

1. Magnon supercurrents: Due to its zero group velocity, the magnon BEC cannot be directly utilized 
for the transport of a spin information in space. H owever, the information transfer can be realised 
by means of magnon supercurrents, which constitute the transport of angular momentum, driven 
by a phase gradient in the magnon-condensate wave function. The creation of such a supercur-
rent was experimentally successful by introducing a time-dependent spatial phase gradient into 
the wave function of the magnon BEC [3]. The temporal evolution of the BEC formed in a para-
metrically populated magnon gas was studied via Brillouin light scattering (BLS) spectroscopy in 
room-temperature YIG films. It has been found that local heating in the focal point of a probing 
laser beam leads to the excessive decay of the freely evolving BEC, which is a fingerprint of the 
supercurrent efflux of condensed magnons. An additional indirect confirmation of the existence 
of magnon supercurrents was obtained through BLS observations of quantized vortices in a two-
component Bose-Einstein condensate [2]. 

 

Figure 1. Schematic illustration of different mechanisms leading to the formation of magnon Bose-Einstein condensates in magnetic 
solids. 
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2. E x citations in magnon condensate and second sound: Investigations of wave-like excitations that 
propagate in condensed and in normal phases of a magnon gas pose another intriguing challenge. 
They may pave the way to a complementary approach for spin information transfer. Recently, it 
was demonstrated that the condensed magnons being pushed out of the locally heated area form 
compact density humps, which propagate over long distances through a thermally homogeneous 
magnetic medium [8]. They were understood as a superposition of Bogoliubov waves with oscil-
lations of both the amplitude and the phase of the magnon BEC’s wave function. These waves 
are described by a linear dispersion law in the long-wavelength limit and can be considered as a 
magnon second sound of the condensed magnon phase. 

3. Magnonic J osephson effects: By analogy to the Josephson effects in superconductors, both the 
alternating current (ac) and the direct current (dc) magnonic Josephson effects were proposed 
and studied theoretically [9]. A junction connecting two weakly coupled quasi-equilibrium mag-
non BECs is an essential component for the observation of these fascinating phenomena. The 
first step in the experimental realisation of the ac magnonic Josephson effect was recently re-
ported in the system of two room-temperature magnon condensates separated by a magnetic 
trench [10]. Josephson oscillations of the magnon BEC density in the trench were observed, which 
are induced by the coherent phase shift between the two magnon condensates from the left and 
right zones of this magnetic inhomogeneity. Further developments within this challenge would 
facilitate the broad application of magnonic Josephson effects for data processing in magnonic 
devices. 

4. E lectric control of magnon supercurrents: The possibility of electric control of magnon supercur-
rents using the magnonic Aharonov-Casher effect, which has so far been analysed only theoreti-
cally [9], is extremely appealing. It is predicted that this effect will lead to the generation of a 
persistent magnon supercurrent in a magnetic ring subjected to an electric field with the radial 
symmetry due to the accumulation of an induced Aharonov-Casher phase in the magnon con-
densate. The long-distance coherency of the magnon condensate is of paramount importance to 
the observation of the magnonic Aharonov-Casher effect. 

5. C omputing with magnonic macroscopic q uantum states: Nowadays, an exceptional and promis-
ing challenge is the utilization of magnonic macroscopic quantum states for information pro-
cessing and computing. Activities in this direction, in particular those related to experimental im-
plementation, are in their initial stages and research in this area is in great demand. The question 
of quantum computing with magnon condensates remains especially interesting. 

The following scientific and technological advances can help to overcome many of the specified chal-
lenges: magnetic materials with exceptionally low damping, involvement of the interface effects par-
ticularly for the nanometer-thick magnetic films, better understanding of the quantum nature of mag-
non BEC, and the realisation of the magnon-condensate-based qubit. 
Concluding Remarks 

Although investigations of the magnon macroscopic quantum states are in their initial stages, this 
exciting research field demonstrates a continuing progress in the formation, control and usage of mag-
non Bose-Einstein condensates and supercurrents. Among the latter achievements, we can recognise 
the different ways of magnon BEC formation, spin information transfer using magnon supercurrents 
and second sound, novel magnonic effects, etc. Considering the richness of magnon phenomena, the 
wealth of nonlinear effects, the scalability and reconfigurability of magnon systems, further fruitful 
developments in this new branch of magnonics are expected. 
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5 . T hree- D imensionalM agnonics 
G. Gubbiotti1 and S. A. Nikitov2 
1Istituto Officina dei Materiali del CNR (CNR-IOM), Sede 
Secondaria di Perugia, c/ o Dipartimento di Fisica e 
Geologia, Università  di Perugia, I-06123 Perugia, Italy 
2Kotelnikov Institute of Radioengineering and Electronics RAS, Moscow, 125009, 
Russia 

Status 
Magnonics refers to the research field that uses spin waves, the collective excitations of ordered 

magnetic materials, or their quanta (magnons) as a tool for signal processing, communication and 
computation.[1] This field has been rapidly growing during the last decade, with magnonic systems 
investigated up to now mainly represented by periodic one- and two-dimensional planar systems in 
the form of arrays of nanowires, dots, antidots and width modulated waveguides based on insulating 
Yttrium- Iron-Garnet (Y3Fe5O12, YIG), metallic Permalloy (Py), CoFeB, as well as coupled structures 
containing also pure Ni, Co, Fe and H eusler alloys.  

V ery recently, due to developments in instrumentation, nanofabrication and modeling tools, 
researchers have devoted their attention to the fabrication 3D magnetic systems where novel physical 
effects comprising geometry, topology, chirality, frustration and unconventional spin textures 
emerge. [2] Examples of three-dimensional (3D)magnonic nanostructures can also be found in 
Sections 1, 10 and 11. The advantage of magnonic systems magnetic materials include the possibility 
to overcome the fundamental physical limit in heat generation associated with electrical current in 
silicon-based technology, potentially small magnon wavelengths in the range of tens of nanometers, 
and high-frequency operation in the terahertz regime. In addition, the interest in 3D and vertically 
coupled magnonic structures is based on a similar trend in CMOS electronics, as it enables a transition 
from two-dimensional to three-dimensional functional design for integrated structures.[3] 

Following this trend, researchers are proposing different strategies to build the next 
generation of 3D magnonic systems. The first of them is an extension of planar patterned 
nanostructures, where arrays of patterned magnetic dots or antidots have a layered structure. In this 
case, the vertical stacking of ferromagnetic materials, placed in direct contact or separated by a non-
magnetic spacer, adds new functionality and an additional degree of freedom to control the spin-wave 
band structure based on the interplay between exchange [4] and dipolar interactions [5]as well as on 
the phase relation (in-phase or out-of-phase) between the dynamic magnetizations in the different 
layers. These also offer a valuable tool for tuning the static magnetization configuration (parallel and 
anti-parallel) in a reconfigurable manner and therefore reprogram the magnonic band structure on 
demand, as shown in Fig. 1 for a dense array of Py(30nm)/ Cu(10nm)/ Py(30nm) nanowire array. 

On the other hand, 3D meander-like single- and multilayer films (see Fig. 2 (a)) grown at the 
top of the initially structured substrate and magnetized along the thickness steps have been proposed 
as a candidate for such 3D magnonics crystals for vertical steering of spin-wave beams thus allowing 
to overcome the difficulties of bending spin-wave beams for in-plane magnetized systems due to the 
anisotropic dispersion of dipolar spin waves. [6] Spin waves propagate in film’s segments located at 
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right angles with respect to each other thus making possible the wave propagation in three dimensions 
without significant losses in the junction region. [7] 

Moreover, domain walls together with Dzyaloshinskii-Moriya interaction (DMI) can be 
considered as elements of 3D magnonics for propagation of spin waves in curved geometries and in 
close proximity to other channels. [8] Because the spin structure of domain walls is primarily governed 
by intrinsic magnetic properties, they are less sensitive to issues related to lithography or 
nanofabrication such as edge roughness or sample-to-sample reproducibility. 

 

 
A very promising and alternative method to physical patterning is based on the use of hybrid 

heterostructures in the form of bilayer systems in which the non-magnetic component induces 
periodic modulation of either the static or the dynamic internal magnetic field of the magnetic film 
itself. [3]  These include ferromagnetic (FM) metal-insulator, FM metal-heavy metal, FM metal-
antiferromagnet, FM metal-ferroelectric and FM metal-superconductor bilayers [Section 20], for 
which new properties of spin waves such as confining and filtering, guiding and steering, non-
reciprocity and reconfigurability, a direct and an indirect gap in the magnonic band structure, have 
been proved. [Section 15] 

Finally, curved surfaces and 3D micro and nano-objects exhibit peculiar and unexpected spin textures 
which are normally not observed in planar nanostructures and allows for the exploitation of magnons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Schematic drawing of thePermalloy(10 nm)/ Cu(10 nm)/ Permalloy(30 nm) trilayer nanowire array with width of w =  280 
nm and edge-to-edge spacing of s =  80 nm. (b) Measured longitudinal hysteresis loop for the nanowire array. The vertical red dashed 
line indicates the field valueof +150 Oe, which following either the descending or the ascendingbranch of the hysteresis loop, 
corresponds to a parallel (P) orantiparallel (AP) alignment between the magnetization in the two Permalloylayers.Comparison between 
the measured Brillouin light scattering (points) and calculated (lines) magnonic band structure for the nanowire array in the P and AP 
states (H = +150 Oe). Figures are adapted from Ref. 5. The external magnetic field is applied along the nanowire length both in the both 
in the MOKE and in the BLS measurements. 
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chirality and the resulting non-reciprocity of the magnon dispersion. 3D nano-objects with micrometer 
size can be fabricated to study their dynamics and to couple with macroscopic microwave field. The 
curvature induced spin-wave non-reciprocity offers several advantages over the interfacial DMI since 
it is not limited to ultrathin ferromagnetic layers and does not increase the spin-wave damping. 
Moreover, freestanding 3D magnonic structures are obtained by using a complex lithography process 
including room-temperature deposition and lift-off of amorphous YIG as well as subsequent 
crystallization by annealing.[9] 

 
Current and Future Challenges 

In terms of potential applications, 3D magnonic structures might be exploited to realize 
complex vertical interconnection elements for efficient spin-wave transport between multiple layers 
inside magnonic networks. This could lead to the new development of 3D magnonics circuits mainly 
used for the multiple-layer architecture of signal processing devices comprising the neuromorphic 
principles of data processing.[10] In 3D circuits, shorter interconnects reduce the average wire length 
whereas the vertical dimension adds a higher order of connectivity and offers new design possibilities. 
Increasing the density of elements will be a crucial aspect for the realization of scalable and 
configurable magnonic networks and will lead to a decrease in spin-wave propagation and energy 
losses.  

The perspectives of the practical use of 3D magnonic structures can also be based on a 
combination of electronics components using both semiconductor and magnonic technologies. Thus, 
the opportunity appears to integrate magnonic structures with spin transfer and semiconductor 
structures with electric charge transfer. The main problem here is to superpose at high technical level 
material parameters (e.g., YIG) and semiconductors (e.g. Si, GaAs,GaN, etc). Recent experiments have 
shown that YIG film grown onto GaAS substrates can be a good candidate for the integration of 
magnonics and semiconductor electronics (Fig. 2 (b)). GaAs has a large band gap in 1.4 eV  and high 
mobility of electrons and holes up to 8600 cm2V -1s-1 and 400 cm2V -1s-1, respectively. Making 3D 
structures with these materials and superimposing light from the laser one can govern the properties 
of spin waves and information processing.[11] 
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Nonlinear processes originating during spin-wave propagation in ferromagnetic materials are of 
particular interest, since they occur at sufficiently low power levels and new types of spin-wave 
excitations can be implemented. The main nonlinear effect in a magnonic crystal is the nonlinear 
frequency shift (and, respective shift of the band structure) with increasing input signal power. In 3D 
magnonic structures, the particular effect of “nonlinear switching of the magnonic crystal” is possible, 
in which periodic structure allows to pass the signal of high power at frequencies within the bandgap 
(Fig. 2(c)). This feature allows considering such 3D based on magnonic crystals as a nonlinear phase 
shift modulus and the noise limiters.[12] 

     Another important aspect for 3D magnonics is the integration with piezoelectrical materials where 
propagating surface acoustic waves and electromagnetic waves can both interact with spin waves (Fig. 
2 (d)). Such voltage-controlled anisotropy and current-induced magnetization dynamics in 
magnonic/ piezoelectric (and/ or ferroelectric) heterostructures can be a subject for future 3D 
magnonics applications.[13] 

In the case of FM-heavy metal multilayers, it is possible to take advantage of the unidirectional 
coupling induced by interfacial DMI to transfer the information carried by the spin waves between 
thin ferromagnetic layers in only one direction of propagation. In this particular system, the 
functionality of spin-wave diode and circulator to steer and manipulate spin waves over a wide range 
of frequency has been demonstrated [14]. 

 
Concluding Remarks 
H ere we have reviewed the most recent advances in 3D and vertical stacked magnonic structures and 
discussed some of the most interesting perspectives. We highlighted several open questions that still 
need addressing, such as smart methods for excitation, amplification and detection of spin waves and 
efficient interconnections between magnonic and electric circuits. Being aware of the difficulties and 
challenges related to the fabrication of 3D magnonic structure, we believe that the exploitation of the 
third dimension will bring to additional and specific features (e.g. vertical magnon transport, 
nonreciprocal coupling) while in CMOS technology the vertical stacking only gives higher storage 
density with the disadvantage of the standard CMOS heat problem. 
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6. Short Wavelength Magnonics 
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Spin waves are considered to be promising as information carriers in low-power-
consuming computing and logics with advantages such as absence of Joule heating, 
clock frequencies up to the THz frequency regime (see section 13: “ THZ magnonics” ) 
and coherent processing of data across several unit cells (see section 21: “ Magnonic 
Logic, Memory and Devices” ). Spin waves with wavelengths λ at the nanoscale (Fig. 
1) reside the exchange-dominated regime of the spin-wave dispersion relation 𝑓𝑓(𝑘𝑘)in 
a ferromagnetic thin film. They exhibit group velocities 𝑣𝑣𝑔𝑔 = 2𝜋𝜋𝜋𝜋𝑓𝑓/𝜋𝜋𝑘𝑘 which 
increase with decreasing λ, i.e., increasing wave vector k = 2π/λ. Such spin waves 
(magnons) are particularly attractive for high-speed magnonic devices and data 
processing. However, excitation and detection of short-wavelength magnons are non-
trivial and represent a major challenge. Conventional methods based on microwave 
antennas such as metallic coplanar waveguides (CPWs) are inefficient. This is due to 
impedance mismatching and ohmic losses when the lateral size of the antennas 
shrinks down the nanoscale [1]. Several promising methods have been proposed to 
overcome these challenges e.g. by using resonant and non-resonant magnonic 
nanogratings [2], ferromagnetic coplanar waveguides (mCPW) [3], parametric 
pumping [4], spin-transfer torque [5] and spin textures [6].  

Grating couplers with multidirectional emission and detection of short-
wavelength magnons were proposed and experimentally demonstrated based on both 
one- and two-dimensional periodically modulated ferromagnets integrated to 
conventional CPWs. Individual ferromagnetic layers with etched nanotroughs (similar 
to antidot lattices) as well as bicomponent ferromagnetic systems consisting of arrays 
of overgrown nanostripes or embedded nanodisks were used to evidence the grating 
coupler effect on a broad spectrum of metallic ferromagnetic thin films. This versatile 
approach was used to excite and detect ultrashort magnons with λ = 68 nm in 
ferrimagnetic yttrium iron garnet (YIG) using 2D ferromagnetic nanodisk arrays [2] 
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and λ = 50 nm using 1D ferromagnetic stripe arrays [7] (Fig. 2a). In case of large 
magnon velocities thin insulating YIG offers unprecedentedly long decay lengths 
compared to the metallic ferromagnets [8]. In these periodic lattice-based microwave-
to-magnon transducers, the Bloch theorem was exploited and the wave vectors of 
magnons were defined by reciprocal lattice vectors up to high orders (Fig. 2a). Their 
amplitudes were on the same order as the ones of long-wavelength spin waves excited 
directly by the conventional CPWs. The amplitudes were particularly large in case of 
gratings operated at their own resonance frequencies (resonant grating coupler effect) 
[2].  

 
Figure 1. Dispersion for short-wavelength spin waves in YIG (20 nm thickness, saturation 
magnetization 140 kA m−1, exchange constant 3 × 10−16 m2) where the propagation 
direction is perpendicular to the magnetization. At large k (small wavelength λ) the dispersion 
relation follows a 𝑓𝑓 ∝ 𝑘𝑘2 behaviour dominated by the exchange interaction. 
 

Very recently, Che et al. [3] reported on magnetic CPWs (mCPWs) to efficiently 
excite and detect short-wavelength magnons over a broad frequency band (Fig. 2(b)). 
Here the localized stray field of an integrated ferromagnetic layer caused an 
inhomogeneous effective field (see also section 11: “ Graded Index Magnonics” ) and 
induced a wavelength conversion process in YIG. The authors demonstrated 
continuous tuning of λ, supporting multifrequency operation of magnonic circuits. For 
optimized mCPWs wavelengths below 40 nm are feasible without involving 
nanofabrication. 
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Figure 2. (a) Dispersion of short-wavelength spin waves propagating in a 20 nm-thick YIG 
film. The frequencies and wave vectors of the data points are extracted from the experiments 
on three different samples with different spin-wave modes. The red curve is the calculated 
dispersion f (k) with an applied in-plane field of 1000 Oe. The inset shows the transmission 
spectra of short-wavelength spin waves with 𝜆𝜆 ≈ 50 nm. Figure Dispersion relations for 
propagating short-wavelength spin waves rearranged from Ref. [7] published under CC-BY 
4.0. (b) (left) Sketch of micrometer-wide mCPWs consisting of Fe (brown) underneath Au 
(bright) on YIG. Local detection of magnons was performed through the GGG substrate using 
BLS. (right) Dispersion relations of magnons are shown for bare YIG (magenta) and close to 
the mCPW (green). The arrow illustrates the wavelength conversion. Figures Schematic 
diagram and high-frequency modes emitted by mCPWs and Wavelength conversion and 
magnon signal strengths from Ref. [3] published under CC-BY 4.0 rearranged from original. 
(c) Dispersion of spin waves propagating in CoFeB/Ru/NiFe trilayer system, where the 
ferromagnetic layers are antiferromagnetically coupled through a non-magnetic spacer. Full 
green diamonds: experimental data obtained for spin waves propagating in the domains. Red 
dots: experimental data obtained for spin waves confined in the domain wall (red dots). The 
inset shows an STXM image taken for the data point at 0.52 GHz. The calculated dispersion 
(blue continuous line) and the results of micromagnetic simulations (grey dots) show good 
agreement. Reprinted from Ref.[6] by permission from Springer Nature: Nature 
Nanotechnology 14, 328 Copyright (2019).  

Parametric pumping provides a method for spin-wave excitation where wave 
vectors are without an upper limitation. The wavelengths can be tuned by a magnetic 
field down to the sub-100 nm scale in that spin waves are excited at half of the 
frequency of the microwave magnetic field by a non-linear process [4]. Additionally, 
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spin torque nano-oscillators (STNO) enable the generation of exchange-dominated 
magnons by spin-polarized currents overcoming the intrinsic damping. High current 
densities are needed and achieved by spatial constrictions. STNOs represented 
effective spin wave injectors for the top layer of a trilayer stack (such as a magnetic 
tunnel junction). The wavelength of spin waves is proportional to the radius of the 
nanocontact [5]. The high-order modes of propagating spin waves exhibited a 
wavelength down to about 70 nm, which could be further decreased by a smaller 
radius of the nanocontacts.  

Spin textures, such as domain walls and vortex cores, have also been utilized to 
generate short-wavelength spin waves [6] (Fig. 2c). Spin waves propagating inside 
spin textures and nano-sized domain walls have attracted increasing attention (see 
section 10: “ Interaction of Magnons with Spin Textures” ) and promise reconfigurable 
magnonic devices. For example, short-wavelength spin waves can be generated by 
applying an alternating magnetic field in domain walls of interlayer exchange-coupled 
ferromagnetic bilayers. Changing the excitation frequency, the wavelength of spin 
waves was tuned from 1 µm down to 150 nm in magnon conduits provided by domain 
walls [6]. In addition, magnetic vortex cores in an antiferromagnetically coupled 
magnetic heterostructure served as tuneable spin wave emitters driven by an 
oscillating magnetic field (Fig. 2(c)) [6]. In a single ferromagnetic layer, high-
amplitude dipole-exchange spin waves with λ down to 80 nm have been imaged 
around a vortex core.  

 
Cur r ent and f utur e challenge s f or  nanomagnoni cs. 
1. M agnon excitation: Current techniques enable the excitation of magnons in the 

few 10 GHz frequency regime with wavelengths of a few 10 nm, i.e., about two 
orders of magnitude larger than the crystal lattice constant. Future transducers 
should address magnons with λ below 10 nm in ferro-, ferri- and 
antiferromagnetic thin films. Such magnons possess high group velocities 
which are key to the realization of the high-speed magnonic circuits. Their 
properties are isotropic, thereby allowing for 3D magnonic circuits. For wave-
based logic in particular coherent and phase-controlled magnons are required. 
A major challenge for low-power consumption lies in thin-film materials 
supporting the isotropic short-wave magnons in zero external field. The 
detection of magnons seems less challenging via e.g. spin pumping, spin-
Seebeck, inverse spin Hall, or thermoelectric effects.  

2. D ir ect imagi ng :  Near-field Brillouin light scattering already provided a lateral 
spatial resolution of better than 55 nm [9] and thereby detected standing spin 
waves beyond the diffraction of light. Recently, synchrotron-based scanning 
transmission X-ray microscopy was exploited to image propagating spin waves 
with high spatial resolution. Laboratory-based techniques offering ultra-high 
spatial resolution are needed to thoroughly investigate the properties of 
magnons with λ below 10 nm, e.g., the scattering at structural defects and 
lattice vibrations. Here, magnetometry utilizing nitrogen-vacancy (NV) centers 
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might be particularly powerful. 
3. Antif er r omagne tic spin w aves:  Antiferromagnets are immune to external field 

perturbations. Their spin processional motion is not only right-circularly 
polarized like in ferromagnets but possesses dual polarizations due to the two-
opposite magnetic sublattices. The exchange energy in the antiferromagnetic 
systems increases the spin wave frequencies. It is still challenging to achieve 
the efficient excitation and detection of coherent antiferromagnetic spin waves. 
Recently demonstrated spin-current generation via antiferromagnetic spin 
waves may contribute for the potential applications in ultrafast magnonic 
devices [10]. 

4. M anipulation and contr ol:  An external magnetic field, charge currents or 
electrical voltages have already been used to modify or guide spin waves. All-
magnon-controlled modifications open a novel route for reconfigurable 
magnonics [11].  

5. Nonr ecipr ocal tr anspor t:  For the steering of signal flow nonreciprocal 
propagation characteristics are of great interest. A magnetic nanograting 
induced already unidirectional flow of magnons with λ down to 60 nm. Other 
experimental techniques are required to precisely control the magnon flow at 
small λ e.g. for diodes. 

6. M agnon logi c computing :  So far, magnonic logic gates have been demonstrated 
mostly with long-wavelength dipolar spin waves. Major challenges exist in the 
transition from the single logic gate to cascaded architectures giving rise to 
integrated magnonic circuits. Interferometers form a key component but have 
not yet been realized based on phase-controlled ultrashort magnons. 

7. Nanochannels of  low  damping : Magnon transport in sub-100 nm wide YIG 
conduits has been reported only very recently [12]. Decay lengths were reduced 
by roughly two orders of magnitude compared to thin films [8] but magnons 
were excited by conventional CPWs and exhibited small group velocities. If 
combined with e.g. tailored grating couplers the YIG nanoconduits might 
support large decay lengths needed for cascaded logic gates. Non-collinear spin 
structures promising reduced scattering at edges and topologically protected 
magnon states might give rise to further nanochannels of low damping.  

8. Q uantum ef f ects:  Magnons are bosons and room-temperature Bose– Einstein 
condensation was realized via magnons (see section 4: “ Magnon-BEC and 
Supercurrent Transport” ). The coherent coupling between a single magnon in 
a macroscopic YIG sphere and superconducting qubit in a microwave cavity 
was already demonstrated and opens the route for investigations on magnonics 
at the single-quantum level. A magnon-qubit coupling scheme involving a 
short-wavelength magnon is needed for integrated hybrid quantum systems. 

 
Magnonics is rapidly evolving field and we expect more advanced methods to be 

proposed and tools to be developed for the coherent excitation and detection of 
magnons on the nanoscale. These methods are a prerequisite to gain a deep 
understanding of both the properties and functionalities of exchange-dominated spin 

Page 41 of 124 AUTHOR SUBMITTED MANUSCRIPT - JPCM-117146.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 Acc

ep
ted

 M
an

us
cri

pt

circularly

Acc
ep

ted
 M

an
us

cri
pt

circularly
polarizations due to the 

Acc
ep

ted
 M

an
us

cri
pt

polarizations due to the two

Acc
ep

ted
 M

an
us

cri
pt

two-

Acc
ep

ted
 M

an
us

cri
pt

-
The exchange energy in the antiferroma

Acc
ep

ted
 M

an
us

cri
ptThe exchange energy in the antiferromag

Acc
ep

ted
 M

an
us

cri
ptgnetic 

Acc
ep

ted
 M

an
us

cri
ptnetic 

t is still challenging to achieve 

Acc
ep

ted
 M

an
us

cri
ptt is still challenging to achieve 

antiferromagnetic spin waves. 

Acc
ep

ted
 M

an
us

cri
ptantiferromagnetic spin waves. 

current generation via antiferromagnetic spin 

Acc
ep

ted
 M

an
us

cri
ptcurrent generation via antiferromagnetic spin 

potential applications in ultrafast

Acc
ep

ted
 M

an
us

cri
pt

potential applications in ultrafast magnonic 

Acc
ep

ted
 M

an
us

cri
pt

 magnonic potential applications in ultrafast magnonic potential applications in ultrafast

Acc
ep

ted
 M

an
us

cri
pt

potential applications in ultrafast magnonic potential applications in ultrafast

external magnetic field, charge current

Acc
ep

ted
 M

an
us

cri
pt

external magnetic field, charge currents or

Acc
ep

ted
 M

an
us

cri
pt

s or
used to modify or 

Acc
ep

ted
 M

an
us

cri
pt

used to modify or guide 

Acc
ep

ted
 M

an
us

cri
pt

guide spin waves. 

Acc
ep

ted
 M

an
us

cri
pt

spin waves. All

Acc
ep

ted
 M

an
us

cri
pt

All
open a novel route for 

Acc
ep

ted
 M

an
us

cri
pt

open a novel route for reconfigurable 

Acc
ep

ted
 M

an
us

cri
pt

reconfigurable 

For the steering of

Acc
ep

ted
 M

an
us

cri
pt

For the steering of signal flow n

Acc
ep

ted
 M

an
us

cri
pt

signal flow nonreciprocal 

Acc
ep

ted
 M

an
us

cri
pt

onreciprocal 
of great interest. 

Acc
ep

ted
 M

an
us

cri
pt

of great interest. A magnetic nanograting 

Acc
ep

ted
 M

an
us

cri
pt

A magnetic nanograting 
flow of magnons 

Acc
ep

ted
 M

an
us

cri
pt

flow of magnons with 

Acc
ep

ted
 M

an
us

cri
pt

with λ

Acc
ep

ted
 M

an
us

cri
pt

λ down to 60 nm. Other 

Acc
ep

ted
 M

an
us

cri
pt

down to 60 nm. Other 
experimental techniques are required to 

Acc
ep

ted
 M

an
us

cri
pt

experimental techniques are required to precisely control the 

Acc
ep

ted
 M

an
us

cri
pt

precisely control the 

So far, magnonic logic gates have been 

Acc
ep

ted
 M

an
us

cri
pt

So far, magnonic logic gates have been 
wavelength dipolar spin waves. 

Acc
ep

ted
 M

an
us

cri
pt

wavelength dipolar spin waves. M

Acc
ep

ted
 M

an
us

cri
pt

Major challenges 

Acc
ep

ted
 M

an
us

cri
pt

ajor challenges 
transition from the single logic gate to 

Acc
ep

ted
 M

an
us

cri
pt

transition from the single logic gate to cascaded architectures 

Acc
ep

ted
 M

an
us

cri
pt

cascaded architectures 
circuits. 

Acc
ep

ted
 M

an
us

cri
pt

circuits. I

Acc
ep

ted
 M

an
us

cri
pt

Interfer

Acc
ep

ted
 M

an
us

cri
pt

nterferometers form a key component but have 

Acc
ep

ted
 M

an
us

cri
pt

ometers form a key component but have 
not yet been realized based on phase-

Acc
ep

ted
 M

an
us

cri
pt

not yet been realized based on phase-controlled ultrashort magnons

Acc
ep

ted
 M

an
us

cri
pt

controlled ultrashort magnons
anochannels of  low  damping

Acc
ep

ted
 M

an
us

cri
pt

anochannels of  low  damping : 

Acc
ep

ted
 M

an
us

cri
pt

: Magnon transport in sub

Acc
ep

ted
 M

an
us

cri
pt

Magnon transport in sub
conduits has been reported only very 

Acc
ep

ted
 M

an
us

cri
pt

conduits has been reported only very recently

Acc
ep

ted
 M

an
us

cri
pt

recently
by roughly two orders of magnitude compared to 

Acc
ep

ted
 M

an
us

cri
pt

by roughly two orders of magnitude compared to 
were excited by conventional CPWs and exhibited small group velocities. 

Acc
ep

ted
 M

an
us

cri
pt

were excited by conventional CPWs and exhibited small group velocities. 
ombined with

Acc
ep

ted
 M

an
us

cri
pt

ombined with e.g. 

Acc
ep

ted
 M

an
us

cri
pt

 e.g. tailored grating couplers 

Acc
ep

ted
 M

an
us

cri
pt

tailored grating couplers 
large decay lengths needed for cascaded logic gates. 

Acc
ep

ted
 M

an
us

cri
pt

large decay lengths needed for cascaded logic gates. 
structures 

Acc
ep

ted
 M

an
us

cri
pt

structures promising reduced scattering at edges and topologically protected 

Acc
ep

ted
 M

an
us

cri
pt

promising reduced scattering at edges and topologically protected 
magnon states might give rise to further nanochannels of low damping.  

Acc
ep

ted
 M

an
us

cri
pt

magnon states might give rise to further nanochannels of low damping.  
Q uantum ef f ects:

Acc
ep

ted
 M

an
us

cri
pt

Q uantum ef f ects: Magnons are bosons and 

Acc
ep

ted
 M

an
us

cri
pt

Magnons are bosons and 
condensation 

Acc
ep

ted
 M

an
us

cri
pt

condensation was

Acc
ep

ted
 M

an
us

cri
pt

was realized 

Acc
ep

ted
 M

an
us

cri
pt

realized 
Supercurrent Transport” )

Acc
ep

ted
 M

an
us

cri
pt

Supercurrent Transport” )
a macroscopic YIG sphere 

Acc
ep

ted
 M

an
us

cri
pt

a macroscopic YIG sphere 
was already demonstrated and 

Acc
ep

ted
 M

an
us

cri
pt

was already demonstrated and 
at the single

Acc
ep

ted
 M

an
us

cri
pt

at the single-

Acc
ep

ted
 M

an
us

cri
pt

-quantum level

Acc
ep

ted
 M

an
us

cri
pt

quantum level
short-wavelength magnon 

Acc
ep

ted
 M

an
us

cri
pt

short-wavelength magnon 

Magnonics is rapidly evolving 

Acc
ep

ted
 M

an
us

cri
pt

Magnonics is rapidly evolving 
proposed and tools to be developed 

Acc
ep

ted
 M

an
us

cri
pt

proposed and tools to be developed 
magnons 

Acc
ep

ted
 M

an
us

cri
pt

magnons on the nanoscale

Acc
ep

ted
 M

an
us

cri
pt

on the nanoscale
understanding of both Acc

ep
ted

 M
an

us
cri

pt

understanding of both 



waves. The tools will push the frontiers of magnonics and fuel technological 
prospects. 
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7. Toward energy efficient magnonics: static and dynamic strain 
for reconfigurable spin-wave transport  

A. V. Sadovnikov, A. A. Grachev, S. E. Sheshukova, S. A. Nikitov 
Laboratory “Magnetic Metamaterials,” Saratov State University, Saratov 410012, Russia 
and Kotel’nikov Institute of Radioengineering and Electronics, RAS, Moscow 125009, Russia 

J.-Y. Duquesne and  M. Marangolo   

Sorbonne Université, CNRS, Institut des NanoSciences de Paris, UMR7588, F-75252 Paris, France 
 

Status 

The electric field controlled transfer of the magnetic moment or spin of an electron instead 
of charge transport opens up new possibilities to build the element base of devices for 
encoding and storage of information using the collective precessional motion of ordered 
magnetic spins - spin waves (SW) with wavelengths ranging from micrometer down to tens 
of nanometer with the frequencies from Gigahertz to Terahertz. Emerging field of magnon 
straintronics [1,2] opens a promising alternative in beyond-CMOS computing technology 
with low-level energy consumption and minimization of Joule heating for development of 
next-generation devices for sensor applications and energy-saving data processing 
technologies focused on the generation, propagation, manipulation, channeling and 
commutation of information carriers.  
When strain is applied statically or dynamically to a magnonic device it’s possible to 
generate SW by acoustic waves [3], nonreciprocal propagation of SWs [4], the control of 
spin-wave generation and routing in lateral array of magnonic stripes and crystals [5]. These 
phenomena offer new way to envisage spin-wave demultiplexers and can be used 
simultaneously as an interconnection unit in reconfigurable magnonic networks. 
The strain in the magnetic media can be produced locally by static mechanical deformations, 
local heating or with electric field acting on the one of the phase of the composite magnonic 
heterostructure which comprises magnetic and piezoelectric phase. The strain-induced 
physical effects in magnetic structures can be used to engineer energy-efficient complicated 
2D and 3D topology of magnonic devices and heterostructures based on multiferroic 
materials, which exhibit electric field tunability of simultaneous ferroelectric, anti-
ferromagnetic (AFM), and ferroelastic properties.  
The effect of the electric field on the magnetic configuration results from the modification 
of the effective internal magnetic field. The latter is changed due to inverse 
magnetostriction (V illari effect) as a result of the local deformation of the magnetic film. 
This can induce a FMR frequency shift in yttrium-iron garnet (YIG)/  lead zirconate titanate 
[Pb[ZrxTi1−x]O3 (0≤x≤1)(PZT)] bilayer [6]. The control of the spin-wave transport can be 
performed via local elastic strains by the fabrication of the system of the electrodes at the 
YIG/ PZT interface.  
The magnon straintronic approach can be used to design the magnonic logic devices with 
voltage control of the spin-wave amplitude and phase. From design point of view this is 
multistage 3D self-consistent problem. At the first stage, the finite-element calculation of 
elastic deformations caused by an external electric field in the piezoelectric layer is 
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performed. Next, the obtained profiles of the internal magnetic field in the confined 
magnonic element are used in the micromagnetic simulation and the eigenmode spin-wave 
spectra calculation in the magnonic device. 
In particular, strain-induced spin-wave routing was demonstrated across three adjacent 
magnonic stripes, which are strain coupled to a piezoelectric layer (see Fig.1a). The strain 
may effectively induce voltage-controlled dipolar spin-wave interactions and results in the 
electric field induced spin-wave switching in the lateral array of magnonic stripes, which can 
be probed by means of Brillouin light scattering (BLS) (Fig.2) and microwave spectroscopy. 
Strain gives us also a great opportunity to influence dynamically SW transport and even to 
generate SWs.  As anticipated by theoretical research in late 50’s the resonant coupling 
between phonons and magnons in heterostructures composed of piezoelectric and 
magnetostrictive materials lead to Ferromagnetic Resonance and SW-generation. Indeed, 
phonons and magnons branches can cross in the (k,ω)-space either at magnetic remanence 
or when a moderate magnetic field is applied to a ferromagnetic material (FM), leading to 
modes hybridization engendered by magneto-elastic coupling (MEC) (an example is given in 
Fig.2). The strain control can be implemented locally or globally in a continuous-wave or 
pulsed configuration. This interaction may lead to gap opening, frequencies shifts and 
tunable magnonic crystal, where periodic modulation of the magnetic properties occurs at a 
timescale shorter than the characteristic time of SWs propagation through the crystal. 
Recently, it has been shown that an efficient mean to obtain resonant MEC is by Surface 
Acoustic Waves (SAW), a mature technology that has proven to tickle magnetization in thin 
films. By the help of Interdigitated Transducers (IDT) exciting SAW in the GH z and sub-GH z 
regime in a piezoelectric media (see IDT in Fig.2), Weiler et al.[7] and Thevenard et al.[8] 
observed SAW-FMR in Ni and GaMnAs thin films, respectively. These experiments pave the 
way to the integration of SAW-FMR mechanism in spintronic and magnonic devices where 
SWs, generated by antennas or by dynamic strain could be locally handled, triggered, 
scattered or even suppressed by SAWs excited, in turn, by remote voltage-driven IDTs. 
These SAW-FMR devices are claimed to operate with very low power, very high tunability 
and can benefit of the high directionality of the SW-SAW interaction [9]. Moreover, since 
SAWs are widely used in today’s sensors, filters and microwave circuitry, the possibility to 
implement magnetization dynamics in this mature technology would be a worthwhile asset. 
An alternative way to excite acoustically SW by strain has been indicated by Cherepov et 
al. [10]. H ere, an alternating voltage excites strain waves in an multiferroic magnetoelectric 
(ME) cell transducers, constituted of a magnetostrictive Ni film and a piezoelectric substrate, 
generating spin waves.  

Current and Future Challenges 
A) Static strain for magnon straintronics  
The electric-field-induced dipolar coupling between magnetic stripes leads to the formation 
of symmetric and antisymmetric collective modes in the spectra of propagating spin waves 
in lateral array of magnonic crystals (MCs), where local strain can tune the frequency of 
magnonic band gap and control the spin-wave spectrum. This effect can be used as the 
building block for voltage controlled tunable filters, interferometers, frequency-spatial 
demultiplexers and directional couplers [5].  
The control over spin-wave transport can be also performed in FM/ semiconductor or 
FM/ H eavy metal structures[4], where the strain-induced interfacial DMI gives rise to the 
nonreciprocal propagation of SWs. DMI can also induce the magnetic skyrmions, which  are 
envisioned as ideal candidates as information carriers for future spintronic devices. It was 
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demonstrated that the uniaxial strain modifies the average DMI constant and introduces 
anisotropy to the DMI with simultaneous change the sign of DMI constant for different 
directions of SW propagation[4]. Magnon straintronic approach underlie the mechanism of 
the spin-wave scattering and channelling along the domain walls, since local deformation 
and electric field localization can be used to control the magnetic topological defects like 
nanodomains and skyrmions[11]. 

B )  D y n a m i c  s t r a i n  f o r  m a g n o n  s t r a i n t r o n i c s   
The resonant regime of SAW-FMR is usually above 1 GH z and even below in the case of 
epitaxied Fe on GaAs [9]. Some points are worthwhile to be reported: (i) SAW propagate 
over long distances in piezoelectric materials, like LiNbO3 or GaAs, and magnons for few 
micrometres in Iron and even for few millimetres in very low-damping YIG. These length 
scales are very comfortable for handling these waves in sub-micron devices.  (ii) The 
penetration depth of a SAW is close to its wavelength (few microns in the GH z regime) and 
much larger than the ferromagnetic film thickness (10-100 nm), but nevertheless efficiency 
in absorbing the acoustic power is high. SAW-FMR is efficient enough to enable the 
excitation of a single spin wave mode with an in-plane wave vector k matched to the 
magnetoelastic wave vector[3]. 
A smart and elegant way to further enhance phonon-magnon interaction has been 
proposed by Graczyk et al.[12] who have shown that in a 1D magnetic periodic structure 
(FeNi/ Co), the folding back to the first Brillouin zone, allows for multiple crossings of the 
spin-wave and acoustic branches (see right panel in Fig.2). This phenomenon accompanied 
by engineering the SW and acoustic group velocities provides a powerful tool for SW 
acoustic generation.
The interaction of SAW and SW can lead to a non reciprocal propagation of SAW. This effect 
is rather small but developments involving strain-induced interfacial Dzyaloshinskii-Moriya 
interaction (DMI)[4,12] could greatly enhanced the effect, a step towards practical non-
reciprocal devices (circulators, spin-wave couplers). The wave nature of SAW and SW also 
offers the possibility to modify their frequencies because of inelastic interactions. 
Frequencies of SW can be shifted up (down) by the process of scattering of on 
copropagating ( counterpropagating ) SAW, i.e. by reverse Doppler effect.[12]. This could be 
exploited for data processing. SAW can also induce SW which, in turn, induce spin pumping 
[3], i.e. spin current excitation, at a FM/ non-magnetic interface (see left panel in Fig 2). 
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Figure 2 .  L eft panel: SAW driven FMR in magnetostrictive element placed between two interdigital transducers (IDTs) on a single crystal 
piezoelectric substrate lithium niobate (LiNbO3). Li et al. show in Ref. [3] that the resonant coupling induces SW generation and spin 
pumping (JS in the figure is the spin current induced by magnetization precession).  R ight panel: Dispersion relation of the NiFe/ Co 
magnonic phononic crystal calculated by Graczyk et al. in Ref.[12]. In the color scale, blue and red correspond to acoustic and spin waves, 
respectively. Green indicates coupled magnetoelastic waves. 

Concluding Remarks 
Magnon straintronics excels as an example of powerful method to manipulate spin-wave 
transport through either statically induced reconfigurable magnetization landscape or the 
mutual dynamic interaction of acoustic and spin waves in the GH z and sub-TH z. V ersatile 

Figure 1.  The demonstration of magnon straintronics concept: the bilateral YIG stripes (S 1,S 2,S 3) with strain coupled PZT layer (a). The 
electric voltage is applied between two electrodes (V C1 and V C3) at the YIG/ PZT interface and GND electrode. The distribution of stress 
tensor component showing a local deformation of the PZT layer and induced stress on the YIG/ PZT interface (b). The voltage-induced 
transformation of the internal magnetic field profile (H int(x )) (c). Left panels of (d) show the BLS spin-wave intensity at the frequency of 
4.925 GH z at the different values of the applied voltages (denoted in the figure). Right panels of (d) show snapshots of the dynamic out-
of-plane component of dynamic magnetization calculated by means of micromagnetic simulations. Edges of stripes are guided with 
dotted lines. (F rom [ 2 ] ) 
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and energy efficient components constituted of c a s c a d e s  o f  frequency-selective all-
magnonic logic units can be envisioned. 
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8. Optical-like processing by magnonic devices 
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Status 
Wave phenomena are omnipresent in physics and waves of very different physical origins often show 
strikingly similar behaviour. These similarities perhaps are nowhere more obvious than between 
magnons and photons: while electromagnetic waves and spin excitations are of fundamentally 
different physical origin, occur at very different frequency, wavelength, and energy scales, they both 
display very similar reflection, refraction, and interference effects.  
While the possibility of optically-inspired magnonic devices had been proposed and explored in 
simulations [1], their experimental realization was long hindered by the relatively high damping of 
metallic ferromagnets. Spin waves in lithographically patterned metallic thin films typically propagate 
less than ten times of the spin-wave wavelength, limiting the scale and complexity of spin-wave-optics 
demonstrations. In recent years, convincing experiments were done in relatively simple devices: one 
such study is the experimental demonstration of Snell’s law for magnons [2].  
The availability of low-damping Yittrium Iron Garnet (YIG) films [3] and the development of novel 
magnetic patterning techniques turned out to be a game-changer and paved the way for a number of 
very recent spectacular experiments in this area. To give one example, Fig 1a shows a nanoscale spin-
wave lens with textbook-perfect wavefronts mimicking an optical lens [4]. The lens and the magnon-
generating structure (i.e. the entire ‘ optical’ setup) is defined by a synthetic antiferromagnet that 
provides local magnetic fields that change the effective index of refraction experienced by the 
magnons. Similar complex lens-like devices can be realized by locally changing the index of refraction 
in a YIG layer by local heating, as shown in [5]. 
Guided-wave magnonic devices are another recent development. For example, near-field optical 
coupling between YIG waveguides was demonstrated in [6] and a snapshot if this device is shown Fig 
1b. In fact, unlike its optical counterpart, this device may function as a logic switch. The weak 
nonlinearity of spin-wave propagation manifests itself as amplitude-dependent spin-wave 
wavelength. Since the coupling between the nearby  waveguides depends on the wavelength relative 
to the waveguide length, this results in an intensity-dependent coupling between the couplers. 
Nonlinearity is not the only plus spin waves posses compared to optical devices: the anisotropic nature 
of spin waves in in-plane magnetized films results in caustic beams [7] with potential device 
applications. 
Figure 1c shows a proposal for an optically inspired device to provide a sought-after signal processing 
functionality, namely microwave spectrum analysis [8]. It is based on the Rowland-circle 
spectrometer, an optical device that is well known in X -ray physics. The device has a single waveguide 
input, generating spin waves on a curved diffraction grating. Different temporal frequency 
components in the waveguide generate spin waves of correspondingly different wavelength in the 
magnetic film, which then are focused to the corresponding points on the Rowland circle. This device 
has the advantage of providing relatively high functionality while utilizing only a single waveguide 
input. There are other proposals for achieving high functionality by mimicking optical computing, 
including wave-based algorithms for NP hard problems [9]. 
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It is probably safe to say that only imagination limits what kind of optically— inspired devices can be 
realized by magnons. The question is whether these devices will have any practical use besides the 
fact that they are interesting demonstrations of the photon-magnon analogy. In contrast to photons, 
magnons are relatively strongly damped, which perhaps is the most important handicap facing 
optically-inspired magnonic devices. The challenge is to identify possible applications in computing 
and signal processing where magnonic devices will be competitive so that these ideas do not remain 
only an academic curiosity.  
 

 

 
Current and Future Challenges 
 
Integrated photonic devices have their own challenges (and they found much fewer applications than 
integrated electronics). Magnons have obvious advantages and disadvantages compared to photons. 
The short wavelength of a magnon (potentially going all the way down to few nanometers) allows 
device densities comparable to deeply scaled electronics, while photonic device scaling stops at 500 
nm. Optically-inspired magnonic devices might be a potential solution to one of the most important 
drawbacks of photonics. Magnon frequency ranges (GH z to TH z) also are a very good fit to  
microelectronic frequencies. Magnetic thin films are a planar technology, compatible with 
microelectronic fabrication. The ‘ optical’ properties of magnetic thin films can be locally modified by 
several ways (doping, lithography, local magnetic fields, focused ion beams), and some of these 
techniques offer reconfigurability (i.e., fast re-programming of the function), which is difficult to 
achieve in optics. 

Figure 1.  Examples of magnon-based optical processing (a) X -ray-based magnetic image of a spin wave lens, realized in a synthetic 
antiferromagnet [4], near-field coupled waveguides in YIG, with frequency-dependent coupling  [6] and conceptual view of a Rowland-
circle-based microwave spectrum analyser. Figures are used with permission. 
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All of the above benefits come with challenges. Short wavelengths are certainly possible in the 
exchange-dominated spin-wave regime, but such short wavelengths are difficult to probe 
experimentally, so the vast majority of experiments has been done with dipole-dominated waves, 
often at much longer-than-optical wavelengths. While metallic ferromagnets can indeed be 
microelectronics fabrication-friendly, the best known medium for magnon propagation (high-quality 
YIG) and the highest-quality films are grown on special garnet substrates, while it is a challenge on 
Silicon, but progress is being made in this area [10]. 
 
The damping in magnetic materials limits spin-wave-propagation distances to about thousand times 
the wavelength at best [11] – this likely means that devices (with scattering /  refracting structures) 
are limited to a size of at most a few hundred wavelengths. Damping in photonic systems is not 
significant so photonic systems are straightforwardly scalable to large sizes. Photonic systems also 
have high dynamic range, i.e., very low and very high energy photons can be present (and detected) 
in the same device. This is not the case for spin--waves as high-intensity waves amplitude-dependent 
(nonlinear) behaviour, while low-energy magnons may be lost in the thermal noise. The damping and 
the low dynamic range of magnons together limit the maximum achievable device size, which is a 
major challenge. 
 
Transmitting and processing signals in the magnonic domain is extremely energy-efficient: magnons 
propagating in a micron-wide waveguide carry information at a gigahertz bandwidth while using only 
a few nanowatts of power. H owever, detecting nanowatt signals at such frequencies requires 
significant microwave circuitry for amplification and filtering [12], while Johnson-Nyquist noise at 
room temperature significantly limits data pickup rate. Overall, it requires several milliwatts of 
electrical power to convert a spin-wave signal to the electrical domain. Inputs are likely to consume 
the same order of magnitude power.  
 
Magnonic devices, to be competitive, must be scalable to large sizes in order to achieve energy-
efficient operation. As discussed above, magnons can propagate at very low power, and the main 
power requirements are due to generating and detecting magnons. Magnonic devices must be 
designed to maximize the functionality in the magnon domain and to minimize input and output. 
 
 
Concluding Remarks 
 
The nine orders-of-magnitude energy overhead of magneto-electric interfaces makes it an imperative 
to maximize the complexity of processing done entirely in the spin wave domain and to minimize the 
number of inputs and outputs. The challenge is, how to achieve this with the given scalability 
constraints discussed above. Some of the device constructions (such as the ones described in [7] and  
[8]) may exhibit sufficient internal complexity  to overcome the I/ O bottleneck. A promising route to 
increase internal complexity of magnonic devices would be the utilization of efficient magnonic 
amplifiers – more work is needed in this area. 
 
Acknowledgements 
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9 . P ure Sp in Current D riv en M agnonics 
V .E. Demidov1, S. Urazhdin2, and S.O. Demokritov1

1Institute for Applied Physics, University of Muenster, 
48149 Muenster, Germany 
2Department of Physics, Emory University, Atlanta, GA 
30322, USA 
 
Status

Several unique properties of spin waves make them a promising signal carrier for transmission and 
processing of information at nanoscale. Despite their potential advantages, spin wave-based 
(magnonic) devices currently suffer from two major drawbacks. First, the inductive mechanism 
commonly utilized to convert electrical signals into spin waves, and vice versa, is characterized by 
relatively low conversion efficiency, especially in microscopic devices. Second, spin waves in 
microscopic devices based on magnetic films with nanometer-scale thickness are characterized by 
large propagation losses, resulting in short decay lengths [1]. To make microscopic magnonic devices 
technologically competitive, it is necessary to overcome these two main drawbacks. This may become 
possible thanks to the advent of magnetic damping control by pure spin currents in spatially extended 
regions, which can facilitate the implementation of decay-free propagation of spin waves and even 
their true amplification. Furthermore, complete compensation of magnetic damping, and the resulting 
onset of magnetic auto-oscillations, makes it possible to generate coherent spin waves by dc electrical 
currents, which can emerge as a high-efficiency nanoscale alternative to the traditional inductive 
excitation mechanism. 

Over the last few years, the possibility to compensate spin-wave propagation losses by pure spin 
currents generated by the spin-H all effect (SH E) was intensively explored in a variety of magnonic 
systems. The largest effect reported so far was achieved in microscopic magnonic waveguides based 
on nanometer-thick Yttrium Iron Garnet (YIG) films [2], where a nearly tenfold increase of spin wave 
propagation length was demonstrated. Excitation of propagating spin waves by spin currents seems 
to be a straightforward extension of the damping compensation. H owever, it turned out to be 
challenging to implement due to several conflicting requirements. Specifically, efficient generation of 
current-induced magnetic auto-oscillations requires that the oscillation mode is confined to a nano-
scale region. Moreover, since the spin torque effect underlying the spin current-induced dynamics is 
exerted only at the magnetic interfaces, the thickness of the active magnetic layer should not exceed 
a few nanometers to maximize the effects of spin current. H owever, spin waves rapidly decay in such 
thin magnetic films. Thus, relatively thick active magnetic layers must be utilized to achieve the 
propagation length scales of several micrometers acceptable for integrated magnonic circuits. For a 
while, these difficulties did not allow one to achieve spin-wave generation by pure spin-currents, even 
though the possibility to excite localized coherent dynamics was demonstrated for a variety of device 
geometries [3-5]. 

The first demonstration of the excitation of coherent propagating spin waves by pure spin currents 
was reported in [6]. In this work, we experimentally demonstrated a spin current-driven 
nanomagnonic system that simultaneously satisfied the conflicting requirements described above. 
This was accomplished by hybridizing two magnetic subsystems with different dynamic 
characteristics: the active subsystem in which a spatially confined dynamical mode is excited by the 
spin current, and the spin-wave guiding subsystem that facilitates efficient propagation of spin waves, 
as schematically shown in Fig. 1(a). The active part consists of a nonlocal spin-injection (NLSI) nano-
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oscillator [4] based on the Permalloy(Py)(5 nm)/ Cu(20 nm)/ CoFe(8 nm) multilayer with a 60 nm 
circular nanocontact fabricated on the CoFe side. The oscillator exhibits spatially localized spin 
current-induced auto-oscillations in the Py layer above the nanocontact. To convert these localized 
magnetization oscillations into a propagating spin wave with a sufficiently large propagation length, a 
20 nm-thick and 500 nm-wide Py strip is fabricated on the surface of the extended Py film. The 
waveguide is terminated at the distance of 150 nm from the centre of the nanocontact. This distance 
is sufficiently small to ensure efficient dynamic coupling between the current-induced magnetic auto-
oscillations in the thin film and the magnetization in the strip. 

 

 
We used imaging of spin waves with sub-micrometer spatial resolution, enabled by micro-focus 

Brillouin light scattering (BLS) spectroscopy [1], to show that this system is capable of generation of 
spin waves in a broad frequency range by the dc driving electric current (Fig. 1(b)). The generated spin 
waves exhibit a large decay length of several micrometers, facilitated by the relatively large thickness 
of the spin-wave guiding subsystem. Moreover, analysis of the power consumption showed that the 
power efficiency of these devices is superior to the magnonic systems that utilize traditional inductive 
spin-wave excitation using microwave currents generated by the external microwave sources. 
Additionally, the excitation mechanism was found to be intrinsically fast, which allows generation of 
ultra-short spin-wave packets with the duration of a few nanoseconds [7]. This possibility is 
particularly important for the implementation of high-speed magnonic circuits. 

While NLSI-driven magnonic devices offer numerous benefits, they do not use some of the 
important advantages that are provided by pure spin currents. In particular, since these devices rely 
on the local current injection through a nano-contact, they do not allow one to use the same driving 
current for long-range enhancement of propagation of the generated spin waves, as was 
demonstrated for spin currents generated by SH E [2]. After an intensive search for a suitable 
geometry, in [8], we demonstrated an SH E-driven system enabling excitation of spin waves, and 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  (a) Layout of the magnonic system enabling excitation of propagating spin waves by pure spin currents generated by the NLSI 
mechanism. Adapted from [6]. (b) Color-coded maps demonstrating excitation and propagation of a 3-ns long spin-wave pulse.  
Adapted from [7]. 
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simultaneous enhancement of their propagation by pure spin currents. The system utilized a new 
concept of nano-notch SH E oscillators directly incorporated into a magnonic nano-waveguide. These 
devices (Fig. 2(a)) were based on 180 nm-wide nano-waveguides patterned from a Py(15 nm)/ Pt(4 
nm) bilayer. Ion milling was used to pattern a rectangular 200 nm-wide and 10 nm-deep notch in the 
top Py layer of the waveguide. When electric current I  flows through the device, SH E in Pt injects pure 
spin current I S into the Py layer, producing anti-damping spin torque. The thickness-averaged 
magnitude of this torque is inversely proportional to the thickness of the magnetic layer. Thus, the 
effects of spin torque on the 5 nm-thick Py layer in the nano-notch area are significantly larger than 
on the 15 nm-thick Py waveguide. As the current I  is increased, damping becomes completely 
compensated in the nano-notch region, resulting in the local excitation of magnetization auto-
oscillations serving as a source of propagating spin waves. Simultaneously, the damping is only 
partially compensated in the rest of the waveguide, resulting in the enhancement of spin-wave 
propagation. 

 

 
Micro-focus BLS measurements showed that the auto-oscillations in the nano-notch can efficiently 

emit propagating spin waves into the waveguide (Fig. 2(b)). This emission was found to be strongly 
unidirectional, with the preferential direction controlled by the direction of the static magnetic field. 
Additionally, it was shown that the propagation length of emitted spin waves is enhanced by up to a 
factor of three by the spin current injected over the entire length of the waveguide. Therefore, this 
system combines all the advantages provided by spin currents to locally excite propagating spin waves, 
and to simultaneously enhance their propagation characteristics. Additionally, the proposed approach 
can be easily scaled to chains of SH E nano-oscillators coupled via propagating spin waves, facilitating 
the development of novel nanoscale signal processing circuits such as logic and neuromorphic 
computing networks. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 .  (a)  Schematic of the SH E-driven device based on the notched Pt/ Py bilayer nano-waveguide. (b)  Color-coded spatial maps of 
spin-wave intensity. Dashed lines on the maps show the outlines of the waveguide and of the nano-notch.  Adapted from [8]. 
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Current and Future Challenges 
One of the main challenges in the ongoing development of spin current-driven magnonics is 

associated with the nonlinear phenomena stimulated by pure spin currents, which drastically limit the 
operational regimes and device geometries, as well as the possibilities for device integration. In 
particular, nonlinear scattering of propagating spin waves from magnetic fluctuations enhanced by 
pure spin current has been identified as the main mechanism responsible for the saturation of the 
anti-damping effect, which has so far prevented the development of devices where the propagation 
losses of spin waves are completely compensated [2], and has imposed strict limitations on the spin 
current-driven nano-oscillator geometries [4]. Additionally, the nonlinear frequency shift of large-
amplitude current-induced auto-oscillations is known to be responsible for the spatial self-localization 
of oscillations, preventing the emission of propagating spin waves [4]. Recently, it was shown that 
these limitations can be overcome by using materials with perpendicular magnetic anisotropy (PMA). 
PMA controls the nonlinear frequency shift, allowing one to design systems where self-localization is 
avoided [9,10]. Additionally, it was recently shown that by tailoring the PMA strength, one can 
suppress the nonlinear scattering [11], which can open the possibility to achieve decay-free 
propagation of spin waves, and perhaps even their true amplification. This approach is particularly 
promising thanks to the recent progress in the fabrication of nanometer-thick low-damping YIG films 
with PMA, which has already enabled highly efficient current-driven generation of coherent 
propagating spin waves in this archetypal low-loss magnetic insulator [9]. 
 
Concluding Remarks 

Pure spin currents offer novel opportunities for the development of nano-magnonics, and provide 
the means to address the main challenges associated with the downscaling of magnonic devices, their 
performance enhancement and integration. We expect that spin currents will be essential to making 
magnonic nano-systems a competitive alternative to conventional CMOS-based microelectronics. 
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10. Interaction of Magnons with Spin Textures 
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Status 

Spin textures, such as domain walls, vortices and skyrmions, are nonuniform configurations in the 
arrangement of spins in magnetic materials, which are raising interest as active components in data 
storage and signal processing. One of the most relevant key features, which makes spin textures so 
appealing, is the fact that they combine stability and resilience with a remarkable degree of tunability 
and scalability towards nanoscale dimensions. Such features can be the basis for developing new 
device concepts where the properties and dimensionality of the spin textures ultimately determine 
the device functionality and scalability. Notable examples of applications are represented by magnetic 
vortex oscillators, which exploit the GH z dynamics of nanoscale magnetic vortices for emitting RF 
signals when excited by a DC current, or racetrack memories, where domain walls or skyrmions 
representing magnetic bits are electrically created, displaced and detected within magnetic 
nanowires. Recently, the possibility of harnessing the potential of spin textures in the field of 
magnonics has sparkled a new wave of theoretical and experimental efforts, aiming to study the rich 
phenomenology of the interaction of spin waves with spin textures, to demonstrate new device 
concepts, or to ultimately overcome some of the long-standing challenges of the field.  

Current and Future Challenges 

One of such challenges is the efficient spatial confinement and waveguiding of spin-waves in 2D 
circuits. The conventional method, based on geometrically patterning magnetic micro or 
nanoconduits, has important limitations as it is hardly scalable and not suitable to realize complex spin 
configurations. For this purpose, the use of spin textures such as magnetic domain walls and tailored 
domain structures represents a promising avenue (see Figure 1). In [1] it was proposed that domain 
walls in ultrathin films act as magnonic nano-waveguides, supporting confined modes, called Winter 
magnons, which are not present in the bulk of the film, and which can be guided in curved geometries. 
The spin-wave channelling within domain walls was demonstrated experimentally in in-plane 
magnetized films featuring 180° Néel domain walls, where spin waves were excited by using an 
oscillating RF magnetic field generated by a metallic stripline [2]. The spin-wave localization at the wall 
was demonstrated by acquiring the spatially-resolved map of the spin wave intensity via Brillouin Light 
Scattering (BLS), which showed the presence of low-frequency propagating modes, which are not 
supported by uniform domains.  

Tailored magnetic domains can be also used for spatially controlling the spin-wave excitation and 
propagation within continuous films. In [3], localized heating with a nanoscopic Atomic Force 
Microscope tip was used for nanopatterning magnetic domains with tailored shape and magnetization 
direction in an exchange biased ferromagnetic thin film. This allowed both to spatially modulate the 
intensity of the spin waves and to select different propagating modes, by exploiting the anisotropic 
excitation efficiency and dispersion of spin waves with respect to the magnetization direction. 
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Furthermore, the use of periodic arrays of narrow magnetic domains was proposed as the basis for 
building magnonic crystals with tunable bandgap.   

One of the most appealing features of employing domains and domain walls as building blocks for 
magnonic devices is their reconfigurability. In fact, the volatile or non-volatile modulation of the spin 
textures via external stimuli allows the implementation of a dynamically reconfigurable functionality, 
such as the precise displacement of domain wall-based waveguides, the real-time modulation of the 
bandstructure in magnonic crystals, or the reversible control of the spin-wave transmission across 
domain walls [4]. 

A promising application which exploits these unique capabilities is the realization of reprogrammable 
spin-wave circuits where propagating spin waves are confined at the nanoscale, steered and let 
interfere in a controlled way. In [5], it is shown theoretically that it is possible to design a 
reprogrammable spin-wave circuitry providing unidirectional spin-wave transport using domain walls 
in presence of Dzyaloshinskii-Moriya interaction. Experimentally, a prototypic nanoscale spin-wave 
circuit based on spin textures has been demonstrated using nanopatterned Néel domain walls, where 
the spatial superposition and interference of confined modes was controlled by reconfiguring the 
waveguides in real-time [6]. 

The dynamics of spin textures is also interesting for the generation of propagating, short-wavelength 
spin waves. In fact, as the wavelength approaches sub-micrometric dimension, conventional 
generation methods based on microstructured antennas become inefficient. Recently, it was 
demonstrated that magnetic vortex cores and domain walls emit spin waves when driven in oscillation 
around their equilibrium position by an RF magnetic field [7] (see Figure 2a). Since the frequency and 
wavelength of the emitted spin waves can be easily tuned by controlling the excitation field, this 
method represents a promising avenue for developing highly flexible nanoscale spin-wave sources. In 
[8] this concept was used as basis for developing an optically-inspired platform, where magnonic 
nanoantennas based on domain walls and vortices allow for wavefront engineering, focusing, and 
interference of short-wavelength spin waves in synthetic antiferromagnets. 

Two recent developments in the field of spin-orbit torques opened the door to unify the generation-
manipulation of spin textures and the excitations of magnons therein in a single device based on a 
simple bilayer of a heavy metal and a ferromagnet. A DC current injected into such a bilayer proved 
not only to be an efficient method for initializing domain walls or Skyrmions with well-defined chirality 
[9], but also to drive high frequency magnon auto-oscillations within nano-sized domain walls even in 
the absence of an externally applied magnetic field [10]. This renders spin textures a powerful nano-
interface between electronics and magnonics. 

Concluding remarks 

A futuristic outlook on applications of spin textures for magnonics is featured by recent reports on 
simulations of magnon transport in antiferromagnets or more exotic systems such 2D ferromagnets. 
Antiferromagnets are appealing because they offer a new degree of freedom given by the magnon 
polarization, where domain walls can act as polarizing elements [11] (see Figure 2b). Truly 2D 
ferromagnets offer great potential for magnonics due to protected, non-reciprocal edge states 
emerging from the topology of the magnonic band structure [12] (see Figure 2c). These special 
magnonic states are the magnonic analogy to surface states in topological insulators and exist even in 
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domain walls. Even though these examples are far from experimental realization they indicate the 
vast possibilities and phenomena still to be discovered and used in the field of magnonics. 
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Figures 

 

 

Figure 1. (a) Simulated spin-wave channelling by means of curved domain walls. In the inset, a cross section of the spin configuration is 
shown. Adapted from [1]. (b) Spin-wave intensity measured across a domain wall for different externally applied magnetic fields highlighting 
the localization of spin waves within the domain wall and the tunability of the channel position. Adapted from [2]. (c) Experimental spin-
wave spectra measured across nanopatterned stripe domains, showing strong spatial modulation of the spin-wave intensity. Adapted from 
[3]. 

 

Figure 2 . (a) Experimental X -Ray Microscopy imaging of the tunable emission of short-wavelength spin waves by vortex cores. Adapted from 
[7]. (b) Antiferromagnetic domain walls as spin wave polarizer and retarder. Adapted from [11]. (c) Proposal of topological magnonic circuitry 
based on the unidirectional propagation of topologically protected spin-wave modes along sample edges and domain walls. Adapted from 
[12]. 
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11. Graded Index Magnonics 
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Status 
The topic of wave excitation, propagation, and confinement in graded (i.e. continuously 

inhomogeneous) media arises naturally for any kind of waves, and spin waves are not an exception. 
The relevant part of spin wave research is known as ‘ graded index  magnonics’ [1]. Yet, the concept of 
a refractive index is not as useful in magnonics as it is e.g. in optics and acoustics. Indeed, thanks to 
the gapless, linear, and isotropic dispersion relations conventionally found for light and sound, the 
optical and acoustic refractive indices (defined as ratios of the wave speeds in the reference and 
graded media) hold for wide ranges of frequencies. In contrast, these properties of the dispersion 
relation are not usually found for spin waves, and so, the conventional definition of the refractive 
index has limited value in magnonics. Instead, we use term ‘ magnonic index ’ for a quantity that scales 
with the wave numb er that the spin wave of a given freq uency acq uires in a given point of space under 
assumption that it propagates in the same direction in a uniform medium with magnetic properties in 
that point and under eq uivalent conditions. The latter must include appropriate static and dynamic 
magnetic fields, such as the bias and demagnetising fields due to the sample’s structure. Inevitably, 
the non-locality of the magneto-dipole interaction makes this (and in fact, any) definition of the 
refractive index for spin waves either limited or ambiguous. Yet, it is often useful in interpretation of 
experimental and numerical results and when adapting design recipes from e.g. graded index optics.  

Schlömann was one of the first to exploit graded profiles of the magnonic index, pointing out 
that the non-uniform static internal magnetic field can mediate coupling between spin waves and 
essentially uniform (on the scale of the spin wave wavelength) dynamic magnetic fields [2]. This, now 
known as ‘ Schlömann’ mechanism of spin wave excitation extends to effective magnetic fields of any 
origin, including not only static but also dynamic non-uniform demagnetising fields [3], inherent to 
patterned magnetic structures. Morgenthaler was one of the first to apply graded magnonic index to 
confine [4], to focus [5] and to steer [6] spin waves propagating in bulk yttrium-iron-garnet (YIG) 
samples, which were also considered by Schlömann [1]. Most recently, similar ideas have been 
systematically developed to demonstrate spin wave confinement [7], focusing (Fig. 1 [8]) and steering 
(Fig. 2 [9]) by graded profiles of the magnonic index in thin film magnonic structures.   

Experimentally, graded index magnonics has been the primary beneficiary from development 
of time-resolved imaging techniques [9]. Importantly, there were recently extended to spin waves 
with sub-micrometre wavelengths in low-damping YIG [10]. Theoretically, it has mostly benefitted 
from existing concepts and methods developed in and then adopted from other areas of physics. For 
instance, the analogy between the static internal field for exchange spin waves and the potential 
energy for a quantum-mechanical electron was exploited in Refs. [2,7] along with the Wentzel–
Kramers–Brillouin (WKB) method (quasi-classical approximation). In Ref. [4], the latter was applied to 
purely magneto-dipole spin waves. The magnonic Luneburg lens shown in Fig. 1 [8] is designed using 
the principles from geometrical optics and ultimately classical mechanics. H owever, as in the case of 
the refractive index, such analogies have limited applicability. H ence, numerical micromagnetic 
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simulations have been increasingly often used in graded index magnonics both as a stand-alone tool 
and as a part of hybrid theoretical analyses [3,7,8,9].  

Several factors will continue driving research in graded index magnonics in the foreseeable 
future. Firstly, various magnetic non-uniformities and the associated graded magnonic index are 
ubiquitous in realistic magnonic and more generally magnetic structures [1,3,7,9], making studies and 
thorough understanding of the associated dynamics a necessity of high-frequency magnetism and 
spintronics. The same applies to magnonics, including nearly every topic in this review. Secondly, 
deliberately created graded magnonic landscapes could enable some important yet elusive concepts 
from other areas of physics [8,11,12] to be tested in the laboratory. Finally, innovative graded 
magnonic profiles will prove indispensable in eventual practical magnonic devices, either broadening 
their functionalities or even underpinning new ones.  
 

 

 
 
Current and Future Challenges 

As no other sub-field of magnonics, experimental studies into graded index magnonics suffer 
from excessively high magnetic damping. The major challenge is then to learn to create designer 
magnonic landscapes in low damping magnonic materials. To illustrate this challenge, we consider the 
realisation of the magnonic Luneburg lens shown in Fig. 1 [8]. A 2 µ m thick film of YIG is used as a 
magnonic medium in the micromagnetic model, and the required lens is created by modestly 
increasing the saturation magnetisation to the required profile. This increase would however be 
difficult to realise experimentally. Indeed, local ion implantation or heating would typically decrease 
(rather than increase) the magnetisation, while inevitably also increasing the damping. The use of 
miniaturised magnets to create a required bias field profile or Peltier elements to locally cool the film 
is probably possible but would obscure the optical access necessary for spin wave imaging. A graded 
decrease of the film thickness by a factor of √2 is an analytically exact solution of the problem [8] but 

Figure 1.  Numerically simulated snapshots of the dynamic magnetisation component 𝑚𝑚𝑥𝑥 in units of the saturation magnetisation are 
shown for a packet of forward volume magnetostatic spin waves propagating through a magnonic Luneburg lens (black circle) for time 
moments of (a) 16 ns, (b) 45 ns, (c) 80 ns, and (d) 106 ns after excitation. The graded magnonic index profile corresponding to the 
Luneburg lens is formed by a gradual local increase of the saturation magnetisation in an out-of-plane magnetised thin film of YIG. 
Reproduced with permission from Ref. 8.  
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would most likely be challenging technologically for YIG if we were to preserve its low damping.  
The results shown in Fig. 1 were produced in the forward volume magnetostatic spin wave 

geometry. This geometry in itself is a significant practical limitation due to the need to magnetise the 
film to saturation normal to its plane. H owever, the use of magnonic media with in-plane 
magnetisation raises challenges associated with the anisotropy of the spin wave dispersion, as 
illustrated in Fig. 2 [9]. Due to the Schlömann mechanism of spin wave emission, a uniform microwave 
magnetic field leads to emission of spin waves from the T-junction of two Permalloy stripes into the 
horizontal stripe. For a modest tilt of the in-plane bias magnetic field, the highly non-uniform 
distributions of the internal magnetic field and magnetisation (Fig. 2 (a)) and the associated non-
uniform distribution of the directions of the group velocity vector (Fig. 2 (b),(c)) lead to steering of the 
spin wave beam into just one of the two branches of the T-junction (Fig. 2 (d)).  Found as a surprise in 
Ref. 9, this perfect steering of the spin wave energy illustrates the opportunities that could emerge 
once we resolve this challenge of an anisotropic magnonic dispersion.  
 

 

 

Figure 2.  Effect of the anisotropy of the magnonic dispersion is illustrated for the case of spin wave propagation in an asymmetrically 
magnetised Permalloy T-junction. (a) The calculated distributions of the static magnetisation (arrows) and the projection of the internal 
magnetic field onto the magnetisation (colour scale) are shown for the magnetic field of H B =  500 Oe applied at 15° to the vertical 
symmetry axis. Each arrow represents the average over 5 x 5 mesh cells. (b) kx  spectra of the dynamic magnetisation distributions across 
the leg (grey line in (a)) and along the arms (blue line in (a), amplified x5) of the T-junction excited at 7.52 GH z are shown by the grey and 
blue curves, respectively. The kx  value of 0.94 µ m-1 indicated by a dashed line corresponds to maximum spin-wave Fourier amplitude. (c) 
A construction illustrating the extraction of the group velocities of the incident (index "i") and reflected (index "r") beams is shown for 
the white boxed pixel in (a). For the specific kx  value of 0.94 µ m-1 (which is indicated by the vertical dashed lines here and in panel (b)), 
the group velocities are perpendicular to the characteristic isofrequency curves (purple). The ky value is given by the crossing of the 
dashed line and the isofrequency curve. H ere and in panel (b), the region shaded yellow has the same size and represents the range of 
forbidden kx  values, as calculated for the white boxed pixel and for pixels on the grey line in (a), respectively. (d) The extracted 
directional unit vectors of the group velocities 𝝂𝝂�  and wave vectors 𝒌𝒌� are shown for 𝑘𝑘𝑥𝑥 values shown by the vertical dashed lines in (b) 
and (c). Reproduced with permission from Ref. 9.  
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The goal of mastering the spin wave control in graded magnonic media urges us to search for a 
universal description of their magnonic properties. Indeed, we have already commented on the 
limitations associated with the use of the refractive index concept [8]. The analogy with the quantum-
mechanical electron [2] is also feeble since the concept of the electronic potential breaks beyond the 
exchange approximation. Even in the exchange approximation, the concept is generally invalidated 
(as is the concept of the wave impedance) by the ellipticity of the magnetic precession and emergence 
of evanescent spin wave modes in inhomogeneous anisotropic magnetic media [13]. The concept of 
the local magnetic susceptibility has not been demonstrated beyond the problem of spin wave 
excitation [3], while suffering from the nonlocality of the magneto-dipole interaction, similarly to the 
refractive index concept and the WKB method for spin waves [4,7]. The natural abundance of non-
reciprocal magnonic phenomena presents even greater and more fundamental challenges for 
development of a universal formalism for graded index magnonics.  
Even when used for approximate or qualitative analyses, theoretical concepts and methods of graded 
index magnonics need to be developed and applied systematically, so as to account for (rather than 
to avoid) peculiarities associated with physics of spin waves. This applies to more traditional studies 
of spin waves in permalloy [3,7,9] and YIG [2,4-6,8,10,12] media as well as to studies expanding the 
range of addressed phenomena to spin waves and hybrid magnetic excitations (e.g. magneto-acoustic 
waves and magnetic polaritons) in more exotic material systems. The graded index magnonics of 
antiferromagnetic media seems particularly challenging, both experimentally and theoretically. Even 
as far as permalloy and YIG samples are concerned, the physics of nonlinear spin waves in graded 
media (nonlinear graded index magnonics) is still at its infancy. The fusion of topics of graded 
magnonic index and magnonic crystals [12] and the use of metamaterial approaches to design the 
graded magnonic index both look very promising yet hinging on our ability to resolve the challenge of 
the magnetic damping. Finally, we note that the topic of spin waves in samples with non-uniform 
magnetisation (spin textures) lends itself readily to the field of graded index magnonics [13], see the 
relevant section of this review.  
 
Concluding Remarks 
Among its sister-areas of wave physics, magnonics is arguably the most complex and challenging. 
These challenges culminate in both experimental and theoretical studies of spin waves propagating in 
inhomogeneous magnetic media – those of graded index magnonics. H owever, as shown above as 
well as in other sections of this review, there are also great rewards and rich opportunities for those 
who will rise to the challenges and master the physics of spin waves propagating in graded magnonic 
media.  
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12. Spin-Orbit Effects in Magnonics 
Anjan Barman1, Sourav Sahoo1 and Jaivardhan Sinha2  
1S. N. Bose National Centre for Basic Sciences, Salt Lake, 
Kolkata 700106, India 
2SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, 
India 

Status 
Though the theoretical concepts of spin-orbit coupling (SOC) and magnons were both formulated long 

time back, controlling and redesigning the exciting fields of magnonics and spintronics using SOC have 

drawn attention recently due to its various advantages [1, 2]. Emerging concepts related to the SOC 

effects are considered crucial for improving the performance of spin-based devices by markedly 

reducing the power consumption. The SOC effects can been primarily categorized into intrinsic and 

extrinsic phenomena. While the intrinsic SOC in simplified assumption can be imagined as a local 

magnetic field related to band structure, the extrinsic SOC is caused by defects and impurities which 

act as scattering centres [3,4]. The intriguing phenomena, namely perpendicular magnetic anisotropy 

(PMA), spin H all effect (SH E), Rashba effect, spin pumping and Dzyaloshinskii-Moriya Interaction (DMI) 

are all known to have origin in SOC [5,6,7]. In recent times, the experimentally realized spin-orbit 

torque (SOT) originating from pure spin current is expected to play crucial roles in controlling the 

magnetization as well as spin wave (SW). In comparison to conventional spin-transfer torque, utilizing 

SOT in magnonic devices is simple and dramatically more efficient. In SOT spin-polarization arises from 

the carrier velocity difference and a spin filter is not required to generate spin current. The ability of 

SOT to compensate Gilbert damping over extended regions has opened up a new avenue for on-chip 

SW communication devices [1,2]. In order to develop ultrahigh-speed beyond–complementary metal-

oxide semiconductor (CMOS) SW-based technology for signal processing, it is crucial to achieve long-

range enhancement of SW propagation in a variety of magnonic devices. Development of integrated 

magnonic circuits requires enhanced SW coherence and propagation length. Both these can be 

addressed by utilizing SOT, which provides the ability to electrically control damping, resulting in 

significantly enhanced SW propagation. The complete compensation of damping allows coherent local 

SW generation. Furthermore, enhanced SW transmission can be achieved if the concept of SOT is 

integrated in the magnonic devices. SOT-driven SWs can be directly applicable to additional 

nonconventional computing schemes such as neuromorphic-based computing as well as next 

generation magnetic memory devices with almost unlimited endurance.  

SW dispersion in magnonic antidot waveguides has been theoretically investigated in symmetric and 

asymmetric structures to understand the modification in magnonic band gaps [8]. The effects of 
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intrinsic symmetry breaking factors were found to be compensable by careful adjustment of extrinsic 

factor. The underlying principle is based upon the translational and mirror symmetries associated with 

the crystal structure. Thus, the idea of correcting an intrinsic defect by extrinsic means needs 

experimental realization in magnonic crystal developed using thin film heterostructures where 

ferromagnetic thin film layer is placed adjacent to large spin-orbit scattering centers. Further, two-

dimensional antidot magnonic crystals carved in magnetic multilayers with PMA have shown localized 

and collective SW excitation, where sharp decrease of SW frequencies is driven by a dynamical 

coupling between the localized modes within the shells, caused by tunnelling and exchange 

interactions [9]. The localized shell modes are efficiently tunable by antidot shape through the control 

of domain structure inside the shells [10].  

Observation of chiral spin textures such as spin spirals, helices and skyrmions are mainly related to the 

stabilization of interfacial DMI (iDMI) in thin film heterostructures where a ferromagnetic layer is 

placed adjacent to a heavy metal layer or 2D material, e.g. graphene. Chiral magnonic crystals, where 

interplay of SW with DMI can be tailored, have been theoretically predicted to exhibit exceptional 

features, e.g. ability to transfer energy unidirectionally. Further, dynamical control of magnetic 

damping by SOT allows tunable control of SW propagation. To this end spin-charge conversion 

efficiency, namely, spin H all angle (SH A) plays an important role. An unambiguous technique based on 

all-optical time-resolved magneto-optical Kerr effect have been implemented to estimate SH A in 

heavy metal/ ferromagnet bilayers along with deciphering the effect of spin current generated by spin 

H all effect and spin pumping [5,7].  

On the other hand, influence of iDMI on the SW dispersion has become a topic of intense interest. The 

DMI-induced SW asymmetry has been theoretically predicted, which proposed an estimation of the 

strength of DMI by measuring the frequency difference of counter propagating SWs. In particular, by 

means of Brillouin Light Scattering, nonreciprocal SWs were observed in heavy metal/ ferromagnet 

thin film heterostructures [6]. The frequency asymmetry in the SW dispersion of counter propagating 

Damon–Eshbach (DE) SWs was confirmed in various combinations of heterostructures due to the 

presence of iDMI.  Furthermore, it was also predicted that in systems with bulk DMI a frequency 

difference could be observed in the backward-volume geometry. Some of the chiral spin textures have 

manifested this effect [1]. 

 

Current and Future Challenges 
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The current and future challenges can be divided into two classes: a) scientific challenges and b) 

technical challenges. The overriding goal of the scientific challenges is to combine a number of spin-

orbit effects with the magnonic crystal and subsequently to the magnonic devices. For example, 

simultaneous existence of PMA and DMI as well as patterning of two-dimensional magnonic crystal 

can help in stabilizing topological magnetic objects like skyrmions or merons and more efficient 

control of their dynamics. Development of one- and two-dimensional magnonic crystals on FM/ NM 

heterostructures with interfacial DMI will lead to novel magnonic band structures with the evolution 

of new bands and bandgaps due to the asymmetric DE SW dispersion in presence of interfacial DMI 

(an example of SW dispersion in a one-dimensional magnetic antidot waveguide without and with 

DMI is shown in Fig. 1(a)-(c)).  

The wave-number dependent skew scattering of magnons from skyrmions gives rise to the topological 

magnon H all effect, while interaction of skyrmions with current flow leads to skymion H all effect. 

H owever, a combined effect of current flow and magnon on skyrmions may lead to novel effects due 

to the competition between thermally-driven radial magnon current, transverse magnon current and 

electron flow. Scattering of magnons from a skyrmion lattice can open magnonic bandgap, leading 

 

Figure 1: (a) Simulated spin-wave dispersion curves for a one-dimensional Ni80Fe20 antidot waveguide with 3 
μm length and other dimensions as shown in the schematic at the inset. The spin-wave dispersion is calculated 
in the Damon-Eshbach geometry in presence of a bias magnetic field of 1.01 T. Further application of iDMI 
strength of (b) D  =  -2 mJ/ m2 and (c) D  =  2 mJ/ m2 have dramatically modified the spin-wave dispersion curves. 
(d) Application of a current density of 1 ×  1011 A/ m2 on (c) has reduced the spin-wave amplitude significantly. 
The colour map of the spin-wave dispersion is Jet, i.e. red corresponds to maximum and blue corresponds to 
minimum spin-wave amplitude.  
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towards dynamic magnonic crystal, which can be continuously tuned by a dc magnetic field. One of 

the primary bottlenecks of magnonics is the large damping of SWs in metallic ferromagnets which 

limits the SW propagation distance and device efficiency. Antidamping properties of SOT may 

dramatically reduce damping, but it has not been investigated extensively in magnonic crystals. Spin 

current may be used globally or locally to selectively amplify or attenuate propagating SWs (an 

example is shown by numerical simulation in Fig. 1(d), where SW amplitude has been dramatically 

reduced by application of spin current) leading towards development of magnon logic or transistor. 

Finally, controlled magnon auto-oscillation at zero magnetic field can lead to extremely energy-

efficient magonic devices.  

The technological challenges primarily concern about the fabrication of devices, precision 

measurements and their application. The advancement of devices hinges on the capability to 

downscale the individual circuit elements. A conceptual magnonic device in Fig. 2 shows the excitation 

can be done by various means such as microwave antenna, voltage controlled magnetic anisotropy, 

SOT by SH E or spin pumping, all of those throw challenges in downscaling the excitation element by 

keeping the relevant property intact. The fabrication of nanoscale magnonic crystals by electron-beam 

lithography or focused ion-beam milling on thin film heterostructures by keeping the spin-orbit effects 

intact is also a great challenge [9, 10] and extensive research is required to overcome this. To this end 

topological magnetic texture-based dynamic magnonic crystal originated from spin-orbit effects could 

be a solution but controlling ordered arrays of such textures over large area would be challenging. The 

electrical detection based on inductive techniques or inverse SH E faces similar challenges. Alternative 

detections like optical, x-ray or electron microscope are useful but not viable for practical application. 

Furthermore, given the intriguing physics involved in the three-dimensional magnonic crystals, it will 

 

 

 

 

 

 

 

 

 

 

Figure 2 :  Schematic of a conceptual magnonic device composed of thin film heterostructures having 
different spin-orbit coupling related properties with electrical excitation and optical as well as electrical 
detection technique. 
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be important to understand the spin-orbit effects on magnons in such systems for their applications 

in magnonic devices.  

 
Concluding Remarks 
The ability to implement spin-orbit effects to modify the magnon properties in tailored magnetic 

materials holds the key for future energy-efficient high-frequency nanoelectronic devices. These will 

be the subject of future investigation from fundamental interests as the complexities involved needs 

further in-depth exploration using experimental and theoretical studies. We envision the possibility of 

new information processing devices in the future based on new classes of magnonic crystal where 

spin-orbit effects will be crucial ingredients. 
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13. THz Magnonics 
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Status 
 

Achieving a faster and most energy efficient data processing has been a major task in modern 
spintronics. To bring magnonics to TH z frequency scale, we need three things: TH z excitation, as an 
ultrafast signal input, TH z frequency spin-excitations and TH z detection of spin-wave signals. From 
early on, ultrafast spin-dynamics aimed to develop picosecond stimuli by using Auston switches or 
femtosecond laser pulses for excitation directly. In early ultrafast demagnetization in ferromagnets, 
the role of TH z high-energy-spin waves on the 100 fs to ps time scales driven by infrared femtosecond 
lasers was clear. H owever, they could not be exploited so far to generate high energy spin waves in 
the TH z frequency spectrum directly by the laser pulse heating. A breakthrough on TH z stimuli was 
the generation of TH z current and field pulses via laser driven picosecond charge and spin-currents. 
One such central scheme is to utilize spin to charge conversion. The possibility of laser-induced spin 
to charge conversion at TH z frequency was first demonstrated in 2013 [1]. In ferromagnet (FM)/ heavy 
metal (H M) heterostructures, laser excitation lifts the electrons in the ferromagnet by the photon 
energy into different states in the spin-split band structure, thereby generating a non-equilibrium 
electron distribution. The laser-excited majority spin electrons have a mainly sp-like character and 
much higher velocity than the excited minority spin electrons with a d-type character. Subsequently, 
the diffusion of spin current towards the adjacent H M layer results in a charge current generation due 
to the spin to charge conversion effect such as the inverse spin H all and inverse Rashba-Edelstein 
effects. The ultrafast transient charge current thus induces a TH z electromagnetic radiation as 
schematically shown in Fig. 1(a). Three independent groups recently reported using optimized emitter 
structures that the intensity of the TH z radiation competes with standard TH z emitters [2-4]. The 
emitter spectrum of the spintronic TH z emitter is compared to a commercial interdigitated GaAs 
switch and a ZnTe emitter. The bandwidth is much larger covering the low frequency (0.1-3 TH z) as 
well as high frequency up to 30 TH z without any gap. This indicates that at the same time shorter 
current pulses, with ultrafast rise times of ~ 0.1 ps can be generated. Such spin-based TH z emitters are 
insensitive to the polarization and helicity of an incident laser beam which indicates the noise resistive 
feature. In contrast, the amplitude and polarization of TH z waves are fully controllable by an external 
magnetic field. Spin-based TH z emitters can be fabricated on flexible substrates, and driven by a fiber 
based low power laser [3]. Together with the low cost and mass productive sputtering growth method 
for the magnetic heterostructure stacks, the spin-based TH z emitters can be readily applied to a wide 
range of TH z applications. This opens up a route not only to novel TH z emitters, but also potential 
spintronic devices manipulating spin current bursts on a TH z timescale.  

It was demonstrated that TH z spin waves can be directly excited by the laser driven spin-
polarized current pulses in Fe/ Au/ Fe multilayers [5]. The authors have shown that standing spin wave 
modes can be excited in a 15 nm thick Fe film due to ultrashort laser-induced spin current bunches as 
shown in Fig. 1(b). Laser pump pulse impinging on the first Fe layer (emitter) excites hot electrons at 
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elevated energies. Due to the unequal transmittance of the Fe/ Au interface for the majority (green) 
and minority (red) hot electrons, spin polarized hot electrons are emitted into Au. The spin polarized 
electrons reach the second ferromagnet (FM2) ballistically and the injected spin current absorbed on 
a length scale of well below 2 nm allows an asymmetric spin dynamics excitation due to the spin 
transfer torque effect. H ere spin waves for 0.1-0.6 TH z are excited and probed by the Kerr rotation. 
Those TH z spin-wave generators could be used to inject TH z frequency spin waves into magnonic 
structures and devices in the future. This is an important step towards increasing the speed and 
miniaturization of the device size for possible magnonic applications. In the following we will discuss 
and compare the three ways TH z frequency spin-excitations in magnetically ordered system: (i)  
homogeneous Kittel modes k= 0 excited off resonant, in large applied or internal anisotropy fields, (ii) 
spin waves with k≠0 with strong exchange fields, found for standing spin waves and (iii) strong 
exchange fields in antiferromagnets and ferrimagnets. 
 For ferromagnetic systems, typical spin dynamics is in the GH z range which increases with the 
applied magnetic field. Resonances of the Kittel modes may reach TH z frequencies with 20 T, posing 
a serious challenge without special high field facilities. H owever, if strong internal fields are generated 
by a high anisotropy or the exchange-interaction, one can reach the TH z frequency branches of the 
spin-wave dispersion. In case of ferromagnetic systems, the strategy can be to decrease the spacing 
of a magnonic crystal or waveguide to the ~ nm length scale and thereby to increase the k wave-vector 
to ~2π/nm, since the dispersion increase with ~k2, which is clearly challenging. H owever, one may 
reach >  100 GH z by using self-organization, domain walls or networks, skyrmion lattices of nanometer 
periodicity and full or hollow nanowires. In case of antiferromagnetic systems, the exchange 
interaction to the neighboring spin of opposite orientation results in a very strong exchange field 
which can be up to 100 T. Thus in antiferromagnetic and ferrimagnetic systems, intrinsic natural 
frequencies of the spin-waves modes are in the TH z range. Because of their insulating character and 
thus the absence of conduction electrons, oxides generally have very low damping. TH z excitation of 
antiferromagnets by TH z field pulses has been demonstrated in NiO and different orthoferrites X FeO3 
(X = Nd, Pr, Y, Dy, Er, and H o). The phase control of the exciting magnetic field pulse with TH z frequency 
allows a coherent excitation and thus a phase control of the excited spin-wave as shown in Fig. 1 (c) 
[6]. Current status and perspectives focused on the TH z antiferromagnetic dynamics and magnonics 
are discussed in detail in the next section on “Antiferromagnetic Magnonics” (Section 14). Not much 
is known about the propagation of TH z spin-wave so far. Generally, the challenge is that high 
frequency spin-waves are considerably damped since the intrinsic dissipation (viscous damping) 
results in first order, a signal decay proportional to ~1/ω. The above examples show how to generate 
TH z spin currents or TH z spin dynamics which can be utilized as input channels for TH z magnonics.
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Current and Future Challenges 
 

The writing speed of ferromagnets has a physical limit in the GH z range due to their inherent 
slower magnetization dynamics, of the coherent switching of the Kittel mode or linear switching, 
connected to a thermal quenching. Antiferromagnets and ferrimagnets with antiparallel exchange 
coupling exhibit faster spin dynamics and could potentially overcome these limitations. Recently, it 
has been shown that not only femtosecond laser pulses, but also intense TH z pulses can manipulate 
the magnetization, which could be a more energy efficient and fast way of controlling the 
magnetization. Within one picosecond, intense free space TH z pulses abruptly change the magnetic 
anisotropy in antiferromagnetic TmFeO3 at 83 K, causing a full and coherent large angle (180°) 
switching, beyond small angle excitations, as shown in Fig. 2(a) [7]. The switchable states can be 
selected by an external magnetic bias. The authors also showed that the low dissipation and the 
antenna’s subwavelength spatial definition could facilitate scalable spin devices operating at TH z 
rates. In a different report of Fig. 2(b), spin-transfer torques mediated by TH z-driven electric fields (~ 3 
×  109 A/ cm2) have induced switching of antiferromagnetic domains in CuMnAs, a prototypical 
antiferromagnet at room temperature [8]. In addition, the multilevel neuron-like characteristics allow 
the integration of memory and logic within the antiferromagnetic bit cell. H owever, detecting the 
magnetization of antiferromagnets is challenging. In particular, the readout signal obtained from 90° 
rotation of above antiferromagnets via anisotropic magnetoresistance (AMR) is not sufficient for fast 
reading and is not fully compatible with a magnetic tunnel junction (MTJ) based scheme. Although the 
device can be switched using a picosecond pulse input, the pulse duration does not necessarily 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

Figure 1.  (a) A typical ferromagnet (FM)/ non-magnet (NM) sample structure and the TH z emission geometry. The femtosecond laser 
beam is used for pumping the sample. The external magnetic field (H ext) is along the x-axis. In (b) and (c) two strategies are shown to 
excite spin waves using TH z pulses in the TH z frequency range. (b) Laser-induced excitation of spin dynamics via spin currents pulses. Due 
to the spatial confinement of the STT perturbation (blue shaded area), spin waves with a broad spectrum of nonzero wavevectors are 
excited and can be probed by the MOKE in the collector. The exchange standing spin waves are confined in nanometer thick layer, where 
the frequency increase as ~ k2. Reproduced from [5]. (c) Crystal lattice of NiO with antiferromagnetically ordered spins (blue arrows) in 
the (111) planes (light blue) and the direction of the TH z magnetic field B (double-ended red arrow). An intense free-space TH z interacts 
with the electron spins of a sample to launch a coherent magnon wave. H ere the intrinsic modes are in the TH z frequency range. A 
femtosecond near-infrared (NIR) probe pulse (green curves) measures the induced net magnetization by the Faraday effect. Reproduced 
from [6]. 
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correspond to the real switching time. Therefore, the temporal switching profiles need to be 
confirmed by time resolved measurements in order to evaluate the real switching speed of the device. 

Both the effect of picosecond charge current pulses and the effect of ultrafast heating on the 
magnetization can be combined to build a TH z magnetic memory. It was demonstrated in a 
ferrimagnetic material GdFeCo that a laser pulse application to the Austin switch generates a single 
sub-10 ps electrical pulse, which rapidly excites conduction electrons in magnetic metals [9]. This 
material is known to show magnetization reversal by a linearly polarized laser heat pulse that acts as 
an ultrafast heating stimulus. H ere the current pulse generated by the Austin switch is directly injected 
into the GdFeCo with current densities of ~ 109 A/ cm2 and a pulse length below 9 ps. This pulse current 
injection into the smaller cross section and higher resistive GdFeCo element results in a deterministic 
switching event, measured by the magneto-optical contrast changing. The above examples show how 
TH z inputs can excite spin dynamics by a small angle and even manipulate the magnetization by a full 
coherent 180° switching, which builds the basis of a TH z magnonics concept. 

The emitted TH z waves from magnetic heterostructures not only show the potential as TH z 
emitters, but also help to characterize various materials beyond conventional ones, such as 
ferrimagnets, 2D materials, topological insulators, and Weyl semimetal. The electrical spin torque, 
involving moving charges, suffers from unavoidable Joule heat and corresponding power dissipation, 
as well as a short spin propagation length. These fundamental obstacles can be overcome by the 
magnon torque [10]. In the future, the magnon current driven by all-electronic on-chip TH z sources 
without a fs laser may enable novel spin memories operating at TH z clock with least energy dissipation. 
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Figure 2 .  (a) Spin and lattice structure of TmFeO3. The ferromagnetic moment (F), antiferromagnetic vector (G), wave vector of the probe 
pulse (kNIR), and external magnetic field (Bext) are shown. On TH z excitation, the magnetic potential W(φ) is abruptly modified. For a TH z 
near field of E =  10 MV / cm, the spins can be switched coherently by a single free space TH z pulse (red trajectory) at φ1 ~  φ0 + 90°. 
Reproduced from [7]. (b) CuMnAs device image. The multilevel memory signal as a function of the number of applied picosecond free 
space TH z pulses. Reproduced from [8]. 
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3  Center  f or  Spintr onics Resear ch Netw or k,  J apan 

 

S t a t us  

Antiferromagnets have multiple magnetic sublattices and the magnetic moments on the 
sublattices are compensated by each other. Negligible net magnetization, small magnetic 
susceptibility, and ultrafast magnetization dynamics are key characteristics of 
antiferromagnets [1] and are considered fruitful in the field of emerging antiferromagnetic 
spintronics [ 2 ]. Recent active studies have led to various interesting discoveries on 
interactions between the spin transport and the spin dynamics in antiferromagnets, which 
could make them alternative to the ferromagnets conventionally used in the present 
spintronics. Yet, there are still many open issues especially on the ultrafast magnetization 
dynamics in both physics and technological viewpoints which potentially fascinates the 
magnonics at the THz frequency leading to novel applications in information processing and 
tele-communications [3].  

In the context of antiferromagnetic spintronics, the antiferromagnetic magnetization 
dynamics has recently been revisited long after early studies caught on in the late 50s by 
Kittel and others. Since there are more than one magnetic sublattices, multiple dynamic 
modes are generally observed. The eigenfrequency of the uniform resonance mode with the 
wavenumber k = 0 can be written by 𝜔𝜔𝑟𝑟 ≈ γ�2𝐻𝐻𝐸𝐸𝐻𝐻𝐴𝐴 where γ is the gyromagnetic ratio, 𝐻𝐻𝐸𝐸 
is an exchange field, and 𝐻𝐻𝐴𝐴 is a uniaxial anisotropy field. Since 𝐻𝐻𝐸𝐸, typically ~  1000 Tesla, 
comes into play in the eigenfrequency, the antiferromagnetic resonance occurs at much 
higher frequency, i.e. ~ THz, than the ferromagnetic resonance, typically ~ GHz. For the 
simplest case of a collinear easy-axis antiferromagnet with two magnetic sublattices, the 
dynamics is degenerated by two modes with opposite circular polarizations as illustrated in 
Fig. 1, which is in contrast to the ferromagnetic cases where only the right-handed mode is 
allowed. This is also true for non-uniform modes, or magnons with k ≠ 0, which are relevant 
to the magnonics. Therefore, comparing to the ferromagnetic cases, the antiferromagnetic 
magnons possess the additional freedom, i.e. the polarization, which is advantageous for 
information processing [4]. 
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Figure 1 (a) the right-handed mode and (b) the left-handed mode of the antiferromagnetic 

dynamics 
 

In the early stage of the investigation, the state-of-art spectroscopy with a rather 
inefficient and weak far-infrared source was employed to investigate various 
antiferromagnets, such as NiO, CoO, MnO, Fe2O3, and Cr2O3. Although their high resonant 
frequencies have been experimentally confirmed, the experimental technique at the time was 
not sufficiently sensitive to capture more detailed dynamic properties such as relaxation 
mechanisms, e.g.  magnetic damping, and the spatially non-uniform modes. Today, 
researchers take various experimental approaches for investigating the antiferromagnetic 
dynamics using more advanced measurement techniques such as the ultrafast measurement 
techniques with laser optics and THz spectroscopies with much better sensitivity. Due to 
some difficulties still lying on the measurements for antiferromagnets, materialistic 
approaches using pseudo-antiferromagnets, such as synthetic antiferromagnets (SyAFs) (Fig. 
2a) and rare-earth transition-metal (RE-TM) ferrimagnets (Fig. 2b), rather than using genuine 
antiferromagnets (Fig. 2c) are also in progress.  

SyAFs typically consist of two ferromagnetic layers coupled antiferromagnetically 
via a non-magnetic insertion layer by the Ruderman– Kittel–K asuya– Yoshida (RKKY) or 
magnetic dipole interactions. Since the strength of the antiferromagnetic coupling interaction 
(typically ~ 1 Tesla) is far smaller than that of genuine antiferromagnets and is tunable by 
adjusting the insertion layer thickness, the resonant frequency can be in the GHz range where 
the conventional microwave technology is applicable for measurements. Therefore, SyAFs 
are a good and easy testbed for investigating antiferromagnetic dynamics. One can observe 
a clear cross-over between the ferromagnetic dynamics and antiferromagnetic dynamics, the 
so-called acoustic and optic modes. Those show strong non-reciprocity in their propagations 
[5]. The relaxation of these modes and the dynamic coupling of them have been investigated 
in detail [6]. The mode amplification due to their non-linear coupling was also reported [7]. 
However, one must be cautious if the knowledge can necessarily extrapolate to genuine 
antiferromagnets, since most of the cases treat SyAFs as the two macro-spins coupled 
antiferromagnetically, which completely differs from genuine antiferromagnets where spins 
are atomistically coupled. 

Another approach is taken by using RE-TM ferrimagnets having both magnetization 
and angular momentum compensation. RE is typically Gd or Tb and TM is Fe, Co, or their 
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alloy.  Due to the slightly different gyromagnetic ratios and their temperature dependences 
for the RE and TM, these ferrimagnetic alloys exhibit the magnetization and the angular 
momentum compensation at different temperatures. The intriguing magnetization dynamics 
emerges at the angular momentum compensation point but not at the magnetization 
compensation point which seems intuitively relevant to the antiferromagnetism. Because the 
magnetization dynamics are intrinsically governed by the angular momentum not the 
magnetic moment, they actually exhibit the antiferromagnetic dynamics at the angular 
momentum compensation point. The virtue of the RE-TM ferrimagnets is that one can easily 
access the antiferromagnetic dynamics while the magnetic susceptibility is non-zero, i.e. the 
static magnetizations are manipulable by external magnetic field. RE-TM ferrimagnets have 
been a testbed for the laser induced ultra-fast spin switching and ultra-fast DW dynamics [8].  

Genuine antiferromagnets are yet the most interesting materials in antiferromagnetic 
magnonics. Material choices are tremendous ranging from insulators to metals. However, the 
measurement methodology is always a problem with these materials due to invisible nature 
of magnetization as well as the quite high resonant frequency. Nickel oxide is one of the most 
investigated materials since the old age. Recent revisits have revealed the detail 
magnetization dynamics in both time domain and broad band frequency domain, mostly 
focused on the localized dynamics with k = 0, using advanced technologies [9, 10]. Detail 
explorations of the antiferromagnetic dynamics, such as relaxation dynamics, magnetic 
damping, and Q-factors have recently revisited and progressed in accordance with theoretical 
developments [11 ]. So far, these ultra-high frequency spectroscopies are limited to bulk 
materials due mostly to the sensitivity issues. Investigation for antiferromagnetic thin films 
which are most relevant to the spintronic applications has not yet resolved.  
 

 
Fig. 2 Schematic illustrations of  (a) synthetic antiferromagnet (SyAF),  (b) Rare-earth 

transition-metal (RE-TM) ferrimagnet, and (c) Genuine antiferromagnet , e.g. NiO. 

 

C urren t  a n d  f ut ure c h a l l en ges  

Frontiers of the antiferromagnetic magnonics are in various directions. While the most 
important and impactful part of the antiferromagnetic magnonics is the use of genuine 
antiferromagents with the ultra-high frequency, materialistic approaches are still alternative 
to harness the gaps of the antiferromagnetic measurement techniques. Those materialistic 
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approaches discussed in the previous section (Section 13) could of course find their own 
magnonic applications. However, for understanding the physics of magnons in genuine 
antiferromagnets, one should not rely too much on these approaches as it is still controversial 
whether those physics can be simply extrapolated.  
 In genuine antiferromagnets, comparing to the understanding of the resonant 
frequency (𝜔𝜔𝑟𝑟 ≈ γ�2𝐻𝐻𝐸𝐸𝐻𝐻𝐴𝐴), magnetic relaxation mechanisms in antiferromagnets, such as 
magnetic damping which is typically evaluated from the spectral linewidth of the resonance, 
have not been investigate or discussed as much as the ferromagnetic cases. In the context of 
antiferromagnetic spintronics, revisits to the magnetic damping in antiferromagnet and to 
both experimental and theoretical investigations have recently been active [10,11]. In both 
physics and engineering points of views, it is quite important to have a firm foundation of 
the relaxation mechanisms.  

Direct observation of the antiferromagnetic magnon modes (k ≠ 0) is one of the most 
challenging business. Short wavelength and high frequency magnon modes inherent to the 
antiferromagnetic dynamics make those measurements quite difficult. Alternatively, although 
it is indirect observation, we should pay attention to the recent progress in the magnon spin 
current transport experiments where the spin current is carried through the antiferromagnets 
in the form of magnons [12]. 

So far, most of the investigations have been made with bulk antiferromagnetic 
materials and not much have been investigated in thin films, their multilayers, and confined 
structures where more interesting physics and applications should be found. It is interesting 
to see how the magnons behave in the confined structures which should be quite important 
for magnonic circuitry applications.  

Finally, it is greatly desirable to push forward the development of antiferromagnetic 
measurement techniques. It is necessary to further increase the sensitivity of the THz 
spectroscopy to be able to measure the antiferromagnetic thin films. Magnetic imaging 
techniques using various probes such as magneto-optic effects and X-ray linear dichroism 
(XMLD) with photo electron emission microscopy (PEEM) are viable solutions. Very recent 
reports of the antiferromagnetic spin pumping effect could provide a unique perspective for 
electrical detection of antiferromagnetic dynamics [ 13 , 14 ]. Advancements of these 
measurement techniques are certainly the key to progress the antiferromagnetic magnonics.  
 
C o n c l ud in g rem a rk s  

Antiferromagnetic magnonics is one of the most interesting destinations in recently emerging 
antiferromagnetic spintronics. The THz frequency and the polarization degree of freedoms 
certainly fascinate the conventional magnonic technologies and potentially yield novel 
applications in information processing and tele-communications. However, actual rise of 
antiferromagnetic magnonics has yet to come as the methodological challenges impede some 
of the key experimental studies. Further efforts in advancing the measurement technologies 
for antiferromagnets will open up tremendous opportunities in antiferromagnetic magnonics. 
 
A c k n o w l ed gem en t s  
We thank to the Spintronics Research Network of Japan. 
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15. Spin-wave Nonreciprocity  
Pedro Landeros1,2, Rodolfo A. Gallardo1,2, and Giovanni 
Carlotti3,4 
(1) Departamento de Fí sica, Universidad Técnica Federico 
Santa Marí a, Avenida Españ a 1680, V alparaí so, Chile 
(2) Center for the Development of Nanoscience and Nanotechnology 
(CEDENNA), 917-0124 Santiago, Chile 
(3) Dipartimento di Fisica e Geologia, University of Perugia, V ia Pascoli, I-06123 
Perugia, Italy 
(4) CNR, Istituto Nanoscienze, V ia G Campi 213-A, I-41125 Modena, Italy 
 

Status 
Nonreciprocal propagation of electromagnetic, acoustic or spin waves is attracting more and more 
interest, due to the possible exploitation in devices for information and communication technology, 
such as isolators, circulators, phase shifter, etc. Nonreciprocity refers to the case where wave 
propagation changes, or it is even forbidden, upon inversion of the propagation direction and requires 
a breaking of the time-reversal symmetry [1]. This can be induced, for instance, by an applied stimulus, 
such as an external field with a specific bias direction, or by the presence of a substrate providing a 
suitable interaction. In the case of spin waves, nonreciprocity has been known to appear in different 
kinds of magnetic systems, leading to differences in either amplitude localization or frequency (the 
latter may also correspond to different velocity or phase, depending on the situation) for counter-
propagating waves. Then, further advances in the field of nonreciprocal magnetic materials is of great 
scientific importance, since it will provide the technological basis for the realization of nanoscale 
nonreciprocal devices operating at microwave frequencies, and at the same time it will help us to solve 
the riddle of the relevance of the different fundamental physical interactions in magnetism. 
The most well-known case of spin-wave nonreciprocity is the magnetostatic surface spin wave 
(Damon-Eshbach wave, DE), where the in-plane wavevector 𝐤𝐤 is always perpendicular to the in-plane 
magnetization 𝐌𝐌. In a semi-infinite medium, such surface wave has an amplitude that decays 
exponentially within the medium and can travel from left to right but not in the opposite direction, 
thanks to the symmetry breaking introduced by the presence of the surface and the dynamic 
magnetostatic field. In the case of a ferromagnetic film with finite thickness d, the same physical 
mechanism leads to a nonreciprocity in the amplitude for magnetostatic waves if 𝑘𝑘𝜋𝜋 ≫ 1 (that 
corresponds, for spin waves with wavelength in the range of hundreds of nanometers, to film 
thickness well above one micron). In fact, the dynamic magnetostatic field localizes mostly in the 
upper or lower surface, depending on the relative orientation between 𝐤𝐤 and 𝐌𝐌, as illustrated in Fig. 
1 (top panel). For 𝑘𝑘𝜋𝜋 ≈ 1 (i.e. film thickness in the tens of nanometers range), instead, the DE 
hybridizes with discrete dipole-exchange spin wave modes, and there is still a preferential localization 
at either the upper or the lower interface. In the ultrathin film limit (𝑘𝑘𝜋𝜋 ≪ 1), this behaviour 
disappears, since the magnetostatic field and the wave amplitude are practically uniform across the 
film thickness.  
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In addition to the above amplitude nonreciprocity, if there are different surface anisotropies 𝐾𝐾𝑠𝑠 at the 
two faces of a film [2], then it can be also observed a frequency nonreciprocity, i.e. a small frequency 
difference Δ𝑓𝑓 between two counter-propagating waves that is linear with Δ𝐾𝐾𝑠𝑠. An explicit formula 
for Δ𝑓𝑓 was derived by Gladii et al. (see Eq. 7 in [2]), showing that the frequency difference is linear 
with the wavenumber 𝑘𝑘 at small film thickness, and predicting a more complex behaviour for larger 
𝜋𝜋. Note that such a nonreciprocity in frequency implies a phase-difference for waves covering the 
same distance in opposite directions. 
Another source of both frequency and amplitude nonreciprocity in a magnetic film, which has been 
widely investigated in the last years, is the bulk or interfacial Dzyaloshinskii-Moriya interaction (DMI) 
(see Fig. 1, central and bottom panels). Experimental evidence, based on Brillouin light scattering (BLS) 
measurements, of such a frequency difference due to DMI between counter-propagating spin waves 
was first reported by Di et al. [3]. Shortly after, using the same technique in ferromagnetic/ heavy 
metal interfaces (such as, for instance, Co/ Pt), several groups have measured a noticeable frequency 
asymmetry in the spin-wave dispersion, that is proportional to both the wavenumber 𝑘𝑘 and the 
strength of the DMI constant 𝐷𝐷, in agreement with the expression [4]: 

Δ𝑓𝑓 = 2𝛾𝛾
𝜋𝜋𝑀𝑀𝑠𝑠

𝐷𝐷𝑘𝑘 sin𝜙𝜙𝑘𝑘 ,  

where 𝜙𝜙𝑘𝑘 is the angle between 𝐤𝐤 and 𝐌𝐌 and γ the gyromagnetic ratio. These experiments allow to 
estimate 𝐷𝐷, whose measured values were collected in tables 5.2-3 of Ref. [4], which also contain, for 
the sake of comparison, measurements of 𝐷𝐷 obtained with other techniques. It is now well established 

 

 

  

                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Top panel: nonreciprocal spin wave propagation in the Damon-Eshbach geometry (𝒌𝒌 ⊥ 𝑴𝑴) in a film with thickness d comparable 
to the spin-wave wavelength. It is seen that the wave amplitude is maximum at the bottom (top) interface for propagation along +𝑥𝑥 (−𝑥𝑥). 
Central and bottom panels: nonreciprocal spin wave propagation in an ultrathin ferromagnetic film (FM), whose thickness is much lower 
than the spin-wave wavelength, in presence of a heavy-metal substrate (H M) that induces DMI. Spin waves propagating along +𝑥𝑥 and 
−𝑥𝑥 have opposite chirality and therefore different frequencies.  
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that the strength of the DMI is larger for interfacial systems than for chiral lattice ferromagnets with 
bulk DMI and that its strength decreases with the thickness of the ferromagnetic layer, while slightly 
increases with the thickness of the heavy-metal layer. Therefore, besides the enlargement of damping 
produced by the heavy-metal, a drawback of interfacial DMI systems is that ferromagnetic layers with 
very low thickness 𝜋𝜋 are needed (typically in the range between 0.5 and 5 nm) to generate a noticeable 
nonreciprocity, since 𝐷𝐷~1/𝜋𝜋. For bulk DMI systems, such as the chiral lattice ferromagnet with 

tetragonal symmetry Cu2OSeO3, Δ𝑓𝑓 = 2𝛾𝛾
𝜋𝜋𝑀𝑀𝑠𝑠

𝐷𝐷𝑘𝑘 cos𝜙𝜙𝑘𝑘, so the effect is maximum when it is measured 

for the backward-volume wave configuration (𝜙𝜙𝑘𝑘 = 0) [5]. If the magnetization is tipped out an angle 
𝛼𝛼 from the plane, a factor cos𝛼𝛼 enters in Δ𝑓𝑓 for both bulk and interface DMI systems [4].   

A third case of spin-wave nonreciprocity, both in amplitude and in frequency, occurs if one considers 
two oppositely magnetized ferromagnetic layers, separated by a non-magnetic spacer [6-7], shown in 
Fig.2. In this case, the frequency difference is due to the dynamic volumetric and surface dipolar 
interactions. For a particular system with two identical layers of thickness 𝜋𝜋, separated by a non-
magnetic layer of thickness 𝑠𝑠, the frequency nonreciprocity is given by Eq. 8 in Ref. [6]: 

 Δ𝑓𝑓 = 2𝛾𝛾
𝜋𝜋
𝜇𝜇0𝑀𝑀𝑠𝑠

𝑒𝑒−𝑘𝑘(𝑑𝑑+𝑠𝑠)

𝑘𝑘𝑘𝑘
sinh2 �𝑘𝑘𝑘𝑘

2
� .  

This frequency difference presents a non-monotonic behaviour with 𝑘𝑘 and 𝜋𝜋, with a well-defined 
maximum that is obtained for a value of 𝑘𝑘 such that: tanh(𝑘𝑘𝜋𝜋/2) = 𝑘𝑘𝜋𝜋/[1 + 𝑘𝑘(𝜋𝜋 + 𝑠𝑠)]. Then, given 
𝜋𝜋 and 𝑠𝑠, the wavenumber 𝑘𝑘 at which Δ𝑓𝑓 is maximum can be easily estimated and one can easily verify 
that the effect is sizeable in a very wide range of 𝑘𝑘𝜋𝜋, i.e. for film thickness ranging from a few 
nanometers to several microns.  Recent BLS measurements in a CoFeB(5.7nm)/ Ir(0.6nm)/ NiFe(6.7nm) 
bilayer give Δ𝑓𝑓 about 1-2 GH z [6], in agreement with theory. These values are comparable with typical 
ones for interfacial DMI systems. Nonetheless, from the above formula for Δ𝑓𝑓, even larger values are 
found if the thickness 𝜋𝜋 is increased, as in the recent study of CoFeB(45nm)/ Ru(0.6nm)/ CoFeB(45nm). 
[7] Remarkably, the frequency nonreciprocity can be turned off by changing the relative magnetic 
orientation from antiparallel to parallel alignment, i.e. just by simple switching, without any rotation 
of the field, as it is required in the case of DMI systems.  Moreover, when the frequency of excitation 
is lower than 𝑓𝑓(𝑘𝑘 = 0), but larger than the low-lying frequency of the dispersion curve (Fig. 2, central 
panel), spin waves can travel only in one direction, as a spin current diode, leading to the phenomenon 
of resilience to back reflection [7], making unidirectional magnon propagation very robust under 
imperfections and defects (Fig. 2, bottom panel).  
Nonreciprocity from dipolar coupling also appears in films with graded magnetization along the 
thickness [8] and curved systems [9]. Spin-polarized electric currents, as well as the flexoelectric 
interaction, also induce a frequency shift of two counterpropagating spin waves (References can be 
found in [4]). 
Another interesting behaviour arises when spin waves propagate in a system with a periodic 
Dzyaloshinskii-Moriya interaction [10], which may be obtained by patterning an array of Pt wires on 
top of an ultrathin ferromagnetic film. In such film, the DMI is activated only underneath the heavy-
metal wires, where nonreciprocal spin waves are expected. It has been shown from calculations and 
simulations that periodic DMI causes indirect magnonic gaps, flat bands and a complex temporal 
evolution of the spin waves [10]. Such a system with periodic DMI can be regarded as a chiral 
magnonic crystal, where topological magnons should be observed.   
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Current and Future Challenges 
Although the frequency nonreciprocity of the spin waves could in principle lead to the design and the 
fabrication of new kinds of devices (isolators, circulators, phase shifters, etc), this task requires proper 
material properties and the ability to manipulate spin waves. In our opinion, among the different 
systems leading to spin-wave nonreciprocity, the oppositely magnetized bilayer, or synthetic 
antiferromagnet, deserves special attention and is presently the best candidate to realize real devices. 
First, frequency nonreciprocity is easily reconfigurable just by switching the bilayer magnetization 
from parallel to antiparallel without any bias field rotation, as occurs in the case of DMI systems where 
reconfigurability requires an in-plane or out-of-plane magnetization rotation. Second, there is no need 
of ultrathin layers and expensive heavy metals that are necessary to achieve a large DMI at the 
interface. Note also that the heavy metal in interfacial DMI systems increases the magnetic damping, 
which imposes a problem for magnonic applications. Moreover, the predicted frequency 
nonreciprocity in the synthetic antiferromagnet [6,7] can be even larger than the usual values 
measured for interfacial DMI systems, paving the way to possible applications.  

    

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 .  Top panel: sketch of the dynamic stray fields induced by the surface and volumetric dynamic magnetic charges in a ferromagnetic 
bilayer with antiparallel magnetizations, similar to that studied in Ref. [6], where spin waves propagate in the DE configuration. The large 
arrows depict the orientation of the dynamic magnetization, while the static magnetizations point along the ±𝑧𝑧 directions. The 
distributions of dynamic magnetizations and stray fields (curved arrows) are shown for both 𝑘𝑘 > 0 and 𝑘𝑘 < 0.  Center panel: dispersion 
curves for spin waves propagating in a magnetic bilayer with antiparallel magnetization similar to that studied in Ref. [7]. It can be seen 
that, while the dispersion curve is symmetric around the 𝑘𝑘 = 0 vertical axis for the magnetostatic backward configuration (𝜙𝜙𝑘𝑘 = 0°), in 
the DE configuration (𝜙𝜙𝑘𝑘 = 90°) the curves account for a marked nonreciprocity. In particular, in the frequency range (shaded area) 
between 𝑓𝑓0 and 𝑓𝑓min, only waves with 𝑘𝑘 > 0 can exist in the structure. Bottom panel: the above unidirectional propagation is illustrated 
by three snapshots (top view) of the simulation relative to different times for a spin-wave packet excited in the DE configuration, before 
and after reaching a 200-nm wide non-magnetic circular defect: no back-reflection is observed, since the counter-propagation is not 
allowed by the dispersion curve. Scale bars: 500 nm. The latter panel is reprinted with permission from Ref. [7].  
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T able I . Group of nonreciprocal magnonic systems discussed in this paper and their key physical features.  
 

M agnonic  
Sy stem 

Source of 
nonrecip rocity  

L imit#  Amp litude 
nonrecip rocity  

Freq uency  
nonrecip rocity  

Refs. 

Thick film Dipolar coupling 𝑘𝑘𝜋𝜋 ≫ 1 Yes No [1] 
Thin film with 
surface 
anisotropies 

Surface/ interface 
anisotropy 

𝑘𝑘𝜋𝜋 ≲ 1 
 

Yes Yes 
 

[2] 

Ultrathin 
film/ heavy metal  

Interfacial 
Dzyaloshinskii-
Moriya coupling 

𝑘𝑘𝜋𝜋 ≪ 1 Yes (* ) Yes [3-4] 

Non-
centrosymmetric 
chiral magnet  

Bulk 
Dzyaloshinskii-
Moriya coupling 

(* * ) Yes (* ) Yes [4,5] 

AFM Bilayer Dipolar coupling 𝑘𝑘𝜋𝜋 ≤ 1 
𝑘𝑘𝜋𝜋 ≥  1 

Yes Yes [6-7] 

Graded 
magnetization film  

Dipolar coupling 𝑘𝑘𝜋𝜋 ≈ 1 
 

Yes Yes [8] 

Curved surfaces Dipolar coupling 𝑘𝑘𝑘𝑘 ≲ 1 Yes Yes [9] 

(# ) Referring to spin waves detected by BLS, where the 𝑘𝑘 value is of the order of 10-20 rad/ µm, the limit 𝑘𝑘𝜋𝜋 ≪ 1 (𝑘𝑘𝜋𝜋 < 1) corresponds to 𝜋𝜋 
in the range of a few (tens of) nanometers. 
(* ) In this case the amplitude nonreciprocity has nothing to do with the localization at the top or bottom film surface, typical of thick films, 
but with the DMI-induced lifting of energy degeneration for ±𝑘𝑘.  
(* * ) In bulk DMI systems, nonreciprocal propagation has been observed in systems with 𝑘𝑘𝜋𝜋 ≥ 1, and 𝑘𝑘𝜋𝜋 ≫ 1, so the nonreciprocal behaviour 
is in principle not limited. 

Concluding Remarks 
The phenomenon of frequency nonreciprocity provides additional features for the manipulation and 
control of the spin-wave spectrum. Frequency nonreciprocity can be easily reconfigurable with an 
external field, depending on the nonreciprocal magnonic system. Among them, the magnetic bilayer 
seems to be one of the best candidates for the realization of nonreciprocal magnonic devices, since is 
easily reconfigurable, it provides a large frequency nonreciprocity without ultrathin layers, and it only 
requires ordinary magnetic materials that are fully compatible with CMOS technologies.  
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16. Power Flow and Caustics in Thin Magnetic Materials 

Joo-V on Kim1, Robert L. Stamps2, and Robert E Camley3 

1. Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, France 
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Status 

Energy flows radially outward from an oscillating point source placed in water, i.e. we see circular 
ripples whose phase and group velocities point in the same direction.  The situation is significantly 
different for anisotropic elastic crystals.  In an anisotropic solid, the phase and group velocities do not 
point in the same direction.   As a result, even though the phase velocities from the oscillating point 
source may go out equally in all directions, the energy propagation may be narrowly focused into 
beams in only a small number of directions.  H ighly focused beams are known as caustics (or burning 
rays).  Studies of phonon focusing, both experimental and theoretical [1], began in the 1980s and 
continue to this day as they give information on the elastic properties of materials and on heat 
transport in solids. 

It was not until around 2005 that magnon focusing began to be studied and understood [2,3].  This 
25-year delay was due, in part, to there being no simple experimental methods to measure the effect.  
This changed with the emergence of microfocused Brillouin Light Scattering (BLS).  Interestingly, 
magnon focusing, displays important features that 
phonon systems do not.  Focusing depends on the 
existence of some kind of anisotropy, and the 
inherent anisotropy in elastic systems is basically 
fixed by the crystal structure.  In contrast, magnon 
focusing has multiple sources for inducing 
anisotropic behaviour.  This includes, for example, 
magnetocrystalline anisotropy, dipolar anisotropy, 
and anisotropic exchange interactions. Most 
significantly, the anisotropy can be induced by 
tunable factors such as the magnitude and direction 
of an applied magnetic field or spin current.   

We illustrate the origin of focusing in Figure 1.  H ere 
we plot isofrequency curves in 𝑘𝑘-space for a thin 
Permalloy film.  For example, the phase velocity in 
the 𝑥𝑥 direction, can be calculated from the 
dispersion relation by  𝑣𝑣𝑝𝑝,𝑥𝑥 = 𝜔𝜔 𝑘𝑘𝑥𝑥⁄  where 𝜔𝜔 is the 
angular frequency and 𝑘𝑘𝑥𝑥  is the wavevector in the 𝑥𝑥 
direction.  If one is interested in power flow, 
however, the situation is quite different.  The 
transport of energy is instead given by the group 
velocity, i.e. 𝒗𝒗𝒈𝒈 = 𝛻𝛻𝑘𝑘𝜔𝜔.  This is reminiscent of the 
equation relating force, 𝐹𝐹, and potential energy, 𝑈𝑈, 
in mechanics,  𝑭𝑭 = −𝛻𝛻𝑈𝑈, and one recalls that the 
force is in the direction perpendicular to curves of 
constant potential energy.  Thus in the case of 

 

    

 

 

 

 

 

 

Figure 1.  a) Example of isofrequency curves and focusing 
for a 50 nm Permalloy film with an applied field of 1 kOe.  
The numbers indicate the frequency in GH z.  The blue 
arrows indicate directions of strong focusing.  Small black 
arrows indicate regions with no focusing.  (b) 
Experimental observation of focused beams in YIG from a 
small opening on left side from Ref [3 ]  
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energy propagation in anisotropic materials, the direction of energy flow is the direction perpendicular 
to curves of constant frequency.  As is illustrated in Fig 1a, this means that regions with high curvature 
result in the energy spread out over many directions.  In contrast, flat regions in the isofrequency 
curves lead to the energy being sent in one direction only.   In principle, caustics occur when the 
curvature is exactly zero.  As indicated by the large blue arrows, showing the direction of large energy 
flow, different frequencies are focused into different directions.    

An experimental demonstration of focusing in a thin YIG film which is 7.7 microns thick is shown in 
Fig. 1b.  The source for the waves is a small channel on the left side.  The energy flow is observed using 
microfocus BLS.  It is immediately obvious that the energy leaving the channel does not display a 
diffractive type behaviour as expected for an opening that is not small compared to the wavelength.  
Instead, one sees two narrow beams leaving the source, in agreement with what one expects from an 
analysis of the group velocities.  It also interesting to note the reflection properties of these beams 
when they hit the edge of the sample.   For waves in isotropic media, one expects the incident angle 
to be the reflected angle.  Whereas the position where the wave hits the boundary acts like a new 
source as one expects, the beams produced propagate in one of the preferred directions, rather than 
producing a reflected wave front. 

Spin systems have recently been 
investigated with the idea that spin waves 
could encode and process information 
with significant reductions in energy 
consumption when compared to 
electronic circuits.  The fact that spin 
waves of different frequencies will be sent 
in different directions from a point source 
offers multiple practical advantages.  For 
example, one can: 1) envision a magnonic 
de-multiplexer [4,5] where multiple 
frequencies enter an antenna and are 
automatically sent in different directions 
according to their individual frequencies; 
2) create narrow spin wave beams without 
the need for physical waveguides, and 3) 
tune the direction of a spin wave beam by 
changing the magnitude or direction of a 
static magnetic field or electric field [6], 
thereby allowing logic devices to be 
developed.  

Up to this point, we have discussed the 
focusing of spin waves in ferromagnetic 
films with thicknesses ranging from 10 nm 
to a few microns.  For these materials, 
internal dipolar fields provide the anisotropy required to cause focusing and caustics.  H owever, for 
ultrathin ferromagnetic films only 1 – 2 nm in thickness, the anisotropy caused by dipolar effects is 
minimal and the constant frequency curves are nearly circular.  Interestingly, there are several 
methods to produce and control caustic beams in this limit.  One example occurs in thin ferromagnetic 
films which lie on top of a substrate that induces an interfacial Dzyaloshinskii-Moriya interaction 
(DMI).  In this case, the combination of the dipolar effects with the DMI can not only produce caustic 
beams, but create nonreciprocal caustic beams [7] where beam in the 𝑥𝑥 direction does not have an 
equivalent beam pointing in the – 𝑥𝑥 direction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.   Isofrequency curves and the resulting focusing pattern for a 
thin ferromagnetic film influenced by interfacial DMI.  There is a 
magnetic field (vertically) parallel to the xy plane. The figures in the 
top panel show the isofrequency curves and the bottom sets of panels 
present the focusing patterns calculated analytically and numerically. 
From Ref [7]. 
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An example of nonreciprocal caustics is shown in Fig. 2 for a 2-nm thick film in an external field of μoH o 
=  0.8 T.  The top panels show isofrequency curves for two different frequencies.  The middle panels 
show the focusing pattern calculated analytically, and the bottom panels present micromagnetic 
simulations illustrating the spin wave energy as a function of position, calculated from the time 
average of an oscillating component of the magnetization,𝑚𝑚𝑧𝑧

2(𝑟𝑟, 𝑡𝑡) , over two periods following 150 
periods of oscillation.  The results are dramatic.  For example, at 4.2 GH z the isofrequency curve has a 
very flat region on the left side and a rounded region on the right side.  This leads to a single beam 
propagating in the – 𝑥𝑥 direction. 

A second method to create and modify caustics in ultrathin films has recently been investigated [8].  
All of the previous examples dealt with wavelengths that are large compared to a lattice constant.  
When one looks as high wavevector spin waves, the lattice structure itself can create anisotropic 
isofrequency curves, with the resulting focusing of energy flows.  

Current and Future Challenges 

Large scale applications for ferromagnetic spin waves in magnonic computing may require creation of 
multiple beams and methods to tune the focusing on a small, local scale.  It will be necessary to 
investigate a number of options, including tuning the focusing by local magnetic fields and/ or by 
polarized spin currents. 

Recent advances in microscopy techniques may allow focusing effects to be probed on extremely short 
length scales. This might require artificial point sources such as anti-dots [9].  Progress in spin wave 
imaging with nitrogen vacancy (NV )-center magnetometry allows caustics to be imaged with high 
spatial resolution [10], which opens up new avenues of exploration for short-wavelength spin waves 
in ultrathin films. Moreover, such detection techniques could be implemented with a spatial array of 
sensors, which could pave the way toward information processing with caustics. 

Focused beams can also occur for systems with fast spin dynamics.  For example, spin waves in 
antiferromagnets coupled to electromagnetic fields are polariton excitations with frequencies in the 
TH z range. Dispersion relations for these waves can be highly anisotropic and display fascinating 
features such as the Goos-H ä nchen effect and negative refraction. Formation of tunable caustics, a 
three-dimensional analogy to the focusing described here, is predicted for beams transmitted through 
thin antiferro- and ferri-magnetic films. Moreover, some multiferroics with magneto-electric coupling 
display exotic spin orderings and chiral interactions that lead to highly anisotropic electromagnetic 
energy flows at short wavelengths. These materials may offer new possibilities for electric and 
magnetic field control of focusing. 

Concluding Remarks 
Because, in part, of the potential applications, the field of focused power flows outlined above is 
continuing to expand and appear in a variety of different areas.  In addition, focused beams may allow 
us to learn about issues such as tunable heat transport or tunable transport of angular momentum.  
Given the range of applications and fundamental issues, the field of focused power flows in magnetic 
materials is likely to flourish. 
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17. Voltage-Controlled Magnetic Anisotropy 
induced spin waves 
Bivas Rana1 and YoshiChika Otani1,2 

1 RIKEN, Japan 
2 Institute of Solid State Physics (ISSP), University of Tokyo, Japan 

Status 
Apart from fundamental interests, the magnonics also aims to find out efficient ways to excite and 
manipulate spin waves (SWs) for the development of future magnonic devices, which will eventually 
surpass the operational speed, efficiency, functionality, integration density of current semiconductor-
based electronic devices. So far, the SWs have been excited by conventional charge current, light, and 
thermally induced methods, such as radio-frequency current-induced Oersted fields, spin-transfer-
torques, femtosecond pulsed laser beams, and thermal energy. Despite having some advantages, all 
these methods also have several disadvantages such as high energy dissipation in the form of Joule 
heating, instability of the miniaturized electrical junctions due to high current density, the difficulty of 
integration in nanoscale devices, excitation of coherent SWs, i.e., excitation of magnons in the ballistic 
regime and so on. 

As an alternative, the excitation of SWs by electric-field is highly desirable. Importantly, the electronic 
spins localized in partially filled orbitals govern the magnetic properties of ordered magnetic materials. 
Although external electric-field cannot directly couple with those localized spins, it can interact 
indirectly with the spins via several means. In ferromagnetic semiconductors, electric-field modulation 
of carrier density controls the spins. In multiferroic materials, the strong coupling between magnetic 
and electric polarization enables us to control the spins by electric-field. In piezoelectric materials, the 
electric-field induced strain can deform an adjacent magnetostrictive ferromagnetic film (e.g., Ni), 
where the lattice deformation couples with the spins through spin-orbit coupling (SOC), known as 
magnetostriction. In the quest of a new electric-field induced method, the voltage-controlled magnetic 
anisotropy (VCMA) has emerged as a novel means to control the spins by electric-field. The 
perpendicular magnetic anisotropy (PMA) occurs at the interfaces between ultrathin 3d transition 
ferromagnetic (FM) metals (e.g., Fe, CoFeB) and nonmagnetic insulators (e.g., MgO, Al2O3) due to the 
hybridization of out-of-plane 3d orbitals of FMs and out-of-plane 2p orbitals of O (figure 1(a)). The 
electric field applied at the FM/oxide interfaces changes the electronic population significantly in the 
out-of-plane 3d orbitals of FMs compared with in-plane orbitals (figure 1(b)), eventually modifying the 
interfacial orbital hybridization and controls the interfacial spins through relativistic SOC of FMs [1].  

As VCMA relies upon the modification of electronic population in 3d orbitals of FM, it is suitable for 
microwave applications. The excitation of ferromagnetic resonance (FMR) [2] and SWs [3,4] in the 
gigahertz regime have been demonstrated with ultralow power consumption, which can be at least two 
orders of magnitude lower than the current induced spin-transfer-torques excitation. The coherent 
propagating SWs can be excited by placing a metal gate electrode on top of the oxide layer and applying 
RF voltage across the gate electrode and FM (figure 2(a)). The RF electric field at the FM/oxide 
interface modulates interfacial PMA and excites SWs at the resonance condition. The excited SW 
amplitude is linearly proportional to the RF voltage [3]. The maximum wavenumber of excited SWs is 
given by the inverse of the lateral width of the gate electrode. One of the key advantages is that the 
VCMA excitation is local, and the excitation area is right underneath the gate electrode. This enables 
to utilize VCMA in nanoscale devices with high integration density. Although VCMA cannot excite 
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coherent SWs when the magnetization is aligned either in-plane or perpendicular to the film because of 
zero VCMA torque, these particular magnetization configurations are suitable for nonlinear parametric 
excitation of SWs. In this case, the time-varying VCMA couples to the out-of-plane component of 
dynamic magnetization with elliptical trajectory (figure 2(b)) [4]. Therefore, SW frequency is half of 
the frequency of VCMA (figure 2(c)) [5]. The critical advantage of parametric excitation is that it can 
efficiently excite and selectively amplify even shorter wavelength SWs. Unlike linear excitation, the 
parametric excitation requires a threshold power which depends upon excitation frequency, SW 
wavevector, the width of waveguide and gate electrode.  

Apart from excitation, the modulation of SW properties (e.g. frequency) by VCMA have also been 
demonstrated [6]. The VCMA can also be utilized for the formation of reconfigurable nanochannels for 
SW propagation [7]. When a number of parallel nanochannels are formed on an ultrathin ferromagnetic 
film by placing parallel gate electrodes and applying gate voltage, the parallel nanochannels can be used 
as 1D magnonic crystals (figure 2(d)). In absence of nanochannels, i.e., gate voltage, only a single SW 
mode with trivial dispersion is observed. Choudhury et al. have experimentally demonstrated the 
presence of two SW modes with nontrivial dispersion curves separated by a tunable band gap in VCMA 
induced parallel nanochannels (figure 2(e)) [8]. The higher (mode 2) and lower (mode 1) frequency 
modes are confined within channel 2 and channel 1, respectively (figures 2(f-g)).  

 

 
Current and Future Challenges 
We have to sort out many challenges to fully utilize the advantages of VCMA in magnonic devices [9]. 
Although many experimental reports demonstrate the excitation and characterization of VCMA induced 
FMR [2,10], only a couple of experimental reports, on the other hand, show the VCMA induced 
propagating SWs [3,5], manipulation of SW properties by VCMA [6,8] and control of damping constant 
by electric field [11]. Therefore, more experimental studies are necessary for understanding the 
properties and characters of VCMA excited linear and nonlinear SWs.  

So far, it is observed that most of the applied microwave power is reflected back from the devices while 
exciting FMR, SWs by VCMA because of impedance mismatch [2]. In principle, impedance mismatch 
can be minimized by reducing the thickness of the oxide layer. However, it may significantly increase 
the junction current leading to many spurious effects such as spin-transfer-torque induced SWs, Joule 
heating, etc. Hence, the optimization of junction impedance to minimize electrical losses and impedance 
mismatch with an optimum value of the VCMA coefficient is a real technical challenge. 

F e r r o m a g n e t
( F M )

H e a v y  m e t a l

O x i d e

I n t e r f a c e

I n t e r f a c e

G a t e  e l e c t r o d e

VG

( a ) ( b )

Figure 1.  (a) Schematic diagram shows the origin of perpendicular magnetic anisotropy at FM/Oxide 
interface due to hybridization of out-of-plane 2p orbitals of O and out-of-plane 3d orbitals of FM. (b) The 
schematic illustration shows the mechanism of VCMA. When DC gate voltage VG is applied, the charge 
density at the out-of-plane 3d orbitals of FM is changed with respect to the in-plane orbitals. This affects 
interfacial orbital hybridization and changes PMA through SOC of FM. 
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The VCMA coefficient for FM/oxide heterostructures can be up to 100 fJ V−1 m−1. One of the major 
challenges is to enhance the VCMA coefficient at least up to pJ V−1 m−1 to fulfill the minimum criteria 
for the potential application of VCMA in practical devices. This can be achieved by engineering 
FM/oxide interface. It has been observed that doping of heavy metals or insertion of an ultrathin heavy 
metallic layer such as Ta, Pt, W, Ir at FM/oxide interface can significantly enhance the value of the 
VCMA coefficient. The enhancement of the VCMA coefficient is also possible even by inserting the 
ultrathin layer of relatively lighter materials such as Hf, Mg. The physical reason behind this is the 
modification of orbital hybridization at FM/oxide interface and suppression of surface oxidization of 
the FM layer. However, the VCMA coefficient cannot be increased more than few hundreds of 
fJ V−1 m−1 by these methods. Alternatively, the VCMA coefficient can be further increased up to few 
pJ V−1 m−1 by utilizing voltage-controlled redox reactions, charge trapping, electromigration. As these 
methods rely upon the slow movement of ions, require thermal activation process and have very slow 
response time, they cannot be applied in microwave devices. However, they can be used for other 
purposes such as modulation of SW properties, formation of nanochannels and so on. 

As VCMA is an interfacial effect, it is limited to ultrathin FM films. Growing high-quality thin films 
with a smooth and defect-free clean interface is therefore highly desirable. Although molecular beam 
epitaxy can grow high-quality ultrathin films, it is inapplicable for large scale production, i.e., for 
commercial purposes. Consequently, it is a real challenge to produce high quality thin films by DC or 
RF sputtering. 

The overall damping constant of ultrathin FM films is generally higher than thicker films, which limits 
the SW propagation length down to micrometer distance. The SW amplifiers are essential to increase 
the propagation length by compensating the energy losses of SWs during propagation. Conventionally, 
charge current based spin-orbit-torque and parametric pumping methods are used to amplify SWs 
effectively. Alternatively, VCMA torque could also replace the charge current-induced torque to build 
up an energy-efficient amplifier. However, experimental demonstrations are lacking. Therefore, in 
addition to increasing the VCMA coefficient, the searching for FM materials with ultralow damping 
parameter is also getting equal importance. One may think about ferrimagnetic insulators and Heusler 
alloys as the possible alternatives; unfortunately, VCMA phenomena have not been observed yet in 
these materials.  

Another future challenge will be the efficient detection of VCMA induced SWs or magnons in ultrathin 
FM films by electrical means. Recently, the local, quantitative, and phase-sensitive detection of the 
SWs have also been demonstrated by single nitrogen-vacancy (NV) centers in diamond. But, this 
method can increase the complexity of device fabrication as FM films need to be deposited directly on 
a diamond containing NV centers. Alternatively, magnetic tunnel junctions (MTJs) can be used as an 
efficient way to detect SWs in ultrathin films. However, experimental demonstrations are still lacking. 
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Ultimately, the interaction of VCMA induced SWs with various types of spin configurations such as 
magnetic skyrmions, and domain walls need to be studied experimentally for the development of 
magnonic devices. For instance, the driving skyrmions, domain walls by VCMA induced SWs can be 
considered. Moreover, properties of the induced SWs in VCMA controlled reconfigurable 
nanochannels, 2D magnonic crystals, and magnonic logic gates need to be studied experimentally. 
Recently, interfacial PMA has also been examined in ultrathin FM films hybridized with 2D materials, 
showing a significant increment of interfacial PMA in these hybrid structures. Therefore, the study of 
VCMA phenomena and VCMA induced SWs may also pave the way for developing various types of 
voltage-controlled 2D magnonic devices. Consequently new ideas such as inducing in-plane magnetic 
anisotropy at FM/oxide interface by controlled magnetic annealing and electric field control of induced 
anisotropy [12] and inverse VCMA effect for detecting SWs are also getting importance due to possible 
technological advantages. 

Concluding Remarks 
VCMA has emerged as a potential technique to excite and manipulate SWs in ultrathin FM films for 
the development of all-electric-field controlled low power magnonic devices. However, the VCMA 
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Figure 2. (a) Schematic illustration shows the excitation of coherent propagating SWs by VCMA. (b) 
Schematic diagram illustrates the magnetization precession in an elliptic trajectory. The out-of-plane 
component (mz) of magnetization precession oscillates at a frequency twise than the in-plane components (mx, 
my). (c) Power spectral density (PSD) of the microwave signal emitted by a magnetic tunnel junction (MTJ) 
under VCMA induced parametric excitation. Curves are vertically offset for clarity and are listed in order of 
drive frequency. The figure is reproduced from ref. [5]. (d) Periodic nature of electric field applied at 
CoFeB/MgO interface through periodically arranged metal gate electrodes, giving rise to two periodic 
regions: region 1 (outside of top electrodes) and region 2 (underneath the top electrodes). (e) Experimentally 
measured frequency versus wavevector dispersion at VG = - 4 V under the application of 200 mT bias 
magnetic field. Symbols represent measured SW frequencies, while blue lines denote SW intensities as 
calculated by plane wave method (PWM). The corresponding color map is given inside. The dashed vertical 
line indicates the position of anticrossing, and the corresponding magnonic band gap is shown by the shaded 
region. (f-g) Calculated spatial profiles of the SW modes for wavevector k = 7.1 × 106 rad/m under the 
application of VG = - 4 V at µ0H = 200 mT. Low frequency mode, i.e., mode 1 is confined in region 1 and 
high frequency mode, i.e., mode 2 is confined in region 2.  
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operated magnonic devices are still in its infant stage of development. Indeed, we have to 
experimentally demonstrate all the theoretical proposals, such as VCMA induced parametric 
amplification of SWs, dynamic interaction of SWs propagating through voltage-controlled 
nanochannels [7], voltage-controlled logic gates, 2D magnonic crystals [13], SW caustics. Above all, it 
is indispensable to improve the VCMA coefficient by the interface and material engineering.  
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18. Indirect Interactions between Magnets  
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Status 
The exchange interactions between electron spins in condensed matter generates a rich variety of 
magnetic order. It becomes exponentially small at larger than atomic distances, so different magnets 
interact by exchange only when in direct contact. The weaker dipole interaction generates forces 
between macroscopic magnets that decay algebraically with distance. Magnets can also interact 
indirectly through a non-magnetic medium. Mobile electrons in metals mediate an oscillatory RKKY 
non-local exchange interaction over nanometers. The coupling by non-equilibrium spin currents 
through metal spacers can reach over micrometers. The exchange of spin waves synchronizes 
magnetic oscillators. Microwave photons in high-quality cavities are supremely suited to communicate 
spin information because of their coherence over large distances and the strong interaction of spin 
ensembles such as ferromagnets with the AC magnetic fields [1,2]. Other waveforms such as magnon 
and phonons also generate indirect interactions between small magnets over relative large distances 
[3,4]. In this roadmap article, we outline the interest of letting two or more ferromagnets interact in 
cavities or wave-guides for different mediating waveforms but with emphasis on microwaves. 
 
In free space, magnets interact by the magneto-dipolar interaction, which is very weak for typical sub-
nm magnetic spheres at cm distances. H owever, they may couple strongly over large distances by 
exchanging virtual photons in cavity modes. Interpreting the collective Kittel mode of a single magnet 
as a magnonic hydrogen atom, an interacting pair forms a magnonic hydrogen molecule with 
hybridized orbitals of even and odd symmetry [5]. When probed by an even cavity mode, microwave 
spectroscopy detects the first “bright” mode, but not the second “dark” one [1]. The (sub-radiant) 
magnons in the dark mode do not suffer from radiative damping and have longer decay time, which 
might be useful for quantum information storage [1]. The indirect interaction between magnets 
provides a large playground since the cavity as well as position, size and type of the magnets is 
arbitrary. Adding non-magnetic, but optically active structures and materials, is another important 
option. The task to systemize various configurations, to find new hybridizing mechanisms, and search 
for applications is a challenge that has only just begun.  
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Current and Future Challenges 
 
C ustomiz ing cavities:  Cavities come in different shapes and types. H ere we focus on microwave 
cavities formed by a closed box of high-quality metal that confines photons without significant losses. 
Small orifices do not disturb the system significantly and act as non-invasive input and output 
terminals that allow measuring the properties of the hybrid system in terms of the microwave 
transmission and reflection coefficients. When magnetization damping is small as well, the cavity + 
load system approximately conserves energy and the system H amiltonian is (almost) H ermitian. The 
magnon-photon coupling is then coherent, and photon and magnon levels repel each other when 
tuned to degeneracy. Coplanar waveguides are open cavities that offer greater flexibility, but are leaky, 
i.e. have a smaller quality factor. Waveguides are intrinsically open cavities that channel the free flow 
of microwaves with associated radiative damping. Dissipation may change the qualitative physics since 
a non-H ermitian H amiltonian governs the non-local interaction between magnets [6].  
The indirect coupling already modifies the ground state. When not at the minimum of the free energy, 
mechanical and magnetic torques and forces arise that can be modulated by the magnetic 
configuration and the frequency detuning. H eat current flow in the presence of temperature 
differences in the cavity. Feeding the cavity with microwaves from external sources, either via the 
input and output ports or local coils that address individual magnets [1], can drive the system into 
highly excited states [7]. 
Cavities or resonators can also confine optical photons, but the domination electric field coupling is 
relatively weak. An interesting challenge is the use of cavities in the intermediate Thz radiation regime. 
Thin films confine phonons normal to thin films where they may form phononic spin valves [4], while 
magnon cavities can be induced by nanostructures on magnetic thin films [3].  
 

Figure 1.  The collective dynamics of a ferromagnetic particle (Kittel magnon) can be interpreted as ground state of a bosonic atom. The 
interaction between different atoms, enhanced by the exchange of photons in open or closed cavities, leads to collective delocalized 
states. 

Figure 2 . Numerical simulation of six magnetic spheres on a circle inside a disk-shaped microwave cavity fed by attached ports. At 
resonance, the magnetizations (black arrows) precess coherently in the presence of a unidirectional photon current as illustrated by the 
Poynting vector field (magenta arrows). The colored background is the electric field component in the perpendicular direction. We 
interpret this system as a chiral magnonic benzene molecule (Yu W et al. (2020), Phys. Rev. B 10 2 , 064416 ). 
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L oading cavities:  We may fill the cavities by magnets in different numbers and structural as well as 
magnetic configurations. Figure 1 shows as an example a collinear magnonic benzene molecule driven 
by a microwave feed from the input port. We are not limited to ferro- or ferrmagnets, but may use 
antiferro- and paramagnets. The magnonic atoms may “react” with other particles made from, e.g., 
ferroelectrics, superconductors, Josephson qubits [6], metamaterials, or devices such as magnetic 
tunnel junctions.  
 
C hiral interaction:  In the absence of relativistic effects, the angular and linear momentum of photons, 
phonons, and magnons waves are in general independent. H owever, chirality emerges in Damon-
Eshbach surface spin waves or by spin waves excited by magnetodipolar stray fields [3]. Cavities or 
waveguides induce admixtures of TM and TE modes that generate local chirality at special lines. When 
the mediating waves are chiral, the indirect coupling between magnets is unidirectional. A 
consequence is the accumulation of magnons at the edge of a chain of magnets in a cavity [7]. It is 
then possible to design chiral magnonic molecules analogous to conventional aromatic molecules, but 
with non-reciprocal magnon couplings and persistent currents, facilitating the design of novel on-chip 
microwave isolators and circulators. Since spin waves in thin film can be chirally excited by magnetic 
stray fields, similar games become possible on a much smaller scale. The acoustic Rayleigh surface 
waves display rotation-momentum coupling and generate novel indirect couplings [8]. 
 
T oroidal moment:  The toroidal dipole moment or anapole is a parameter to describe the 
electromagnetic far field, which is independent from the magnetic and electric dipoles [9]. Spatially 
distributed magnets can contribute either static or dynamic toroidal multipoles, which have peculiar 
response and radiating properties. As discussed above, in a microwave cavity loaded by magnets, 
chiral spin currents may flow by means of cavity photon exchange. We anticipate that an exchange-
strained circular spin texture generates equilibrium spin currents and associated toroidal moments, 
while injected microwaves in the configuration of Figure 1 generates a giant dynamic anapole.  

T owards q uantum:  Strongly coupled microwave photons can drive a weakly damped magnonic system 
easily into the non-linear regime, which is an important prerequisite for interesting quantum effects 
such as quantum entanglement and quantum squeezing. Non-linearities generate highly entangled 
magnon-photon states or generate tripartite entanglement between magnons, photons and phonons 
[10].  
 
Concluding Remarks 
Magnons in spatially separated magnets may hybridize by the coherent exchange of (quasi)particles 
such as photons, phonons, and continuum magnons. Coupled magnet assemblies form very flexible 
devices on various length scales. AC and DC magnetic fields easily manipulate their collective bosonic 
excitations, offering a unique platform to study quantum effects and test new functionalities needed 
for next-generation information technologies.  
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19. Topological Magnonics 
Christian Back1, Götz S. Uhrig2 

1Technical University of Munich, Germany 
2TU Dortmund University, Germany 

Status 

Generally, topological effects in condensed matter display a certain robustness against perturbations 
such as imperfections and disorder resulting from sample growth and patterning. This idea extends 
also to magnonics and motivates to consider and to realize topological effects. A second appealing 
feature of topological magnetic excitations is their generic chirality. Their edge modes travel only in 
one particular sense, see Fig. 1, and Section 15. Recently, it has been proposed that magnonic 
topological edge modes in ferromagnetic domains can be used for advanced information processing 
[1]. This route is promising because it can be hoped that such systems are less dissipative. If the 
magnons can be manipulated coherently quantum information processing comes within reach. This 
perspective has triggered a surge of interest in topological magnonics in recent years which makes it 
impossible to review them here so that we refer to a longer survey for a more complete list of 
references [2]. 

Notwithstanding the obvious interest in topologically protected magnon modes, the experimental 
reports concerning topological magnonics are still scarce and can be grouped into two categories: 
detection of the magnon H all effect, e.g. [3-5], and observation of topological magnon bands e.g. 
[6,7].  

In 2010, Onose et al. [3] reported a transverse magnon current in the insulating collinear ferromagnet 
(FM) Lu2V 2O7 with pyrochlore structure. In this system and in similar pyrochlore compounds (H o2V 2O7, 
In2Mn2O7, Lu2V 2O7, and the quantum spin ice system Tb2Ti2O7) [4] as well as in the material Yttrium 
Iron Garnet (YIG) [5], a transverse magnon current has been observed. Notably, the detection of the 
magnon H all effect has been realized in insulating materials only so far, where a temperature gradient 
drives the magnon current. Detection is realized by thermal H all effect measurements [3,4] or, in the 
case of YIG, by direct observation of a temperature difference [5]. In the classical pyrochlore materials 
[3] the rather strong Dzyaloshinskii-Moriya interaction (DMI) is at the origin of the generation of a 
Berry curvature of the magnon bands which leads to the transverse deflection of the exchange 
dominated magnon current, see also Section 12. In YIG [5], DMI is weak and the explanation of the 
origin of the sideways deflection of long-wavelength magnons in the dipole-exchange regime should 
be revisited. 

In the large class of antiferromagnets, in many materials with strong spin orbit coupling the DMI is 
strong enough to have a significant impact on the magnon band structure and non-collinear order 
may be induced [7]. In particular, quasi 2D Kagome or H oneycomb materials are of interest, where 
flat, topological magnon bands have been predicted and recently detected using thermal H all and 
inelastic neutron scattering experiments [6,7]. 
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Current and Future Challenges 
 
So far, topological effects have been measured in a limited number of systems which are mostly  
magnetically ordered so that the excitations are magnons of which the total number is generically 
conserved except if certain anisotropies are present, e.g., dipolar interactions [8]. Thermal H all 
measurements have confirmed non-trivial topology. Clearly, the measurements of further properties 
providing evidence for topological behaviour are called for. In parallel, it is of great current interest to 
identify more magnetic systems with non-trivial topology, for a class of potential candidates, see Ref. 
[9] and Fig. 2. In addition, completely novel ideas such as using Moiré bands of twisted ferromagnetic 
bilayers are proposed [10]. It would be highly advantageous to find systems with larger exchange 
coupling and concomitantly larger couplings such as DMIs inducing the required Berry curvatures. The 
advantage of larger couplings is twofold: the phenomena can be detected at higher temperatures and 
they occur on shorter time scales. The latter point is essential if one wants to move from equilibrium 
properties to non-equilibrium physics which is obviously needed to tackle switching and information 
processing. 
 
In addition, the extensions of the current scope on ferromagnetic magnons to antiferromagnetic 
(AFM) magnons as such [11] or on top of non-collinear spin textures [12] as well as to other magnetic 
excitations represent fascinating challenges, both in concepts and for applications. Fundamentally, 
AFM magnons are different from FM magnons in that they display linear dispersions and that their 
number is not conserved. The linear dispersion leads to larger frequencies and faster dynamics at 
given length scales. Note, however, that experimental detection of magnon modes in AFMs is much 
more challenging and suitable experimental methods are to be developed. Beyond magnons, there 
are further intriguing excitations for instance fractional spinons which may be relevant in quantum 
spin liquids [4] and triplons in valence bond solids [13]. For the latter, non-trivial topology is verified 
by inelastic neutron scattering and they are protected by an energy gap. 
 
Looking further ahead, the control and manipulation of topological magnetic excitations must be 
targeted, requiring to enter the field of non-equilibrium physics. Certainly, this represents a 
formidable challenge. Is it possible to create, to manipulate and to detect wave packets of magnons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
       

Figure 1.  Schematic illustration of a propagating chiral magnon localised at the edge of a confined sample realizing a ferromagnetic 
Shastry-Sutherland lattice, for details see Ref. [9]. 
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or even single excitation?  Can this be achieved coherently?  Which techniques are promising?  A 
possible candidate is optical control by laser pulses, e.g., exploiting the inverse Faraday effect [14]. 
 
Finally, one may ask if realizable device concepts utilizing topological magnonics can be developed. 
This would require first of all theoretical concepts, but also clear recipes towards experimental 
realization. Ideally this would encompass room temperature operation and a selection of materials 
that are easily fabricated by standard deposition tools.  
One could expect, for example, that transverse magnon currents are observable e.g. in a micro-focus 
Brillouin Light Scattering (BLS), experiment by observing magnon deflection in a temperature gradient. 
Given the superior sensitivity of BLS such an experiment on bulk samples might be feasible. 
Furthermore, one can foresee the design of magnetically ordered nanostructures where chiral edge 
current may be detectable using bespoke spin-to-charge conversion designs. 
 

 

 
Concluding Remarks 
 
In summary, the field of topological magnonics is still at its infancy, but it holds great promise. 
Experimentally it is obviously difficult to realize materials that clearly show topological magnon bands 
or that show clear manifestations of effects that are based on topology such as the magnon H all effect. 
On the theory side, concepts for novel effects need to be developed which put the particular 
properties of topologically protected modes to use. The possibility to tailor the spin wave velocity of 
magnonic edge modes is an example for such a concept.  
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Figure 2.  Panel (a): Shastry-Sutherland lattice formed in a rare earth (RE) silicide (two-dimensional projection). Panel (b): Magnonic dis-
persion in a strip of the lattice in (a) extended in a-direction, confined in b-direction, for spin S , exchange coupling J , single-ion anisotro-
py A = 0 .2 J , and DMI D z = 0 .2 5 J  in z-direction. The dispersion of the right-moving chiral edge mode is shown in orange, the one of the left-
moving in blue, for details see Ref. [9].  
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20 . Low -  and R oom- T emp erat u re H yb rid Magnonic H et erost ru ct u res 

Oleksandr V . Dobrovolskiy1, Barbora Budinska1, H uajun Q in2 and Sebastiaan van 
Dijken2  
1Faculty of Physics, University of V ienna, V ienna, Austria  
2Department of Applied Physics, Aalto University, Finland 

Status 
H ybrid magnonic systems have recently attracted great attention because of emerging fundamental 
physical phenomena unseen in their elementary building blocks and due to their application potential, 
particularly, in coherent information processing [A]. They provide a modern paradigm for combining 
platforms and devices based on strong coupling between excitations in the charge, lattice and spin 
degrees of freedom and allow for tailoring the response of the system in one degree of freedom via 
tuning the excitations in the other one [B]. Magnons are highly tuneable excitations and can be 
engineered to couple with various dynamic media and excitations such as photons [A], phonons [B], 
fluxons [2] etc. This section deals with only two types of hybrid magnonic systems – ferromagnet/  
superconductor and ferromagnetic/ ferroelectric heterostructures. Recent reviews devoted to hybrid 
magnonic systems of various other types can be found, e.g. in Refs. [A, B, C].   
 
Ferromagnet/ Sup erconductor hy brid structures for cry ogenic magnonics 
Traditionally, magnonics is a room-temperature research domain. H owever, recent studies are 
extending magnonics to cryogenic temperatures [1-4]. This extension is driven by investigations of 
strongly coupled light-spin hybrid systems for quantum computing that approach the quantum limit 
of excitation [4]. In addition, thermal effects such as reduced saturation magnetization and thermally 
activated motion of topological defects are less pronounced at low temperatures, that leads to new 
phenomena in the spin-wave dynamics. Importantly, in cryogenic magnonics, microwave experiments 
are often performed in environments of superconducting quantum circuits and various hybrid devices 
based on Josephson junctions [1,3]. Because of experimental constraints for light intensities in a purely 
optomagnonic system, quantum magnonics requires hybridized systems of magnon excitations and 
nonlinear macroscopic quantum systems such as superconducting qubits [4], see Fig. 1(a). At the same 
time, ferromagnetism (F) and superconductivity (S) entail opposite spin orders and thus their 
combination gives rise to numerous novel phenomena [1-3]. H owever, so far coexistence of F and S in 
bulk systems remains a rare circumstance peculiar to complex compounds in which either a strong F 
order coexists with unconventional spin-triplet superconductivity or orbital coupling stipulates 
coexistence of antiferromagnetic order (Section 14) with conventional spin-singlet superconductivity.  
The coexistence of S and F can be readily achieved in artificial S/ F heterostructures which allow for 
numerous approaches for S/ F hybridization. For instance, in proximity-coupled (i.e. electrically 
contacted) S/ F/ S three-layers in in-plane fields, a substantial reduction of the ferromagnetic resonance 
field [3] is attributed to the generation of unconventional spin-triplet superconductivity and to an 
interplay of the F layer with S-induced magnetic flux. In particular, it has been established that the 
presence of a spatially varying magnetization at an S/ F interface can generate spin-polarized triplet 
supercurrents via spin mixing and spin rotation processes. In case of proximity-decoupled S/ F bi-layers 
in in-plane fields, see Fig. 1(b), it has been demonstrated experimentally that coupling of spin waves 
in F with S results in an enhanced phase velocity of the spin waves [1]. This enhancement occurs due 
to the Meissner screening of ac magnetostatic stray fields by S and it opens access to the development 
of a new class of metamaterials on the basis of S/ F hybridization [1]. 
A number of novel effects have been observed experimentally for proximity-decoupled S/ F bi-layer 
systems in out-of-plane magnetic fields [2]. When the S layer is in the mixed state, an external 
magnetic field penetrates it in the form of a lattice of Abrikosov vortices (fluxons). In proximity-
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decoupled S/ F bi-layers, the stray fields emanating from the vortex cores produce a periodic 
modulation of the magnetic order in F, such that the S/ F bi-layer can be viewed as a fluxon-induced 
magnonic crystal (Section 2). In such a magnonic crystal, see Fig. 1(c), forbidden-frequency gaps 
(bandgaps) are formed for spin waves with Brillouin wavenumbers that correspond to the period of 
the vortex lattice [2]. The tunability of the vortex lattice parameter via changing the out-of-plane 
component of the magnetic field allows for engineering of the spin-wave transmission spectrum. 
Remarkably, experiments on Bragg scattering of spin waves on a flux lattice moving under the action 
of a transport current in the S layer have revealed that it is accompanied by Doppler shifts [2]. One 
further promising research direction is related to the experimental examination of the radiation of 
magnons by moving fluxons via a Cherenkov-type mechanism. The Cherenkov radiation of magnons 
by fluxons is expected when the vortex velocity exceeds some threshold value and, as predicted 
theoretically [5], it should to lead to peaks in the current-voltage curve and an additional magnetic 
(M) contribution to the Bardeen-Stephen (BS) core viscosity, see Fig. 1(d). Given the vortex lattice 
parameter which in the presence of out-of-plane fields between 2 T and 10 mT varies from 35 nm to 
500 nm, Cherenkov radiation of short-wavelength magnons (Section 6) by fast-moving vortices could 
become a route to the excitation of exchange-dominated spin waves in S/ F heterostructures and 
antiferromagnetic superconductors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.  Examples of ferromagnet/ superconductor hybrid structures for cryogenic magnonics. (a) Strong dispersive regime of 
quantum magnonics. Interaction of strength gq-m between the Kittel mode (with frequency ωm) of a spherical ferrimagnetic crystal of 
YIG and a superconducting qubit (ωq), engineered through magnetic- and electric-dipole couplings to a microwave cavity mode (top). 
Normalized qubit spectrum measured as a function of the coil current (bottom) and at ωq ≈ ωm (right). Adapted with permission from 
[4]. (b) Magnonic metamaterial on the basis of S/ F hybridization: Patterned Py films are placed onto a coplanar waveguide made of 
Nb. Black and green arrows show the direction of the microwave propagation and of the external magnetic field. Adapted with 
permission from [1]. (c) Bragg scattering of spin waves on the Abrikosov vortex lattice in a Py/ Nb bilayer. Spin waves are excited by 
antenna 1, propagate through the Py waveguide and are detected by antenna 2. The vortex lattice induces a spatially periodic 
magnetic field h(x , y) in Py, which becomes alternating in time when the vortices move under the action of a transport current. Bragg 
scattering of spin waves on the moving vortex lattice is accompanied by the Doppler effect. The tunability of the vortex lattice 
parameter via changing the out-of-plane component of the magnetic field H ⊥ allows for engineering of the spin-wave transmission 
spectrum. Adapted with permission from [2]. (d) Cherenkov excitation of magnons by fast-moving fluxons. V ortex lattice moving with 
the velocity v induces a spatially periodic ac magnetic field h(x ,t) which excites the system of magnetic moments shown by purple 
arrows (top). This additional dissipation results in current peaks in the I - V  characteristics (bottom). An additional magnetic (M) viscous 
force adds up to the Bardeen-Stephen (BS) viscosity due to vortex core alone, resulting in a voltage drop for currents above I on 
corresponding to some threshold vortex velocity vc. Adapted with permission from [5]. 
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Ferromagnetic/ Ferroelectric heterostructures for p rogrammable magnonics at room temp erature 
Studies of coupled magnetic and ferroelectric (FE) phases are motivated by fundamental questions 
about ferroic order coexistence and their potential for low-power nanoelectronic devices. H ybrid 
ferromagnetic (FM)/ FE materials in which magnetoelectric interactions arise from charge modulation, 
exchange coupling, or strain transfer at composite interfaces are particularly promising because they 
allow for electric-field control of magnetism at room temperature [7]. In addition, FE domains can be 
imprinted into a FM film to form a programmable metamaterial without physical patterning [8,9]. H ere, 
we review magnonic phenomena arising from strong local coupling of FM and FE order parameters. 
Sections 7 and 17 describe electric-field manipulation of spin waves using piezoelectrics and gate 
dielectrics.     
Recent studies exploiting FM films grown onto FE BaTiO3 substrates have highlighted the potential of 
such hybrids for active spin-wave control. In this material system, local strain transfer from 90° stripe 
domains in BaTiO3 induces a regular modulation of magnetic anisotropy in the adjacent FM film via 
inverse magnetostriction. If the magnetoelastic anisotropy dominates other magnetic energies, the two 
ferroic domain patterns correlate (Fig. 2(a),(b)). Because domain walls in FE materials are only a few 
nanometres wide, the induced changes of anisotropy in the FM film are nearly abrupt. This has two 
important consequences; sharp lateral variations of the effective magnetic field and strong pinning of 
magnetic domain walls onto their FE counterpart.  
The modulation of magnetic anisotropy in strain-coupled FM/ FE bilayers confines the excitation of spin-
wave modes to single stripe domains, as demonstrated experimentally in Ref. 10. At low frequency, 
standing spin waves form only in domains with small effective field (every second stripe), allowing spin-
wave localization and guiding (Fig. 2(c)). Additionally, the narrow anisotropy boundaries act as local 
sources of propagating spin waves under uniform microwave excitation (Fig. 2(d)). Micromagnetic 
simulations indicate that the wavelength of the emitted spin waves scales down well into the exchange-
dominated regime, enabling short-wavelength magnonics (Section 6). Mode localization and short-
wavelength spin-wave emission persist up to large magnetic field, facilitating active tuning of the spin-
wave frequency and wavelength [10].  
Strong pinning of straight magnetic domain walls in FM/ FE heterostructures offers various other 
magnonic prospects. For instance, when driven into periodic oscillations by a spin-polarized ac electric 
current, the domain walls act as a local source of propagating spin waves [11]. Additionally, spin-wave 
transport through pinned magnetic domain walls can be actively turned on and off by reversible 
switching between two non-volatile domain-wall spin textures [12]. This programmable effect, 
illustrated in Fig. 2(e)-(g), is explained by a large difference in domain-wall width if the magnetization is 
set to a head-to-head/ tail-to-tail or a head-to-tail configuration.     
Electric-field control of spin waves in FM/ FE bilayers with correlated domain patterns is a logical next 
step. Switching of the spontaneous polarization reorients the unit cell of the FE material (Fig. 2(a),(b)) 
and, via strain transfer, this alters the direction or strength of the magnetoelastic anisotropy in the FM 
film. Local magnetic switching, the writing and erasure of magnetic domain patterns and reversible 
motion of magnetic domain walls in an electric field are demonstrated already [9]. For magnonics, the 
ability to move magnetic domain walls and switch the anisotropy by low-power electric fields offers an 
attractive new approach for active spin-wave manipulation. Reports along this research direction will 
likely appear in the coming years.  
 
Current and future challenges 
Given that magnetic moment couples to the current oscillations in hybrid Josephson junctions, care 
should be taken in the analysis of their ferromagnetic resonance response and current-voltage 
characteristics [3]. Bloch-like band structures in the spin-wave transmission spectra of S/ F bilayers 
require long-range order of the vortex lattice [2] which is hard to achieve in experiments. For the 
Cherenkov-like generation of magnons by moving fluxons, vortex velocities exceeding 1-3 km/ s are 
required [5]. At such high velocities vortex cores may collapse because of the flux-flow instability. To 
prevent instability, one can use, e.g., vortex guiding in S/ F bilayers or superconductors with fast 
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relaxation of disequilibrium, for which vortex velocities of 5-15 km/ s have recently been demonstrated 
[6]. 
Electric-field control of magnetism in FM/ FE heterostructures offers a low-power mechanism for spin-
wave manipulation at room temperature. To date, proof-of-principle experiments utilize thick single-
crystal FE substrates, necessitating the use of relatively large voltages [9]. For practical devices, the 
voltage pulses should be substantially smaller. Epitaxial FE films could satisfy this requirement [8]. Yet, 
the growth of thin films with regular FE stripe domains is challenging. Many attractive magnonic 
features of FM/ FE bilayers originate from a regular modulation of magnetic anisotropy and strong 
pinning of straight magnetic domain walls. Similar effects could be realized also in other material 
systems, for instance via local ion-beam irradiation of FM films.        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Concluding remarks 
Investigations of S/ F hybrid structures are gaining a momentum, opening access to exciting emerging 
phenomena in spin-wave physics and advancing novel magnonics and spintronics functionalities. The 
extension of magnonics to cryogenic temperatures has given birth to the new research direction of 
magnon fluxonics and metamaterials on the basis of F/ S hybridization. Moreover, S/ F heterostructures 

Figure 2 . (a) Schematic of a FM/ FE heterostructure exhibiting full domain-pattern transfer. The spontaneous polarization and lattice 
tetragonality of the FE layer rotate by 90° at the FE domain walls. Through strain transfer and inverse magnetostriction, this induces 
an alternating uniaxial magnetoelastic anisotropy in the FM layer. The magnetization aligns along the anisotropy axes in zero 
magnetic field (arrows). (b) Polarization and Kerr microscopy images of the FE and FM domain structures in a 50 nm CoFeB/ BaTiO3 
bilayer. (c) Formation of fifth order standing spin waves in every second stripe domain of the same heterostructure during uniform 
excitation (simulation) [10]. (d) Emission of propagating spin waves from an anisotropy boundary in the FM/ FE heterostructure and 
the simulated spin-wave dispersion curves for a 60 mT bias field along and perpendicular to the uniaxial magnetic anisotropy (UMA) 
of the stripe domains [10]. (e) Kerr microscopy images demonstrating switching between magnetic stripe domains with alternating 
head-to-head/ tail-to-tail domain walls (top) and head-to-tail domain walls (bottom). (f) Schematic of a micro-focused Brillouin light 
scattering (BLS) experiment for the analysis of spin-wave transmission through a programmable pinned magnetic domain wall. (g) 
Demonstration of strong spin-wave reflection if the pinned domain wall is set to a narrow head-to-tail state and nearly full spin-wave 
transmission after its structure is switched to a broad head-to-head configuration [12]. The BLS scans are performed near the 
frequency of an antinode resonance mode in the narrow domain wall.    
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allow for highly efficient magnon-photon coupling and, thus, are of crucial importance for the further 
development of quantum magnonics. 
H eterostructures with coupled FM and FE order parameters have emerged as an attractive material 
platform for room-temperature programmable magnonics. Imprinting of FE domains into a FM film has 
enabled new approaches for short-wavelength spin-wave emission, magnonic guiding, and spin-wave 
manipulation through magnetic- and electric-field actuation. Integration of these magnonic effects in 
magnetoelectric devices promises new functionalities and low-power operation.      
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Status 
The increasing challenges with further CMOS scaling down have stimulated a great deal of 

interest in novel logic devices and architectures. Spin-wave data processing offer one of the promising 
directions towards charge-less future circuitry [1]. The unique physical and technological aspects 
inherent to spin waves to be implemented for data processing are listed below. 
 
K E Y  AD V AN T AG E S O FFE RE D  B Y  SP I N  W AV E S FO R D AT A P RO CE SSI N G  
• Sp in- wav e bus. A spin wave is a collective oscillation of a spin system in a magnetic lattice. It 
is naturally confined within a magnetic media with zero likelihood to escape or to leak into non-
magnetic surroundings. This feature makes it possible to build a spin-wave bus for information transfer 
using magnetic nano-wires similar to optical waveguides [2-4]. Moreover, since the angle of 
magnetization precession of a linear spin wave usually does not exceed 1 degree (as opposite to the 
data-storage concepts relying on the π-switch of the magnetization), a low energy is required to excite 
spin waves what, consequently, ensures a low energy loss during the data transport.  
• M iniaturiz ation down to atomic scale. The smallest magnonics element size is limited by the 
lattice constant of material and, thus, is comparable to the fundamental limitations of CMOS. 
Currently, the lateral sizes of the magnonics conduits made of such a complex material as Yttrium Iron 
Garnet (YIG) reached 50 nm which is around 40 lattice constants [3].  
• L arge coherence length and broad freq uency  range. Spin-waves show relatively large 
coherence and propagation length 𝑙𝑙𝑝𝑝𝑝𝑝 even at room temperature (e.g., up to 1 cm in YIG of micrometre 
thicknesses). These properties enable the intriguing possibility of exploiting spin-wave phase in 
addition to amplitude for data transfer and processing for RF applications, processing of binary data, 
and unconventional computing. In nanostructures, the spin-wave propagation length is usually limited 
to tens of micrometers. Nevertheless, considering the recent progress in the miniaturization of spin-
wave wavelength 𝜆𝜆 below 100 nm (see Section 6 of this Roadmap), 𝑙𝑙𝑝𝑝𝑝𝑝 might constitute up to 200 µ m 
in YIG [5]. The smallest wavelength of a spin wave is limited by the lattice constant of material and the 
further miniaturization enables access to the TH z magnonics (see Section 13). The increase in the spin-
wave frequency results in the decrease of its lifetime (e.g. linearly according to the Gilbert model). 
H owever, the group velocity 𝑣𝑣𝑔𝑔𝑟𝑟 = 𝜋𝜋𝜔𝜔/𝜋𝜋𝑘𝑘 of the exchange spin wave 𝜔𝜔 ∝ 𝑘𝑘2 increases linearly with 
the increase in 𝑘𝑘. Thus, the ratio of the spin-wave propagation length 𝑙𝑙𝑝𝑝𝑝𝑝 to the wavelength 𝑙𝑙𝑝𝑝𝑝𝑝/𝜆𝜆, 
which is the most important parameter in the wave-based data processing, stays constant at a level 
of around three thousand for YIG [5] or one hundred for CoFeB [1]. 
• M anip ulation,  dy namic control and reconfigurability . Among others, spin-wave dispersion 
depends on the magnetic field, the magnetization of the material, and on the geometrical sizes of the 
magnetic element. This fact translates in the possibility of the static and dynamic control of spin waves 
(see e.g. Sections 2 and 11), for the realization of non-volatile reconfigurable magnonic elements using 
nano-magnets (see Fig. 1), and for the realization of magnetic bit read-in and read-out [1, 2, 6].  
• E nergy - efficient sp in- wav e to v oltage conv erters and magnetoelectric transducers. There is 
a robust and energy-efficient mechanism for spin-wave to voltage and vice versa conversion, using 
multiferroic cells [1, 2, 6] (see also Sections 3, 7 and 17). This approach is of great importance for 
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integrating spin-wave devices with conventional electronic components and for the integration of 
memory cells into magnonic circuits (see Fig. 1c).  
• E fficient nonlinear magnon p henomena. The processing of data, in general, requires the 
utilization of elements with nonlinear characteristics that are, e.g., provided by a semiconductor 
transistor in CMOS. The pronounced benefit of spin waves for the data processing is their pronounced 
natural nonlinearity that allows for an all-magnon control of one magnonic unit by another to realise 
integrated magnonic circuits [4].  

 Figure 1. (a) A two-bit magnonic holographic memory [10]. 
Magnonic holographic image of two cobalt magnets on ferrite 
waveguide. The red markers show experimentally detected 
inductive voltage in millivolts produced by four interfering spin 
waves. The cyan surface is a computer reconstructed 3-D plot. (b) 
Schematics of the magnet configuration. The operational 
frequency is 3.4 GH z. All experiments are done at room 
temperature [10]. We utilize spin waves for the parallel read-out 
of magnetic bits.  (c) Illustration of a clocked three-stage cascaded 
spin-wave device comprising of: a charge to spin (C-S) converter, 
intermediate spin-wave repeaters and spin-wave interconnects 
[6]. The sequential switching of the converter and the repeaters is 
accomplished via application of clocks 1-4 while the input data is 
applied in the form of current pulses using the STT clock. 

CL ASSE S O F M AG N O N  D E V I CE S 
• Sp in- wav e RF ap p lications. Spin-wave frequencies cover the range from sub-GH z up to 
hundreds of TH z. Modern state-of-the-art technology usually covers the frequency range of up to 100 
GH z which is of special interest for the upcoming 5G communication systems. Different devices have 
been proposed, including reconfigurable filters (e.g. based on magnonic crystals discussed in Section 
2), delay lines, phase shifters, Y-circulators, multiplexers, wake-up receivers, signal-to-noise 
enhancers, and spectrum analysers [7] (see also Section 8). The nano-sized spin-wave directional 
coupler realised recently is also a universal RF data processing unit with multiple functionalities [4] 
• I nterference- based B oolean logic and maj ority  gate. Most of the developed spin-wave 
Boolean logic gates exploit spin-wave phase to perform operations. The Boolean data can be encoded 
into spin-wave amplitude, and the constructive or destructive interference allows one to obtain logic 
“1” (a certain amplitude) or “0” (zero amplitude). This approach has recently been used for the 
realization of X NOR logic gate based on a 54 nm thick YIG interferometer (see Fig. 1a) [8]. Another way 
is to encode Boolean data into spin-wave phase rather than amplitude. It is especially successful for 
the realization of logic majority gates (see also Section 3). This logic device usually features a three-
input combiner with the logic information encoded in a phase of 0 or π of and the phase of the output 
signal represents the majority of the input phase states. Recently, a reconfigurable nanoscale inline 
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design without the spin-wave combiner majority gate was realized at the nano-scale (see Fig. 1b) [9]. 
It has been shown, that the interference-based computation allows for frequency-division 
multiplexing as well as the computation of different logic functions in the same device.  
• All- magnon circuits. The two-way conversion of magnonic signals to electric is always 
associated with parasitic loss and the “all-magnon” data processing aims to process as much 
information purely within magnonic system as possible without its conversion to electric signals. This 
is the main idea behind the original work on magnon transistors. The converters in this approach are  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2 . (a) Micrograph of three-port logic X NOR gate using 
forward volume spin wave interference in a 54 nm thick YIG 
structure [8]. Two spin waves are injected by Ports 1 and 2. The 
output signal is defined by the interference of these two waves and 
is measured at the Port 3. (b) Scanning-electron micrograph of a 
in-line spin wave majority gate with a 850-nm-wide Co40Fe40B20 
waveguide, three input antennas, and one output antenna [9]. 
Operation frequency is 13.9 GH z, magnetic bias field 80 mT. The 
input signals are injected by the antennas P1, P2 and P3. The 
interference of these three waves is measured at the antenna “O”. 
The functionality and reconfigurability of the device are shown 
using all-electrical spin wave spectroscopy. (c) Nonlinear switch 
functionality of nano-scale directional coupler [4]. The directional 
coupler is depicted with a dashed line and is based on 350 nm wide 
and 80 nm thick YIG waveguides. The colour maps represent two-
dimensional spin-wave intensity measured by Brillouin Light 
Scattering spectroscopy for different input powers of 2 dBm (top) 
and 10 dBm (bottom). The nonlinear switch of the spin wave path 
to Output 1 or Output 2 by the change in the spin wave amplitude 
is clearly visible. This functionality allows for the realization of 
complex all-magnon circuits. 

replaced by spin-wave nonlinearity and amplifiers. Recently, a nanoscale magnonic directional coupler 
has been realized experimentally (see Fig. 1c). This coupler was used to design and investigate 
numerically a first integrated magnonic circuit in a form of half-adder [4]. The half-adder consists of 
three magnetic nanowires and spin-wave amplifier, and replaces 14 transistors in CMOS. 
• U nconv entional sp in- wav e comp uting. H ere we would like to report on the significant 
progress in spin-wave logic and memory devices prototyping since the first publication [2]. The most 
notable results include a two-bit magnonic holographic memory where spin waves were exploited for 
magnetic bit parallel-read-out (see Fig. 1a-b) [10]. Multi-terminal spin-wave devices were used for 
special type data processing in the following studies. The feasibility of data encoding in the phase 
combination of input spin-waves has been demonstrated. The recognition of the input pattern is 
accomplished by measuring the inductive voltage produced by the interfering spin waves. The first 
example of reversible spin-wave logic gates was demonstrated using the unique spin-wave dispersion 
characteristics [11]. The utilization of phase in addition to amplitude has demonstrated great potential 
in application to NP-problems. For instance, prime factorization was accomplished for N = 1 5  using 
spin-wave interferometer [12]. In general, spin wave approach is promising for finding the period 
(~ 100) of a given function. Another approach of the unconventional spin-wave data processing is 
Fourier magnonics described in Section 8. 
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• I nv erse- design magnonics. Many magnonic devices were demonstrated, but the 
development of each of them requires specialized investigations and, usually, one device design is 
suitable for one function only. Inspired by the recent progress in photonics, an inverse-design 
magnonics was proposed by two groups independently [13, 14]. In this concept, any functionality can 
be specified first, and a feedback-based computational algorithm is used to obtain the device design. 
The proof-of-concept prototype [13] is based on a rectangular ferromagnetic area which can be 
patterned using square shaped voids. To demonstrate the universality of inverse-design magnonics, 
linear, nonlinear and nonreciprocal magnonic functionalities were explored and used to realize a 
magnonic (de-)multiplexer, a nonlinear switch and a circulator. The prototype [14] represents a neural 
network, where all neuromorphic computing functions, including signal routing and nonlinear 
activation are performed by spin-wave propagation and interference.    
• N euromorp hic magnon comp uting. It is expected that spin-wave circuits will manifest 
advantages compared to nanoelectronic devices outside of traditional Boolean computing 
architectures especially in neuromorphic computing [14, 15]. Spin waves possess all key ingredients: 
(i) a possibility to construct complex 2D and 3D networks [1, 4, 8, 10] (see also Sections 3 and 5), (ii) 
offer a variety of nonlinear phenomena [4], and (iii) computing units can be complemented by memory 
cells [6]. A magnon adder, which integrates over incoming spin-wave pulses in an analog fashion, was 
investigated numerically [15] and represents one of the key building blocks for future magnonic 
neuromorphic networks. Recently, a nanoscale neural network based on the utilization of non-linear 
spin-wave interference was developed by means of inverse-design approach [14]. 
• M agnon q uantum comp uting. One of the main advantages of magnonics is that novel 
efficient data processing concepts can be realized at room temperature. Nevertheless, the decrease 
in temperature down to < 100 mK freezes out thermal magnons and allows for the data operations 
with single magnons. This opens an access to the entangled magnon states and to quantum 
computing. Currently, the field of magnon quantum physics is at the very beginning of its way (see 
Section 18), but the group of Y. Nakamura from the University of Tokyo has reported on the operations 
with single magnons in a set of recent publications. Further aspects of cryo-magnonics are overviewed 
in Section 20. 
 
B E N CH M ARK I N G  O F SP I N - W AV E  CI RCU I T S 

The theoretical framework for benchmarking beyond-CMOS devices and circuits [16] included 
spin-wave devices. One of its conclusions applicable to spin-based devices in general is that they can 
be competitive with nanoelectronic devices when relying on magnetoelectric transduction (rather 
than spin torque or magnetic field). The transduction-based approach has advantage that it can be 
combined with existing CMOS circuits and does not require the development of a novel type of 
circuitry. One option for it is the piezoelectric-magnetostrictive transduction. The all-magnon data 
processing approach, was benchmarked in Ref. [4]. It was found that 30 nm-based magnonic circuit is 
comparable to 7 nm-based CMOS in terms of footprint, has 10 times smaller energy consumption, but 
is slower. The further magnonic circuits benchmarking is discussed in Section 3. 
 

Current and Future Challenges 

Although we observe drastic progress in the evolution of the spin-wave circuitry and, in 
particular, its scaling down from mm to sub-100 nm sizes, many challenges still have to be addressed. 
Spin-wave damping remains one of the major problems for the spin-wave circuitry. Most of the above-
mentioned prototypes were realized on the base of YIG material grown on GGG substrate, as the 
material with the smallest damping. The attempts to switch to YIG on silicon have not been successful 
as the damping increases significantly. The utilization of new magnetic materials, e.g. CoFeB or H eusler 
compounds, grown on Si attracts interest.  
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A cross talk between input and output ports is a big challenge for spin-wave devices using 
conducting contours for excitation/ detection. Another reason staying behind the low efficiency of 
generation and detection of spin waves, is the impedance mismatch between the electromagnetic 
waves and spin waves related to momentum mismatch. The mismatch suggests using a periodic 
magnetic or piezoelectric transduction structure, or possibly acoustic-wave mediated transduction. 
Novel transduction geometries are required here. In this context, the demonstration of switching of 
non-volatile magnetic elements by spin waves as proposed e.g. in [6] is highly an important result (see 
Fig. 1c). Moreover, there are many approaches which allow for the unidirectional propagation of spin 
waves (see e.g. Section 15) and can ensure input/ output isolation in circuits.  

The all-magnon approach does not require converters but relies on the V oltage Controlled 
Magnetic Anisotropy (V CMA) parametric amplifiers (see Section 17) that were studied theoretically 
but not yet realized experimentally. Moreover, the simulated half-adder appeared to be slower 
compared to CMOS [4] suggesting the need in the increase of operating spin-wave frequencies up to 
the sub-TH z or TH z ranges.  

 

Concluding Remarks 

It was shown numerically that ME-cell based spin-wave logic circuits can overcome a 10 nm 
CMOS implementation by up to 100 times in terms of the area-delay-power product (ADPP) (see 
Section 3). This is the reason why the main attention of the magnonics research community is focused 
nowadays on the realization of high-efficiency magnon-to-current converters. The all-magnon circuits 
approach also has shown that can be competitive to CMOS in terms of footprint and energy 
consumptions. These achievements are very encouraging and suggest the utilization of the developed 
concepts and approaches for their further utilization in much more powerful unconventional, 
neuromorphic and quantum computing concepts instead of Boolean ones. As was shown, 
unconventional spin-wave logic circuits promise an intriguing possibility of constructing multi-
functional logic architectures with built-in memory, pattern recognition, prime factorization and 
others. Particularly these unconventional computing concepts at the nano-scale utilizing the powerful 
nonlinear spin-wave physics have a large potential to compete with CMOS and to occupy its niche in 
specialized types of computing applications.  
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22. Biologically encoded magnonics 
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Status 

Biologically encoded magnonics or biomagnonics, for short, is a recent approach to magnonics 
research, wherein biogenic magnetic material is harnessed for magnonics applications. 
Magnetotactic bacteria present an ideal model system for biomagnonics studies. These 
microorganisms have the genetic machinery to form dedicated ensembles of magnetic nanoparticles 
-- magnetosomes -- for orientation by the Earth's magnetic field. The magnetosomes consist of a 
strongly magnetic material (magnetite, Fe3O4), have magnetic-single domain character, and are 
arranged in the form of one or several linear chains [1]. Each magnetic particle is enclosed in a 
membrane vesicle, which not only controls the shape and size of the particle (< 100 nm) but also 
keeps adjacent particles separated by a clear distance of 8 - 10 nm [1]. Thereby, the particles are not 
exchange-coupled among each other but interact solely by their stray fields. The spatial distribution 
of the stray fields, and thus the spin-wave spectrum, depends on the geometric arrangement of the 
particles, which, in turn, is biologically controlled. The mode profile, i.e., the spatial distribution of 
phase and amplitude, of spin-waves in magnetic nanoparticles exhibits distinct differences from 
larger systems: At gigahertz excitation frequencies (≤20 GHz at ca. 300-400 mT), each nanoparticle 
responds with a uniform precession [2]. Dipolar pinning, which is known to unfavourably distort the 
mode profiles near the edges of a large continuous sample [3], is suppressed in nanoparticles due to 
the strong, short-range exchange coupling. This entails a macrospin behaviour where each individual 
nanoparticle acts as a coherent oscillator. At the same time, wavelengths that are shorter than 
typical low-frequency exchange- or dipolar spin-waves, can be accommodated in particle chains by 
forcing neighboring particles to oscillate with different phases. It was also observed in [2,3] that 
nanoconfinement leads to coherent oscillation and a significant reduction in spectral linewidth, i.e., 
reduced damping, even compared to homogeneous bulk samples. 

An instructive example of a suitable magnonics device based on dipolar interactions are 
three single-domain particles arranged around the corner. The spectral response of such a system to 
a spatially uniform excitation reveals an intriguing magnonic property at an applied field angle of 45° 
(Fig. 1a) - a spectral gap. The origin of the gap can be rationalized from the analysis of spatial mode 
profiles in the system. The relevant modes are the high energy mode (Fig. 1b, i), where the particles 
precess all with the same phase, and the low energy mode (Fig. 1b, ii), where the corner-particle is 
locked to an anti-phase oscillation with respect to the end particles. Having incommensurate spatial 
mode profiles (Fig. 1b), these two normal modes (eigenstates) repel each other when approaching 
45°, hence the spectral gap. Importantly, an eigenstate can also be excited by driving just a single 
particle at the eigenfrequency of the corresponding eigenstate; the energy from the local driving 
force is transmitted into collective oscillations through dipolar coupling among the particles. By 
driving a second particle at the same frequency, the eigenmode can be sustained or annihilated, 
depending on the phase difference between the two driving forces. For example, in the high-energy 
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eigenmode, the spin-wave amplitude in the corner particle will be annihilated by anti-phase driving 
forces (Fig. 1c, i), but not by in-phase driving forces. For this system, a logic gate can be realized most 
conveniently when locally exciting the end particles such that the phase information of both end 
particles is mixed, i.e., is processed, in the corner particle (Fig. 1c, d). The logic states of this device 
for the simplest types of phase relationships between the end particles (in-phase and anti-phase) are 
shown in the logic tables (Fig 1e.). When selecting the low energy mode, the resulting gate is inverse 
to that of the high energy mode (Fig. 1f). These results demonstrate that several logical operations 
can be performed in simple geometric formations of dipolar coupled nanoparticles. In the three-
particle structure modelled here, the individual particles have no intrinsic anisotropy, so that the 
angular dependence of the excitation spectrum is solely determined by the geometric arrangement 
of the particles. This simple system can also be tuned in terms of the spectral gaps, which can be 
widened by increasing the dipolar coupling strength, for example, by selecting a magnetic material 
with larger saturation magnetization or by decreasing the distance between particles. 
 

 
 

 
   

Figure 1.  a) Simulation (mumax3 [10]) of the spectral response of an arrangement of three magnetite (Fe3O4) particles to a spatially 
uniform microwave excitation in a static magnetic field of 360 mT, applied over a sequence of in-plane directions from 0° to 90° (inset). 
If the horizontal and vertical segment of the arrangement (encircled in pink and green in the inset) were spatially isolated from one 
another, their spectral responses (dashed lines in respective colors) would cross at 45°. Coupling the segments through the shared 
corner particle, however, causes a spectral gap to emerge at 45°. b) Spatial mode-profile associated with the normal-modes at 45° in a), 
for high-energy (i) and low-energy state (ii), respectively. c) Exemples of excitation under non-uniform driving forces. Left: Antiphase 
driving (180° phase shifted) of end particles (P1 and P2, see scheme in d) at point i) of spectrum does not excite corner particle “Out”. 
Right: Driving just one end particle at point ii) of spectrum produces in-phase oscillation in the opposite end particle, conveyed by anti-
phase oscillation of corner particle, similar to mode profile ii depicted in b). d) Pictographic sketch of the 3-particle magnonic logic-gate 
setup. e) State table of the response of the corner-particle (green) to individual excitations of the end-particles (blue and red), with “1” 
and “-1” signifying phases π/2 and 3π/2, respectively. The box enclosing a) and b) indicates a spatial uniform excitation as opposed to 
the excitations of individual particles (c-f). 
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As demonstrated recently on the basis of microcavity ferromagnetic resonance (FMR) 
measurements and micromagnetic simulations [2], bacterial magnetosome chains exhibit magnonic 
properties that make them interesting for applications; most notably, chains with a sharp kink were 
identified to have FMR spectra similar to the three-particle magnon logic gate. Since the geometrical 
configuration of magnetosomes determines the overall topology of its magnonic band structure, the 
key to controlling biologically encoded magnonics is primarily through the structural determinants of 
the magnetosome chain. In magnetotactic spirilla, which are amenable to genetic manipulation, two 
dozens of magnetosome-associated proteins have been identified, with some of them necessary for 
proper assembly, alignment, and positioning of chains (see ref. [4] for the most recent work). In our 
recent study [2], we have focused on cells lacking the gene (mamK) that encodes a filament-forming 
protein (MamK), which in wild-type cells acts as a dynamical scaffold for magnetosome chains. 
Indeed, in the ΔmamK deletion mutant of Magnetospirillum gryphiswaldense, considerably more 
cells with kinked, closed, or other magnonically interesting chain structures can be obtained 
compared to wild type (compare Fig 2 a and b). Another crucial protein in magnetotactic spirilla is 
the cell-curvature sensing protein MamY, which is necessary for positioning the magnetosome chain 
along the geodetic cell axis of the helically wound cell body so that cells of the ΔmamY deletion 
mutant fail to produce straight chains [4]. Although Magnetospirillum sp. are genetic models of 
magnetotactic bacteria, other types of magnetotactic bacteria with non-helical cell morphology have 
great potential for biomagnonics, too. Particularly interesting here are magnetotactic cocci (round 
cells), whose magnetosome chains tend to form sharp kinks in response to the compressive forces 
during desiccation-induced cell shrinkage [5], offering the prospect of obtaining magnonic gates 
even without direct genetic manipulation. Besides structural determinants of the magnetosome 
chain geometry, secondary mechanisms for tuning the magnonic fine-structure and damping 
processes are available, too. When fed with Mn2+ and Fe3+ in equal proportions, magnetotactic 
spirilla incorporate 1% Mn2+ in their magnetite crystals, which somewhat reduces the particle size, 
saturation magnetization, and magnetocrystalline anisotropy  [6] (isotropic Mn2+ replacing 
anisotropic high-spin Fe2+ at octahedral sites in the inverse spinel lattice); we note that similar 
effects may be achieved more cheaply by doping with cation vacancies during post-growth oxidation 
of magnetite to maghemite (γ-Fe2O3). Magnetite and maghemite can also be post-growth modified 
by impregnation with a Co2+-containing solution, resulting in an anisotropy gradient towards the 
particle surface and thus modifies the effective magnetic material parameters, such as damping, 
anisotropy, magnetization, and g-factor. Last, the dipolar coupling strength among the 
magnetosome particles may be reduced by preventing them from reaching their full size, e.g., under 
suitably chosen growth conditions, or in a mutant strain, such as the ΔGFDC deletion mutant of MSR-
1 [7].  
 
Current and Future Challenges 
Thus far, we have studied single cells of just two genotypes. Still, there are many more species of 
magnetotactic bacteria to be explored in terms of their intrinsic magnonic properties and 
tailorability. Single-cell measurements will have to be guided and underpinned by micromagnetic 
simulations (e.g., Fig. 1) to identify candidate geometries for magnonic applications. The geometries 
may be produced lithographically and biologically, with biogenic production having two distinct 
advantages:  First, the biological growth mechanisms ensure excellent crystallinity, magnetic single-
domain character, consistent shape, and narrow particle-size spectrum [1]. Secondly, bacterial cells 
can be produced in large batches from which candidate cells with potential logic gates can be 
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isolated, amplified, and perhaps even further optimized by directed evolution. Once a bacterium has 
been selected for desired magnonic properties, self-reproduction yields exponential production 
scalability. At the same time, it is essential to further advance our understanding of the molecular 
cell biology of magnetotactic bacteria to allow for targeted genetic engineering of desirable 
magnonic logic gates and even computational magnonic networks (as illustrated in Fig. 2c). Damping 
and other transport properties can be tailored through particle size and material choice. Although 
the composition of the magnetic material in magnetotactic bacteria is under genetic control and 
thus only partially influenceable during active growth [6], it is nevertheless amenable to post-growth 
modification. Thereby, logic gates can be tuned toward fast operation (large damping) and long 
transport distances (small damping) simultaneously. 
Another challenge to nanomagnonics is the input/output periphery for spin-wave excitations on the 
nanoscale. One option to write individual inputs and read individual outputs is to drive the magnons 
through spin-torque excitations. This technique can be used for magnetic switching [8], but also for 
dynamic excitation of spin-wave normal modes [9]. The drawback of involving electrical currents can 
be mitigated by using a minimal amount of electrical inputs and outputs to an, otherwise, all-
magnonic network. 
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Concluding Remarks 
The reachable density of logic gates when using networks of nano-sized magnon logic elements (e.g., 
Fig. 1) has the potential to outperform conventional charge-based silicon transistors (Fig. 2d). Self-
organized magnonic gates can be harvested from magnetotactic bacteria (Fig. 2b), allowing for 
sustainable production of magnonic logic gates with exponential scalability. Future attempts will 
focus on engineering biological cells to produce magnetic nanoparticle configurations that perform 
desired magnonic tasks.  
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