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Summary 
The series of RNA folding events that occur during transcription can critically 

influence cellular RNAs’ function. Here, we present Reconstructing RNA Dynamics from 

Data (R2D2), a method to uncover details of cotranscriptional RNA folding. We model 

the folding of the Escherichia coli signal recognition particle RNA and show that it 
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requires specific local structural fluctuations within a key hairpin to engender efficient 

cotranscriptional conformational rearrangement into the functional structure. All-atom 

molecular dynamics simulations suggest that this rearrangement proceeds through an 

internal toehold-mediated strand-displacement mechanism, which can be disrupted with 

a point mutation that limits local structural fluctuations and rescued with compensating 

mutations that restores these fluctuations. Moreover, a cotranscriptional folding 

intermediate could be cleaved in vitro by recombinant E. coli RNase P, suggesting 

potential cotranscriptional processing. These results from experiment-guided multi-scale 

modeling demonstrate that even an RNA with a simple functional structure can undergo 

complex folding and processing during synthesis. 

 

 

Introduction 
  RNA structures begin to form during transcription. A nascent RNA exiting RNA 

polymerase (RNAP) transitions through intermediate structures that can ultimately 

influence the RNA’s final fold and function (Kramer and Mills, 1981). Because RNA 

folding generally occurs faster than transcription (Mustoe et al., 2014), the 5′ to 3′ 

directionality of RNA synthesis guides a cotranscriptional ‘folding pathway’ (Pan and 

Sosnick, 2006). Each time an RNA is transcribed, the ensuing order of folding is critical 

for essential catalytic RNAs to adopt a functional structure, for riboswitches to make 

regulatory decisions, for ribonucleoprotein complexes (e.g., ribosome) to assemble, and 

for RNA processing to take place with efficiency and fidelity (Al-Hashimi and Walter, 

2008; Saldi et al., 2018; Serganov and Nudler, 2013). Thus, establishing the principles 

of cotranscriptional folding is important to understand how each RNA adopts its native 

structure, with additional payoffs for better appreciating the dynamic behavior that 

underpins RNA-based molecular machines and switches. 

  Despite the widespread biological importance, we still lack a complete 

understanding of the dynamic, non-equilibrium folding pathways that RNAs undergo 

during transcription. Pioneering RNA folding studies showed that the synthesis order of  

RNA sequence elements are important for establishing functional folds of RNA enzymes 

(Heilman-Miller and Woodson, 2003; Pan et al., 1999). Enzymatic RNA structure 
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probing was then used to generate models of cotranscriptional folding processes (Wong 

et al., 2007). Single-molecule force spectroscopy has also been used to track in real-

time the major folding events of regulatory riboswitches (Frieda and Block, 2012). To 

complement these approaches with higher-resolution structural information, we 

previously developed cotranscriptional SHAPE-seq, a chemical structure probing 

method that captures nucleotide-resolution flexibility data for each length of a nascent 

RNA in stalled transcription elongation complexes (Watters et al., 2016a). While these 

experimental methods are powerful, the resulting data are complex and cannot be 

directly used to obtain specific RNA structure models. 

  Computational RNA folding algorithms are important tools for generating models 

of RNA structure and folding. Some of these algorithms modify minimum free energy 

(MFE) folding calculations to capture some features of cotranscriptional folding (Proctor 

and Meyer, 2013) or use stochastic simulations of RNA folding with growing chain 

length to model cotranscriptional folding (Danilova et al., 2006; Geis et al., 2008; 

Hofacker et al., 2010; Xayaphoummine et al., 2005). Comparative methods utilizing 

multiple sequence alignments and evolutionary trees have also been developed to 

capture potentially conserved transient structures (Wiebe and Meyer, 2010).  

 We developed a method called Reconstructing RNA Dynamics from Data (R2D2) 

which combines nucleotide-resolution experimental RNA structure chemical probing 

data with computational structure prediction algorithms to reconstruct models of 

secondary and then tertiary RNA cotranscriptional folding pathways. We applied R2D2 

to model the folding pathway of the Escherichia coli signal recognition particle (SRP, or 

4.5S) RNA, a highly conserved non-coding RNA that is found in all kingdoms of life 

(Rosenblad et al., 2009). This SRP RNA binds to the Ffh protein to form the signal 

recognition particle, which recognizes nascent signal peptide sequences and delivers 

ribosome-nascent chain complexes to the inner membrane for translocation through 

docking to the SRP receptor. The SRP RNA, which fulfills this critical role in cellular 

protein biogenesis, consists of a single long hairpin containing several internal bulges 

and non-canonical base pairs (Batey et al., 2000). This tertiary fold is thought to be 

generated prior to removal of a 5′ leader sequence by RNase P, an essential 

endonuclease known primarily for its role in tRNA 5′-maturation (Bothwell et al., 1976). 
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The E. coli SRP RNA is a valuable model for studies of nascent RNA folding because 

previous studies indicate that during transcription, the SRP RNA rearranges from an 

intermediate hairpin fold that differs substantially from the single long hairpin, into an 

extended helical structure (Wong et al., 2007) that resembles the functional structure 

(Hsu et al., 1984; Jomaa et al., 2017). We therefore applied R2D2 to this model system 

to uncover mechanistic insights into this rearrangement process.  

Our secondary structure models of the processed form of the SRP RNA 

confirmed the overall rearrangement, and inspired a point mutation within an 

intermediate hairpin that disrupts the cotranscriptional rearrangement of the SRP RNA. 

We then performed all-atom molecular dynamics (MD) simulations to assess possible 

mechanisms for the native sequence rearrangement and gain insights into how a single 

mutation can disrupt this process. Upon evaluating multiple rearrangement 

mechanisms, the simulations suggest that the rearrangement likely proceeds via an 

internal toehold-mediated strand-displacement mechanism. This folding route requires 

local structural fluctuations within the intermediate hairpin, and the point mutation 

abolishes these fluctuations. We also engineered point mutations that were predicted to 

re-introduce flexibility into the intermediate hairpin, and indeed such a change rescued 

the ability of the SRP RNA to cotranscriptionally rearrange into its native fold. The 

presence or absence of the 5' leader that is cleaved by RNase P was not found to affect 

these folding mechanisms. Interestingly, our models predicted that one of the 

intermediates could serve as a natural substrate for RNase P. Indeed, we found that the 

intermediate is cleaved in vitro by recombinant E. coli RNase P, suggesting that SRP 

RNA processing could occur cotranscriptionally as well as the established post-

transcriptional pathway. While this work was being performed, several of our structural 

predictions were corroborated by an independent study that used a high-resolution 

optical tweezers instrument to follow in real-time and on a single-molecule scale the 

cotranscriptional folding of the same SRP RNA sequences (Fukuda et al., 2019). 

Overall, this work presents a method for multi-scale modeling of RNA 

cotranscriptional folding pathways from experimental data and uncovers efficient ways 

by which RNAs can rearrange intermediate structures into final functional folds by 

exploiting toehold-mediated strand-displacement mechanisms. 
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Design 
While in silico cotranscriptional folding predictors show great promise, the 

algorithms could benefit from high-resolution experimental studies to corroborate, guide, 

and improve their predictions. For example, RNA chemical probing data can be used as 

restraints in computational RNA folding algorithms to improve the agreement between 

equilibrium predictions and experimental measurements (Deigan et al., 2009). However, 

these algorithms were developed to model RNA folding under equilibrium conditions, 

and efforts to predict cotranscriptional secondary structure folding pathways from 

chemical probing data are in early stages (Li and Aviran, 2018). To address this gap, we 

developed R2D2 to implement experiment-guided multi-scale modeling of RNA 

cotranscriptional folding. 

R2D2 uses nucleotide-resolution chemical probing data as input to reconstruct 

models of secondary and then tertiary RNA cotranscriptional folding pathways 

(Methods). Secondary structure modeling for each length of a growing nascent RNA 

begins by first sampling possible structures using RNA sequence information and 

cotranscriptional SHAPE-Seq data. Subsequently, using an optimized structure-to-data 

distance metric, sampled structures that are most consistent with the experimental data 

are selected resulting in a family of possible structural states, reflecting intermediate 

nascent RNA lengths generated during transcription. This design choice was inspired by 

previous methods (Ding et al., 2004; Ouyang et al., 2013; Quarrier et al., 2010) that 

pioneered 2-D RNA structure sampling and selecting, but differs in the sampling and 

selection protocols in addition to connecting secondary structures to 3-D dynamic 

modeling. R2D2’s secondary structure reconstruction is then used as a starting point for 

all-atom molecular dynamics (MD) simulations to generate 3-D models of 

cotranscriptional folding transitions observed between specific predicted intermediate 

states.  

Most prior approaches to simulate cotranscriptional RNA folding operate purely 

at the secondary structure level (Danilova et al., 2006; Geis et al., 2008; Hofacker et al., 

2010; Xayaphoummine et al., 2005) and are therefore unable to capture the inherently 

3-D nature of topological strain, multi-helix junctions, and long-range base-pairs 
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including pseudoknots and kissing-loops. Given the disproportionate impact such 

interactions have on the kinetics of cotranscriptional folding of SRP, a 3-D model was 

clearly needed for this study. Conversely, 3-D simulations have been previously used to 

study the folding pathways of the SAM-1 riboswitch (Whitford et al., 2009), utilizing a 

Gŏ-like energy model originally developed for studying protein folding. Our approach 

shares the motivation of reducing folding frustration; however, the Gŏ-model approach 

requires a solved 3-D structure as an input, which is unavailable for the SRP pre-

rearrangement complex. Furthermore, the implicit solvent- and native contact-based 

potential cannot be expected to accurately depict folding intermediates stabilized by 

non-native tertiary interactions. Therefore, there is a need for a new approach that 

preserved the overall efficiency of the Gŏ-like models even while retaining the general 

applicability of a traditional explicit solvent-based molecular dynamics simulation. We 

accomplished this objective by incorporation of selective R2D2-derived restraints 

applied to all-atom, explicit solvent model simulations capable of the de novo folding of 

small RNAs. 

 
 

Results  
A sample-and-select approach to reconstructing RNA folding pathways from 

experimental data 

  We developed a method to merge computational multi-scale RNA structure 

algorithms with nucleotide-resolution datasets generated from cotranscriptional SHAPE-

seq experiments that probe nascent RNA structure (Figure 1). Cotranscriptional 

SHAPE-seq begins with in vitro transcription of a DNA template library that directs the 

synthesis of each intermediate length of a target RNA using RNAP roadblocks (Watters 

et al., 2016a). Transcription from this template library generates nascent RNAs of all 

intermediate lengths of the target sequence, which are rapidly probed with the fast-

acting SHAPE reagent benzoyl cyanide (BzCN; self-inactivation t1/2 of 250 ms) to 

covalently modify the RNA according to its structure (Mortimer and Weeks, 2007). RNA 

nucleotides that are unconstrained by secondary or tertiary structure are more reactive 

and easily modified (Aviran et al., 2011; Bindewald et al., 2011). Library preparation, 
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sequencing, and bioinformatics analysis is then used to generate SHAPE reactivities for 

each nucleotide of each nascent intermediate length RNA species (Watters et al., 

2016a) (Figure 1A).  

 We used a sample-and-select method to reconstruct secondary structure folding 

intermediates within R2D2. The R2D2 sample-and-select method consists of two steps: 

(1) generate a set of possible structures at each nascent RNA length by sampling 

candidate structures from the sequences alone, and (2) computationally select the most 

likely structure(s) using observed experimental data (Figure 1C). Thus, R2D2 requires 

SHAPE-Seq data to select structures and SHAPE-Seq data is a necessary input. 

Comparison between SHAPE-Seq reactivities and sampled structures with a ‘distance’ 

metric that reflects how similar reactivity patterns are to candidate secondary structures 

is used to select structures that are most consistent with the data at each nascent RNA 

length (Figure 1C, Table S1).  

To generate candidate structures, the sample method statistically examines 

structures with a large sample size using the partition and stochastic functions of the 

RNAstructure suite of computational secondary structure prediction tools (Reuter and 

Mathews, 2010). We applied three variations of the partition method that incorporated 

experimental SHAPE reactivities in different ways to sample 150,000 structures for each 

length to increase the diversity of structures sampled (Methods).  

 To select structures from this sampled set, we developed six metrics to calculate 

the distance between a given SHAPE-Seq reactivity spectrum and a given RNA 

secondary structure (Table S1, Methods). Structures with the minimum distance 

calculated between it and the reactivity spectrum were selected from a candidate 

sampled set (Figure 1C). By applying this selection at each nascent RNA length, we 

could reconstruct possible folding intermediates that were most consistent with the 

experimental data. 

 

Benchmarking sample-and-select on equilibrium refolding data 

We next assessed the accuracy of each proposed distance metric. As there are 

currently no established benchmarks for cotranscriptional folding predictions, we instead 

assessed distance metrics by predicting the equilibrium folds of an established 
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benchmark panel of RNAs using SHAPE-Seq data (Loughrey et al., 2014). Each 

distance metric contains several parameter values that are used to determine how the 

SHAPE reactivities are compared to sampled RNA structures: 𝜌𝑚𝑎𝑥 and 𝜌𝑐 determine 

cutoffs in reactivity values, and 𝛼 weighs the contributions from paired vs. unpaired 

positions (Methods). For each of the six distance functions, we determined the optimal 

values of the three fit parameters by applying the sample-and-select method to a panel 

of RNAs previously used to benchmark equilibrium SHAPE-directed secondary 

structure prediction algorithms (Table S1). The best performing parameter sets 

performed comparably to the SHAPE data-based output of the Fold module of 

RNAstructure, a widely used RNA secondary structure prediction algorithm (Table S2, 

Methods).  

 

Reconstructing the secondary structure cotranscriptional folding pathway of the E. coli 

SRP RNA sequence 

We next applied the R2D2 sample-and-select method to our previously published 

SRP RNA cotranscriptional and equilibrium refolded SHAPE-seq datasets (Watters et 

al., 2016a), and this study further characterizes mutants designed based on R2D2 

results. The SRP RNA sequence used was based on "Wong et al., 2007" who 

examined SRP RNA folding using a variant that has AUC in place of the 5' native 24-nt 

leader. Before applying R2D2 sample-and-select to this cotranscriptional probing 

dataset, we removed the last 14 nt from each 3′ end of the RNA sequence to account 

for the RNA polymerase footprint (Komissarova and Kashlev, 1998). To compare 

cotranscriptional to equilibrium refolded datasets that do not contain an RNAP footprint, 

we compare trimmed cotranscriptional transcript lengths to equal lengths of the 

equilibrium-refolded RNA sequence from each experimental dataset. To visualize R2D2 

predictions at each nascent RNA length, we plotted the computed free energies (∆G) of 

each selected structure and connected all possible paths between selected structures 

for visual convenience, noting that connections do not imply transition probabilities 

between states (Figure 2A). Notably, we observed that distinct structures can have the 

same minimum distance to the experimental data, which may reflect a mixed population 



 9 

of RNA states at specific lengths. We therefore chose to leave these multiple structures 

as distinct possibilities that are equally consistent with the data.   

Despite diversifying our sampling procedure 150-fold over some previous 

sample-and-select methods (Ding et al., 2004; Ouyang et al., 2013), we found that it is 

intractable to generate an exhaustively complete set of candidate structures at each 

length due to the slow convergence of the stochastic sampling method (Figure S1A,C). 

Thus, iterations of sample-and-select may generate different sets of candidate 

structures that can be consistent with the data. To incorporate this variability in 

sampling, we ran 100 iterations of R2D2 sample-and-select on each SHAPE-Seq 

dataset to generate a family of possible intermediate folding states (Figure 2A). We 

applied this method to cotranscriptional SHAPE-Seq datasets of the SRP RNA 

sequence, as well as SHAPE-Seq datasets from experiments performed on an 

equilibrium refolded population of the same SRP RNA sequence intermediates to 

compare out-of-equilibrium to equilibrium predictions of intermediate states (Figure 2, 

Figure S2). Overall, we observed that cotranscriptional and equilibrium predictions are 

similar for short RNA lengths, diverge as the RNA length increases, and ultimately 

converge near full length. 

To analyze structural changes that may occur during transcription, we extracted 

specific structures chosen by the select method at each nascent length. We viewed the 

family of selected structures at each length using RNAbow software (Aalberts and 

Jannen, 2013), which revealed specific structural changes across the SRP RNA folding 

trajectory that differ between out-of-equilibrium and equilibrium datasets (Figure 2B-H, 

Figure S2B-E, Figure S2G-J). When the first 23-25 nt are free to fold in the 

cotranscriptional SHAPE-Seq predictions, we detect the formation of a 5′ helix 

containing 3 or more base pairs which persists through most of the folding pathway 

(Figure 2B-F). Interestingly, this 5′ helix differs in its make-up from the 5′ helix consisting 

of positions 4-10 paired to 16-22 that was inferred based on enzymatic probing 

experiments (Figure S3A,C) (Wong et al., 2007). Instead, we consistently predict a 5′ 

helix 1 (H1) where positions 3-8 are paired to 20-25, which is consistent with the 

previous enzymatic probing results (Figure S3B,D) but also by our cotranscriptional 

SHAPE-Seq data (Figure S3E). We found that H1 is present for a large portion of the 
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folding pathway and, based on our reconstructed states, starts to rearrange into the 

native long helical structure at lengths 110-111 nt (Figure 2B-G, Figure S2B-D, Figure 

S2G-I, SI Movie 1).  

The next highly persistent structure that forms is a helix created when nts 53-55 

pair with 60-62 to form the apical stem-loop of the native structure (Figure 2C-G, Figure 

S2B-E,G-J). We note, however, that our reconstructions do not predict the formation of 

four non-canonical interactions that are present in the crystal structure of the E. coli 

SRP RNA: C49-A66, A50-C65, G51-G64, and G52-A63 (Batey et al., 2000). We 

attribute this to the reliance of R2D2’s sample-and-select method on RNAstructure’s 

partition and stochastic functions which are not able to sample structures that contain 

non-canonical interactions, although portions of the cotranscriptional SHAPE-Seq 

reactivity matrix in this region show elevated reactivities indicating this region also likely 

does not close on the 30 s timescale of our experiment. Despite these differences, 

R2D2 does reconstruct most of the mature SRP RNA sequence structure by length 117 

(Figure 2H, Figure S2E,J). 

 Prior to folding into the final structure, the sample-and-select method also 

predicts 3′ hairpin structures at various transcript lengths. One such structure is 

between nucleotides 72 to 90, which we denote early helix 3 (eH3), and the next is 

between nucleotides 87 to 105, which we denote helix 3 (H3) (Figure 2E,F). Both eH3 

and H3 locally insulate bases that form different pairs with nucleotides that are 

ultimately sequestered within H1 in the final structure. H3 was previously found by 

comparative analysis of SRP RNA sequences from diverse bacterial species, 

suggesting it may be an evolutionarily conserved transient structural feature of the SRP 

RNA (Zhu et al., 2013). The presence of H1 and H3 present a significant structural 

barrier to cotranscriptional folding in that both must be broken to form the mature 

extended helical fold. We note, however, that H3 and eH3 are not predicted in every 

selected structure indicating that additional folding pathways are likely.  

 

Sample-and-select models differ from approaches that do not use experimental data  

Based on the ∆G folding trajectory, R2D2’s sample-and-select chooses 

structures that are higher in free energy than the MFE predicted with or without 
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experimental data at almost all lengths (Figure 2A, Figure S2A,F, Figure S4A). Other 

than MFE approaches, one of the most widely used is KineFold, which simulates 

cotranscriptional folding given only an input sequence and a desired transcription rate 

(Xayaphoummine et al., 2005). In a comparison between 100 repetitions of KineFold 

and R2D2, KineFold predicted different folding pathways. The key differences between 

the two approaches pertain to predictions of transient helices such as H1 and H3 as 

well as the location of structural rearrangements (Figure S4B-F). Predictions between 

R2D2 and KineFold differ even when simulating 40 s of transcription and stalling at 

each intermediate length with KineFold to test if the RNAP roadblocking strategy in 

cotranscriptional SHAPE-seq (30 s of transcription followed by SHAPE probing) 

explains differences between R2D2 and KineFold (Figure S4G-J).  

 

A single point mutation delays the cotranscriptional rearrangement of the E. coli SRP 

RNA sequence 

R2D2 predictions show structural variation within H1 across the folding pathway 

(Figure 2, Figure S2, Figure 3A), which we hypothesized is due to the GU pair within the 

otherwise GC-rich H1. We therefore mutated the native U21 to C21 to change the GU to 

a GC bp, thereby increasing the stability of H1 and disfavoring the rearrangement into 

the final helix structure (Figure 3B). R2D2 analysis of the cotranscriptional SRP RNA 

U21C dataset predicts the presence of H1 at all lengths of the folding pathway through 

lengths 112, 111, and 110 nt in the first, second, and third replicate, respectively (Figure 

3D-H). In contrast, R2D2 shows the rearrangement into the final extended structure in 

U21C equilibrium-refolded data occurring earlier at length 109 nt. These differences in 

R2D2’s 2-D results of SRP RNA U21C cotranscriptional and U21C equilibrium-refolded 

SHAPE-seq reactivities are due to reactivity differences (e.g., consistent drops in H1 

loop reactivities at lengths 108-109 nt of the equilibrium-refolded data; Figure 3C). 

DUETT, a recently developed algorithm to systematically detect reactivity changes in 

cotranscriptional SHAPE-seq datasets (Xue et al., 2019), detected these drops in 

reactivity.  

The lack of H1 predictions at near full-length RNAs (Figure S5A-B) indicate that 

rearrangement of H1 is possible given the experimental data but is delayed due to 
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minimization of local fluctuations in H1 (discussed below in Uncovering potential 

mechanisms of the SRP RNA cotranscriptional structural rearrangement with all-atom 

simulations). However, we also explore the possible limitations in the Boltzmann 

distribution-directed sampling methods used as a reason for the predicted 

cotranscriptional rearrangement of U21C. Boltzmann distribution-directed sampling is 

naturally biased towards sampling lower free energy structures making it difficult for the 

algorithm to choose out-of-equilibrium structures especially with increasing RNA 

lengths. To investigate this possibility, we added to the selection pool structures 

sampled from the previous six lengths and extended them with unpaired nucleotides. 

With these additional structures, we find that H1 persists through lengths 113-116 nt, 

while rearrangement is predicted at length 117 nt in only two of the three replicates 

(Figure S5A-B). We also ran R2D2 using this modified sampling procedure on the 

native SRP RNA sequence as a control and found lengths 115-117 nt (Figure S5A-B) 

are predominantly predicted to be rearranged as expected. Application of the standard 

R2D2 sample-and-select procedure to the SRP U21C equilibrium refolded datasets 

showed the presence of H1 but recovered the rearrangement into the final extended 

helical structure after length 109 nt (Figure 3D-H). Taken together, these data 

demonstrate that a single point mutation can delay a key transition of the SRP RNA 

cotranscriptional folding pathway and kinetically trap the RNA in non-native intermediate 

structures. 

 

A single GU wobble is critical for the E. coli SRP RNA cotranscriptional rearrangement 

into the extended final fold 

Since the replacement of a single GU bp in the predicted H1 helix is enough to 

disrupt the cotranscriptional rearrangement of SRP RNA, we sought to test if 

reintroducing a GU pair in H1 would rescue the cotranscriptional rearrangement. We 

therefore designed a mutation (U21C, C22U, G93A) that reintroduces a GU wobble pair 

one position lower in the stem of H1 and maintains sequence complementarity between 

nt 22 and nt 93 (Figure 4A). The cotranscriptional SHAPE-Seq reactivity matrix for this 

mutant shows a drop in reactivities at length 119 nt (~105 nt free to fold) which was 

determined with automated detection of reactivity changes (Xue et al., 2019) (Figure 
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4B). In addition, when applied to this dataset, R2D2 sample-and-select predicts that this 

mutant follows a similar folding pathway as the native sequence (Figure 4C,D), and that 

the rearrangement occurs at lengths 110 and 111 nts between three replicates which is 

the same rearrangement lengths as the wildtype sequence (Figure 4E, Figure S5F). 

Overall, these data point to the critical requirement of a GU pair within H1 to facilitate 

the cotranscriptional rearrangement into the final extended helix structure. 

 

Uncovering potential mechanisms of the SRP RNA cotranscriptional structural 

rearrangement with all-atom simulations 

We next sought to determine the mechanism by which the SRP RNA rearranges 

during transcription, and the role of the H1 GU bp in this process. Paradoxically, H3 

would be expected to impede this rearrangement, as both H3 and H1 need to somehow 

unzip and hybridize together to form the native extended helix structure. We therefore 

focused on mechanisms by which the three-hairpin consensus structure at 109 nt of 

cotranscriptional SHAPE-seq replicate 1 (Figure 2F) can rearrange into the extended 

helix structure at 110 nt (Figure 2G). Four distinct potential transition pathways were 

identified: the inside-out (Figure 5A), kissing loop (Figure 5B), late-toehold (Figure 5C), 

and early-toehold (Figure 5D) pathways. We used all-atom molecular dynamics 

simulations to characterize the relative feasibility of each of the four proposed transition 

pathways from the stable folding intermediate containing H1 and H3 (Figure 6A) to the 

mature fold (Figure 6B). Each pathway suggests that the rearrangement mechanism 

initiate with a different set of base-pairing interactions (Figure 5). To test each pathway, 

weak attractive biasing forces between specific nucleotides were sequentially added in 

a specific order, starting at the initial proposed interaction to facilitate transitioning to the 

mature fold. Eight replicate simulations were performed for each path (Methods). 

The inside-out hypothesis involves simultaneously breaking H1 and H3 at their 

stems from the middle radiating outwards to initiate the formation of the native helix 

(Figure 5A, SI Movie 2). While it was technically possible to observe the inside-out 

pathway in the simulation with large biasing forces, it would be extremely 

thermodynamically unfavorable since it would involve breaking two base-pairs for every 

one base-pair formed for a significant portion of the pathway (Figure 5E, SI Movie 2). 
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This pathway was possible only when stronger restraints were used, thus identifying an 

upper limit for the strength of the restraints for all of the other transition pathways.  

The kissing loop pathway assumes that bases 17-19 of the H1 loop and bases 

98-100 of the H3 loop form initial bp to seed the rearrangement (Figure 5B). These 

nucleotides were chosen because the resulting CG/GU/AU bp would produce a 

significantly stronger kissing-complex than those composed of only GU/AU bp, 

analogous to the 2-bp kissing complex that drives Moloney murine leukemia virus 

(MMLV) genome dimerization (Zhu et al., 2013). The kissing loop was not able to form 

in all simulations of this pathway, even when each simulation was extended multiple 

times for 100 ns and the strength of the long-range restraints were doubled (Figure 5E). 

The mismatch in length of the two helical segments effectively prevents the bases from 

forming hydrogen bonds in the pre-transition secondary structure. 

Finally, the late-toehold pathway assumes that bases 106-108, predicted to be in 

an unpaired strand at the 3′ tail of the RNA at the base of H3, initially pair with bases 9-

11 in the H1 loop and form a “toehold” interaction (Figure 5C, SI Movie 3). The initial 

toehold contacts were found to reliably form in 6/8 attempts as the 3′ tail of the nascent 

RNA is flexible and long enough to reach the loop of H1 (Figure 5E). All simulations that 

formed the initial toehold contacts proceeded through the refolding pathway to the 110-

nt structure.  

A decisive advantage of the toehold mechanism is the favorability of the strand 

exchange process that proceeds in a break-one-form-one bp manner. Once identified 

as a plausible mechanism, we realized that this toehold-mediated strand-displacement 

can also be initiated earlier in the folding trajectory before H3 forms (Figure 5D). 

Simulations of the “early toehold” indicate that the absence of H3 actually speeds up the 

rearrangement due to the greater flexibility of the longer single-stranded 3′ tail, the lack 

of an energetic barrier posed by H3 (Figure 5D), and the increased number of bases 

available to form the initial toehold. Thus, the toehold-mediated strand-displacement 

mechanisms are much more plausible than the other pathways considered.  

A detailed examination of the productive toehold-mediated folding pathways 

reveals several key architectural features that facilitate the rapid folding transition (SI 

Movie 3). Extension of the initial toehold-seeding interaction to the full rearrangement 
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requires fluctuations from the 11-nt loop of H1 into the stem (Figure 6C). H3, which is 

weaker than the GC-rich H1, readily unfolds in the simulations after the first few bp are 

formed, and the resulting increase in single-strandedness further facilitates flexibility in 

hybridization with the H1 loop (Figure 6D). In addition, the formation of C7-G110 and 

C8-G109 bp requires unraveling of the top of H1’s stem, which is facilitated by 

fluctuations of the GU bp. Only after C7-G110 and C8-G109 are formed is the H1 

hairpin weak enough to open up, allowing the remaining bp of the native helix to align 

and zip-up in an energetically downhill process to form the fully extended fold (Figure 

6B).  

The results described above suggested that the SRP RNA U21C mutant 

minimizes the ability of H1 to fluctuate, disabling this mutant to efficiently rearrange 

during transcription. To directly test this hypothesis, we performed simulations of the 

SRP RNA U21C mutant and found that the toehold can still form between bases 7-110 

and 8-109 when restraints were applied, but the mutant cannot transition into the final 

folded state because of the increased stability of H1 (Figure 6E, Figure 5E). The folding 

transition still stalled even when double-strength restraints were applied as these were 

insufficient to disrupt the G7-C21 bp. Finally, simulations of the rescue mutant (U21C, 

C22U, G93A) confirm that restoring flexibility in the upper stem of H1 recovers the 

ability to transition to the mature fold, albeit at a slower rate due to the extra bp that 

needs to be disrupted to unfold H1 (Figure 6F, Figure 5E, SI Movie 4).  

Overall, our simulations strongly suggest a toehold-mediated strand-

displacement rearrangement mechanism that is facilitated by bp fluctuations within the 

stem of H1.  

 

Addition of the precursor sequence to the SRP RNA does not impact rearrangement 

We next investigated how cotranscriptional RNA folding could affect the 

precursor SRP RNA and its processing by RNase P. The precursor SRP (pre-SRP) 

RNA contains a 5′ 24-nt leader sequence which is thought to contain a small hairpin 

(Figure 7A) (Peck-Miller and Altman, 1991). Interestingly, this precursor hairpin is 

predicted to fold independently when appended to the shorter SRP RNA lengths that 
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fold into H1, and together form a potential RNase P substrate. We therefore tested if 

such partial pre-SRP RNA sequences can be processed by RNase P.  

For use as a representative substrate, we generated by in vitro transcription a 

pre-SRP RNA (termed 24+24) with the 24-nt leader and the first 24 nt of the mature 

SRP RNA. Compared to the full-length pre-SRP RNA and pre-tRNAs, the 24+24 pre-

SRP RNA substrate differs in two aspects (Figure 7A). First, it has only five bp in the H1 

stem, which is shorter than the typical 7-bp acceptor stem of pre-tRNAs, and much 

shorter than the long stem in the full-length pre-SRP RNA. Second, this short substrate 

has a 2-nt 3′-CA terminus, compared to the 3′-CCC of the full-length pre-SRP RNA and 

the 3′-CCA of pre-tRNAs. Despite these differences, the 24+24 pre-SRP RNA was 

efficiently cleaved by in vitro reconstituted E. coli RNase P (Figure 7A,B). Since a Km of 

0.2 µM was calculated for the processing of full-length pre-SRP RNA by E. coli RNase P 

(Peck-Miller and Altman, 1991), we tested the rate of cleavage of the 24+24 pre-SRP 

RNA at 2.5 µM to ensure saturation. Our results yield a turnover number of 5.4 min-1 for 

the 24+24 pre-SRP RNA, compared to 37 min-1 reported for the full-length counterpart 

(Peck-Miller and Altman, 1991). 

 That the 24-nt leader sequence of the E. coli pre-SRP RNA could be cleaved 

both post- and co-transcriptionally motivated us to examine the effect of the leader 

sequence on the toehold-mediated strand-displacement mechanism. Additional all-atom 

simulations were conducted with the 24-nt leader sequence and its hairpin added, which 

was found not to interfere with the toehold-mediated rearrangement exhibited by the 

leaderless sequence. In one replicate of the pre-SRP RNA simulations, we observed 

the order of bp displacing H1 stem to be U21-A94, G25-C90, C24-G91, C23-G92, C22-

G93. This finding alludes to the possibility of an ensemble of cotranscriptional folding 

pathways. Additionally, the U21C mutation (now U42C in pre-SRP RNA) still abrogated 

toehold-mediated strand displacement, and rescued with the addition of C22U and 

G93A (now C43U, G114A) mutations in simulations.  

 

 

Discussion 
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We developed R2D2 to reconstruct nascent RNA folding at high resolution. Our 

R2D2 analysis of the SRP RNA reveals that although excursions to non-native 

structures could entail kinetic traps, they may also present a low free-energy path to the 

final native fold by minimizing structural fluctuations, as revealed here by R2D2 analysis 

of the SRP RNA. While ribosomal proteins have been shown to modulate rRNA 

dynamics and therefore the conformational ensemble (Kim et al., 2014), it appears that 

the same physical principles might help naked cellular RNAs traverse through non-

native structures during transcription.  

R2D2’s secondary structure approach builds on elements in previous RNA 

folding algorithms but is distinctive in its use of multi-scale modeling to reconstruct out-

of-equilibrium folded states along a cotranscriptional folding pathway. Thus, R2D2 is 

different from MFE prediction methods, which would not uncover the importance of H1 

flexibility because of H1’s stability in the SHAPE-directed MFE folding pathway (Figure 

S3, SI Movie 1). Specifically, the timescale of cotranscriptional folding invalidates the 

frequently used assumption of equilibrium RNA structural states at each nascent RNA 

length, making R2D2’s combination of experimental data and sample-and-select a 

promising approach. In this regard, the secondary structure aspect of R2D2 is similar to 

the recent SLEQ (Li and Aviran, 2018) and Rsample (Spasic et al., 2017) methods, 

although the latter are able to additionally estimate population levels of certain RNA 

structures. Overall, R2D2’s merging of multi-scale modeling with experimental data 

distinguishes it from previous computational methods to study cotranscriptional RNA 

folding.  

We focused our studies on a particular three helix-containing intermediate 

structure in the SRP RNA cotranscriptonal folding pathway. Using R2D2, we propose 

that this three-helix structure can efficiently rearrange into a single extended helix 

through a toehold-mediated strand-displacement mechanism, even while recognizing 

that alternative folding pathways are possible due to the stochastic nature of RNA 

folding. Even within toehold-mediated mechanisms, multiple toehold-initiation points and 

rearrangements starting from eH3 or other 3′ structures are possible, suggesting various 

routes to attain the native fold even while centered around a key decision point. The 

large size of the H1 loop could be important for the increased flexibility of these bases 
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for toehold nucleation as well as exposing a large sequence target to capture the many 

alternate transient 3′ end structures.  

Overall, it could be that the SRP RNA has evolved to allow multiple toehold-

mediated strand-displacement mechanisms to prevent the kinetic folding trap imposed 

by H1 and H3, which were previously identified as potential transient helices that are  

evolutionarily conserved (Zhu et al., 2013). Recently, it has been shown that many 

natural RNAs contain long-range interactions in the cell, some of which occur over 1kb 

away (Lu et al., 2016). Given the propensity of RNAs to form local structures 

cotranscriptionally, toehold-mediated strand-displacement could be one of the most 

efficient ways for RNAs to undergo large-scale rearrangements. Detailed in vitro studies 

of toehold strand-displacement reactions have demonstrated rates on the order of 

106/M/s for a bimolecular strand-exchange reaction (Šulc et al., 2015; Zhang and 

Winfree, 2009). In addition, the elementary steps of strand exchange can be inferred to 

occur on the µs timescale, orders of magnitude faster than the ms timescales of 

nucleotide incorporation during transcription (Roberts et al., 2008). Intriguingly, to the 

best of our knowledge, the observation of this mechanism within the E. coli SRP RNA 

cotranscriptional folding pathway is the first observation of toehold-mediated strand-

displacement in a naturally-derived RNA sequence. 

The high evolutionary conservation of the GU wobble bp in many RNAs that 

participate in key cellular processes has been rationalized by the unique chemical and 

structural properties of this bp (Varani and McClain, 2000). As exemplified in this study, 

the context-dependent, conformational “softness” of the H1 GU bp may additionally 

allow it to act as a tripwire that triggers structural transitions of non-native to native 

states. Interestingly, U21 in this study is conserved in small bacterial SRP RNAs 

(Kalvari et al., 2017), and follow-up studies could assess if conservation of other GU bp 

structural intermediates are important for cotranscriptional rearrangement.  

 While this manuscript was being prepared, an independent study of the 

cotranscriptional folding pathway of the same E. coli SRP RNA sequence was 

performed using single-molecule optical tweezers (Fukuda et al., 2019). This study 

revealed several structural features consistent with our findings including the formation 

of H1, the formation of H3 (e.g. denoted as H4 in that study), and the effect of the U21C 
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mutation (U18C in that study) on the folding pathway. Fukuda et al. also document 

‘hopping dynamics’ near the major rearrangement, consisting of large-scale fluctuations 

in RNA end-to-end distances. Based on our findings, these hopping dynamics could 

stem from the molecular search for toehold-seeding interactions, or strand-displacement 

attempts that open structural elements before rearrangement. These two 

complementary studies highlight the power of combining orthogonal approaches to gain 

a deeper and more complete mechanistic view of cotranscriptional RNA folding.  

A fascinating question in biology pertains to how RNAs efficiently fold into 

functional states and exit the kinetic traps imposed by the polarity and timescale of 

cotranscriptional folding in the cell. While a plethora of other interactions and processes 

in vivo could facilitate these structural rearrangements, it is possible that many cellular 

RNAs share the principles of the rearrangement pathways studied here for the E. coli 

SRP RNA to arrive at their respective final structure. Our demonstration of how a 

change in the identity of a single-nucleotide alters the folding trajectory also hints at how 

simple genetic changes could have spawned new functions in the early RNA world. 

 

Limitations 

R2D2 has several limitations, some of which are inherent in the underlying 

algorithms used to sample possible structures. Specifically, there are currently no 

efficient methods to sample RNA structures with pseudoknots, non-canonical base 

pairs, or RNA-ligand/RNA-protein interactions (Ding et al., 2004; Tan et al., 2017). 

Structures that can be efficiently sampled are biased to the equilibrium Boltzmann 

distribution, which we try to overcome by sampling 150,000 states at each RNA length 

instead of the more commonly used 1,000-10,000 (Kutchko et al., 2015; Li and Aviran, 

2018; Ouyang et al., 2013) (Figure S1). While all-atom molecular dynamics was used to 

connect selected secondary structural states, it is inefficient to connect all possible sets 

of states together to reconstruct a full dynamic cotranscriptional folding pathway.  
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Figure 1. Overview of the Reconstructing RNA Dynamics from Data (R2D2) 
approach. (A) Schematic of the secondary structure prediction method in R2D2. 

Cotranscriptional SHAPE-Seq is first used to determine reactivities at each nascent 

transcript length. These reactivities are used to generate secondary (2-D) structures 

along these transcript lengths. (B) 3-D simulations are then used to determine the 

feasibility of structural transitions between specific states within the ensemble of 2-D 

predictions. (C) Outline of the secondary structure prediction method. Potential RNA 

structures are statistically sampled for every nascent RNA length. For each length, 

structures are tested for consistency with the reactivity data at that length, and the most 

consistent structure is selected. This process is then repeated multiple times for each 

dataset to obtain a collection of structures over all of the nascent RNA lengths that 

represent structures along the cotranscriptional folding pathway that are consistent with 

the data. See also Table S1. 

 

Figure 2. R2D2 2-D pathway predictions for the E. coli SRP RNA sequence. (A) 
Secondary structure predictions by R2D2 on cotranscriptional and equilibrium refolded 

SHAPE-Seq data of the E. coli SRP RNA sequence. For each dataset, 100 folding 

pathway predictions were performed and plotted according to the free energy (∆G) of 

the RNA structures predicted along the cotranscriptional (purple) or equilibrium refolded 

(turquoise) pathway. The range of ∆G values sampled is represented by grey shading, 

while the ∆G of chosen structures are represented by dots. For visual convenience, dots 

are connected by lines to view possible free energy changes along the folding 

trajectory. Consensus structure lines connect ∆G of structures containing base pairs 

that occur in over 50% of the 100 iterations performed on the cotranscriptional (red) and 

equilibrium-refolded (blue) SHAPE-seq data. Black line connects the minimum free 

energy structures in the sampled set. Seven lengths of 2-D predictions by R2D2 are 

highlighted: (B) 25 nt, (C) 62 nt, (D) 81 nt, (E) 95 nt, (F) 109 nt, (G) 110 nt, and (H) 117 

nt. One hundred selected structures are represented as RNAbow plots with base pairs 

drawn as arcs and the arc thickness indicating prevalence of the base pair amongst the 

selected structures. Colored arcs show base pairs that are more frequent in either 

cotranscriptional (purple) or equilibrium (turquoise) predictions, while grey arcs show 
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base pairs that are shared. The consensus structures from cotranscriptional predictions 

are shown above each RNAbow plot. We shifted the cotranscriptional transcript lengths 

by 14 nt to compare equal lengths of the RNA sequence that is free to fold from each 

experimental dataset. Data plotted in this figure are from cotranscriptional SHAPE-Seq 

replicate 1. See also Figure S2, S3 and SI Movie 1. 

 

Figure 3. A single point mutation disrupts cotranscriptional rearrangement of the 
mature E. coli SRP RNA sequence. (A) Examples of H1 variability in 2-D predictions 

in the folding pathway of the mature sequence indicate potential flexibility. (B) Diagram 

of the SRP RNA U21C mutation in H1 and the full-length secondary structure. (C) 
Cotranscriptional SHAPE-Seq reactivities from the mature (left) sequence show drops in 

reactivities (red box) towards the end of the folding pathway. The reactivity matrix for 

replicate 1 of the SRP RNA U21C sequence (middle) has generally higher reactivities in 

these positions throughout, while equilibrium refolded SRP RNA U21C SHAPE-Seq 

data (right) contains decreases in reactivities in this region. Plotted below these 

matrices are their respective reactivities from transcript lengths 103 and 131 with H1 

loop reactivities under red bracket. (D) Trajectory plot of R2D2 predictions for the U21C 

sequence following Figure 2. Structures from four lengths are highlighted in RNAbow 

plots: (E) 95 nt, (F) 109 nt, (G) 110 nt, and (H) 111 nt. See also Figure S5. 

 

Figure 4. Rescue mutant of SRP RNA U21C confirms the importance of flexibility 
in H1. (A) Diagram of the rescue mutant U21C, C22U, G93A overlaid on H1 and the 

native full-length structure. The rescue mutant introduces a GU bp in the SRP RNA 

U21C H1 structure. (B) Cotranscriptional SHAPE-Seq reactivities from SRP RNA U21C, 

C22U, G93A: replicate 1 (left, top), replicate 2 (left, bottom), and replicate 3 (right, top). 

DUETT analysis (right, bottom) detected downswings (blue) and upswings (red) in 

reactivity. Events occurring up to two transcript lengths apart are indicated with green 

lines. (C-E) RNAbow plots of SRP RNA U21C, C22U, G93A replicate 1 (green and top) 

and U21C replicate 1 (purple and bottom) R2D2 predictions following Figure 2. Three 

lengths are highlighted: (C) 109 nt, (D) 110 nt, and (E) 111 nt. See also Figure S5. 
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Figure 5. Snapshots of possible rearrangement mechanisms tested by 3-D all-
atom simulations. R2D2-modeled secondary structures (left) were used as starting 

points for all-atom MD simulations (right). For each rearrangement that we tested, the 

pairing interactions that could seed the rearrangement into the native extended hairpin 

are indicated in yellow. Other nucleotides are colored for visualization: nts 1-25 (dark 

purple), 26-52 (orange), 53-62 (green), 63-96 (turquoise), and 97-117 (magenta). (A) 
The inside-out hypothesis whereby H1 and H3 progressively open and convert into the 

extended hairpin. (B) The kissing-loop hypothesis where H1 and H3 loops begin the 

rearrangement process. (C) The late-toehold hypothesis where nucleotides 106-108 

downstream of H3 seed the rearrangement through a toehold with nucleotides 9-11 of 

H1 loop. (D) The early-toehold hypothesis where nucleotides 106-110 seed the 

rearrangement via a toehold with nucleotides 7-11 of H1 loop. The early- and late-

toehold hypotheses differ in the structural state of the growing SRP RNA’s 3′ end before 

the rearrangement, with the late-toehold hypothesis considering the unraveling of H3. 

(E) 3-D all-atom simulation trajectory results. Simulations were used to test the potential 

rearrangement mechanisms in the wild-type SRP RNA, and to test the U21C mutant 

and its rescue with the late toehold mechanism. Eight simulations were run for each 

scenario. Simulations can stall when 0-3 or 4-6 bp form. Otherwise, rearrangement 

could progress to >9 bps or when twice the force was applied. See also SI Movie 2-4. 

 

Figure 6. Snapshots of the toehold-mediated rearrangement pathway from 
molecular dynamics simulations. (A) Pre-rearranged structure with H1 (purple) and 

H3 (magenta) present. (B) Rearranged structure with native base pairs (yellow) forming 

the extended helix. (C) Toehold progression to 6 bp of the native helix (yellow) requires 

unfolding of H3. (D) Further elongation to a 9-bp native helix (yellow) requires unfolding 

of H1. (E) In the SRP RNA U21C mutant, H1 is stabilized by a GC bp (green) that 

replaced the GU bp. Even if a toehold is made to form (yellow), folding stalls as the G7-

C21 bp cannot be disrupted even when modest biasing forces are applied. (F) In the 

SRP RNA U21C, C22U, G93A mutant, the rearrangement can occur and the GC bp 

(green) can break. See also SI Movie 3. 
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Figure 7. Processing and folding of the pre-SRP RNA. (A) E. coli RNase P cleaves 

the 24+24 pre-SRP RNA correctly at the expected site (arrow). The OH and T1 ladders 

were generated by alkaline lysis and RNase T1 cleavage, respectively, of the 24+70 

pre-SRP RNA. The cleaved 5′ leader (blue) migrated with length G25, instead of length 

U24, because it has a 3′-OH compared to the 2′,3′-cyclic phosphate in the RNase T1 

products. The additional phosphate in the T1 ladder RNAs offsets the RNase P product 

by approximately one nucleotide. (B) A representative gel of the time-course assay 

used to determine the rate of cleavage of the 24+24 pre-SRP RNA by E. coli RNase P. 

The initial velocities were calculated from three replicates and the maximal cleavage did 

not exceed 5% of the total substrate. A turnover number of 5.4 ± 0.5 min-1 was obtained 

from these measurements. SC, substrate control incubated without E. coli RNase P. (C) 
The hairpin in the 5′ leader (blue) does not impede the toehold initiation (yellow) in 

R2D2 3D simulations. (D) The hairpin in the 5′ leader also does not affect the toehold-

mediated rearrangement. See also Figure S5 and SI Movie 5-7. 
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STAR Methods 
Resource Availability 
Lead Contact 
Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the Lead Contacts, Julius Lucks (jblucks@northwestern.edu) and Alan 

Chen (achen6@albany.edu).   

 
Materials Availability 
The E. coli SRP RNA plasmid used in this study will be available through Addgene ID 

162240.  

 
Data and Code Availability 

The mutant cotranscriptional and equilibrium-refolded SHAPE-seq datasets generated 

during this study are available through the Small Read Archive (SRA) under BioProject 

PRJNA667733. Wildtype SRP RNA data are similarly available through the SRA with 

accession codes: SRX2159310, SRX2159311, SRX2159312, and SRX2159316. 

Processed SHAPE-seq reactivity files generated in this study will be deposited in the 

RNA Mapping Database under accession codes SRPU21C_BZCN_0001, 

SRPU21C_BZCN_0002, SRPU21C_BZCN_0003, SRPU21C_BZCN_0004, 

SRPU21C_BZCN_0005, SRP21CR_BZCN_0001, SRP21CR_BZCN_0002, and 

SRP21CR_BZCN_0003. All source code will be freely available at 

https://github.com/LucksLab/R2D2. For a single round 2D folding pathway prediction 

with 2 processors, the walltime used is around 4 hours and used around 26 GB 

memory. We run this 100 times before analyzing all 100 results. The 3D folding 

simulations of the SRP precursor went for 48 ns using 9 synchronous replicas at 

different temperatures and restraint strengths. Each replica took 142 hours (-5.9 days) 

using an entire STAMPEDE-2 Intel Xeon Phi 7250 node. Thus, the experiment took 

altogether 1,275 node-hours (or 53 node-days) for the one folding simulation. Each of 

the other pathways examined used comparable resources. 

 
Method Details 

mailto:jblucks@northwestern.edu)
mailto:achen6@albany.edu)
https://github.com/LucksLab/R2D2
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Cotranscriptional and equilibrium-refolded SHAPE-seq 

The SRP RNA sequence used to generate mutants was previously described 

(Watters et al., 2016a); it has an AUC sequence substituting the 24-nt leader. DNA 

templates for cotranscriptional SHAPE-seq were prepared as previously described 

(Watters et al., 2016a). DNA templates specifically targeted transcript lengths 101 to 

136 for U21C and U21C, C22U, G93A mutants. Cotranscriptional SHAPE-seq 

experiments were performed as previously described, except that EcoRIE111Q was 

included at 800 nM during in vitro transcription instead of 500 nM. 

 

RNase P assay 

The 24+24 pre-SRP RNA used to examine co-transcriptional processing was 

generated by run-off in vitro transcription (IVT). The template for this IVT was obtained 

by annealing two overlapping DNA oligonucleotides 4.5S-F and 4.5S-R (Sigma-Aldrich) 

followed by filling-in with Phusion DNA polymerase (NEB) to obtain a double-stranded 

DNA that included a T7 promoter upstream of the RNA coding sequence. A portion of 

the transcribed 24+24 pre-SRP RNA was 5′-radiolabeled by dephosphorylating with calf 

intestinal phosphatase (NEB) and then phosphorylated with [-32P]-ATP (PerkinElmer) 

using polynucleotide kinase (NEB). To determine the cleavage efficiency of the 24+24 

pre-SRP RNA by RNase P, E. coli RNase P was reconstituted in vitro using 

recombinant M1 RNA and C5 protein (Gopalan et al., 1997). In vitro transcribed M1 

RNA (2 µM) was refolded in water at 50C for 50 min, then 37C for 10 min. An equal 

volume of 2x folding buffer [20 mM HEPES (pH 7.5), 800 mM NH4OAc, 20 mM 

Mg(OAc)2, 10% glycerol, 0.02% IGEPAL] was added, and incubation at 37C was 

continued for 30 min. C5 protein was overexpressed and purified from E. coli as 

described previously (Vioque et al., 1988) and was stored at -80C. Before use, the 

refolded M1 RNA and C5 protein were diluted to 0.1 and 1 µM, respectively, in assay 

buffer [1x = 20 mM Tris-HCl (pH 8), 50 mM KCl, 5 mM MgCl2, 0.1 mM EDTA, 0.2 

mg/mL BSA, 1 mM DTT]. This assay buffer resembles the one used in cotranscriptional 

folding experiments to mimic the same condition. All following incubations were 

performed at 37C in a thermal cycler. For each 20-µL reaction, a mixture containing 6 

µL water, 8 µL 2x assay buffer, and 2 µL of 1 µM C5 protein (final 100 nM) was 
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incubated for 5 min before adding 2 µL of 0.1 µM M1 RNA (final 10 nM) and continuing 

incubation for 10 min. The reaction was initiated by adding 2 µL of the 24+24 pre-SRP 

RNA, where the final concentration (10 – 2,000 nM) was made up of the unlabeled RNA 

and a trace amount of the radiolabeled RNA. After each specified time interval, a 3-µL 

aliquot of the reaction was removed and quenched with 10 µL termination dye [7 M 

urea, 1 mM EDTA, 0.05% (w/v) each of bromophenol blue and xylene cyanol, 10% (v/v) 

phenol]. The products and uncleaved substrate were then separated on an 8% (w/v) 

polyacrylamide/7 M urea gel. The gels were visualized by phosphorimaging on the 

Typhoon (GE Healthcare), and bands were quantitated using ImageQuant (GE 

Healthcare). As ladders to map the cleavage site, a 24+70 pre-SRP RNA was 

generated by IVT with a template that was PCR-amplified from p23-4.5S (Peck-Miller 

and Altman, 1991) using primers 4.5S-F and 4.5S(70)-R. This RNA was then 5’-

radiolabeled as described above and used to make the alkaline hydrolysis ladder and 

the RNase T1 (Invitrogen)-generated G-ladder. 

 

Reactivity calculation 

Quantification of reactivities from cotranscriptional SHAPE-Seq data was 

performed using Spats v.1.0.1 (http://luckslab.github.io/spats/) as previously described 

(Watters et al., 2016a). The  reactivities output by Spats were converted to 𝜌 

reactivities to allow for direct comparison of SHAPE probe accessibility between 

intermediate lengths of RNAs (Watters et al., 2016b). For cotranscriptional predictions 

where RNA polymerase occludes the last ~14 nts from folding (Komissarova and 

Kashlev, 1998; Watters et al., 2016a), ρ reactivities were trimmed by 14 nts and 

renormalized such that the reactivities average to 1. This trimming was not done for 

equilibrium-refolded predictions because the RNAs have already emerged from the 

RNA polymerase. 

 

DUETT 

 Detection of Unknown Events with Tunable Thresholds (DUETT) was used to 

detect reactivity change events in cotranscriptional and equilibrium-refolded SHAPE-

http://luckslab.github.io/spats/)
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Seq datasets (Xue et al., 2019). All analyses were done with optimized parameters with 

window sizes of 4 for U21C and 9 for U21C, C22U, G93A.  

 

Reconstructing RNA secondary structures  

The R2D2 sample-and-select method was first developed to predict the 

equilibrium fold of a single RNA using equilibrium SHAPE-Seq data. A crucial step was 

to establish a method to select structures that are most consistent with the experiment. 

SHAPE-Seq reactivities, , are values  0 that reflect the structural state of each 

nucleotide:  = 0 corresponds to a nucleotide that is present in a structured context 

(such as a base pair or stacking interaction), while  > 1 represents a nucleotide that is 

present in a flexible context (such as an unpaired region) (Bindewald et al., 2011). Thus 

 values most naturally correspond to a representation of the un-paired state of each 

nucleotide in an RNA secondary structure, which can be represented by a binary vector 

(u for ‘un-paired’) containing 0 if a nucleotide is paired and 1 if a nucleotide is un-paired 

(Figure 1C). Comparison between the  vector (𝜌⃑) of reactivity data at a specific 

transcript length, and the u vector (𝑢⃑⃑) for a specific structure that could occur at that 

length can then be made with a metric that reflects their distance from each other 

(Figure 1C, Table S1). 

 We developed and tested six functions to calculate the distance between a 

SHAPE-seq reactivity spectra and a given RNA secondary structure (Figure 1C, Table 

S1). Each distance function is of the form 

𝐷{𝐾,𝑈,𝐷}
{𝑐𝑎𝑝,𝑛𝑜𝑐𝑎𝑝}(𝑢⃑⃑, 𝜌⃑) = 𝛼 ∑ |𝑢̃𝑖 − 𝜌̃𝑖|

𝑖 ∈ 𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

+ (1 − 𝛼) ∑ |𝑢̃𝑖 − 𝜌̃𝑖|

𝑖 ∈ 𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

 

where 𝑢̃ is a vector calculated from the u-vector of a specific RNA secondary structure, 

and 𝜌̃ is calculated from the experimental SHAPE-seq reactivity data  vector. 

Reactivity is inherently a measure of accessibility of chemical probes in RNA structures, 

and low reactivity may not be due only to base pairing, but can be caused by other 

structural constraints such as stacking (Bindewald et al., 2011). To account for this 

possibility, we incorporated a weighting between single-stranded and paired bases in 

sampled structures, 𝛼, which is used to adjust the contribution to the distance from 

positions that are predicted to be paired.  



 30 

Since unpaired vectors and 𝜌 vectors are different types of data (binary vs. 

continuous) and on different numerical scales, we explored three different ways to 

calculate their differences specified by K, U and D, which specify the way 𝑢̃𝑖 and 𝜌̃𝑖 are 

calculated: 

K: 𝑢̃𝑖 = 𝑢𝑖 

U: 𝑢̃𝑖 = 𝑢𝑖 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢⃑⃑) / sum(𝑢⃑⃑) 

D: 𝜌̃𝑖 =  𝜌𝑖 / max(𝜌⃑) 

K keeps the scale of 𝑢⃑⃑ and 𝜌⃑, U makes 𝑢⃑⃑’s average 1 which is a property of 𝜌⃑, and D 

scales 𝜌⃑ to be between 0 and 1. Since certain RNA folds can result in 𝜌 values that are 

much larger than one (McGinnis et al., 2012), we also explored ways to cutoff 𝜌 values 

at a maximum value. This is specified by the indices cap or nocap which determine the 

way 𝜌̃𝑖 is calculated, with cap denoting that 𝜌𝑖 is capped at a 𝜌𝑚𝑎𝑥 value 𝜌̃𝑖 =

 𝑚𝑖𝑛(𝜌𝑖, 𝜌𝑚𝑎𝑥), and nocap referring that the original 𝜌𝑖 value is used. The full definitions 

are as follows: 

𝐷𝐾
𝑐𝑎𝑝(𝑢⃑⃑, 𝜌⃑) = 𝛼 ∑ |𝑢𝑖 − min (𝜌𝑖, 𝜌𝑚𝑎𝑥)|

𝑖 ∈ 𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

+ (1

− 𝛼) ∑ |𝑢𝑖 − min (𝜌𝑖, 𝜌𝑚𝑎𝑥)|

𝑖 ∈ 𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

 

𝐷𝐾
𝑛𝑜𝑐𝑎𝑝(𝑢⃑⃑, 𝜌⃑) = 𝛼 ∑ |𝑢𝑖 − 𝜌𝑖|

𝑖 ∈ 𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

+ (1 − 𝛼) ∑ |𝑢𝑖 − 𝜌𝑖|

𝑖 ∈ 𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

 

𝐷𝑈
𝑐𝑎𝑝(𝑢⃑⃑, 𝜌⃑) = 𝛼 ∑ |𝑢𝑖 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢⃑⃑) / sum(𝑢⃑⃑) − min (𝜌𝑖, 𝜌𝑚𝑎𝑥)|

𝑖 ∈ 𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

+ (1

− 𝛼) ∑ |𝑢𝑖 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢⃑⃑) / sum(𝑢⃑⃑) − min (𝜌𝑖, 𝜌𝑚𝑎𝑥)|

𝑖 ∈ 𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

 

𝐷𝑈
𝑛𝑜𝑐𝑎𝑝(𝑢⃑⃑, 𝜌⃑) = 𝛼 ∑ |𝑢𝑖 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢⃑⃑) / sum(𝑢⃑⃑) − 𝜌𝑖|

𝑖 ∈ 𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

+ (1

− 𝛼) ∑ |𝑢𝑖 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢⃑⃑) / sum(𝑢⃑⃑) − 𝜌𝑖|

𝑖 ∈ 𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠
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𝐷𝐷
𝑐𝑎𝑝(𝑢⃑⃑, 𝜌⃑) = 𝛼 ∑ |𝑢𝑖 −

min (𝜌𝑖, 𝜌𝑚𝑎𝑥)

max(𝜌⃑̃)
|

𝑖 ∈ 𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

+ (1

− 𝛼) ∑ |𝑢𝑖 −
min (𝜌𝑖, 𝜌𝑚𝑎𝑥)

max(𝜌⃑̃)
|

𝑖 ∈ 𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

 

𝐷𝐷
𝑛𝑜𝑐𝑎𝑝(𝑢⃑⃑, 𝜌⃑) = 𝛼 ∑ |𝑢𝑖 −

𝜌𝑖

max(𝜌⃑)
|

𝑖 ∈ 𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

+ (1 − 𝛼) ∑ |𝑢𝑖 −
𝜌𝑖

max(𝜌⃑)
|

𝑖 ∈ 𝑢𝑛𝑝𝑎𝑖𝑟𝑒𝑑 𝑏𝑎𝑠𝑒𝑠

 

 The distance metrics above can be used to select structures from a candidate set 

that are most consistent with the observed experimental reactivity data by choosing the 

minimum distance structure(s) at every length (Figure 1C). To generate a candidate set 

of structures, the sample method statistically samples structures with a large sample 

size using the partition and stochastic functions of the RNAstructure suite of 

computational secondary structure prediction tools (Reuter and Mathews, 2010). The 

partition method takes as an input the RNA sequence and folding parameters, and uses 

them to calculate the secondary structure partition function for that sequence. The 

stochastic method then uses this partition function to stochastically generate RNA 

structures according to their equilibrium Boltzmann probabilities – i.e. lower free energy 

structures are generated more frequently than higher free energy structures. Thus 

repeated application of the stochastic method can generate a set of possible candidate 

structures the RNA molecule may sample during the experiment.  

 The goal of the sample method is to generate the greatest amount of structural 

diversity possible to allow more choices for the select method. An initial test of the 

degree to which the stochastic method can generate novel structures revealed that the 

method did not converge on exhausting the possibilities of different RNA structures 

even after 150,000 structures were drawn (Figure S1). This is not surprising since the 

free energy landscapes of RNA secondary structures are known to have a shallow 

density of states near the minimum free energy structure (Chen and Dill, 2000) 

indicating there are many possible RNA structures that are low in free energy and would 

be sampled frequently by the stochastic method. To circumvent this problem and still 

generate a diverse array of candidate structures without the computational burden of 

generating millions of structures, we employed two additional variations of the sampling 

procedure that used experimental SHAPE restraints to calculate a modified partition 
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function from which we could sample. The first, called SHAPE-directed sampling, used 

the partition method’s ability to incorporate SHAPE reactivities as effective free energy 

terms in the partition function calculation with pseudofree energy parameters m = 1.1 

and b = -0.3. The second, called SHAPE-forced sampling, used a SHAPE reactivity 

cutoff, 𝜌𝑐, to force nucleotides with reactivities greater than this value to be single-

stranded in the partition function calculation. In total, the sample method consisted of 

sampling 50,000 structures from each of these methods for a total of 150,000 structures 

which acted as the candidate set for the select method. We note that even though the 

sample method uses SHAPE reactivity data to generate part of the candidate set, these 

are not guaranteed to be chosen as most consistent with the data by the select method. 

Rather, they are included to increase the diversity of the candidate set. 

 

Software implementing this method were run with Python 2.7.12 through 

Anaconda 2.4.1 (64-bit) and R version 3.2.2. Images and movies were made with 

ffmpeg version 3.1.3, ImageMagick 7.0.3-0 Q16 x86_64, and iMovie v10.1.2. Version 

5.8.1 of RNAstructure was used for the partition and stochastic methods, and VARNA 

version 3.9 was used to visualize RNA secondary structures. See “Data and Software 

Availability” for location of code used in this study. 

 

Benchmarking 

Best parameter values were determined through a grid search of 10,404 

parameter sets: all combinations of 0.7 to 4.1 by 0.1 for 𝜌𝑐, 0.7 to 4.1 by 0.1 for 𝜌𝑚𝑎𝑥, 

and 0 to 1 by 0.1 for 𝛼. The best parameter set(s) was determined as the parameter 

set(s) with the largest sum of 𝐹1 scores (F-scores) for 18 previously published 

equilibrium-refolded SHAPE-Seq datasets on 6 RNAs of known crystal structures (three 

replicates) and no pseudoknots since RNAstructure cannot sample structures with 

pseudoknots (Loughrey et al., 2014). F-score is defined as follows: 

𝐹 = 2 ∗
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑃𝑉

𝑠𝑒𝑛𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑃𝑉
 

𝑠𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑖𝑣𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟𝑠
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𝑃𝑃𝑉 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟𝑠
 

For every parameter set, we sampled 50,000 structures for each of the three sampling 

methods, for a total of 150,000 structures (see “Reconstructing RNA secondary 

structures”). For each benchmark RNA and dataset, the minimum distance structure 

was calculated and F-score determined from the prediction and the known structure. 

The sum of F-scores across the panel of RNAs and datasets was then reported for that 

parameter set. If multiple minimum distance structures were found, then the average of 

their sum of F-scores were used to find the best parameter set. We ran the 

benchmarking for each of the 6 distance equations. 𝜌𝑚𝑎𝑥 is not used when no reactivity 

capping is used, so only 306 parameter sets were tested in these cases.  

We found two different metrics were the best performing across all distance 

functions: 𝐷𝐾,𝑐𝑎𝑝 with 𝜌𝑐 = 3.5,  𝜌𝑚𝑎𝑥 = 1.0 𝑜𝑟 0.9, and 𝛼 = 0.8 as well as 𝐷𝐷,𝑐𝑎𝑝 with 

𝜌𝑐 = 3.5,  𝜌𝑚𝑎𝑥 = 1.0, and 𝛼 = 0.8 . These two each had an average F-score of 86.32% 

for the 18 RNA datasets in the panel (Table S1). From this set, we chose as our 

parameter set 𝐷𝐾,𝑐𝑎𝑝 with 𝜌𝑐 = 3.5,  𝜌𝑚𝑎𝑥 = 1.0, and 𝛼 = 0.8, which gives a higher 

weight to paired positions in the sampled structures as expected, and matches common 

interpretations of ‘high’ reactivity values being greater than 1. We note that this is 

mathematically equivalent to 𝐷𝐷,𝑐𝑎𝑝’s best parameter set. 

We also compared the best results from the sample-and-select method to 

SHAPE-restrained secondary structure predictions using the same data on the same 

RNA panel using the Fold method of RNAstructure (Table S2). In aggregate, the 

sample-and-select method (average F-score of 86.32%) does not perform better than 

RNAstructure-Fold with SHAPE restraints (average F-score of 88.95%), but does 

perform better than RNAstructure-Fold without SHAPE restraints (average F-score of 

77.51%). Interestingly R2D2’s sample-and-select method did outperform on the E. coli 

TPP riboswitch in terms of sensitivity, PPV, and F-score for all replicates (Table S2). 

While the accuracy of our sample-and-select method applied to equilibrium RNA 

structure prediction is not overall better than the best equilibrium structure prediction 

algorithms given the same data, it was designed to find RNA secondary structures 

consistent with structural probing data from out-of-equilibrium RNA folds and thus can 
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be used to reconstruct a complete secondary structure cotranscriptional folding pathway 

of an RNA. 

To increase PPV for more accurate 3D simulations, R2D2 filters base pairs and 

reduces overall positive calls compared to RNAstructure-Fold; 2D sampling is run 100 

times and only pairs that occur over 50% of the time are kept and then used in the 3D 

simulations. We assessed this filtering step (which we call R2D2-consensus) using the 

benchmark panel (Supplementary Table S2). Both R2D2-consensus and RNAstructure-

Fold with SHAPE perform better than RNAstructure-Fold with no SHAPE. The counts 

across true positives (TP), false negatives (FN), false positives (FP), and true negatives 

(TN) between R2D2-consensus and RNAstructure-Fold with SHAPE are statistically 

significant different at the 0.05 value (p-value 0.001) by multivariate 2-sample E-test of 

equal distributions (Supplementary Table C-3). As expected, R2D2-consensus disfavors 

calling positive base pairs compared to RNAstructure-Fold with SHAPE: R2D2-

consensus predicts 478 base pairs across the whole panel compared to 522 base pairs 

by RNAstructure-Fold with SHAPE. Importantly, R2D2-consensus, which is the first filter 

of positive base pairs out of two in the R2D2 algorithm, has a reduced number of FP’s 

when compared to RNAstructure-Fold with and without SHAPE data. R2D2-consensus 

also has a lower standard deviation in sensitivity, PPV, and F-score compared to 

RNAstructure-Fold.  

However, based on the Sensitivity, PPV, and F-score metrics alone, there is no 

statistical difference in performance in any of these three metrics between 

RNAstructure-Fold with SHAPE and R2D2-consensus using paired t-test 

(Supplementary Table C-4). Interestingly Sensitivity, PPV, and F-score are calculated 

based on TP, FN, and FP counts, and there is a difference in statistical significance 

when examining the same prediction results at different representation levels. 

Software implementing this method were run with Python 2.7.11 through 

Anaconda 2.3.0 (64-bit). Version 5.6 beta of RNAstructure was used for the partition 

and stochastic methods, and VARNA version 3.9 was used to visualize RNA secondary 

structures. See “Data and Software Availability” for location of code used in this study. 

 

Application to cotranscriptional SHAPE-Seq data 
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 We applied the method described in “Reconstructing RNA secondary structures” 

to each length of cotranscriptional SHAPE-Seq data available with the parameter set 

found in “Benchmarking”. Lengths where total mapped read counts are less than 2,000 

were not used in R2D2 predictions. For each structure predicted, free energies were 

calculated using RNAstructure-efn2.  

Software implementing this method were run with Python 2.7.12 through 

Anaconda 2.4.1 (64-bit) and R version 3.2.2. Images and movies were made with 

ffmpeg version 3.1.3, ImageMagick 7.0.3-0 Q16 x86_64, and iMovie v10.1.2. Version 

5.8.1 of RNAstructure was used for the partition, stochastic, efn2, and ct2dot methods. 

RNAbows was used to visualize R2D2 2D predictions (Aalberts and Jannen, 2013). See 

“Data and Software Availability” for location of code used in this study. 

 

Minimum free energy folding pathway prediction 

Each length of the SRP RNA sequence was folded with RNAstructure-Fold 

method without SHAPE restraints to generate the minimum free energy folding 

pathway. Images of the minimum free energy structures were made into a movie with 

RNAstructure-draw and ffmpeg. Free energy calculations were done with RNAstructure-

efn2. The SHAPE-directed MFE folding pathway prediction was done similarly, but with 

ρ reactivities and m = 1.1 and b = -0.3 (Loughrey et al., 2014) for lengths where SHAPE 

data was available in specified datasets.  

 

Software implementing this method were run with Python 2.7.12 through 

Anaconda 2.4.1 (64-bit). Images and movies were made with ffmpeg version 3.1.3, 

ImageMagick 7.0.3-0 Q16 x86_64, and iMovie v10.1.2. Version 5.8.1 of RNAstructure 

was used for the Fold method to predict MFE structures. See “Data and Software 

Availability” for location of code used in this study. 

 

KineFold predictions 

KineFold cotranscriptional folding pathway predictions were performed using the 

KineFold executable with ‘co-transcriptional fold’ with a new base added every 20 ms, 

no pseudoknots, and freely crossing entanglements. KineFold executable was used and 
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can be downloaded from: http://kinefold.curie.fr/download.html. For each structure in 

KineFold’s .rnm output, the free energy was calculated using RNAstructure-efn2. 

KineFold simulations were also performed with 40 s total simulation time to test if the 

RNAP roadblocking strategy in cotranscriptional SHAPE-seq (30 seconds of 

transcription followed by SHAPE probing) explains differences between R2D2 and 

KineFold. See “Data and Software Availability” for location of code used to run KineFold 

and analyze .rnm output.  

 

Using R2D2 predictions to inform all-atom folding pathway simulations 

To assess the feasibility of the different hypothetical folding pathways in the full 

three-dimensional context of the folded RNA, the R2D2 secondary structures were used 

to restrain all-atom molecular dynamics simulations of each proposed transition 

pathway. Base-pair constraints for the pre- and post-folding transition were defined 

using the consensus (base pairs that occur in ≥ 50% of the 100 iterations) R2D2 

secondary structures at length 109 and 110 nt respectively. To avoid over-constraining 

the simulation, only those base-pairs that occurred in over 50% of the reconstructions 

were enforced with explicit folding restraints. It should be noted that non-restrained 

bases can still form base-pairs according to the all-atom energy potential. While all 

pathways start from the same 109-nt folding intermediate (Figure 2F, Figure 5A,B,C,D), 

each pathway then dictates a unique order in which the base pairing pattern must 

rearrange to arrive at the final 110-nt native fold (Figure 2G). All-atom simulations 

employed the GROMACS 2016 software package (Abraham et al., 2015), using the 

Amber-99 force field (Wang et al., 2000) with Chen-Garcia modifications for RNA bases 

(Chen and García, 2013), the modifications of Case and co-workers for the backbone 

phosphate (Steinbrecher et al., 2012), the TIP4P-EW water model (Horn et al., 2004) , 

and the Joung & Cheatham parameters for potassium chloride ions (Joung and 

Cheatham, 2008).  

Simulations employed truncated dodecahedral boxes of ~15 nM radius, 

containing the 110 base RNA, 74,428 TIP4P-EW H2O’s, 1,559 K+ and 1,450 Cl- ions to 

mimic 1M excess salt conditions to give a total of 304,265 atoms. Long-range 

interactions beyond 10 Angstroms were calculated using PME with a grid size of 0.16 

http://kinefold.curie.fr/download.html


 37 

nm. A constant pressure of 1 atm was maintained using the Berendsen barostat 

(Berendsen et al., 1984) with a time constant of 1.0 ps, and a constant temperature of 

450K was maintained using the V-rescale thermostat (Bussi et al., 2007) with a time 

constant of 0.1 ps. The leapfrog Verlet integrator with a 2-fs timestep was used, with the 

total production length of each simulation being 100-500 ns, leading to a cumulative 

total of >5 s of simulations. 

Base-pairs were restrained using a piecewise flat-bottomed harmonic restraint of 

strength 0.5 kcal/mol between central H-bond donor/acceptor of natively paired bases. 

This restraint becomes linear at distances greater than 4 Angstroms. The strength and 

distance dependence of the restraints was chosen to be strong enough to facilitate 

formation of long-range interactions in ~100 ns simulations, but not strong enough to 

significantly unfold other sections of the RNA in the process. Elevated temperatures 

were used to increase RNA flexibility and decrease the amount of computational time 

needed to sample each proposed transition pathway. This arrangement ensured that 

individual folding attempts would simply stall if two restrained bases could not physically 

get close enough to form a new basepair in the 3D context of each folding intermediate. 

The 110-nt RNA chain was initially equilibrated until all base pairs observed in 

>50% of the stable folding intermediate (109 nt R2D2 2D prediction) were stably 

formed. At this point, new restraints from the 110-nt natively folded transcript were 

added 2-3 base-pairs at a time. Each new set of restraints were simulated at least 10 ns 

until they were successfully formed, at which point the next set of new restraints were 

added. This cycle was repeated until all bases were successfully paired in the RNA’s 

native fold. Simulations that had still not achieved any new base-pairs within 5 

successive cycles (i.e., 50 ns) after adding restraints were considered “stalled” and not 

simulated any further. Eight separate attempts were made to simulate each of the 4 

proposed pathways and two mutants studied. Each individual folding trajectory therefore 

ranged from 100-500 ns depending on stalling, and successful folding pathways 

exhibited at least 6/8 successfully folded trajectories while pathways deemed 

“unfeasible” always exhibited zero successful attempts.  

Four potential folding pathways were simulated. In the “inside-out” pathway, the 

formation of the extended native helix proceeds by extending the predicted central helix 
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along its axis, unraveling H1 and H3 during this progression, and eliminating the need 

for forming an initial long-range contact between the RNA ends (Figure 5A). In the 

“kissing loop” mechanism, it was proposed that complementary, unpaired loop bases 

within the H1 and H3 hairpins could form an initial long-range “kissing complex”, which 

could then seed formation of the hybrid helix in a strand rearrangement process (Figure 

5B). This hypothesis is attractive because kissing-loop interactions are known to be 

rapid and stable ways to form long-range RNA interactions in RNA gene regulation and 

retroviral replication (Kolb et al., 2000; Paillart et al., 2004). A toehold strand exchange 

mechanism was also explored, in which the free 3′ end of the nascent RNA chain 

initially hybridizes with unpaired bases in the loop of H1, seeding a sequential unfolding 

pathway where strands of H1 and H3 are exchanged with each other to rehybridize into 

the final extended native helix (Figure 5C). Finally, we also explored the “early toehold” 

mechanism which could initiate at different exposed bases of H1 before H3 is fully 

formed (Figure 5D). 

 

Quantification and Statistical Analysis 
 Cotranscriptional SHAPE-seq reactivities were quantified based on a statistical 

model using Spats v.1.0.1 (http://luckslab.github.io/spats/) as described in Reactivity 

calculation and as previously described (Watters et al., 2016a). The RNase P assay 

gels were visualized by phosphorimaging on the Typhoon (GE Healthcare), and bands 

were quantitated using ImageQuant (GE Healthcare) as described in RNase P assay 

and Figure S5G.  

 

Additional Resources 
Detailed Protocol 

The detailed protocol is provided in Methods S1.   

http://luckslab.github.io/spats/)
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SI Movie 1.   
R2D2 2D predictions with processed E. coli SRP RNA sequence cotranscriptional 
SHAPE-seq replicates (top) and equilibrium-refolded SHAPE-seq (bottom), Related to 
Figure 2. One hundred selected structures are represented as RNAbow plots with base 
pairs drawn as arcs and the arc width indicating prevalence of the base pair amongst 
the selected structures. Colored arcs show base pairs that are more frequent in either 
cotranscriptional (purple) or equilibrium (turquoise) predictions, while grey arcs show 
base pairs that are shared.  
 
SI Movie 2 
All-atom simulation of the inside-out proposed mechanism with strong forces added, 
Related to Figure 5. Refer to Figure 5A for RNA coloring.  
 
SI Movie 3 
All-atom simulation of the late toehold proposed mechanism, Related to Figure 5, 6. 
Refer to Figure 5C for RNA coloring. Gray coloring is used here for bases 30-83.  
 
SI Movie 4 
All-atom simulation of the U21C rescue mutant, Related to Figure 5. G7 and U21C are 
colored green, H1 is indicated in purple, H3 is colored magenta, rearranged base pairs 
are colored yellow, and remaining nucleotides are colored grey.  
 
SI Movie 5 
All-atom simulation of the late toehold proposed mechanism with the wt precursor E. 
coli SRP RNA, Related to Figure 7. The leader sequence (nts 1-24) is colored dark 
blue, H1 (nts 25-46) is colored purple, H3 (nts 111-130) is colored magenta, base pairs 
present in the mature fold are highlighted yellow, and the remaining bases are colored 
for visualization: nts 47-73 (orange), 74-83 (green), and 84-110 (turquoise),  
 
SI Movie 6 
All-atom simulation of the proposed late toehold-mediated strand rearrangement 
hindered by the U42C precursor E. coli SRP RNA, Related to Figure 7. The leader 
sequence (nts 1-24) is colored dark blue, H1 (nts 25-46) is colored purple, H3 (nts 111-
130) is colored magenta, rearranged base pairs are highlighted yellow, and the 
remaining bases are colored for visualization: nts 47-73 (orange), 74-83 (green), and 
84-110 (turquoise),  
 
SI Movie 7 
All-atom simulation of the late toehold proposed mechanism with the U42C rescue 
precursor E. coli SRP RNA, Related to Figure 7. Refer to Movie 6 for RNA coloring 
details.   
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KEY RESOURCES TABLE 
The table highlights the genetically modified organisms and strains, cell lines, reagents, software, and 
source data essential to reproduce results presented in the manuscript. Depending on the nature of the 
study, this may include standard laboratory materials (i.e., food chow for metabolism studies), but the 
Table is not meant to be comprehensive list of all materials and resources used (e.g., essential chemicals 
such as SDS, sucrose, or standard culture media don’t need to be listed in the Table). Items in the Table 
must also be reported in the Method Details section within the context of their use. The number of 
primers and RNA sequences that may be listed in the Table is restricted to no more than ten each. If 
there are more than ten primers or RNA sequences to report, please provide this information as a 
supplementary document and reference this file (e.g., See Table S1 for XX) in the Key Resources Table. 

Please note that ALL references cited in the Key Resources Table must be included in the 
References list. Please report the information as follows: 

 REAGENT or RESOURCE: Provide full descriptive name of the item so that it can be identified and 
linked with its description in the manuscript (e.g., provide version number for software, host source 
for antibody, strain name). In the Experimental Models section, please include all models used in the 
paper and describe each line/strain as: model organism: name used for strain/line in paper: 
genotype. (i.e., Mouse: OXTRfl/fl: B6.129(SJL)-Oxtrtm1.1Wsy/J). In the Biological Samples section, 
please list all samples obtained from commercial sources or biological repositories. Please note that 
software mentioned in the Methods Details or Data and Software Availability section needs to be 
also included in the table. See the sample Table at the end of this document for examples of how to 
report reagents. 

 
 SOURCE: Report the company, manufacturer, or individual that provided the item or where the item 

can obtained (e.g., stock center or repository). For materials distributed by Addgene, please cite the  
article describing the plasmid and include “Addgene” as part of the identifier. If an item is from 
another lab, please include the name of the principal investigator and a citation if it has been 
previously published. If the material is being reported for the first time in the current paper, please 
indicate as “this paper.” For software, please provide the company name if it is commercially 
available or cite the paper in which it has been initially described. 

 
 IDENTIFIER: Include catalog numbers (entered in the column as “Cat#” followed by the number, 

e.g., Cat#3879S). Where available, please include unique entities such as RRIDs, Model Organism 
Database numbers, accession numbers, and PDB or CAS IDs. For antibodies, if applicable and 
available, please also include the lot number or clone identity. For software or data resources, 
please include the URL where the resource can be downloaded. Please ensure accuracy of the 
identifiers, as they are essential for generation of hyperlinks to external sources when available. 
Please see the Elsevier list of Data Repositories with automated bidirectional linking for details. 
When listing more than one identifier for the same item, use semicolons to separate them (e.g. 
Cat#3879S; RRID: AB_2255011). If an identifier is not available, please enter “N/A” in the column.   

o A NOTE ABOUT RRIDs: We highly recommend using RRIDs as the identifier (in particular for 
antibodies and organisms, but also for software tools and databases). For more details on how 
to obtain or generate an RRID for existing or newly generated resources, please visit the RII or 
search for RRIDs. 

 
Please use the empty table that follows to organize the information in the sections defined by the 
subheading, skipping sections not relevant to your study. Please do not add subheadings. To add a row, 
place the cursor at the end of the row above where you would like to add the row, just outside the right 
border of the table. Then press the ENTER key to add the row. You do not need to delete empty rows. 
Each entry must be on a separate row; do not list multiple items in a single table cell. Please see the 
sample table at the end of this document for examples of how reagents should be cited. 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
   
   
   
   
   
Bacterial and Virus Strains  
NEB Turbo Competent E. coli (High Efficiency) New England Biolabs Cat#C2984H 
   
   
   
   
Biological Samples   
NEB Turbo Competent E. coli (High Efficiency) New England Biolabs Cat#C2984H 
   
   
   
   
Chemicals, Peptides, and Recombinant Proteins 
Vent (exo-) DNA Polymerase New England Biolabs Cat#M0257S 
Deoxynucleotide (dNTP) Solution Mix New England Biolabs Cat#N9447L 
E. coli RNA Polymerase, Holoenzyme New England Biolabs Cat#M0551S 
Gln111 (EcoRI E111Q Mutant) Lab preparation N/A 
Ribonucleotide Solution Set New England Biolabs Cat#N0466 
Benzoyl Cyanide Sigma-Aldrich Cat#115959 
Dimethyl Sulfoxide Sigma-Aldrich Cat#276855 
TRIzol Reagent Thermo Fisher Cat#15596018 
Isopropyl alcohol Sigma-Aldrich Cat#I9516 
Chloroform Sigma-Aldrich Cat#C2432 
Sodium Acetate Sigma-Aldrich Cat#S2889 
Glycogen, RNA grade Thermo Fisher  Cat#R0551 
Ethyl alcohol, pure Sigma-Aldrich E7023 
SuperScript III Reverse Transcriptase Thermo Fisher Cat#18080093 
CircLigase ssDNA Ligase Lucigen Cat#CL4111K 
Phusion High-Fidelity DNA Polymerase New England Biolabs Cat#M0530L 
GeneScan 500 LIZ Size Standard Applied Biosystems Cat#4322682 
E. coli C5 protein Gopalan et al., 1997 pBSC5 
T7 RNA polymerase Lab preparation pQE9T7 
ATP Carbosynth Cat# NA00135 



 

CTP Carbosynth Cat# NC03860 
GTP Carbosynth Cat# NG01208 
UTP Carbosynth Cat# NU03863 
   
Critical Commercial Assays 
   
   
   
   
   
Deposited Data 
Signal Recognition Particle RNA cotranscriptional 
SHAPE-Seq 

Watters et al., 2016a SRX2159310, 
SRX2159311, 
SRX2159312 

Signal Recognition Particle RNA equilibrium-
refolded SHAPE-Seq 

Watters et al., 2016a SRX2159316 

U21C Signal Recognition Particle RNA 
cotranscriptional SHAPE-Seq 

This paper PRJNA667733  

U21C Signal Recognition Particle RNA equilibrium-
refolded SHAPE-Seq 

This paper PRJNA667733  

U21C, C22U, G93A Signal Recognition Particle 
RNA cotranscriptional SHAPE-Seq 

This paper PRJNA667733  

U21C Signal Recognition Particle RNA 
cotranscriptional SHAPE-Seq reactivities 

This paper SRPU21C_BZCN_0001
, 
SRPU21C_BZCN_0002
, 
SRPU21C_BZCN_0003 

U21C Signal Recognition Particle RNA equilibrium-
refolded SHAPE-Seq reactivities 

This paper SRPU21C_BZCN_0004
, 
SRPU21C_BZCN_0005 

U21C, C22U, G93A Signal Recognition Particle 
RNA cotranscriptional SHAPE-Seq reactivities 

This paper SRP21CR_BZCN_0001
, 
SRP21CR_BZCN_0002
, 
SRP21CR_BZCN_0003 

Experimental Models: Cell Lines 
   
   
   
   
   
Experimental Models: Organisms/Strains 
   
   
   
   
   
   
Oligonucleotides 



 

tttttttgaattcGACCTGACCTGGTAAACAGA IDT 
EJS_F01_wt_ER1_55.

R 

tttttttgaattcGGACCTGACCTGGTAAACAG IDT 
EJS_F02_wt_ER1_56.

R 

tttttttgaattcCGGACCTGACCTGGTAAACA IDT 
EJS_F03_wt_ER1_57.

R 

tttttttgaattcCCGGACCTGACCTGGTAAAC IDT 
EJS_F04_wt_ER1_58.

R 

tttttttgaattcTCCGGACCTGACCTGGTAAA IDT 
EJS_F05_wt_ER1_59.

R 

tttttttgaattcTTCCGGACCTGACCTGGTAA IDT 
EJS_F06_wt_ER1_60.

R 

tttttttgaattcCTTCCGGACCTGACCTGGTA IDT 
EJS_F07_wt_ER1_61.

R 

tttttttgaattcCCTTCCGGACCTGACCTGGT IDT 
EJS_F08_wt_ER1_62.

R 

tttttttgaattcTCCTTCCGGACCTGACCTGG IDT 
EJS_F09_wt_ER1_63.

R 

tttttttgaattcTTCCTTCCGGACCTGACCTG IDT 
EJS_F10_wt_ER1_64.

R 

tttttttgaattcCTTCCTTCCGGACCTGACCT IDT 
EJS_F11_wt_ER1_65.

R 

tttttttgaattcGCTTCCTTCCGGACCTGACC IDT 
EJS_F12_wt_ER1_66.

R 

tttttttgaattcTGCTTCCTTCCGGACCTGAC IDT 
EJS_F13_wt_ER1_67.

R 

tttttttgaattcCTGCTTCCTTCCGGACCTGA IDT 
EJS_F14_wt_ER1_68.

R 

tttttttgaattcGCTGCTTCCTTCCGGACCTG IDT 
EJS_F15_wt_ER1_69.

R 

tttttttgaattcGGCTGCTTCCTTCCGGACCT IDT 
EJS_F16_wt_ER1_70.

R 

tttttttgaattcTGGCTGCTTCCTTCCGGACC IDT 
EJS_F17_wt_ER1_71.

R 

tttttttgaattcTTGGCTGCTTCCTTCCGGAC IDT 
EJS_F18_wt_ER1_72.

R 

tttttttgaattcCTTGGCTGCTTCCTTCCGGA IDT 
EJS_F19_wt_ER1_73.

R 

ttttttgaattcCCTTGGCTGCTTCCTTCCGG IDT 
EJS_F20_wt_ER1_74.

R 

tttttttgaattcGCCTTGGCTGCTTCCTTCCG IDT 
EJS_F21_wt_ER1_75.

R 

tttttttgaattcTGCCTTGGCTGCTTCCTTCC IDT 
EJS_F22_wt_ER1_76.

R 

tttttttgaattcCTGCCTTGGCTGCTTCCTTC IDT 
EJS_F23_wt_ER1_77.

R 

tttttttgaattcTCTGCCTTGGCTGCTTCCTT IDT 
EJS_F24_wt_ER1_78.

R 

tttttttgaattcATCTGCCTTGGCTGCTTCCT IDT 
EJS_F25_wt_ER1_79.

R 

tttttttgaattcCATCTGCCTTGGCTGCTTCC IDT 
EJS_F26_wt_ER1_80.

R 

tttttttgaattcTCATCTGCCTTGGCTGCTTC IDT 
EJS_F27_wt_ER1_81.

R 



 

tttttttgaattcGTCATCTGCCTTGGCTGCTT IDT 
EJS_F28_wt_ER1_82.

R 

tttttttgaattcCGTCATCTGCCTTGGCTGCT IDT 
EJS_F29_wt_ER1_83.

R 

tttttttgaattcGCGTCATCTGCCTTGGCTGC IDT 
EJS_F30_wt_ER1_84.

R 

tttttttgaattcCGCGTCATCTGCCTTGGCTG IDT 
EJS_F31_wt_ER1_85.

R 

tttttttgaattcaCGCGTCATCTGCCTTGGCT IDT 
EJS_F32_wt_ER1_86.

R 

tttttttgaattcCaCGCGTCATCTGCCTTGGC IDT 
EJS_F33_wt_ER1_87.

R 

tttttttgaattcaCaCGCGTCATCTGCCTTGG IDT 
EJS_F34_wt_ER1_88.

R 

tttttttgaattcCaCaCGCGTCATCTGCCTTG IDT 
EJS_F35_wt_ER1_89.

R 

tttttttgaattcGCaCaCGCGTCATCTGCCTT IDT 
EJS_F36_wt_ER1_90.

R 

tttttttgaattcGGCaCaCGCGTCATCTGCCT IDT 
EJS_F37_wt_ER1_91.

R 

tttttttgaattcCGGCaCaCGCGTCATCTGCC IDT 
EJS_F38_wt_ER1_92.

R 

tttttttgaattcCCGGCaCaCGCGTCATCTGC IDT 
EJS_F39_wt_ER1_93.

R 

tttttttgaattcCCCGGCaCaCGCGTCATCTG IDT 
EJS_F40_wt_ER1_94.

R 

tttttttgaattcTCCCGGCaCaCGCGTCATCT IDT 
EJS_F41_wt_ER1_95.

R 

tttttttgaattcATCCCGGCaCaCGCGTCATC IDT 
EJS_F42_wt_ER1_96.

R 

tttttttgaattcCATCCCGGCaCaCGCGTCAT IDT 
EJS_F43_wt_ER1_97.

R 

tttttttgaattcACATCCCGGCaCaCGCGTCA IDT 
EJS_F44_wt_ER1_98.

R 

tttttttgaattcTACATCCCGGCaCaCGCGTC IDT 
EJS_F45_wt_ER1_99.

R 

tttttttgaattcCTACATCCCGGCaCaCGCGT IDT 
EJS_F46_wt_ER1_100.

R 

tttttttgaattcGCTACATCCCGGCaCaCGCG IDT 
EJS_F47_wt_ER1_101.

R 

tttttttgaattcAGCTACATCCCGGCaCaCGC IDT 
EJS_F48_wt_ER1_102.

R 

tttttttgaattcCAGCTACATCCCGGCaCaCG IDT 
EJS_F49_wt_ER1_103.

R 

tttttttgaattcCCAGCTACATCCCGGCaCaC IDT 
EJS_F50_wt_ER1_104.

R 

tttttttgaattcGCCAGCTACATCCCGGCaCa IDT 
EJS_F51_wt_ER1_105.

R 

tttttttgaattcTGCCAGCTACATCCCGGCaC IDT 
EJS_F52_wt_ER1_106.

R 

tttttttgaattcCTGCCAGCTACATCCCGGCa IDT 
EJS_F53_wt_ER1_107.

R 

tttttttgaattcCCTGCCAGCTACATCCCGGC IDT 
EJS_F54_wt_ER1_108.

R 



 

tttttttgaattcCCCTGCCAGCTACATCCCGG IDT 
EJS_F55_wt_ER1_109.

R 

tttttttgaattcGCCCTGCCAGCTACATCCCG IDT 
EJS_F56_wt_ER1_110.

R 

tttttttgaattcGGCCCTGCCAGCTACATCCC IDT 
EJS_F57_wt_ER1_111.

R 

tttttttgaattcGGGCCCTGCCAGCTACATCC IDT 
EJS_F58_wt_ER1_112.

R 

tttttttgaattcGGGGCCCTGCCAGCTACATC IDT 
EJS_F59_wt_ER1_113.

R 

tttttttgaattcGGGGGCCCTGCCAGCTACAT IDT 
EJS_F60_wt_ER1_114.

R 

tttttttgaattcTGGGGGCCCTGCCAGCTACA IDT 
EJS_F61_wt_ER1_115.

R 

tttttttgaattcGTGGGGGCCCTGCCAGCTAC IDT 
EJS_F62_wt_ER1_116.

R 

tttttttgaattcGGTGGGGGCCCTGCCAGCTA IDT 
EJS_F63_wt_ER1_117.

R 

tttttttgaattcGGGTGGGGGCCCTGCCAGCT IDT 
EJS_F64_wt_ER1_118.

R 

tttttttgaattcCGGGTGGGGGCCCTGCCAGC IDT 
EJS_F65_wt_ER1_119.

R 

tttttttgaattcCCGGGTGGGGGCCCTGCCAG IDT 
EJS_F66_wt_ER1_120.

R 

tttttttgaattcCCCGGGTGGGGGCCCTGCCA IDT 
EJS_F67_wt_ER1_121.

R 

tttttttgaattcACCCGGGTGGGGGCCCTGCC IDT 
EJS_F68_wt_ER1_122.

R 

tttttttgaattcGACCCGGGTGGGGGCCCTGC IDT 
EJS_F69_wt_ER1_123.

R 

tttttttgaattcCGACCCGGGTGGGGGCCCTG IDT 
EJS_F70_wt_ER1_124.

R 

tttttttgaattcCCGACCCGGGTGGGGGCCCT IDT 
EJS_F71_wt_ER1_125.

R 

tttttttgaattcGCCGACCCGGGTGGGGGCCC IDT 
EJS_F72_wt_ER1_126.

R 

tttttttgaattcTGCCGACCCGGGTGGGGGCC IDT 
EJS_F73_wt_ER1_127.

R 

tttttttgaattcATGCCGACCCGGGTGGGGGC IDT 
EJS_F74_wt_ER1_128.

R 

tttttttgaattcCATGCCGACCCGGGTGGGGG IDT 
EJS_F75_wt_ER1_129.

R 

tttttttgaattcCCATGCCGACCCGGGTGGGG IDT 
EJS_F76_wt_ER1_130.

R 

tttttttgaattcGCCATGCCGACCCGGGTGGG IDT 
EJS_F77_wt_ER1_131.

R 

tttttttgaattcTGCCATGCCGACCCGGGTGG IDT 
EJS_F78_wt_ER1_132.

R 

tttttttgaattcATGCCATGCCGACCCGGGTG IDT 
EJS_F79_wt_ER1_133.

R 

tttttttgaattcGATGCCATGCCGACCCGGGT IDT 
EJS_F80_wt_ER1_134.

R 

tttttttgaattcAGATGCCATGCCGACCCGGG IDT 
EJS_F81_wt_ER1_135.

R 



 

tttttttgaattcGAGATGCCATGCCGACCCGG IDT 
EJS_F82_wt_ER1_136.

R 

tttttttgaattcGGAGATGCCATGCCGACCCG IDT 
EJS_F83_wt_ER1_137.

R 

tttttttgaattcTGGAGATGCCATGCCGACCC IDT 
EJS_F84_wt_ER1_138.

R 

tttttttgaattcGTGGAGATGCCATGCCGACC IDT 
EJS_F85_wt_ER1_139.

R 

tttttttgaattcGGTGGAGATGCCATGCCGAC IDT 
EJS_F86_wt_ER1_140.

R 

tttttttgaattcAGGTGGAGATGCCATGCCGA IDT 
EJS_F87_wt_ER1_141.

R 

tttttttgaattcGAGGTGGAGATGCCATGCCG IDT 
EJS_F88_wt_ER1_142.

R 

tttttttgaattcGGAGGTGGAGATGCCATGCC IDT 
EJS_F89_wt_ER1_143.

R 

tttttttgaattcAGGAGGTGGAGATGCCATGC IDT 
EJS_F90_wt_ER1_144.

R 

tttttttgaattcGAGGAGGTGGAGATGCCATG IDT 
EJS_F91_wt_ER1_145.

R 

tttttttgaattcCGAGGAGGTGGAGATGCCAT IDT 
EJS_F92_wt_ER1_146.

R 

tttttttgaattcGCGAGGAGGTGGAGATGCCA IDT 
EJS_F93_wt_ER1_147.

R 

tttttttgaattcCGCGAGGAGGTGGAGATGCC IDT 
EJS_F94_wt_ER1_148.

R 

tttttttgaattcCCGCGAGGAGGTGGAGATGC IDT 
EJS_F95_wt_ER1_149.

R 

tttttttgaattcCCGCGAGGAGGTGGAGATGC IDT 
EJS_F96_wt_ER1_150.

R 

tttttttgaattcACCGCGAGGAGGTGGAGATG IDT 
EJS_F01_wt_ER1_55.

R 
/5Phos/rCrUrGrArCrUrCrGrGrGrCrArCrCrArArGrGr
A/3ddC/ 

IDT Linker 

/5Biosg/gtccttggtgcccgagt IDT RT Primer 
/5Phos/AGATCGGAAGAGCACACGTCTGAACTC
CAGTCAC/3SpC3/ 

IDT A_Adapter_B 

AATGATACGGCGACCACCGAGATCTACACTCTT
TCCCTACACGACGCTCTTCCGATCT 

IDT PE_Forward 

CTTTCCCTACACGACGCTCTTCCGATCTRRRYG
TCCTTGGTGCCCGAG*T*c*a*g 

IDT Select (+) 

CTTTCCCTACACGACGCTCTTCCGATCTYYYRG
TCCTTGGTGCCCGAG*T*c*a*g 

IDT Select (-) 

CAAGCAGAAGACGGCATACGAGATNNNNNNGT
GACTGGAGTTCAGACGTGTGCTC 

IDT Illumina Index 

GAGCGCGCGTAATACGACTCACTATAGCGTTG
GTTCTCAACGCTCTCAATG 

Sigma-Aldrich 4.5S-F 

TGCGGGAGAACCAACAGAGCCCCCATTGAGAG
CGTTGAGAAC 

Sigma-Aldrich 4.5S-R 

CCTTGGCTGCTTCCTTCCGG Sigma-Aldrich 4.5S(70)-R 
   
Recombinant DNA 
pJBL3664_SRP_EcoliRNAP_trp_HepD Watters, et al., 2016a N/A 



 

p23-4.5S Peck-Miller et al., 
1991 

N/A 

   
   
   
Software and Algorithms 
R2D2 This paper https://github.com/Luck

sLab/R2D2 
Cotranscriptional SHAPE-Seq Tools Watters et al., 2016a https://github.com/Luck

sLab/Cotrans_SHAPE-
Seq_Tools 

RNAstructure Reuter and Mathews, 
2010 

https://rna.urmc.rochest
er.edu/RNAstructure.ht
ml 

KineFold Xayaphoummine et 
al., 2005 

http://kinefold.curie.fr/do
wnload.html 

GROMACS 2016 Abraham et al., 2015 http://ftp.gromacs.org/p
ub/gromacs/gromacs-
2016.6.tar.gz 

Other 
M1 RNA Vioque et al., 1988 pJA2’ 
Detailed Protocol This paper Methods S1 
   
   
   

 
 

 

 

 

 

 

 



R2D2 Detailed Protocol 
 
Download and Installation: 
 
Several pieces of software are used by R2D2. Begin by downloading and installing the 
following software according to their installation instructions: 

- Python 2.7 
- RNAstructure command line tools (Reuter and Mathews, 2010): 

https://rna.urmc.rochester.edu/RNAstructure.html 
- VARNA (Darty et al., 2009): http://varna.lri.fr/ 

 
Next, download R2D2 from GitHub to a Linux server: 
https://github.com/LucksLab/R2D2.  
 
Configuration: 
Before running R2D2, you need to configure the settings to your local computational 
environment. To do so, open and edit the `LucksLabUtils_config.py` file to update 
several environmental variables to your configuration which is currently defaulted to 
Lucks lab paths. The easiest way to do this step is to edit lines 42-46 of 
`LucksLabUtils_config.py` to replace default paths with your system’s paths.  
 
Usage: 
Example usage cases are located in `R2D2/examples/run_CoTrans_example.sh` which 
uses example data included with the code. The following examples assume you have 
installed R2D2 in `<installation_dir>` and have put your cotranscriptional SHAPE-seq or 
equilibrium-refolded SHAPE-seq files in `<reactivity_dir>`. All outputs will be directed to 
`<output_dir>`.  
 
Recommended usage for cotranscriptional SHAPE-seq datasets reported in this paper: 
python <installation_dir>/R2D2/analyze_cotrans_SHAPE-Seq.py --in_dir 
<reactivity_dir> --out_dir <output_dir> --adapter "CTGACTCGGGCACCAAGG" --e 
50000 --endcut 0 --constrained_c "3.5" --scale_rho_max "1" --draw_all "True" --
most_count_tie_break "False" --weight_paired "0.8" --scaling_func "K" --cap_rhos 
"True" --pol_fp "14" --p 1 
 
Recommended usage for equilibrium-refolded SHAPE-seq datasets reported in this 
paper: 
python <installation_dir>/R2D2 /analyze_cotrans_SHAPE-Seq.py --in_dir 
<reactivity_dir> --out_dir <output_dir> --adapter "CTGACTCGGGCACCAAGG" --e 
50000 --endcut 0 --constrained_c "3.5" --scale_rho_max "1" --draw_all "True" --
most_count_tie_break "False" --weight_paired "0.8" --scaling_func "K" --cap_rhos 
"True" --pol_fp "0" --p 1 
 
Note – Some variables such as `--adapter` may need to be adjusted depending on 
sequencing library formatting. In addition, the 14nt RNA polymerase footprint is present 
in cotranscriptional SHAPE-seq experiments, but not in equilibrium-refolded SHAPE-
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seq experiments. This is reflected in the option --pol_fp set to “14” for cotranscriptional 
SHAPE-seq and --pol_fp set to “0” for equilibrium-refolded SHAPE-seq.  
 
 
Input files: 

- SHAPE-Seq reactivity files as generated by Spats 1.0.2 
(https://github.com/LucksLab/spats/releases/tag/v1.0.2) and converted to 𝜌 
reactivities according to the formula in (Watters et al., 2016). 

 
Options: 
--in_dir : Input directory containing reactivities files. 
--out_dir : Output directory. 
--adapter : Adapter sequence used in SHAPE-Seq sequencing libraries. 
--e : Size of sample to be used for each of the sampling methods. 
--p : Number of threads allowed to use, default 1. 
--endcut : Removes 3′ indices based on value passed. Ex. --endcut = -1 => removes the 
last base from input reads and reactivities. 
--pol_fp : Remove 3′ indices based on the length of RNA polymerase footprint. 
--constrained_c : Parameter for hard-constrained sampling. Any rho value greater than 
this value is forced to be unpaired. 
--scale_rho_max : Parameter for rescaling rhos such that rhos are capped to this value. 
--draw_all : Flag for whether or not to draw all possible best states for the best structure 
path video. 
--most_count_tie_break : When making the video of the best structure path, this flag 
determines if the structure sampled the most number of times is used instead of all best 
structures. This flag is only relevant if --draw_all is False.   
--weight_paired : Weight parameter for weighted distance calculation.  
--scaling_func = Choice of distance function when choosing the best structure. See the 
manuscript for detailed definitions: 
                  D: Bound to be between [0,1] 
                  U: Rescale sampled structures to average to 1 
                  K: Keep sampled structures and reactivities values. If cap_rhos is True, then 
reactivities will be capped. 
--cap_rhos = Flag to have a max cutoff when calculating distances for choosing the best 
structure. 
 
Outputs: 
draw/ : directory with output related to making structure images and videos. 
ct/ : directory of structures sampled in .ct file format. 
pickles/ : directory of python pickled data. 
movie.mp4 : Video of structures along the best structure path. 
pfs/ : directory of partition functions generated by RNAStructure. 
seq/ : directory of sequence files. 
theta/ : directory of theta files. 
rho/ : directory of rho files. 
*dump : output to be used for plotting in R. 

https://github.com/LucksLab/spats/releases/tag/v1.0.2


rho_table.txt : table of rho values sorted by length. 
rho_table_cut.txt : table of rho values sorted by length after removing 3′ end nucleotides 
specified by --endcut and --pol_fp. 
./CoTrans_example_output/DG_state_plot.pdf : Plot of ∆G vs length. Cotranscriptional 
folding pathway is denoted with red. 
 
 
In this manuscript, we ran 100 iterations of R2D2’s 2D protocol to generate a family of 
possible intermediate folding states which are then utilized in all-atom simulations as 
described below.  
 
 
All-atom Molecular Dynamics Folding Pathway Simulations of SRP RNA 

All-atom molecular dynamics simulations employed the GROMACS 2016 
software package (Abraham et al., 2015) which was downloaded at www.gromacs.org 
and compiled with default settings. The SRP RNA was simulated using the Amber-99 
force field (Wang et al., 2000) with Chen-Garcia modifications for RNA bases (Chen and 
García, 2013). The RNA was placed in a simulation box and solvated with enough 
TIP4P-EW water, K+ and Cl- ions to mimic 1 M excess salt conditions. The system was 
energy minimized using the steepest decent algorithm for 10,000 steps with a 1 fs 
timestep and a force tolerance of 100 kJ mol-1 nm-1. Then, NVT equilibration was 
conducted for 1 ns using a leapfrog integrator with a 2 fs timestep. A constant 
temperature of 300 K was maintained using a V-rescale thermostat (Bussi et al., 2007) 
with a time constant of 0.1 ps. Long-range interactions greater than 10 Angstroms were 
calculated using PME with a grid size of 0.16. The same parameters were used for NPT 
equilibration with the addition of a Parrinello-Rahman barostat maintaining a constant 
pressure of 1 atm with a time constant of 2 ps.  

Before simulating the folding pathway, an initial model of the SRP RNA in the 
pre-rearrangement state had to be constructed. Based on the RNABows visualizations 
of the R2D2 results, the 109 nt SRP RNA was split into 3 segments which were folded 
separately and then spliced into a single molecule: H1 (nt 1-27), H2 (nt 27-86), and H3 
(nt 86-109). Basepairs present in >50% of the R2D2 secondary structures were 
enforced via distance-dependent piecewise flat-bottomed harmonic bias restraints (type 
10 bonds added to the GROMACS topology file) between the central hydrogen bond 
donor and acceptor of paired bases applied at a strength of 0.5 kcal/mol. H2 was folded 
in a two-step procedure, where the central hairpin nt 50-66 was folded first and then 
spliced to include nt 27-86. Trajectories were then propagated until all base pairs 
observed in the pre-transition R2D2 structure were appropriately formed, after which all 
3 models were spliced together into a single chain using the ModeRNA software 
(Rother et al., 2011) downloaded from the Bujnicki lab webpage genesilici.pl. 

After the simulation box for the 109 nt SRP RNA was prepared and properly 
equilibrated in the pre-rearrangement state, NVT folding pathway simulations were 
conducted using a leapfrog Verlet integrator with a 2 fs time step, a Berendsen barostat 
(Berendsen et al., 1984) with a time constant of 1 ps and a V-rescale thermostat with a 
time constant of 0.1 ps to maintain a temperature of 450 K. This elevated temperature 
facilitates rearrangement by providing sufficient energy to increase RNA flexibility 

http://www.gromacs.org/
genesilici.pl


without promoting loss of RNA structure due to excess application of energy. In order to 
stimulate rearrangement, only a set of 2-3 base pairs, defining the secondary structure 
of the post-transition RNA, were sequentially restrained on the pre-transition RNA. The 
restraints consisted of distance-dependent piecewise flat-bottomed harmonic bias 
forces (i.e. type 10 bonds in the GROMACS topology file) between the central hydrogen 
bond donor and acceptor of paired bases applied at a strength of 0.5 kcal/mol. When 
the distance between each pair of restrained bases is below 4 Angstroms, a small 
attractive force is applied harmonically as a function of distance. Above the distance of 
4 Angstroms, the bias force is applied linearly. The distance dependence and strength 
of these restraints should be modulated to weakly encourage long range interactions 
without forcing physically unfeasible pathways or significantly disrupting structure in 
other portions of the RNA. After each set of restraints was applied, NVT simulations 
were conducted for 10 ns. If two bases were not physically close enough to pair during 
the simulation, up to four sequential 10 ns cycles were allotted to allow sufficient time 
and sampling to encourage base pairing. The simulation was considered stalled if the 
new set of base pairs was not achieved. If the new base pairs formed and were stable, 
then the process would repeat until all bases in the native fold were paired. 

A drawback of the strategy detailed above is that it requires frequent manual 
adjustment of the restraining potentials and indefinite simulation restarts. We have 
recently developed a novel protocol using a 2D grid of simulation replicas with variable-
strength restraints that greatly streamlines this process (Ebrahimi et al., 2019). The 2D 
REMD enhanced sampling protocol allows the simultaneous specification of all base 
pairs instead of sequentially restraining the structure 2-3 basepairs at a time. All atom 
simulations of the SRP precursor RNA were conducted using both the improved 2D 
REMD protocol in addition to the MD protocol above. Similar results were obtained 
using either simulation method.  
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Figure S1 
Diversity of sampled 2-D structures, Related to STAR Methods. (A) and (B) wt E. coli 
SRP RNA (117 nt), (C) and (D) wt E. coli SRP RNA (25 nt). Panels A and C show the 
number of unique structures versus total number sampled, while panels B and D show 
the minimum distance between structures and reactivities at the length calculated in a 
sampled structure set. Structures sampled using cotranscriptional SHAPE-seq replicate 
3 of wt E. coli SRP RNA were plotted using multidimensional scaling showing increasing 
number of structures sampled: (E) 300, (F) 3,000, (G) 15,000, and (H) 150,000. Only 
structures that are unique to previously sampled structures were plotted. This analysis 
highlights the need for increased sampling number compared to previous sample-and-
select methods (~1,000–10,000) to effectively consider many different secondary 
structures in the landscape of possible structures. 
 
  



Figure S2 
Native E. coli SRP RNA sequence pathway prediction plots for experimental replicates, 
Related to Figure 2. The figure layout mirrors Figure 2. (A) Predicted folding pathways 
of Replicate 2 for the cotranscriptional (purple) and equilibrium refolded (turquoise) 



SHAPE-Seq data. Four different lengths are highlighted: (B) 95 nt, (C) 109 nt, (D) 111 
nt, and (E) 117 nt. (F) Predicted folding pathways of Replicate 3 for the cotranscriptional 
(purple) and equilibrium refolded (turquoise) SHAPE-Seq data. Four different lengths 
are highlighted: (G) 95 nt, (H) 109 nt, (I) 111 nt, and (J) 117 nt.  
 
  



Figure S3 
Comparison of 5′ helices proposed based on our R2D2 data and by Wong et al, 2007, 
Related to Figure 2. (A) Wong et al, 2007 proposed 5′ hairpin overlaid with major (solid 
black arrow) and minor (dashed black arrow) RNase T1 cleavage sites, as determined 
from their study. (B) Wong et al, 2007 proposed 5′ hairpin overlaid with cleavage sites 
from oligonucleotide hybridization (orange, green, and blue lines) followed by RNase H 
cleavage (orange, green, and blue arrows). The blue cleavage site was more prevalent 
than the others, as determined from their study. R2D2’s predicted H1 overlaid with the 
same data in (C) and (D) as in panels A and B, respectively. (E) Heatmap of 
cotranscriptional SHAPE-Seq reactivities (original length 48 nt, shown without the 3′ 14 



nts that are in the RNAP footprint) with dot bracket notation of the Wong et al (2007) 
proposed 5′ hairpin (above) and H1 predicted by R2D2 (below). Panels A and B are 
based off of Wong et al, 2007. 
 
 
  





Figure S4 
Comparison of R2D2, RNAstructure-Fold, and KineFold, Related to STAR Methods. (A) 
Plot of predicted cotranscriptional folding pathways from R2D2 (purple) and 
RNAstructure-Fold without SHAPE-seq data (black) and with cotranscriptional (red) or 
equilibrium-refolded (blue) SHAPE-seq data. All sampled structures are shaded in grey. 
(B) Plot of predicted folding pathways for KineFold (red) as well as R2D2 (purple) using 
replicate 1 wt E. coli SRP RNA cotranscriptional SHAPE-Seq data. We highlight four 
different lengths: (C) 25 nt, (D) 62 nt, (E) 109 nt, and (F) 117 nt. We represent the 
structures found at these positions as RNAbow depictions where base pairs are drawn 
as arcs with the arc width showing higher prevalence of the base pair among the 
selected or predicted structures. Colored arcs show base pairs that are more frequent in 
either KineFold (red) or R2D2 (purple) predictions. Interestingly, KineFold predicts 
structures that are either closer to the MFE structure predictions or farther from the MFE 

than R2D2’s predictions (especially from lengths 85 to 117), as is evident from the DG 

plot in panel B. We note that some of the structures predicted by KineFold contain non-
canonical mismatches in its predictions, which cause large positive spikes in ΔG using 
the RNAStructure-efn2 energy model that is used in R2D2. KineFold does predict the 
major restructuring into the long helical state over 50% of the time at length 105, which 
is earlier than R2D2’s predictions with wt cotranscriptional data. According to KineFold, 
helix 1 is not stably predicted after length 52 nor is helix 3 predicted with occurrence 
over 50% for any length. We also tested if altering the KineFold simulation time to more 
closely match cotranscriptional SHAPE-Seq conditions would change KineFold 
predictions. To this end, we performed KineFold simulations for a total of 40 seconds for 
each intermediate length to let it equilibrate to mimic the transcript in a stalled 
elongation complex and highlight the data from such an exercise for lengths (G) 25 nt, 
(H) 62 nt, (I) 109 nt, and (J) 117 nt. Extending KineFold simulation time reduced the 
number of predicted alternative structures, but it still showed differences compared to 
R2D2 predictions. Overall we find that R2D2 has more consistency with its predictions 
based on the SHAPE data. 



 



Figure S5 
Comparison of increased U21C R2D2 sampling diversity through combining the 
previous 6 lengths’ sampled structures to the current length’s sampled structures (top 
and blue) when compared to normal R2D2 sample-and-select protocol (purple and 
bottom) in RNAbow diagrams, Related to Figure 3, 4, 7. We highlight 2 lengths in 
RNAbow diagrams: (A) 116 nt and (B) 117 nt. U21C cotranscriptional SHAPE-seq 
reactivities are shown for (C) replicate 2 and (D) replicate 3. (E) U21C equilibrium-
refolded SHAPE-seq replicate 2 reactivities. (F) RNAbow plots of SRP RNA U21C, 
C22U, G93A replicate 2 and 3 (green, top) and U21C replicate 1 (purple, bottom) R2D2 

predictions at lengths 109–111 nt. Related to Figure 4. (G) Timecourse assays (final 
volume, 20 µL) with 10 nM E. coli RNase P and either 10 nM or 2.5 µM 24+24 pre-SRP 
RNA as the substrate. Each plot is derived from the results obtained with three 
replicates, and the data depict the mean and standard deviation values with one 
exception: the 30-s timepoint for the 2.5 µM substrate assay represents the mean from 
two replicates. Initial velocity determined individually from the three assay replicates 
with 2.5 µM substrate yielded a turnover number of 5.4 ± 0.5 min-1; a representative gel 
of this assay is shown in Figure 7B. 
 
 

 
 



 

Distance function Parameter values of best average F-Scores Average F-score 

𝐷

	 𝜌=3.5, 𝜌=1.0, α=0.8	 86.32 

𝜌=3.5, 𝜌=0.9, α=0.8	

𝐷

	 𝜌=3.5, 𝜌=1.0, α=0.8	 86.32 

𝐷


	 𝜌=3.5, α=0.8	 85.83 

𝐷

	 𝜌=2.7, 𝜌=2.1, α=0.7	 85.77 

𝜌=2.7, 𝜌=2.2, α=0.7	

𝐷


	 𝜌=2.7, α=0.7	 85.61 

𝐷


	 𝜌=1.9, α=0.9	 78.31 

Table S1. The best parameter sets for R2D2 distance functions and their respective average F-score over the 
benchmarking set, Related to Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 RNAstructure-Fold with SHAPE RNAstructure-Fold with no 
SHAPE 

Replicate 1 Replicate 2 Replicate 3 Sequence alone 

Sensitivity PPV F-score Sensitivity PPV F-score Sensitivity PPV F-score Sensitivity PPV F-score 

5S rRNA, E. coli 0.97 0.92 0.94 0.97 0.92 0.94 0.94 0.92 0.93 0.29 0.25 0.27 

Adenine riboswitch, V. 

vulnificus 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

P4-P6, Tetrahymena group I 
intron ribozyme 

0.90 0.83 0.86 0.79 0.78 0.78 0.92 0.88 0.90 0.90 0.78 0.83 

TPP riboswitch, E. coli 0.77 0.85 0.81 0.77 0.85 0.81 0.77 0.85 0.81 0.77 0.85 0.81 

Cyclic d-GMP Riboswitch, V. 

cholera 

0.96 0.93 0.95 0.68 0.73 0.70 0.68 0.83 0.75 0.75 0.78 0.76 

tRNAphe, E. coli 1.00 1.00 1.00 0.81 0.89 0.85 0.95 1.00 0.98 0.95 1.00 0.98 

 
R2D2 

Replicate 1 Replicate 2 Replicate 3 

Sensitivity PPV F-score Sensitivity PPV F-score Sensitivity PPV F-score 

5S rRNA, E. coli 0.89 0.94 0.91 0.89 0.94 0.91 0.86 0.91 0.88 

Adenine riboswitch, V. 

vulnificus 
0.86 0.82 0.84 0.90 0.95 0.93 0.95 0.87 0.91 

P4-P6, Tetrahymena group I 

intron ribozyme 

0.81 0.78 0.80 0.79 0.84 0.82 0.81 0.87 0.84 

TPP riboswitch, E. coli 0.95 0.91 0.93 0.91 0.95 0.93 0.91 0.95 0.93 

Cyclic d-GMP Riboswitch, V. 

cholera 
0.89 1.00 0.94 0.64 1.00 0.78 0.68 0.83 0.75 

tRNAphe, E. coli 0.71 0.79 0.75 0.71 0.83 0.77 0.86 1.00 0.92 

 R2D2-consensus 

Replicate 1 Replicate 2 Replicate 3 

Sensitivity PPV F-score Sensitivity PPV F-score Sensitivity PPV F-score 

5S rRNA, E. coli 0.91 0.94 0.93 0.80 0.85 0.82 0.89 0.91 0.90 

Adenine riboswitch, V. 

vulnificus 

0.90 0.90 0.90 0.86 0.90 0.88 0.95 0.95 0.95 

P4-P6, Tetrahymena group I 
intron ribozyme 

0.85 0.82 0.84 0.77 0.86 0.81 0.75 0.86 0.80 

TPP riboswitch, E. coli 0.95 0.91 0.93 0.91 0.95 0.93 0.91 0.95 0.93 

Cyclic d-GMP Riboswitch, V. 

cholera 
0.89 1.00 0.94 0.54 1.00 0.70 0.68 0.90 0.78 

tRNAphe, E. coli 0.71 0.79 0.75 0.71 0.88 0.79 0.86 1.00 0.92 



 

Table S2. Sensitivity, PPV, and F-score of R2D2 predictions with SHAPE-Seq reactivities and RNAstructure-Fold with 
and without SHAPE-Seq reactivities on the benchmarking set of equilibrium refolded RNAs, Related to STAR Methods. 
R2D2 is a single iteration of R2D2’s sample-and-select method and R2D2-consensus is the structure consisting of base 
pairs that occur in at least 50% in 100 iterations of R2D2’s sample-and-select method. Predictions are separated based 
on SHAPE-Seq reactivity replicates.  
 

 
 


