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Summary

The series of RNA folding events that occur during transcription can critically
influence cellular RNAs’ function. Here, we present Reconstructing RNA Dynamics from
Data (R2D2), a method to uncover details of cotranscriptional RNA folding. We model

the folding of the Escherichia coli signal recognition particle RNA and show that it
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requires specific local structural fluctuations within a key hairpin to engender efficient
cotranscriptional conformational rearrangement into the functional structure. All-atom
molecular dynamics simulations suggest that this rearrangement proceeds through an
internal toehold-mediated strand-displacement mechanism, which can be disrupted with
a point mutation that limits local structural fluctuations and rescued with compensating
mutations that restores these fluctuations. Moreover, a cotranscriptional folding
intermediate could be cleaved in vitro by recombinant E. coli RNase P, suggesting
potential cotranscriptional processing. These results from experiment-guided multi-scale
modeling demonstrate that even an RNA with a simple functional structure can undergo

complex folding and processing during synthesis.

Introduction

RNA structures begin to form during transcription. A nascent RNA exiting RNA
polymerase (RNAP) transitions through intermediate structures that can ultimately
influence the RNA's final fold and function (Kramer and Mills, 1981). Because RNA
folding generally occurs faster than transcription (Mustoe et al., 2014), the 5 to 3’
directionality of RNA synthesis guides a cotranscriptional ‘folding pathway’ (Pan and
Sosnick, 2006). Each time an RNA is transcribed, the ensuing order of folding is critical
for essential catalytic RNAs to adopt a functional structure, for riboswitches to make
regulatory decisions, for ribonucleoprotein complexes (e.g., ribosome) to assemble, and
for RNA processing to take place with efficiency and fidelity (Al-Hashimi and Walter,
2008; Saldi et al., 2018; Serganov and Nudler, 2013). Thus, establishing the principles
of cotranscriptional folding is important to understand how each RNA adopts its native
structure, with additional payoffs for better appreciating the dynamic behavior that

underpins RNA-based molecular machines and switches.

Despite the widespread biological importance, we still lack a complete
understanding of the dynamic, non-equilibrium folding pathways that RNAs undergo
during transcription. Pioneering RNA folding studies showed that the synthesis order of
RNA sequence elements are important for establishing functional folds of RNA enzymes
(Heilman-Miller and Woodson, 2003; Pan et al., 1999). Enzymatic RNA structure



probing was then used to generate models of cotranscriptional folding processes (Wong
et al., 2007). Single-molecule force spectroscopy has also been used to track in real-
time the major folding events of regulatory riboswitches (Frieda and Block, 2012). To
complement these approaches with higher-resolution structural information, we
previously developed cotranscriptional SHAPE-seq, a chemical structure probing
method that captures nucleotide-resolution flexibility data for each length of a nascent
RNA in stalled transcription elongation complexes (Watters et al., 2016a). While these
experimental methods are powerful, the resulting data are complex and cannot be

directly used to obtain specific RNA structure models.

Computational RNA folding algorithms are important tools for generating models
of RNA structure and folding. Some of these algorithms modify minimum free energy
(MFE) folding calculations to capture some features of cotranscriptional folding (Proctor
and Meyer, 2013) or use stochastic simulations of RNA folding with growing chain
length to model cotranscriptional folding (Danilova et al., 2006; Geis et al., 2008;
Hofacker et al., 2010; Xayaphoummine et al., 2005). Comparative methods utilizing
multiple sequence alignments and evolutionary trees have also been developed to

capture potentially conserved transient structures (Wiebe and Meyer, 2010).

We developed a method called Reconstructing RNA Dynamics from Data (R2D2)
which combines nucleotide-resolution experimental RNA structure chemical probing
data with computational structure prediction algorithms to reconstruct models of
secondary and then tertiary RNA cotranscriptional folding pathways. We applied R2D2
to model the folding pathway of the Escherichia coli signal recognition particle (SRP, or
4.5S) RNA, a highly conserved non-coding RNA that is found in all kingdoms of life
(Rosenblad et al., 2009). This SRP RNA binds to the Ffh protein to form the signal
recognition particle, which recognizes nascent signal peptide sequences and delivers
ribosome-nascent chain complexes to the inner membrane for translocation through
docking to the SRP receptor. The SRP RNA, which fulfills this critical role in cellular
protein biogenesis, consists of a single long hairpin containing several internal bulges
and non-canonical base pairs (Batey et al., 2000). This tertiary fold is thought to be
generated prior to removal of a 5’ leader sequence by RNase P, an essential

endonuclease known primarily for its role in tRNA 5'-maturation (Bothwell et al., 1976).



The E. coli SRP RNA is a valuable model for studies of nascent RNA folding because
previous studies indicate that during transcription, the SRP RNA rearranges from an
intermediate hairpin fold that differs substantially from the single long hairpin, into an
extended helical structure (Wong et al., 2007) that resembles the functional structure
(Hsu et al., 1984; Jomaa et al., 2017). We therefore applied R2D2 to this model system
to uncover mechanistic insights into this rearrangement process.

Our secondary structure models of the processed form of the SRP RNA
confirmed the overall rearrangement, and inspired a point mutation within an
intermediate hairpin that disrupts the cotranscriptional rearrangement of the SRP RNA.
We then performed all-atom molecular dynamics (MD) simulations to assess possible
mechanisms for the native sequence rearrangement and gain insights into how a single
mutation can disrupt this process. Upon evaluating multiple rearrangement
mechanisms, the simulations suggest that the rearrangement likely proceeds via an
internal toehold-mediated strand-displacement mechanism. This folding route requires
local structural fluctuations within the intermediate hairpin, and the point mutation
abolishes these fluctuations. We also engineered point mutations that were predicted to
re-introduce flexibility into the intermediate hairpin, and indeed such a change rescued
the ability of the SRP RNA to cotranscriptionally rearrange into its native fold. The
presence or absence of the 5' leader that is cleaved by RNase P was not found to affect
these folding mechanisms. Interestingly, our models predicted that one of the
intermediates could serve as a natural substrate for RNase P. Indeed, we found that the
intermediate is cleaved in vitro by recombinant E. coli RNase P, suggesting that SRP
RNA processing could occur cotranscriptionally as well as the established post-
transcriptional pathway. While this work was being performed, several of our structural
predictions were corroborated by an independent study that used a high-resolution
optical tweezers instrument to follow in real-time and on a single-molecule scale the
cotranscriptional folding of the same SRP RNA sequences (Fukuda et al., 2019).

Overall, this work presents a method for multi-scale modeling of RNA
cotranscriptional folding pathways from experimental data and uncovers efficient ways
by which RNAs can rearrange intermediate structures into final functional folds by

exploiting toehold-mediated strand-displacement mechanisms.



Design

While in silico cotranscriptional folding predictors show great promise, the
algorithms could benefit from high-resolution experimental studies to corroborate, guide,
and improve their predictions. For example, RNA chemical probing data can be used as
restraints in computational RNA folding algorithms to improve the agreement between
equilibrium predictions and experimental measurements (Deigan et al., 2009). However,
these algorithms were developed to model RNA folding under equilibrium conditions,
and efforts to predict cotranscriptional secondary structure folding pathways from
chemical probing data are in early stages (Li and Aviran, 2018). To address this gap, we
developed R2D2 to implement experiment-guided multi-scale modeling of RNA
cotranscriptional folding.

R2D2 uses nucleotide-resolution chemical probing data as input to reconstruct
models of secondary and then tertiary RNA cotranscriptional folding pathways
(Methods). Secondary structure modeling for each length of a growing nascent RNA
begins by first sampling possible structures using RNA sequence information and
cotranscriptional SHAPE-Seq data. Subsequently, using an optimized structure-to-data
distance metric, sampled structures that are most consistent with the experimental data
are selected resulting in a family of possible structural states, reflecting intermediate
nascent RNA lengths generated during transcription. This design choice was inspired by
previous methods (Ding et al., 2004; Ouyang et al., 2013; Quarrier et al., 2010) that
pioneered 2-D RNA structure sampling and selecting, but differs in the sampling and
selection protocols in addition to connecting secondary structures to 3-D dynamic
modeling. R2D2’s secondary structure reconstruction is then used as a starting point for
all-atom molecular dynamics (MD) simulations to generate 3-D models of
cotranscriptional folding transitions observed between specific predicted intermediate
states.

Most prior approaches to simulate cotranscriptional RNA folding operate purely
at the secondary structure level (Danilova et al., 2006; Geis et al., 2008; Hofacker et al.,
2010; Xayaphoummine et al., 2005) and are therefore unable to capture the inherently

3-D nature of topological strain, multi-helix junctions, and long-range base-pairs



including pseudoknots and kissing-loops. Given the disproportionate impact such
interactions have on the kinetics of cotranscriptional folding of SRP, a 3-D model was
clearly needed for this study. Conversely, 3-D simulations have been previously used to
study the folding pathways of the SAM-1 riboswitch (Whitford et al., 2009), utilizing a
Go-like energy model originally developed for studying protein folding. Our approach
shares the motivation of reducing folding frustration; however, the G6-model approach
requires a solved 3-D structure as an input, which is unavailable for the SRP pre-
rearrangement complex. Furthermore, the implicit solvent- and native contact-based
potential cannot be expected to accurately depict folding intermediates stabilized by
non-native tertiary interactions. Therefore, there is a need for a new approach that
preserved the overall efficiency of the Go-like models even while retaining the general
applicability of a traditional explicit solvent-based molecular dynamics simulation. We
accomplished this objective by incorporation of selective R2D2-derived restraints
applied to all-atom, explicit solvent model simulations capable of the de novo folding of
small RNAs.

Results
A sample-and-select approach to reconstructing RNA folding pathways from
experimental data

We developed a method to merge computational multi-scale RNA structure
algorithms with nucleotide-resolution datasets generated from cotranscriptional SHAPE-
seq experiments that probe nascent RNA structure (Figure 1). Cotranscriptional
SHAPE-seq begins with in vitro transcription of a DNA template library that directs the
synthesis of each intermediate length of a target RNA using RNAP roadblocks (Watters
et al., 2016a). Transcription from this template library generates nascent RNAs of all
intermediate lengths of the target sequence, which are rapidly probed with the fast-
acting SHAPE reagent benzoyl cyanide (BzCN; self-inactivation t1/2 of 250 ms) to
covalently modify the RNA according to its structure (Mortimer and Weeks, 2007). RNA
nucleotides that are unconstrained by secondary or tertiary structure are more reactive
and easily modified (Aviran et al., 2011; Bindewald et al., 2011). Library preparation,



sequencing, and bioinformatics analysis is then used to generate SHAPE reactivities for
each nucleotide of each nascent intermediate length RNA species (Watters et al.,
2016a) (Figure 1A).

We used a sample-and-select method to reconstruct secondary structure folding
intermediates within R2D2. The R2D2 sample-and-select method consists of two steps:
(1) generate a set of possible structures at each nascent RNA length by sampling
candidate structures from the sequences alone, and (2) computationally select the most
likely structure(s) using observed experimental data (Figure 1C). Thus, R2D2 requires
SHAPE-Seq data to select structures and SHAPE-Seq data is a necessary input.
Comparison between SHAPE-Seq reactivities and sampled structures with a ‘distance’
metric that reflects how similar reactivity patterns are to candidate secondary structures
is used to select structures that are most consistent with the data at each nascent RNA
length (Figure 1C, Table S1).

To generate candidate structures, the sample method statistically examines
structures with a large sample size using the partition and stochastic functions of the
RNAstructure suite of computational secondary structure prediction tools (Reuter and
Mathews, 2010). We applied three variations of the partition method that incorporated
experimental SHAPE reactivities in different ways to sample 150,000 structures for each
length to increase the diversity of structures sampled (Methods).

To select structures from this sampled set, we developed six metrics to calculate
the distance between a given SHAPE-Seq reactivity spectrum and a given RNA
secondary structure (Table S1, Methods). Structures with the minimum distance
calculated between it and the reactivity spectrum were selected from a candidate
sampled set (Figure 1C). By applying this selection at each nascent RNA length, we
could reconstruct possible folding intermediates that were most consistent with the

experimental data.

Benchmarking sample-and-select on equilibrium refolding data
We next assessed the accuracy of each proposed distance metric. As there are
currently no established benchmarks for cotranscriptional folding predictions, we instead

assessed distance metrics by predicting the equilibrium folds of an established



benchmark panel of RNAs using SHAPE-Seq data (Loughrey et al., 2014). Each
distance metric contains several parameter values that are used to determine how the
SHAPE reactivities are compared to sampled RNA structures: p,,,, and p. determine
cutoffs in reactivity values, and a weighs the contributions from paired vs. unpaired
positions (Methods). For each of the six distance functions, we determined the optimal
values of the three fit parameters by applying the sample-and-select method to a panel
of RNAs previously used to benchmark equilibrium SHAPE-directed secondary
structure prediction algorithms (Table S1). The best performing parameter sets
performed comparably to the SHAPE data-based output of the Fold module of
RNAstructure, a widely used RNA secondary structure prediction algorithm (Table S2,
Methods).

Reconstructing the secondary structure cotranscriptional folding pathway of the E. coli
SRP RNA sequence

We next applied the R2D2 sample-and-select method to our previously published
SRP RNA cotranscriptional and equilibrium refolded SHAPE-seq datasets (Watters et
al., 2016a), and this study further characterizes mutants designed based on R2D2
results. The SRP RNA sequence used was based on "Wong et al., 2007" who
examined SRP RNA folding using a variant that has AUC in place of the 5' native 24-nt
leader. Before applying R2D2 sample-and-select to this cotranscriptional probing
dataset, we removed the last 14 nt from each 3' end of the RNA sequence to account
for the RNA polymerase footprint (Komissarova and Kashlev, 1998). To compare
cotranscriptional to equilibrium refolded datasets that do not contain an RNAP footprint,
we compare trimmed cotranscriptional transcript lengths to equal lengths of the
equilibrium-refolded RNA sequence from each experimental dataset. To visualize R2D2
predictions at each nascent RNA length, we plotted the computed free energies (AG) of
each selected structure and connected all possible paths between selected structures
for visual convenience, noting that connections do not imply transition probabilities
between states (Figure 2A). Notably, we observed that distinct structures can have the

same minimum distance to the experimental data, which may reflect a mixed population



of RNA states at specific lengths. We therefore chose to leave these multiple structures
as distinct possibilities that are equally consistent with the data.

Despite diversifying our sampling procedure 150-fold over some previous
sample-and-select methods (Ding et al., 2004; Ouyang et al., 2013), we found that it is
intractable to generate an exhaustively complete set of candidate structures at each
length due to the slow convergence of the stochastic sampling method (Figure S1A,C).
Thus, iterations of sample-and-select may generate different sets of candidate
structures that can be consistent with the data. To incorporate this variability in
sampling, we ran 100 iterations of R2D2 sample-and-select on each SHAPE-Seq
dataset to generate a family of possible intermediate folding states (Figure 2A). We
applied this method to cotranscriptional SHAPE-Seq datasets of the SRP RNA
sequence, as well as SHAPE-Seq datasets from experiments performed on an
equilibrium refolded population of the same SRP RNA sequence intermediates to
compare out-of-equilibrium to equilibrium predictions of intermediate states (Figure 2,
Figure S2). Overall, we observed that cotranscriptional and equilibrium predictions are
similar for short RNA lengths, diverge as the RNA length increases, and ultimately
converge near full length.

To analyze structural changes that may occur during transcription, we extracted
specific structures chosen by the select method at each nascent length. We viewed the
family of selected structures at each length using RNAbow software (Aalberts and
Jannen, 2013), which revealed specific structural changes across the SRP RNA folding
trajectory that differ between out-of-equilibrium and equilibrium datasets (Figure 2B-H,
Figure S2B-E, Figure S2G-J). When the first 23-25 nt are free to fold in the
cotranscriptional SHAPE-Seq predictions, we detect the formation of a 5’ helix
containing 3 or more base pairs which persists through most of the folding pathway
(Figure 2B-F). Interestingly, this 5' helix differs in its make-up from the 5' helix consisting
of positions 4-10 paired to 16-22 that was inferred based on enzymatic probing
experiments (Figure S3A,C) (Wong et al., 2007). Instead, we consistently predict a 5’
helix 1 (H1) where positions 3-8 are paired to 20-25, which is consistent with the
previous enzymatic probing results (Figure S3B,D) but also by our cotranscriptional
SHAPE-Seq data (Figure S3E). We found that H1 is present for a large portion of the



folding pathway and, based on our reconstructed states, starts to rearrange into the
native long helical structure at lengths 110-111 nt (Figure 2B-G, Figure S2B-D, Figure
S2G-I, S| Movie 1).

The next highly persistent structure that forms is a helix created when nts 53-55
pair with 60-62 to form the apical stem-loop of the native structure (Figure 2C-G, Figure
S2B-E,G-J). We note, however, that our reconstructions do not predict the formation of
four non-canonical interactions that are present in the crystal structure of the E. coli
SRP RNA: C49-A66, A50-C65, G51-G64, and G52-A63 (Batey et al., 2000). We
attribute this to the reliance of R2D2’s sample-and-select method on RNAstructure’s
partition and stochastic functions which are not able to sample structures that contain
non-canonical interactions, although portions of the cotranscriptional SHAPE-Seq
reactivity matrix in this region show elevated reactivities indicating this region also likely
does not close on the 30 s timescale of our experiment. Despite these differences,
R2D2 does reconstruct most of the mature SRP RNA sequence structure by length 117
(Figure 2H, Figure S2E,J).

Prior to folding into the final structure, the sample-and-select method also
predicts 3' hairpin structures at various transcript lengths. One such structure is
between nucleotides 72 to 90, which we denote early helix 3 (eH3), and the next is
between nucleotides 87 to 105, which we denote helix 3 (H3) (Figure 2E,F). Both eH3
and H3 locally insulate bases that form different pairs with nucleotides that are
ultimately sequestered within H1 in the final structure. H3 was previously found by
comparative analysis of SRP RNA sequences from diverse bacterial species,
suggesting it may be an evolutionarily conserved transient structural feature of the SRP
RNA (Zhu et al., 2013). The presence of H1 and H3 present a significant structural
barrier to cotranscriptional folding in that both must be broken to form the mature
extended helical fold. We note, however, that H3 and eH3 are not predicted in every

selected structure indicating that additional folding pathways are likely.
Sample-and-select models differ from approaches that do not use experimental data

Based on the AG folding trajectory, R2D2’s sample-and-select chooses

structures that are higher in free energy than the MFE predicted with or without
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experimental data at almost all lengths (Figure 2A, Figure S2A,F, Figure S4A). Other
than MFE approaches, one of the most widely used is KineFold, which simulates
cotranscriptional folding given only an input sequence and a desired transcription rate
(Xayaphoummine et al., 2005). In a comparison between 100 repetitions of KineFold
and R2D2, KineFold predicted different folding pathways. The key differences between
the two approaches pertain to predictions of transient helices such as H1 and H3 as
well as the location of structural rearrangements (Figure S4B-F). Predictions between
R2D2 and KineFold differ even when simulating 40 s of transcription and stalling at
each intermediate length with KineFold to test if the RNAP roadblocking strategy in
cotranscriptional SHAPE-seq (30 s of transcription followed by SHAPE probing)
explains differences between R2D2 and KineFold (Figure S4G-J).

A single point mutation delays the cotranscriptional rearrangement of the E. coli SRP
RNA sequence

R2D2 predictions show structural variation within H1 across the folding pathway
(Figure 2, Figure S2, Figure 3A), which we hypothesized is due to the GU pair within the
otherwise GC-rich H1. We therefore mutated the native U21 to C21 to change the GU to
a GC bp, thereby increasing the stability of H1 and disfavoring the rearrangement into
the final helix structure (Figure 3B). R2D2 analysis of the cotranscriptional SRP RNA
U21C dataset predicts the presence of H1 at all lengths of the folding pathway through
lengths 112, 111, and 110 nt in the first, second, and third replicate, respectively (Figure
3D-H). In contrast, R2D2 shows the rearrangement into the final extended structure in
U21C equilibrium-refolded data occurring earlier at length 109 nt. These differences in
R2D2’s 2-D results of SRP RNA U21C cotranscriptional and U21C equilibrium-refolded
SHAPE-seq reactivities are due to reactivity differences (e.g., consistent drops in H1
loop reactivities at lengths 108-109 nt of the equilibrium-refolded data; Figure 3C).
DUETT, a recently developed algorithm to systematically detect reactivity changes in
cotranscriptional SHAPE-seq datasets (Xue et al., 2019), detected these drops in
reactivity.

The lack of H1 predictions at near full-length RNAs (Figure S5A-B) indicate that

rearrangement of H1 is possible given the experimental data but is delayed due to
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minimization of local fluctuations in H1 (discussed below in Uncovering potential
mechanisms of the SRP RNA cotranscriptional structural rearrangement with all-atom
simulations). However, we also explore the possible limitations in the Boltzmann
distribution-directed sampling methods used as a reason for the predicted
cotranscriptional rearrangement of U21C. Boltzmann distribution-directed sampling is
naturally biased towards sampling lower free energy structures making it difficult for the
algorithm to choose out-of-equilibrium structures especially with increasing RNA
lengths. To investigate this possibility, we added to the selection pool structures
sampled from the previous six lengths and extended them with unpaired nucleotides.
With these additional structures, we find that H1 persists through lengths 113-116 nt,
while rearrangement is predicted at length 117 nt in only two of the three replicates
(Figure S5A-B). We also ran R2D2 using this modified sampling procedure on the
native SRP RNA sequence as a control and found lengths 115-117 nt (Figure S5A-B)
are predominantly predicted to be rearranged as expected. Application of the standard
R2D2 sample-and-select procedure to the SRP U21C equilibrium refolded datasets
showed the presence of H1 but recovered the rearrangement into the final extended
helical structure after length 109 nt (Figure 3D-H). Taken together, these data
demonstrate that a single point mutation can delay a key transition of the SRP RNA
cotranscriptional folding pathway and kinetically trap the RNA in non-native intermediate

structures.

A single GU wobble is critical for the E. coli SRP RNA cotranscriptional rearrangement
into the extended final fold

Since the replacement of a single GU bp in the predicted H1 helix is enough to
disrupt the cotranscriptional rearrangement of SRP RNA, we sought to test if
reintroducing a GU pair in H1 would rescue the cotranscriptional rearrangement. We
therefore designed a mutation (U21C, C22U, G93A) that reintroduces a GU wobble pair
one position lower in the stem of H1 and maintains sequence complementarity between
nt 22 and nt 93 (Figure 4A). The cotranscriptional SHAPE-Seq reactivity matrix for this
mutant shows a drop in reactivities at length 119 nt (~105 nt free to fold) which was

determined with automated detection of reactivity changes (Xue et al., 2019) (Figure
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4B). In addition, when applied to this dataset, R2D2 sample-and-select predicts that this
mutant follows a similar folding pathway as the native sequence (Figure 4C,D), and that
the rearrangement occurs at lengths 110 and 111 nts between three replicates which is
the same rearrangement lengths as the wildtype sequence (Figure 4E, Figure S5F).
Overall, these data point to the critical requirement of a GU pair within H1 to facilitate

the cotranscriptional rearrangement into the final extended helix structure.

Uncovering potential mechanisms of the SRP RNA cotranscriptional structural
rearrangement with all-atom simulations

We next sought to determine the mechanism by which the SRP RNA rearranges
during transcription, and the role of the H1 GU bp in this process. Paradoxically, H3
would be expected to impede this rearrangement, as both H3 and H1 need to somehow
unzip and hybridize together to form the native extended helix structure. We therefore
focused on mechanisms by which the three-hairpin consensus structure at 109 nt of
cotranscriptional SHAPE-seq replicate 1 (Figure 2F) can rearrange into the extended
helix structure at 110 nt (Figure 2G). Four distinct potential transition pathways were
identified: the inside-out (Figure 5A), kissing loop (Figure 5B), late-toehold (Figure 5C),
and early-toehold (Figure 5D) pathways. We used all-atom molecular dynamics
simulations to characterize the relative feasibility of each of the four proposed transition
pathways from the stable folding intermediate containing H1 and H3 (Figure 6A) to the
mature fold (Figure 6B). Each pathway suggests that the rearrangement mechanism
initiate with a different set of base-pairing interactions (Figure 5). To test each pathway,
weak attractive biasing forces between specific nucleotides were sequentially added in
a specific order, starting at the initial proposed interaction to facilitate transitioning to the
mature fold. Eight replicate simulations were performed for each path (Methods).

The inside-out hypothesis involves simultaneously breaking H1 and H3 at their
stems from the middle radiating outwards to initiate the formation of the native helix
(Figure 5A, Sl Movie 2). While it was technically possible to observe the inside-out
pathway in the simulation with large biasing forces, it would be extremely
thermodynamically unfavorable since it would involve breaking two base-pairs for every

one base-pair formed for a significant portion of the pathway (Figure 5E, SI Movie 2).
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This pathway was possible only when stronger restraints were used, thus identifying an
upper limit for the strength of the restraints for all of the other transition pathways.

The kissing loop pathway assumes that bases 17-19 of the H1 loop and bases
98-100 of the H3 loop form initial bp to seed the rearrangement (Figure 5B). These
nucleotides were chosen because the resulting CG/GU/AU bp would produce a
significantly stronger kissing-complex than those composed of only GU/AU bp,
analogous to the 2-bp kissing complex that drives Moloney murine leukemia virus
(MMLV) genome dimerization (Zhu et al., 2013). The kissing loop was not able to form
in all simulations of this pathway, even when each simulation was extended multiple
times for 100 ns and the strength of the long-range restraints were doubled (Figure 5E).
The mismatch in length of the two helical segments effectively prevents the bases from
forming hydrogen bonds in the pre-transition secondary structure.

Finally, the late-toehold pathway assumes that bases 106-108, predicted to be in
an unpaired strand at the 3’ tail of the RNA at the base of H3, initially pair with bases 9-
11 in the H1 loop and form a “toehold” interaction (Figure 5C, SI Movie 3). The initial
toehold contacts were found to reliably form in 6/8 attempts as the 3’ tail of the nascent
RNA is flexible and long enough to reach the loop of H1 (Figure 5E). All simulations that
formed the initial toehold contacts proceeded through the refolding pathway to the 110-
nt structure.

A decisive advantage of the toehold mechanism is the favorability of the strand
exchange process that proceeds in a break-one-form-one bp manner. Once identified
as a plausible mechanism, we realized that this toehold-mediated strand-displacement
can also be initiated earlier in the folding trajectory before H3 forms (Figure 5D).
Simulations of the “early toehold” indicate that the absence of H3 actually speeds up the
rearrangement due to the greater flexibility of the longer single-stranded 3' tail, the lack
of an energetic barrier posed by H3 (Figure 5D), and the increased number of bases
available to form the initial toehold. Thus, the toehold-mediated strand-displacement
mechanisms are much more plausible than the other pathways considered.

A detailed examination of the productive toehold-mediated folding pathways
reveals several key architectural features that facilitate the rapid folding transition (Sl

Movie 3). Extension of the initial toehold-seeding interaction to the full rearrangement
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requires fluctuations from the 11-nt loop of H1 into the stem (Figure 6C). H3, which is
weaker than the GC-rich H1, readily unfolds in the simulations after the first few bp are
formed, and the resulting increase in single-strandedness further facilitates flexibility in
hybridization with the H1 loop (Figure 6D). In addition, the formation of C7-G110 and
C8-G109 bp requires unraveling of the top of H1’s stem, which is facilitated by
fluctuations of the GU bp. Only after C7-G110 and C8-G109 are formed is the H1
hairpin weak enough to open up, allowing the remaining bp of the native helix to align
and zip-up in an energetically downhill process to form the fully extended fold (Figure
6B).

The results described above suggested that the SRP RNA U21C mutant
minimizes the ability of H1 to fluctuate, disabling this mutant to efficiently rearrange
during transcription. To directly test this hypothesis, we performed simulations of the
SRP RNA U21C mutant and found that the toehold can still form between bases 7-110
and 8-109 when restraints were applied, but the mutant cannot transition into the final
folded state because of the increased stability of H1 (Figure 6E, Figure 5E). The folding
transition still stalled even when double-strength restraints were applied as these were
insufficient to disrupt the G7-C21 bp. Finally, simulations of the rescue mutant (U21C,
C22U, G93A) confirm that restoring flexibility in the upper stem of H1 recovers the
ability to transition to the mature fold, albeit at a slower rate due to the extra bp that
needs to be disrupted to unfold H1 (Figure 6F, Figure 5E, S| Movie 4).

Overall, our simulations strongly suggest a toehold-mediated strand-
displacement rearrangement mechanism that is facilitated by bp fluctuations within the

stem of H1.

Addition of the precursor sequence to the SRP RNA does not impact rearrangement
We next investigated how cotranscriptional RNA folding could affect the
precursor SRP RNA and its processing by RNase P. The precursor SRP (pre-SRP)
RNA contains a 5’ 24-nt leader sequence which is thought to contain a small hairpin
(Figure 7A) (Peck-Miller and Altman, 1991). Interestingly, this precursor hairpin is
predicted to fold independently when appended to the shorter SRP RNA lengths that
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fold into H1, and together form a potential RNase P substrate. We therefore tested if
such partial pre-SRP RNA sequences can be processed by RNase P.

For use as a representative substrate, we generated by in vitro transcription a
pre-SRP RNA (termed 24+24) with the 24-nt leader and the first 24 nt of the mature
SRP RNA. Compared to the full-length pre-SRP RNA and pre-tRNAs, the 24+24 pre-
SRP RNA substrate differs in two aspects (Figure 7A). First, it has only five bp in the H1
stem, which is shorter than the typical 7-bp acceptor stem of pre-tRNAs, and much
shorter than the long stem in the full-length pre-SRP RNA. Second, this short substrate
has a 2-nt 3'-CA terminus, compared to the 3'-CCC of the full-length pre-SRP RNA and
the 3'-CCA of pre-tRNAs. Despite these differences, the 24+24 pre-SRP RNA was
efficiently cleaved by in vitro reconstituted E. coli RNase P (Figure 7A,B). Since a Km of
0.2 uM was calculated for the processing of full-length pre-SRP RNA by E. coli RNase P
(Peck-Miller and Altman, 1991), we tested the rate of cleavage of the 24+24 pre-SRP
RNA at 2.5 yM to ensure saturation. Our results yield a turnover number of 5.4 min-' for
the 24+24 pre-SRP RNA, compared to 37 min-' reported for the full-length counterpart
(Peck-Miller and Altman, 1991).

That the 24-nt leader sequence of the E. coli pre-SRP RNA could be cleaved
both post- and co-transcriptionally motivated us to examine the effect of the leader
sequence on the toehold-mediated strand-displacement mechanism. Additional all-atom
simulations were conducted with the 24-nt leader sequence and its hairpin added, which
was found not to interfere with the toehold-mediated rearrangement exhibited by the
leaderless sequence. In one replicate of the pre-SRP RNA simulations, we observed
the order of bp displacing H1 stem to be U21-A94, G25-C90, C24-G91, C23-G92, C22-
G93. This finding alludes to the possibility of an ensemble of cotranscriptional folding
pathways. Additionally, the U21C mutation (now U42C in pre-SRP RNA) still abrogated
toehold-mediated strand displacement, and rescued with the addition of C22U and
G93A (now C43U, G114A) mutations in simulations.

Discussion
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We developed R2D2 to reconstruct nascent RNA folding at high resolution. Our
R2D2 analysis of the SRP RNA reveals that although excursions to non-native
structures could entail kinetic traps, they may also present a low free-energy path to the
final native fold by minimizing structural fluctuations, as revealed here by R2D2 analysis
of the SRP RNA. While ribosomal proteins have been shown to modulate rRNA
dynamics and therefore the conformational ensemble (Kim et al., 2014), it appears that
the same physical principles might help naked cellular RNAs traverse through non-
native structures during transcription.

R2D2’s secondary structure approach builds on elements in previous RNA
folding algorithms but is distinctive in its use of multi-scale modeling to reconstruct out-
of-equilibrium folded states along a cotranscriptional folding pathway. Thus, R2D2 is
different from MFE prediction methods, which would not uncover the importance of H1
flexibility because of H1’s stability in the SHAPE-directed MFE folding pathway (Figure
S3, Sl Movie 1). Specifically, the timescale of cotranscriptional folding invalidates the
frequently used assumption of equilibrium RNA structural states at each nascent RNA
length, making R2D2’s combination of experimental data and sample-and-select a
promising approach. In this regard, the secondary structure aspect of R2D2 is similar to
the recent SLEQ (Li and Aviran, 2018) and Rsample (Spasic et al., 2017) methods,
although the latter are able to additionally estimate population levels of certain RNA
structures. Overall, R2D2’s merging of multi-scale modeling with experimental data
distinguishes it from previous computational methods to study cotranscriptional RNA
folding.

We focused our studies on a particular three helix-containing intermediate
structure in the SRP RNA cotranscriptonal folding pathway. Using R2D2, we propose
that this three-helix structure can efficiently rearrange into a single extended helix
through a toehold-mediated strand-displacement mechanism, even while recognizing
that alternative folding pathways are possible due to the stochastic nature of RNA
folding. Even within toehold-mediated mechanisms, multiple toehold-initiation points and
rearrangements starting from eH3 or other 3' structures are possible, suggesting various
routes to attain the native fold even while centered around a key decision point. The

large size of the H1 loop could be important for the increased flexibility of these bases
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for toehold nucleation as well as exposing a large sequence target to capture the many
alternate transient 3' end structures.

Overall, it could be that the SRP RNA has evolved to allow multiple toehold-
mediated strand-displacement mechanisms to prevent the kinetic folding trap imposed
by H1 and H3, which were previously identified as potential transient helices that are
evolutionarily conserved (Zhu et al., 2013). Recently, it has been shown that many
natural RNAs contain long-range interactions in the cell, some of which occur over 1kb
away (Lu et al., 2016). Given the propensity of RNAs to form local structures
cotranscriptionally, toehold-mediated strand-displacement could be one of the most
efficient ways for RNAs to undergo large-scale rearrangements. Detailed in vitro studies
of toehold strand-displacement reactions have demonstrated rates on the order of
108/M/s for a bimolecular strand-exchange reaction (Sulc et al., 2015; Zhang and
Winfree, 2009). In addition, the elementary steps of strand exchange can be inferred to
occur on the us timescale, orders of magnitude faster than the ms timescales of
nucleotide incorporation during transcription (Roberts et al., 2008). Intriguingly, to the
best of our knowledge, the observation of this mechanism within the E. coli SRP RNA
cotranscriptional folding pathway is the first observation of toehold-mediated strand-
displacement in a naturally-derived RNA sequence.

The high evolutionary conservation of the GU wobble bp in many RNAs that
participate in key cellular processes has been rationalized by the unique chemical and
structural properties of this bp (Varani and McClain, 2000). As exemplified in this study,
the context-dependent, conformational “softness” of the H1 GU bp may additionally
allow it to act as a tripwire that triggers structural transitions of non-native to native
states. Interestingly, U21 in this study is conserved in small bacterial SRP RNAs
(Kalvari et al., 2017), and follow-up studies could assess if conservation of other GU bp
structural intermediates are important for cotranscriptional rearrangement.

While this manuscript was being prepared, an independent study of the
cotranscriptional folding pathway of the same E. coli SRP RNA sequence was
performed using single-molecule optical tweezers (Fukuda et al., 2019). This study
revealed several structural features consistent with our findings including the formation
of H1, the formation of H3 (e.g. denoted as H4 in that study), and the effect of the U21C
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mutation (U18C in that study) on the folding pathway. Fukuda et al. also document
‘hopping dynamics’ near the major rearrangement, consisting of large-scale fluctuations
in RNA end-to-end distances. Based on our findings, these hopping dynamics could
stem from the molecular search for toehold-seeding interactions, or strand-displacement
attempts that open structural elements before rearrangement. These two
complementary studies highlight the power of combining orthogonal approaches to gain
a deeper and more complete mechanistic view of cotranscriptional RNA folding.

A fascinating question in biology pertains to how RNAs efficiently fold into
functional states and exit the kinetic traps imposed by the polarity and timescale of
cotranscriptional folding in the cell. While a plethora of other interactions and processes
in vivo could facilitate these structural rearrangements, it is possible that many cellular
RNAs share the principles of the rearrangement pathways studied here for the E. coli
SRP RNA to arrive at their respective final structure. Our demonstration of how a
change in the identity of a single-nucleotide alters the folding trajectory also hints at how

simple genetic changes could have spawned new functions in the early RNA world.

Limitations

R2D2 has several limitations, some of which are inherent in the underlying
algorithms used to sample possible structures. Specifically, there are currently no
efficient methods to sample RNA structures with pseudoknots, non-canonical base
pairs, or RNA-ligand/RNA-protein interactions (Ding et al., 2004; Tan et al., 2017).
Structures that can be efficiently sampled are biased to the equilibrium Boltzmann
distribution, which we try to overcome by sampling 150,000 states at each RNA length
instead of the more commonly used 1,000-10,000 (Kutchko et al., 2015; Li and Aviran,
2018; Ouyang et al., 2013) (Figure S1). While all-atom molecular dynamics was used to
connect selected secondary structural states, it is inefficient to connect all possible sets

of states together to reconstruct a full dynamic cotranscriptional folding pathway.
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Figure 1. Overview of the Reconstructing RNA Dynamics from Data (R2D2)
approach. (A) Schematic of the secondary structure prediction method in R2D2.
Cotranscriptional SHAPE-Seq is first used to determine reactivities at each nascent
transcript length. These reactivities are used to generate secondary (2-D) structures
along these transcript lengths. (B) 3-D simulations are then used to determine the
feasibility of structural transitions between specific states within the ensemble of 2-D
predictions. (C) Outline of the secondary structure prediction method. Potential RNA
structures are statistically sampled for every nascent RNA length. For each length,
structures are tested for consistency with the reactivity data at that length, and the most
consistent structure is selected. This process is then repeated multiple times for each
dataset to obtain a collection of structures over all of the nascent RNA lengths that
represent structures along the cotranscriptional folding pathway that are consistent with
the data. See also Table S1.

Figure 2. R2D2 2-D pathway predictions for the E. coli SRP RNA sequence. (A)
Secondary structure predictions by R2D2 on cotranscriptional and equilibrium refolded
SHAPE-Seq data of the E. coli SRP RNA sequence. For each dataset, 100 folding
pathway predictions were performed and plotted according to the free energy (AG) of
the RNA structures predicted along the cotranscriptional (purple) or equilibrium refolded
(turquoise) pathway. The range of AG values sampled is represented by grey shading,
while the AG of chosen structures are represented by dots. For visual convenience, dots
are connected by lines to view possible free energy changes along the folding
trajectory. Consensus structure lines connect AG of structures containing base pairs
that occur in over 50% of the 100 iterations performed on the cotranscriptional (red) and
equilibrium-refolded (blue) SHAPE-seq data. Black line connects the minimum free
energy structures in the sampled set. Seven lengths of 2-D predictions by R2D2 are
highlighted: (B) 25 nt, (C) 62 nt, (D) 81 nt, (E) 95 nt, (F) 109 nt, (G) 110 nt, and (H) 117
nt. One hundred selected structures are represented as RNAbow plots with base pairs
drawn as arcs and the arc thickness indicating prevalence of the base pair amongst the
selected structures. Colored arcs show base pairs that are more frequent in either

cotranscriptional (purple) or equilibrium (turquoise) predictions, while grey arcs show
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base pairs that are shared. The consensus structures from cotranscriptional predictions
are shown above each RNAbow plot. We shifted the cotranscriptional transcript lengths
by 14 nt to compare equal lengths of the RNA sequence that is free to fold from each

experimental dataset. Data plotted in this figure are from cotranscriptional SHAPE-Seq

replicate 1. See also Figure S2, S3 and S| Movie 1.

Figure 3. A single point mutation disrupts cotranscriptional rearrangement of the
mature E. coli SRP RNA sequence. (A) Examples of H1 variability in 2-D predictions
in the folding pathway of the mature sequence indicate potential flexibility. (B) Diagram
of the SRP RNA U21C mutation in H1 and the full-length secondary structure. (C)
Cotranscriptional SHAPE-Seq reactivities from the mature (left) sequence show drops in
reactivities (red box) towards the end of the folding pathway. The reactivity matrix for
replicate 1 of the SRP RNA U21C sequence (middle) has generally higher reactivities in
these positions throughout, while equilibrium refolded SRP RNA U21C SHAPE-Seq
data (right) contains decreases in reactivities in this region. Plotted below these
matrices are their respective reactivities from transcript lengths 103 and 131 with H1
loop reactivities under red bracket. (D) Trajectory plot of R2D2 predictions for the U21C
sequence following Figure 2. Structures from four lengths are highlighted in RNAbow
plots: (E) 95 nt, (F) 109 nt, (G) 110 nt, and (H) 111 nt. See also Figure S5.

Figure 4. Rescue mutant of SRP RNA U21C confirms the importance of flexibility
in H1. (A) Diagram of the rescue mutant U21C, C22U, G93A overlaid on H1 and the
native full-length structure. The rescue mutant introduces a GU bp in the SRP RNA
U21C H1 structure. (B) Cotranscriptional SHAPE-Seq reactivities from SRP RNA U21C,
C22U, G93A: replicate 1 (left, top), replicate 2 (left, bottom), and replicate 3 (right, top).
DUETT analysis (right, bottom) detected downswings (blue) and upswings (red) in
reactivity. Events occurring up to two transcript lengths apart are indicated with green
lines. (C-E) RNAbow plots of SRP RNA U21C, C22U, G93A replicate 1 (green and top)
and U21C replicate 1 (purple and bottom) R2D2 predictions following Figure 2. Three
lengths are highlighted: (C) 109 nt, (D) 110 nt, and (E) 111 nt. See also Figure S5.
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Figure 5. Snapshots of possible rearrangement mechanisms tested by 3-D all-
atom simulations. R2D2-modeled secondary structures (left) were used as starting
points for all-atom MD simulations (right). For each rearrangement that we tested, the
pairing interactions that could seed the rearrangement into the native extended hairpin
are indicated in yellow. Other nucleotides are colored for visualization: nts 1-25 (dark
purple), 26-52 (orange), 53-62 (green), 63-96 (turquoise), and 97-117 (magenta). (A)
The inside-out hypothesis whereby H1 and H3 progressively open and convert into the
extended hairpin. (B) The kissing-loop hypothesis where H1 and H3 loops begin the
rearrangement process. (C) The late-toehold hypothesis where nucleotides 106-108
downstream of H3 seed the rearrangement through a toehold with nucleotides 9-11 of
H1 loop. (D) The early-toehold hypothesis where nucleotides 106-110 seed the
rearrangement via a toehold with nucleotides 7-11 of H1 loop. The early- and late-
toehold hypotheses differ in the structural state of the growing SRP RNA'’s 3’ end before
the rearrangement, with the late-toehold hypothesis considering the unraveling of H3.
(E) 3-D all-atom simulation trajectory results. Simulations were used to test the potential
rearrangement mechanisms in the wild-type SRP RNA, and to test the U21C mutant
and its rescue with the late toehold mechanism. Eight simulations were run for each
scenario. Simulations can stall when 0-3 or 4-6 bp form. Otherwise, rearrangement

could progress to >9 bps or when twice the force was applied. See also SI Movie 2-4.

Figure 6. Snapshots of the toehold-mediated rearrangement pathway from
molecular dynamics simulations. (A) Pre-rearranged structure with H1 (purple) and
H3 (magenta) present. (B) Rearranged structure with native base pairs (yellow) forming
the extended helix. (C) Toehold progression to 6 bp of the native helix (yellow) requires
unfolding of H3. (D) Further elongation to a 9-bp native helix (yellow) requires unfolding
of H1. (E) In the SRP RNA U21C mutant, H1 is stabilized by a GC bp (green) that
replaced the GU bp. Even if a toehold is made to form (yellow), folding stalls as the G7-
C21 bp cannot be disrupted even when modest biasing forces are applied. (F) In the
SRP RNA U21C, C22U, G93A mutant, the rearrangement can occur and the GC bp
(green) can break. See also S| Movie 3.
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Figure 7. Processing and folding of the pre-SRP RNA. (A) E. coli RNase P cleaves
the 24+24 pre-SRP RNA correctly at the expected site (arrow). The OH and T1 ladders
were generated by alkaline lysis and RNase T1 cleavage, respectively, of the 24+70
pre-SRP RNA. The cleaved 5' leader (blue) migrated with length G25, instead of length
U24, because it has a 3'-OH compared to the 2',3"-cyclic phosphate in the RNase T1
products. The additional phosphate in the T1 ladder RNAs offsets the RNase P product
by approximately one nucleotide. (B) A representative gel of the time-course assay
used to determine the rate of cleavage of the 24+24 pre-SRP RNA by E. coli RNase P.
The initial velocities were calculated from three replicates and the maximal cleavage did
not exceed 5% of the total substrate. A turnover number of 5.4 + 0.5 min-" was obtained
from these measurements. SC, substrate control incubated without E. coli RNase P. (C)
The hairpin in the 5' leader (blue) does not impede the toehold initiation (yellow) in
R2D2 3D simulations. (D) The hairpin in the 5' leader also does not affect the toehold-

mediated rearrangement. See also Figure S5 and Sl Movie 5-7.
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STAR Methods
Resource Availability
Lead Contact

Further information and requests for resources and reagents should be directed to and
will be fulfilled by the Lead Contacts, Julius Lucks (jblucks@northwestern.edu) and Alan
Chen (achen6@albany.edu).

Materials Availability
The E. coli SRP RNA plasmid used in this study will be available through Addgene ID
162240.

Data and Code Availability

The mutant cotranscriptional and equilibrium-refolded SHAPE-seq datasets generated
during this study are available through the Small Read Archive (SRA) under BioProject
PRJINAG67733. Wildtype SRP RNA data are similarly available through the SRA with
accession codes: SRX2159310, SRX2159311, SRX2159312, and SRX2159316.
Processed SHAPE-seq reactivity files generated in this study will be deposited in the
RNA Mapping Database under accession codes SRPU21C_BZCN_0001,
SRPU21C_BZCN_0002, SRPU21C_BZCN_0003, SRPU21C_BZCN_0004,
SRPU21C_BZCN_0005, SRP21CR_BZCN_0001, SRP21CR_BZCN_0002, and
SRP21CR_BZCN _0003. All source code will be freely available at
https://qgithub.com/LuckslLab/R2D2. For a single round 2D folding pathway prediction

with 2 processors, the walltime used is around 4 hours and used around 26 GB
memory. We run this 100 times before analyzing all 100 results. The 3D folding
simulations of the SRP precursor went for 48 ns using 9 synchronous replicas at
different temperatures and restraint strengths. Each replica took 142 hours (-5.9 days)
using an entire STAMPEDE-2 Intel Xeon Phi 7250 node. Thus, the experiment took
altogether 1,275 node-hours (or 53 node-days) for the one folding simulation. Each of

the other pathways examined used comparable resources.

Method Details

26


mailto:jblucks@northwestern.edu)
mailto:achen6@albany.edu)
https://github.com/LucksLab/R2D2

Cotranscriptional and equilibrium-refolded SHAPE-seq

The SRP RNA sequence used to generate mutants was previously described
(Watters et al., 2016a); it has an AUC sequence substituting the 24-nt leader. DNA
templates for cotranscriptional SHAPE-seq were prepared as previously described
(Watters et al., 2016a). DNA templates specifically targeted transcript lengths 101 to
136 for U21C and U21C, C22U, G93A mutants. Cotranscriptional SHAPE-seq
experiments were performed as previously described, except that EcoRIe111q was

included at 800 nM during in vitro transcription instead of 500 nM.

RNase P assay

The 24+24 pre-SRP RNA used to examine co-transcriptional processing was
generated by run-off in vitro transcription (IVT). The template for this IVT was obtained
by annealing two overlapping DNA oligonucleotides 4.5S-F and 4.5S-R (Sigma-Aldrich)
followed by filling-in with Phusion DNA polymerase (NEB) to obtain a double-stranded
DNA that included a T7 promoter upstream of the RNA coding sequence. A portion of
the transcribed 24+24 pre-SRP RNA was 5'-radiolabeled by dephosphorylating with calf
intestinal phosphatase (NEB) and then phosphorylated with [y-3?P]-ATP (PerkinElmer)
using polynucleotide kinase (NEB). To determine the cleavage efficiency of the 24+24
pre-SRP RNA by RNase P, E. coli RNase P was reconstituted in vitro using
recombinant M1 RNA and C5 protein (Gopalan et al., 1997). In vitro transcribed M1
RNA (2 uM) was refolded in water at 50°C for 50 min, then 37°C for 10 min. An equal
volume of 2x folding buffer 20 mM HEPES (pH 7.5), 800 mM NH4OAc, 20 mM
Mg(OAc)2, 10% glycerol, 0.02% IGEPAL] was added, and incubation at 37°C was
continued for 30 min. C5 protein was overexpressed and purified from E. coli as
described previously (Vioque et al., 1988) and was stored at -80°C. Before use, the
refolded M1 RNA and C5 protein were diluted to 0.1 and 1 pM, respectively, in assay
buffer [1x = 20 mM Tris-HCI (pH 8), 50 mM KCI, 5 mM MgClz, 0.1 mM EDTA, 0.2
mg/mL BSA, 1 mM DTT]. This assay buffer resembles the one used in cotranscriptional
folding experiments to mimic the same condition. All following incubations were
performed at 37°C in a thermal cycler. For each 20-uL reaction, a mixture containing 6

ML water, 8 uL 2x assay buffer, and 2 pL of 1 uM C5 protein (final 100 nM) was
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incubated for 5 min before adding 2 pL of 0.1 uM M1 RNA (final 10 nM) and continuing
incubation for 10 min. The reaction was initiated by adding 2 pL of the 24+24 pre-SRP
RNA, where the final concentration (10 — 2,000 nM) was made up of the unlabeled RNA
and a trace amount of the radiolabeled RNA. After each specified time interval, a 3-pL
aliquot of the reaction was removed and quenched with 10 uL termination dye [7 M
urea, 1 mM EDTA, 0.05% (w/v) each of bromophenol blue and xylene cyanol, 10% (v/v)
phenol]. The products and uncleaved substrate were then separated on an 8% (w/v)
polyacrylamide/7 M urea gel. The gels were visualized by phosphorimaging on the
Typhoon (GE Healthcare), and bands were quantitated using ImageQuant (GE
Healthcare). As ladders to map the cleavage site, a 24+70 pre-SRP RNA was
generated by IVT with a template that was PCR-amplified from p23-4.5S (Peck-Miller
and Altman, 1991) using primers 4.5S-F and 4.5S(70)-R. This RNA was then 5’-
radiolabeled as described above and used to make the alkaline hydrolysis ladder and

the RNase T1 (Invitrogen)-generated G-ladder.

Reactivity calculation
Quantification of reactivities from cotranscriptional SHAPE-Seq data was

performed using Spats v.1.0.1 (http://luckslab.github.io/spats/) as previously described

(Watters et al., 2016a). The 0 reactivities output by Spats were converted to p
reactivities to allow for direct comparison of SHAPE probe accessibility between
intermediate lengths of RNAs (Watters et al., 2016b). For cotranscriptional predictions
where RNA polymerase occludes the last ~14 nts from folding (Komissarova and
Kashlev, 1998; Watters et al., 2016a), p reactivities were trimmed by 14 nts and
renormalized such that the reactivities average to 1. This trimming was not done for
equilibrium-refolded predictions because the RNAs have already emerged from the

RNA polymerase.
DUETT

Detection of Unknown Events with Tunable Thresholds (DUETT) was used to

detect reactivity change events in cotranscriptional and equilibrium-refolded SHAPE-
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Seq datasets (Xue et al., 2019). All analyses were done with optimized parameters with
window sizes of 4 for U21C and 9 for U21C, C22U, G93A.

Reconstructing RNA secondary structures

The R2D2 sample-and-select method was first developed to predict the
equilibrium fold of a single RNA using equilibrium SHAPE-Seq data. A crucial step was
to establish a method to select structures that are most consistent with the experiment.
SHAPE-Seq reactivities, p, are values > 0 that reflect the structural state of each
nucleotide: p = 0 corresponds to a nucleotide that is present in a structured context
(such as a base pair or stacking interaction), while p > 1 represents a nucleotide that is
present in a flexible context (such as an unpaired region) (Bindewald et al., 2011). Thus
p values most naturally correspond to a representation of the un-paired state of each
nucleotide in an RNA secondary structure, which can be represented by a binary vector
(u for ‘un-paired’) containing 0 if a nucleotide is paired and 1 if a nucleotide is un-paired
(Figure 1C). Comparison between the p vector (p) of reactivity data at a specific
transcript length, and the u vector () for a specific structure that could occur at that
length can then be made with a metric that reflects their distance from each other
(Figure 1C, Table S1).

We developed and tested six functions to calculate the distance between a
SHAPE-seq reactivity spectra and a given RNA secondary structure (Figure 1C, Table
S1). Each distance function is of the form

O R S U T C R B S LA

i € paired bases i € unpaired bases

where i is a vector calculated from the u-vector of a specific RNA secondary structure,
and g is calculated from the experimental SHAPE-seq reactivity data p vector.
Reactivity is inherently a measure of accessibility of chemical probes in RNA structures,
and low reactivity may not be due only to base pairing, but can be caused by other
structural constraints such as stacking (Bindewald et al., 2011). To account for this
possibility, we incorporated a weighting between single-stranded and paired bases in
sampled structures, a, which is used to adjust the contribution to the distance from

positions that are predicted to be paired.
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Since unpaired vectors and p vectors are different types of data (binary vs.
continuous) and on different numerical scales, we explored three different ways to
calculate their differences specified by K, U and D, which specify the way i; and p; are
calculated:

K i; =y
U: @i; = u; * length(u) / sum(u)
D: p; = p; / max(p)
K keeps the scale of u and p, U makes u’s average 1 which is a property of p, and D
scales p to be between 0 and 1. Since certain RNA folds can result in p values that are
much larger than one (McGinnis et al., 2012), we also explored ways to cutoff p values
at a maximum value. This is specified by the indices cap or nocap which determine the
way p; is calculated, with cap denoting that p; is capped at a p,,,,, Value p; =
min(p;, Pmax),» @nd nocap referring that the original p; value is used. The full definitions
are as follows:

Dliap(a:ﬁ) =« Z lu; — min(p;, pmax)| + (1

i € paired bases

- CZ) Z |ui - min(pi' pmax)l

i € unpaired bases

DEr@H=a ) hw-pltd-o Y w-pl

i € paired bases i € unpaired bases

DiP@ R =a ) luxlength(@) / sum(@) — min(py pmae)| + (1

i € paired bases

—@) Yy length(@) / sum(@) — min(py, g

i € unpaired bases

DI (3, 5) = a z lu; * length(u) / sum(u) — p;| + (1

i € paired bases

—@) )y length(@) / sum(@) — pil

i € unpaired bases
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_ min(pi' pmax)

max(3) | O

Dy (U, p) = a i

[ € paired bases

—a) z

_ min(pi' pmax)

i

i € unpaired bases max(p)
T Pi pi
Dy (u,p) = a z ’u — —|+(1—«a |u — ~
i € paired bases i € unpaired bases

The distance metrics above can be used to select structures from a candidate set
that are most consistent with the observed experimental reactivity data by choosing the
minimum distance structure(s) at every length (Figure 1C). To generate a candidate set
of structures, the sample method statistically samples structures with a large sample
size using the partition and stochastic functions of the RNAstructure suite of
computational secondary structure prediction tools (Reuter and Mathews, 2010). The
partition method takes as an input the RNA sequence and folding parameters, and uses
them to calculate the secondary structure partition function for that sequence. The
stochastic method then uses this partition function to stochastically generate RNA
structures according to their equilibrium Boltzmann probabilities — i.e. lower free energy
structures are generated more frequently than higher free energy structures. Thus
repeated application of the stochastic method can generate a set of possible candidate
structures the RNA molecule may sample during the experiment.

The goal of the sample method is to generate the greatest amount of structural
diversity possible to allow more choices for the select method. An initial test of the
degree to which the stochastic method can generate novel structures revealed that the
method did not converge on exhausting the possibilities of different RNA structures
even after 150,000 structures were drawn (Figure S1). This is not surprising since the
free energy landscapes of RNA secondary structures are known to have a shallow
density of states near the minimum free energy structure (Chen and Dill, 2000)
indicating there are many possible RNA structures that are low in free energy and would
be sampled frequently by the stochastic method. To circumvent this problem and still
generate a diverse array of candidate structures without the computational burden of
generating millions of structures, we employed two additional variations of the sampling

procedure that used experimental SHAPE restraints to calculate a modified partition
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function from which we could sample. The first, called SHAPE-directed sampling, used
the partition method’s ability to incorporate SHAPE reactivities as effective free energy
terms in the partition function calculation with pseudofree energy parameters m = 1.1
and b =-0.3. The second, called SHAPE-forced sampling, used a SHAPE reactivity
cutoff, p., to force nucleotides with reactivities greater than this value to be single-
stranded in the partition function calculation. In total, the sample method consisted of
sampling 50,000 structures from each of these methods for a total of 150,000 structures
which acted as the candidate set for the select method. We note that even though the
sample method uses SHAPE reactivity data to generate part of the candidate set, these
are not guaranteed to be chosen as most consistent with the data by the select method.

Rather, they are included to increase the diversity of the candidate set.

Software implementing this method were run with Python 2.7.12 through
Anaconda 2.4.1 (64-bit) and R version 3.2.2. Images and movies were made with
ffmpeg version 3.1.3, ImageMagick 7.0.3-0 Q16 x86_64, and iMovie v10.1.2. Version
5.8.1 of RNAstructure was used for the partition and stochastic methods, and VARNA
version 3.9 was used to visualize RNA secondary structures. See “Data and Software

Availability” for location of code used in this study.

Benchmarking

Best parameter values were determined through a grid search of 10,404
parameter sets: all combinations of 0.7 to 4.1 by 0.1 for p., 0.7 to 4.1 by 0.1 for p,,0x»
and 0 to 1 by 0.1 for a. The best parameter set(s) was determined as the parameter
set(s) with the largest sum of F, scores (F-scores) for 18 previously published
equilibrium-refolded SHAPE-Seq datasets on 6 RNAs of known crystal structures (three
replicates) and no pseudoknots since RNAstructure cannot sample structures with

pseudoknots (Loughrey et al., 2014). F-score is defined as follows:

sensitivity x PPV
F = 2 k

sensistivity + PPV

Number of true base pairs predicted

sensivitivy = -
Y Number of true base pairs
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Number of true base pairs predicted
PPV =

Number of predicted base pairs
For every parameter set, we sampled 50,000 structures for each of the three sampling
methods, for a total of 150,000 structures (see “Reconstructing RNA secondary
structures”). For each benchmark RNA and dataset, the minimum distance structure
was calculated and F-score determined from the prediction and the known structure.
The sum of F-scores across the panel of RNAs and datasets was then reported for that
parameter set. If multiple minimum distance structures were found, then the average of
their sum of F-scores were used to find the best parameter set. We ran the
benchmarking for each of the 6 distance equations. p,,,,, is not used when no reactivity
capping is used, so only 306 parameter sets were tested in these cases.

We found two different metrics were the best performing across all distance
functions: Dy cqp, With p. = 3.5, prmex = 1.0 07 0.9, and a = 0.8 as well as Dy, .4, With
Pc = 3.5, pmax = 1.0, and @ = 0.8 . These two each had an average F-score of 86.32%
for the 18 RNA datasets in the panel (Table S1). From this set, we chose as our
parameter set Dy .4, With p. = 3.5, ppar = 1.0, and a = 0.8, which gives a higher
weight to paired positions in the sampled structures as expected, and matches common
interpretations of ‘high’ reactivity values being greater than 1. We note that this is
mathematically equivalent to Dy, .,,,'s best parameter set.

We also compared the best results from the sample-and-select method to
SHAPE-restrained secondary structure predictions using the same data on the same
RNA panel using the Fold method of RNAstructure (Table S2). In aggregate, the
sample-and-select method (average F-score of 86.32%) does not perform better than
RNAstructure-Fold with SHAPE restraints (average F-score of 88.95%), but does
perform better than RNAstructure-Fold without SHAPE restraints (average F-score of
77.51%). Interestingly R2D2’s sample-and-select method did outperform on the E. coli
TPP riboswitch in terms of sensitivity, PPV, and F-score for all replicates (Table S2).
While the accuracy of our sample-and-select method applied to equilibrium RNA
structure prediction is not overall better than the best equilibrium structure prediction
algorithms given the same data, it was designed to find RNA secondary structures

consistent with structural probing data from out-of-equilibrium RNA folds and thus can
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be used to reconstruct a complete secondary structure cotranscriptional folding pathway
of an RNA.

To increase PPV for more accurate 3D simulations, R2D2 filters base pairs and
reduces overall positive calls compared to RNAstructure-Fold; 2D sampling is run 100
times and only pairs that occur over 50% of the time are kept and then used in the 3D
simulations. We assessed this filtering step (which we call R2D2-consensus) using the
benchmark panel (Supplementary Table S2). Both R2D2-consensus and RNAstructure-
Fold with SHAPE perform better than RNAstructure-Fold with no SHAPE. The counts
across true positives (TP), false negatives (FN), false positives (FP), and true negatives
(TN) between R2D2-consensus and RNAstructure-Fold with SHAPE are statistically
significant different at the 0.05 value (p-value 0.001) by multivariate 2-sample E-test of
equal distributions (Supplementary Table C-3). As expected, R2D2-consensus disfavors
calling positive base pairs compared to RNAstructure-Fold with SHAPE: R2D2-
consensus predicts 478 base pairs across the whole panel compared to 522 base pairs
by RNAstructure-Fold with SHAPE. Importantly, R2D2-consensus, which is the first filter
of positive base pairs out of two in the R2D2 algorithm, has a reduced number of FP’s
when compared to RNAstructure-Fold with and without SHAPE data. R2D2-consensus
also has a lower standard deviation in sensitivity, PPV, and F-score compared to
RNAstructure-Fold.

However, based on the Sensitivity, PPV, and F-score metrics alone, there is no
statistical difference in performance in any of these three metrics between
RNAstructure-Fold with SHAPE and R2D2-consensus using paired t-test
(Supplementary Table C-4). Interestingly Sensitivity, PPV, and F-score are calculated
based on TP, FN, and FP counts, and there is a difference in statistical significance
when examining the same prediction results at different representation levels.

Software implementing this method were run with Python 2.7.11 through
Anaconda 2.3.0 (64-bit). Version 5.6 beta of RNAstructure was used for the partition
and stochastic methods, and VARNA version 3.9 was used to visualize RNA secondary

structures. See “Data and Software Availability” for location of code used in this study.

Application to cotranscriptional SHAPE-Seq data
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We applied the method described in “Reconstructing RNA secondary structures”
to each length of cotranscriptional SHAPE-Seq data available with the parameter set
found in “Benchmarking”. Lengths where total mapped read counts are less than 2,000
were not used in R2D2 predictions. For each structure predicted, free energies were
calculated using RNAstructure-efn2.

Software implementing this method were run with Python 2.7.12 through
Anaconda 2.4.1 (64-bit) and R version 3.2.2. Images and movies were made with
ffmpeg version 3.1.3, ImageMagick 7.0.3-0 Q16 x86_64, and iMovie v10.1.2. Version
5.8.1 of RNAstructure was used for the partition, stochastic, efn2, and ct2dot methods.
RNAbows was used to visualize R2D2 2D predictions (Aalberts and Jannen, 2013). See

“‘Data and Software Availability” for location of code used in this study.

Minimum free energy folding pathway prediction

Each length of the SRP RNA sequence was folded with RNAstructure-Fold
method without SHAPE restraints to generate the minimum free energy folding
pathway. Images of the minimum free energy structures were made into a movie with
RNAstructure-draw and ffmpeg. Free energy calculations were done with RNAstructure-
efn2. The SHAPE-directed MFE folding pathway prediction was done similarly, but with
p reactivities and m = 1.1 and b = -0.3 (Loughrey et al., 2014) for lengths where SHAPE

data was available in specified datasets.

Software implementing this method were run with Python 2.7.12 through
Anaconda 2.4.1 (64-bit). Images and movies were made with ffmpeg version 3.1.3,
ImageMagick 7.0.3-0 Q16 x86_64, and iMovie v10.1.2. Version 5.8.1 of RNAstructure
was used for the Fold method to predict MFE structures. See “Data and Software

Availability” for location of code used in this study.

KineFold predictions
KineFold cotranscriptional folding pathway predictions were performed using the
KineFold executable with ‘co-transcriptional fold’ with a new base added every 20 ms,

no pseudoknots, and freely crossing entanglements. KineFold executable was used and
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can be downloaded from: http://kinefold.curie.fr/download.html. For each structure in

KineFold’s .rnm output, the free energy was calculated using RNAstructure-efn2.
KineFold simulations were also performed with 40 s total simulation time to test if the
RNAP roadblocking strategy in cotranscriptional SHAPE-seq (30 seconds of
transcription followed by SHAPE probing) explains differences between R2D2 and
KineFold. See “Data and Software Availability” for location of code used to run KineFold

and analyze .rnm output.

Using R2D2 predictions to inform all-atom folding pathway simulations

To assess the feasibility of the different hypothetical folding pathways in the full
three-dimensional context of the folded RNA, the R2D2 secondary structures were used
to restrain all-atom molecular dynamics simulations of each proposed transition
pathway. Base-pair constraints for the pre- and post-folding transition were defined
using the consensus (base pairs that occur in = 50% of the 100 iterations) R2D2
secondary structures at length 109 and 110 nt respectively. To avoid over-constraining
the simulation, only those base-pairs that occurred in over 50% of the reconstructions
were enforced with explicit folding restraints. It should be noted that non-restrained
bases can still form base-pairs according to the all-atom energy potential. While all
pathways start from the same 109-nt folding intermediate (Figure 2F, Figure 5A,B,C,D),
each pathway then dictates a unique order in which the base pairing pattern must
rearrange to arrive at the final 110-nt native fold (Figure 2G). All-atom simulations
employed the GROMACS 2016 software package (Abraham et al., 2015), using the
Amber-99 force field (Wang et al., 2000) with Chen-Garcia modifications for RNA bases
(Chen and Garcia, 2013), the modifications of Case and co-workers for the backbone
phosphate (Steinbrecher et al., 2012), the TIP4P-EW water model (Horn et al., 2004) ,
and the Joung & Cheatham parameters for potassium chloride ions (Joung and
Cheatham, 2008).

Simulations employed truncated dodecahedral boxes of ~15 nM radius,
containing the 110 base RNA, 74,428 TIP4P-EW H20’s, 1,559 K* and 1,450 Cl-ions to
mimic 1M excess salt conditions to give a total of 304,265 atoms. Long-range

interactions beyond 10 Angstroms were calculated using PME with a grid size of 0.16
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nm. A constant pressure of 1 atm was maintained using the Berendsen barostat
(Berendsen et al., 1984) with a time constant of 1.0 ps, and a constant temperature of
450K was maintained using the V-rescale thermostat (Bussi et al., 2007) with a time
constant of 0.1 ps. The leapfrog Verlet integrator with a 2-fs timestep was used, with the
total production length of each simulation being 100-500 ns, leading to a cumulative
total of >5 us of simulations.

Base-pairs were restrained using a piecewise flat-bottomed harmonic restraint of
strength 0.5 kcal/mol between central H-bond donor/acceptor of natively paired bases.
This restraint becomes linear at distances greater than 4 Angstroms. The strength and
distance dependence of the restraints was chosen to be strong enough to facilitate
formation of long-range interactions in ~100 ns simulations, but not strong enough to
significantly unfold other sections of the RNA in the process. Elevated temperatures
were used to increase RNA flexibility and decrease the amount of computational time
needed to sample each proposed transition pathway. This arrangement ensured that
individual folding attempts would simply stall if two restrained bases could not physically
get close enough to form a new basepair in the 3D context of each folding intermediate.

The 110-nt RNA chain was initially equilibrated until all base pairs observed in
>50% of the stable folding intermediate (109 nt R2D2 2D prediction) were stably
formed. At this point, new restraints from the 110-nt natively folded transcript were
added 2-3 base-pairs at a time. Each new set of restraints were simulated at least 10 ns
until they were successfully formed, at which point the next set of new restraints were
added. This cycle was repeated until all bases were successfully paired in the RNA’s
native fold. Simulations that had still not achieved any new base-pairs within 5
successive cycles (i.e., 50 ns) after adding restraints were considered “stalled” and not
simulated any further. Eight separate attempts were made to simulate each of the 4
proposed pathways and two mutants studied. Each individual folding trajectory therefore
ranged from 100-500 ns depending on stalling, and successful folding pathways
exhibited at least 6/8 successfully folded trajectories while pathways deemed
“‘unfeasible” always exhibited zero successful attempts.

Four potential folding pathways were simulated. In the “inside-out” pathway, the

formation of the extended native helix proceeds by extending the predicted central helix
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along its axis, unraveling H1 and H3 during this progression, and eliminating the need
for forming an initial long-range contact between the RNA ends (Figure 5A). In the
“kissing loop” mechanism, it was proposed that complementary, unpaired loop bases
within the H1 and H3 hairpins could form an initial long-range “kissing complex”, which
could then seed formation of the hybrid helix in a strand rearrangement process (Figure
5B). This hypothesis is attractive because kissing-loop interactions are known to be
rapid and stable ways to form long-range RNA interactions in RNA gene regulation and
retroviral replication (Kolb et al., 2000; Paillart et al., 2004). A toehold strand exchange
mechanism was also explored, in which the free 3' end of the nascent RNA chain
initially hybridizes with unpaired bases in the loop of H1, seeding a sequential unfolding
pathway where strands of H1 and H3 are exchanged with each other to rehybridize into
the final extended native helix (Figure 5C). Finally, we also explored the “early toehold”
mechanism which could initiate at different exposed bases of H1 before H3 is fully
formed (Figure 5D).

Quantification and Statistical Analysis
Cotranscriptional SHAPE-seq reactivities were quantified based on a statistical

model using Spats v.1.0.1 (http://luckslab.qgithub.io/spats/) as described in Reactivity

calculation and as previously described (Watters et al., 2016a). The RNase P assay
gels were visualized by phosphorimaging on the Typhoon (GE Healthcare), and bands
were quantitated using ImageQuant (GE Healthcare) as described in RNase P assay
and Figure S5G.

Additional Resources

Detailed Protocol

The detailed protocol is provided in Methods S1.

38


http://luckslab.github.io/spats/)

S| Movie 1.

R2D2 2D predictions with processed E. coli SRP RNA sequence cotranscriptional
SHAPE-seq replicates (top) and equilibrium-refolded SHAPE-seq (bottom), Related to
Figure 2. One hundred selected structures are represented as RNAbow plots with base
pairs drawn as arcs and the arc width indicating prevalence of the base pair amongst
the selected structures. Colored arcs show base pairs that are more frequent in either
cotranscriptional (purple) or equilibrium (turquoise) predictions, while grey arcs show
base pairs that are shared.

S| Movie 2
All-atom simulation of the inside-out proposed mechanism with strong forces added,
Related to Figure 5. Refer to Figure 5A for RNA coloring.

S| Movie 3
All-atom simulation of the late toehold proposed mechanism, Related to Figure 5, 6.
Refer to Figure 5C for RNA coloring. Gray coloring is used here for bases 30-83.

S| Movie 4

All-atom simulation of the U21C rescue mutant, Related to Figure 5. G7 and U21C are
colored green, H1 is indicated in purple, H3 is colored magenta, rearranged base pairs
are colored yellow, and remaining nucleotides are colored grey.

S| Movie 5

All-atom simulation of the late toehold proposed mechanism with the wt precursor E.
coli SRP RNA, Related to Figure 7. The leader sequence (nts 1-24) is colored dark
blue, H1 (nts 25-46) is colored purple, H3 (nts 111-130) is colored magenta, base pairs
present in the mature fold are highlighted yellow, and the remaining bases are colored
for visualization: nts 47-73 (orange), 74-83 (green), and 84-110 (turquoise),

S| Movie 6

All-atom simulation of the proposed late toehold-mediated strand rearrangement
hindered by the U42C precursor E. coli SRP RNA, Related to Figure 7. The leader
sequence (nts 1-24) is colored dark blue, H1 (nts 25-46) is colored purple, H3 (nts 111-
130) is colored magenta, rearranged base pairs are highlighted yellow, and the
remaining bases are colored for visualization: nts 47-73 (orange), 74-83 (green), and
84-110 (turquoise),

S| Movie 7

All-atom simulation of the late toehold proposed mechanism with the U42C rescue
precursor E. coli SRP RNA, Related to Figure 7. Refer to Movie 6 for RNA coloring
details.
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STAR Methods

KEY RESOURCES TABLE

The table highlights the genetically modified organisms and strains, cell lines, reagents, software, and
source data essential to reproduce results presented in the manuscript. Depending on the nature of the
study, this may include standard laboratory materials (i.e., food chow for metabolism studies), but the
Table is not meant to be comprehensive list of all materials and resources used (e.g., essential chemicals
such as SDS, sucrose, or standard culture media don’t need to be listed in the Table). ltems in the Table
must also be reported in the Method Details section within the context of their use. The number of
primers and RNA sequences that may be listed in the Table is restricted to no more than ten each. If
there are more than ten primers or RNA sequences to report, please provide this information as a
supplementary document and reference this file (e.g., See Table S1 for XX) in the Key Resources Table.

Please note that ALL references cited in the Key Resources Table must be included in the
References list. Please report the information as follows:

e REAGENT or RESOURCE: Provide full descriptive name of the item so that it can be identified and
linked with its description in the manuscript (e.g., provide version number for software, host source
for antibody, strain name). In the Experimental Models section, please include all models used in the
paper and describe each line/strain as: model organism: name used for strain/line in paper:
genotype. (i.e., Mouse: OXTR™: B6.129(SJL)-Oxtrm!-1Wsyl) '|n the Biological Samples section,
please list all samples obtained from commercial sources or biological repositories. Please note that
software mentioned in the Methods Details or Data and Software Availability section needs to be
also included in the table. See the sample Table at the end of this document for examples of how to
report reagents.

e SOURCE: Report the company, manufacturer, or individual that provided the item or where the item
can obtained (e.g., stock center or repository). For materials distributed by Addgene, please cite the
article describing the plasmid and include “Addgene” as part of the identifier. If an item is from
another lab, please include the name of the principal investigator and a citation if it has been
previously published. If the material is being reported for the first time in the current paper, please
indicate as “this paper.” For software, please provide the company name if it is commercially
available or cite the paper in which it has been initially described.

¢ IDENTIFIER: Include catalog numbers (entered in the column as “Cat#” followed by the number,
e.g., Cat#3879S). Where available, please include unique entities such as RRIDs, Model Organism
Database numbers, accession numbers, and PDB or CAS IDs. For antibodies, if applicable and
available, please also include the lot number or clone identity. For software or data resources,
please include the URL where the resource can be downloaded. Please ensure accuracy of the
identifiers, as they are essential for generation of hyperlinks to external sources when available.
Please see the Elsevier list of Data Repositories with automated bidirectional linking for details.
When listing more than one identifier for the same item, use semicolons to separate them (e.g.
Cat#3879S; RRID: AB_2255011). If an identifier is not available, please enter “N/A” in the column.

o A NOTE ABOUT RRIDs: We highly recommend using RRIDs as the identifier (in particular for
antibodies and organisms, but also for software tools and databases). For more details on how
to obtain or generate an RRID for existing or newly generated resources, please visit the RIl or
search for RRIDs.

Please use the empty table that follows to organize the information in the sections defined by the
subheading, skipping sections not relevant to your study. Please do not add subheadings. To add a row,
place the cursor at the end of the row above where you would like to add the row, just outside the right
border of the table. Then press the ENTER key to add the row. You do not need to delete empty rows.
Each entry must be on a separate row; do not list multiple items in a single table cell. Please see the
sample table at the end of this document for examples of how reagents should be cited.


https://www.force11.org/group/resource-identification-initiative
https://www.elsevier.com/books-and-journals/content-innovation/data-base-linking/supported-data-repositories
https://www.force11.org/group/resource-identification-initiative
https://scicrunch.org/resources

TABLE FOR AUTHOR TO COMPLETE

Please upload the completed table as a separate document. Please do not add subheadings to the Key
Resources Table. If you wish to make an entry that does not fall into one of the subheadings below, please contact
your handling editor. (NOTE: For authors publishing in Current Biology, please note that references within the KRT

should be in numbered style, rather than Harvard.)

KEY RESOURCES TABLE
REAGENT or RESOURCE \ SOURCE IDENTIFIER
Antibodies
Bacterial and Virus Strains
NEB Turbo Competent E. coli (High Efficiency) New England Biolabs | Cat#C2984H
Biological Samples
NEB Turbo Competent E. coli (High Efficiency) New England Biolabs | Cat#C2984H
Chemicals, Peptides, and Recombinant Proteins
Vent (exo-) DNA Polymerase New England Biolabs | Cat#M0257S
Deoxynucleotide (dANTP) Solution Mix New England Biolabs | Cat#N9447L
E. coli RNA Polymerase, Holoenzyme New England Biolabs | Cat#M0551S
GIn111 (EcoRI E111Q Mutant) Lab preparation N/A
Ribonucleotide Solution Set New England Biolabs | Cat#N0466
Benzoyl Cyanide Sigma-Aldrich Cat#115959
Dimethyl Sulfoxide Sigma-Aldrich Cat#276855
TRIzol Reagent Thermo Fisher Cat#15596018
Isopropyl alcohol Sigma-Aldrich Cat#l9516
Chloroform Sigma-Aldrich Cat#C2432
Sodium Acetate Sigma-Aldrich Cat#S2889
Glycogen, RNA grade Thermo Fisher Cat#R0551
Ethyl alcohol, pure Sigma-Aldrich E7023
SuperScript Ill Reverse Transcriptase Thermo Fisher Cat#18080093
CircLigase ssDNA Ligase Lucigen Cat#CL4111K
Phusion High-Fidelity DNA Polymerase New England Biolabs | Cat#M0530L
GeneScan 500 LIZ Size Standard Applied Biosystems Cat#4322682
E. coli C5 protein Gopalan et al., 1997 pBSC5
T7 RNA polymerase Lab preparation pQE9T7
ATP Carbosynth Cat# NA00135




CTP Carbosynth Cat# NC03860

GTP Carbosynth Cat# NG01208

uTP Carbosynth Cat# NU03863

Critical Commercial Assays

Deposited Data

Signal Recognition Particle RNA cotranscriptional Watters et al., 2016a | SRX2159310,

SHAPE-Seq SRX2159311,
SRX2159312

Signal Recognition Particle RNA equilibrium- Watters et al., 2016a | SRX2159316

refolded SHAPE-Seq

U21C Signal Recognition Particle RNA This paper PRJNAG667733

cotranscriptional SHAPE-Seq

U21C Signal Recognition Particle RNA equilibrium- | This paper PRJNAG667733

refolded SHAPE-Seq

U21C, C22U, G93A Signal Recognition Particle This paper PRJNAG667733

RNA cotranscriptional SHAPE-Seq

U21C Signal Recognition Particle RNA This paper SRPU21C_BZCN_0001

cotranscriptional SHAPE-Seq reactivities ,
SRPU21C_BZCN_0002
SRPU21C_BZCN_ 0003

U21C Signal Recognition Particle RNA equilibrium- | This paper SRPU21C_BZCN_0004

refolded SHAPE-Seq reactivities ,
SRPU21C BZCN 0005

U21C, C22U, G93A Signal Recognition Particle This paper SRP21CR_BZCN_0001

RNA cotranscriptional SHAPE-Seq reactivities

SRP21CR_BZCN_0002

SRP21CR_BZCN_0003

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains

Oligonucleotides




tttttttgaattcGACCTGACCTGGTAAACAGA

IDT

EJS_FO1_wt ER1_55.

tttttttgaattcGGACCTGACCTGGTAAACAG

IDT

EJS_F02_wt_ER1_56.

tttttttgaattc CGGACCTGACCTGGTAAACA

IDT

EJS_F03_wt_ER1_57.

tttttttgaattc CCGGACCTGACCTGGTAAAC

IDT

EJS_F04_wt_ER1_58.

tttttttgaattcTCCGGACCTGACCTGGTAAA

IDT

EJS_F05 _wt_ER1_50.

tttttttgaattcTTCCGGACCTGACCTGGTAA

IDT

EJS_F06_wt ER1_60.

tttttttgaattcCTTCCGGACCTGACCTGGTA

IDT

EJS_FO7_wt ER1_61.

tttttttgaattc CCTTCCGGACCTGACCTGGT

IDT

EJS_F08_wt ER1_62.

tttttttgaattc TCCTTCCGGACCTGACCTGG

IDT

EJS_F09_wt ER1_63.

tttttttgaattc TTCCTTCCGGACCTGACCTG

IDT

EJS_F10_wt_ER1_64.

tttttttgaattc CTTCCTTCCGGACCTGACCT

IDT

EJS_F11_wt_ER1_65.

tttttttgaattcGCTTCCTTCCGGACCTGACC

IDT

EJS_F12_wt_ER1_66.

tttttttgaattc TGCTTCCTTCCGGACCTGAC

IDT

EJS_F13_wt_ER1_67.

tttttttgaattcCTGCTTCCTTCCGGACCTGA

IDT

EJS_F14_wt_ER1_68.

tttttttgaattcGCTGCTTCCTTCCGGACCTG

IDT

EJS_F15_wt_ER1_609.

tttttttgaattcGGCTGCTTCCTTCCGGACCT

IDT

EJS_F16_wt_ER1_70.

tttttttgaattcTGGCTGCTTCCTTCCGGACC

IDT

EJS_F17_wt_ER1_71.

tttttttgaattcTTGGCTGCTTCCTTCCGGAC

IDT

EJS_F18_wt ER1_72.

tttttttgaattcCTTGGCTGCTTCCTTCCGGA

IDT

EJS_F19_wt ER1_73.

ttttttgaattcCCTTGGCTGCTTCCTTCCGG

IDT

EJS_F20_wt_ER1_74.

tttttttgaattcGCCTTGGCTGCTTCCTTCCG

IDT

EJS_F21_wt ER1_75.

tttttttgaattc TGCCTTGGCTGCTTCCTTCC

IDT

EJS_F22_wt ER1_76.

tttttttgaattcCTGCCTTGGCTGCTTCCTTC

IDT

EJS_F23 wt ER1_77.

tttttttgaattcTCTGCCTTGGCTGCTTCCTT

IDT

EJS_F24_wt ER1_78.

tttttttgaattcATCTGCCTTGGCTGCTTCCT

IDT

EJS_F25_wt_ER1_79.

tttttttgaattcCATCTGCCTTGGCTGCTTCC

IDT

EJS_F26_wt_ER1_80.

tttttttgaattc TCATCTGCCTTGGCTGCTTC

IDT

EJS_F27_wt_ER1_81.




EJS_F28_wt_ER1_82.

tttttttgaattcGTCATCTGCCTTGGCTGCTT IDT

EJS_F29 wt ER1_83.
tttttttgaattc CGTCATCTGCCTTGGCTGCT IDT

EJS_F30_wt_ER1_84.
tttttttgaattcGCGTCATCTGCCTTGGCTGC IDT

EJS_F31_wt ER1_85.
tttttttgaattc CGCGTCATCTGCCTTGGCTG IDT

EJS_F32_wt ER1_86.
tttttttgaattcaCGCGTCATCTGCCTTGGCT IDT

EJS_F33 wt ER1_87.
tttttttgaattcCaCGCGTCATCTGCCTTGGC IDT

EJS_F34_wt_ER1_88.
tttttttgaattcaCaCGCGTCATCTGCCTTGG IDT

EJS_F35_wt ER1_89.
tttttttgaattcCaCaCGCGTCATCTGCCTTG IDT

EJS_F36_wt ER1_90.
tttttttgaattcGCaCaCGCGTCATCTGCCTT IDT

EJS_F37_wt ER1_91.
tttttttgaattcGGCaCaCGCGTCATCTGCCT IDT

EJS F38 wt ER1_92.
tttttttgaattcCGGCaCaCGCGTCATCTGCC IDT

EJS_F39_wt_ER1_93.
tttttttgaattcCCGGCaCaCGCGTCATCTGC IDT

EJS F40 wt ER1_94.
tttttttgaattcCCCGGCaCaCGCGTCATCTG IDT

EJS F41 wt ER1_95.
tttttttgaattcTCCCGGCaCaCGCGTCATCT IDT

EJS_F42_wt ER1_96.
tttttttgaattcATCCCGGCaCaCGCGTCATC IDT

EJS _F43_wt ER1_97.
tttttttgaattcCATCCCGGCaCaCGCGTCAT IDT

EJS _F44_wt ER1_98.
tttttttgaattcACATCCCGGCaCaCGCGTCA IDT

EJS_F45 wt ER1_99.
tttttttgaattc TACATCCCGGCaCaCGCGTC IDT

EJS _F46_wt ER1_100.
tttttttgaattcCTACATCCCGGCaCaCGCGT IDT

EJS_F47 wt ER1_101.
tttttttgaattcGCTACATCCCGGCaCaCGCG IDT

EJS F48 wt ER1_102.
tttttttgaattcAGCTACATCCCGGCaCaCGC IDT

EJS _F49 wt ER1_103.
tttttttgaattc CAGCTACATCCCGGCaCaCG IDT

EJS F50_wt ER1_104.
tttttttgaattc CCAGCTACATCCCGGCaCaC IDT

EJS F51_wt ER1_105.
tttttttgaattcGCCAGCTACATCCCGGCaCa IDT

EJS F52_wt ER1_106.
tttttttgaattc TGCCAGCTACATCCCGGCaC IDT

EJS_F53 wt ER1_107.
tttttttgaattcCTGCCAGCTACATCCCGGCa IDT

EJS F54 wt ER1_108.
tttttttgaattcCCTGCCAGCTACATCCCGGC IDT




tttttttgaattc CCCTGCCAGCTACATCCCGG

IDT

EJS_F55_wt_ER1_109.

tttttttgaattcGCCCTGCCAGCTACATCCCG

IDT

EJS_F56_wt_ER1_110.

tttttttgaattcGGCCCTGCCAGCTACATCCC

IDT

EJS_F57_wt_ER1_111.

tttttttgaattcGGGCCCTGCCAGCTACATCC

IDT

EJS_F58 wt ER1_112.

tttttttgaattcGGGGCCCTGCCAGCTACATC

IDT

EJS_F59_wt_ER1_113.

tttttttgaattcGGGGGCCCTGCCAGCTACAT

IDT

EJS_F60_wt ER1_114.

tttttttgaattc TGGGGGCCCTGCCAGCTACA

IDT

EJS_F61_wt ER1_115.

tttttttgaattcGTGGGGGCCCTGCCAGCTAC

IDT

EJS_F62_wt_ER1_116.

tttttttgaattcGGTGGGGGCCCTGCCAGCTA

IDT

EJS_F63_wt ER1_117.

tttttttgaattcGGGTGGGGGCCCTGCCAGCT

IDT

EJS_F64_wt ER1_118.

tttttttgaattc CGGGTGGGGGCCCTGCCAGC

IDT

EJS_F65_wt_ER1_119.

tttttttgaattc CCGGGTGGGGGCCCTGCCAG

IDT

EJS_F66_wt_ER1_120.

tttttttgaattc CCCGGGTGGGGGCCCTGCCA

IDT

EJS_F67_wt_ER1_121.

tttttttgaattc ACCCGGGTGGGGGCCCTGCC

IDT

EJS_F68_wt_ER1_122.

tttttttgaattcGACCCGGGTGGGGGCCCTGC

IDT

EJS_F69_wt ER1_123.

tttttttgaattc CGACCCGGGTGGGGGCCCTG

IDT

EJS_F70_wt ER1_124.

tttttttgaattc CCGACCCGGGTGGGGGCCCT

IDT

EJS_F71_wt_ER1_125.

tttttttgaattcGCCGACCCGGGTGGGGGCCC

IDT

EJS_F72_wt_ER1_126.

tttttttgaattcTGCCGACCCGGGTGGGGGCC

IDT

EJS_F73_wt_ER1_127.

tttttttgaattcATGCCGACCCGGGTGGGGGC

IDT

EJS_F74 wt ER1_128.

tttttttgaattc CATGCCGACCCGGGTGGGGG

IDT

EJS_F75_wt_ER1_129.

tttttttgaattc CCATGCCGACCCGGGTGGGG

IDT

EJS_F76_wt_ER1_130.

tttttttgaattcGCCATGCCGACCCGGGTGGG

IDT

EJS_F77_wt_ER1_131.

tttttttgaattcTGCCATGCCGACCCGGGTGG

IDT

EJS_F78_wt ER1_132.

tttttttgaattcATGCCATGCCGACCCGGGTG

IDT

EJS_F79_wt ER1_133.

tttttttgaattcGATGCCATGCCGACCCGGGT

IDT

EJS_F80_wt ER1_134.

tttttttgaattc AGATGCCATGCCGACCCGGG

IDT

EJS_F81_wt ER1_135.




EJS F82 wt ER1_136.
tttttttgaattcGAGATGCCATGCCGACCCGG IDT

EJS F83 wt ER1_137.
tttttttgaattcGGAGATGCCATGCCGACCCG IDT

EJS F84 wt ER1_138.
tttttttgaattcTGGAGATGCCATGCCGACCC IDT

EJS F85 wt ER1_139.
tttttttgaattcGTGGAGATGCCATGCCGACC IDT

EJS F86 wt ER1 _140.
tttttttgaattcGGTGGAGATGCCATGCCGAC IDT

EJS F87 wt ER1_141.
tttttttgaattcAGGTGGAGATGCCATGCCGA IDT

EJS F88 wt ER1_142.
tttttttgaattcGAGGTGGAGATGCCATGCCG IDT

EJS F89 wt ER1_143.
tttttttgaattcGGAGGTGGAGATGCCATGCC IDT

EJS F90 wt ER1_144.
tttttttgaattcAGGAGGTGGAGATGCCATGC IDT

EJS F91 wt ER1_145.
tttttttgaattcGAGGAGGTGGAGATGCCATG IDT

EJS F92 wt ER1_146.
tttttttgaattc CGAGGAGGTGGAGATGCCAT IDT

EJS F93 wt ER1_147.
tttttttgaattcGCGAGGAGGTGGAGATGCCA IDT

EJS F94 wt ER1_148.
tttttttgaattc CGCGAGGAGGTGGAGATGCC IDT

EJS F95 wt ER1_149.
tttttttgaattcCCGCGAGGAGGTGGAGATGC IDT

EJS F96 wt ER1_150.
tttttttgaattcCCGCGAGGAGGTGGAGATGC IDT

EJS FO1_wt ER1 _55.
ttttittgaattcACCGCGAGGAGGTGGAGATG IDT
/5Phos/rCrUrGrArCrUrCrGrGrGrCrArCrCrArArGrGr | IDT Linker
A/3ddC/
/5Biosg/gtccttggtgccegagt IDT RT Primer
/5Phos/AGATCGGAAGAGCACACGTCTGAACTC | IDT A_Adapter_B
CAGTCAC/3SpC3/
AATGATACGGCGACCACCGAGATCTACACTCTT | IDT PE_Forward
TCCCTACACGACGCTCTTCCGATCT
CTTTCCCTACACGACGCTCTTCCGATCTRRRYG | IDT Select (+)
TCCTTGGTGCCCGAG*T*c*a*g
CTTTCCCTACACGACGCTCTTCCGATCTYYYRG | IDT Select (-)
TCCTTGGTGCCCGAG*T*c*a*g
CAAGCAGAAGACGGCATACGAGATNNNNNNGT | IDT lllumina Index
GACTGGAGTTCAGACGTGTGCTC
GAGCGCGCGTAATACGACTCACTATAGCGTTG | Sigma-Aldrich 4.5S5-F
GTTCTCAACGCTCTCAATG
TGCGGGAGAACCAACAGAGCCCCCATTGAGAG | Sigma-Aldrich 4.5S8-R
CGTTGAGAAC
CCTTGGCTGCTTCCTTCCGG Sigma-Aldrich 4.55(70)-R
Recombinant DNA
pJBL3664 SRP_EcoliRNAP_trp_HepD \ Watters, et al., 2016a \ N/A
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Detailed Protocol

R2D2 Detailed Protocol

Download and Installation:

Several pieces of software are used by R2D2. Begin by downloading and installing the
following software according to their installation instructions:
- Python 2.7
- RNAstructure command line tools (Reuter and Mathews, 2010):
https://rna.urmc.rochester.edu/RNAstructure.html
- VARNA (Darty et al., 2009): http://varna.lri.fr/

Next, download R2D2 from GitHub to a Linux server:
https://github.com/LuckslLab/R2D2.

Configuration:

Before running R2D2, you need to configure the settings to your local computational
environment. To do so, open and edit the "LucksLabUtils_config.py’ file to update
several environmental variables to your configuration which is currently defaulted to
Lucks lab paths. The easiest way to do this step is to edit lines 42-46 of
‘LucksLabUtils_config.py’ to replace default paths with your system’s paths.

Usage:
Example usage cases are located in 'R2D2/examples/run_CoTrans_example.sh® which

uses example data included with the code. The following examples assume you have
installed R2D2 in “<installation_dir>" and have put your cotranscriptional SHAPE-seq or
equilibrium-refolded SHAPE-seq files in "<reactivity dir>". All outputs will be directed to
“<output_dir>".

Recommended usage for cotranscriptional SHAPE-seq datasets reported in this paper:
python <installation_dir>/R2D2/analyze cotrans_ SHAPE-Seq.py --in_dir
<reactivity_dir> --out_dir <output_dir> --adapter "CTGACTCGGGCACCAAGG" --e
50000 --endcut 0 --constrained_c "3.5" --scale_rho_max "1" --draw_all "True" --
most_count_tie_break "False" --weight_paired "0.8" --scaling_func "K" --cap_rhos
"True" --pol_fp "14" --p 1

Recommended usage for equilibrium-refolded SHAPE-seq datasets reported in this
paper:

python <installation_dir>/R2D2 /analyze cotrans_SHAPE-Seq.py --in_dir
<reactivity _dir> --out_dir <output_dir> --adapter "CTGACTCGGGCACCAAGG" --e
50000 --endcut 0 --constrained_c "3.5" --scale_rho_max "1" --draw_all "True" --
most_count_tie_break "False" --weight_paired "0.8" --scaling_func "K" --cap_rhos
"True" --pol_fp "0" --p 1

Note — Some variables such as "--adapter’ may need to be adjusted depending on
sequencing library formatting. In addition, the 14nt RNA polymerase footprint is present
in cotranscriptional SHAPE-seq experiments, but not in equilibrium-refolded SHAPE-
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seq experiments. This is reflected in the option --pol_fp set to “14” for cotranscriptional
SHAPE-seq and --pol_fp set to “0” for equilibrium-refolded SHAPE-seq.

Input files:
- SHAPE-Seq reactivity files as generated by Spats 1.0.2

(https://github.com/LucksLab/spats/releases/tag/v1.0.2) and converted to p
reactivities according to the formula in (Watters et al., 2016).

Options:
--in_dir : Input directory containing reactivities files.

--out_dir : Output directory.
--adapter : Adapter sequence used in SHAPE-Seq sequencing libraries.
--e : Size of sample to be used for each of the sampling methods.
--p : Number of threads allowed to use, default 1.
--endcut : Removes 3’ indices based on value passed. Ex. --endcut = -1 => removes the
last base from input reads and reactivities.
--pol_fp : Remove 3' indices based on the length of RNA polymerase footprint.
--constrained_c : Parameter for hard-constrained sampling. Any rho value greater than
this value is forced to be unpaired.
--scale_rho_max : Parameter for rescaling rhos such that rhos are capped to this value.
--draw_all : Flag for whether or not to draw all possible best states for the best structure
path video.
--most_count_tie_break : When making the video of the best structure path, this flag
determines if the structure sampled the most number of times is used instead of all best
structures. This flag is only relevant if --draw_all is False.
--weight_paired : Weight parameter for weighted distance calculation.
--scaling_func = Choice of distance function when choosing the best structure. See the
manuscript for detailed definitions:

D: Bound to be between [0,1]

U: Rescale sampled structures to average to 1

K: Keep sampled structures and reactivities values. If cap_rhos is True, then
reactivities will be capped.
--cap_rhos = Flag to have a max cutoff when calculating distances for choosing the best
structure.

Outputs:
draw/ : directory with output related to making structure images and videos.

ct/ : directory of structures sampled in .ct file format.

pickles/ : directory of python pickled data.

movie.mp4 : Video of structures along the best structure path.
pfs/ : directory of partition functions generated by RNAStructure.
seq/ : directory of sequence files.

theta/ : directory of theta files.

rho/ : directory of rho files.

*dump : output to be used for plotting in R.


https://github.com/LucksLab/spats/releases/tag/v1.0.2

rho_table.txt : table of rho values sorted by length.

rho_table cut.txt : table of rho values sorted by length after removing 3' end nucleotides
specified by --endcut and --pol_fp.

/CoTrans_example_output/DG_state plot.pdf : Plot of AG vs length. Cotranscriptional
folding pathway is denoted with red.

In this manuscript, we ran 100 iterations of R2D2’s 2D protocol to generate a family of
possible intermediate folding states which are then utilized in all-atom simulations as
described below.

All-atom Molecular Dynamics Folding Pathway Simulations of SRP RNA

All-atom molecular dynamics simulations employed the GROMACS 2016
software package (Abraham et al., 2015) which was downloaded at www.gromacs.org
and compiled with default settings. The SRP RNA was simulated using the Amber-99
force field (Wang et al., 2000) with Chen-Garcia modifications for RNA bases (Chen and
Garcia, 2013). The RNA was placed in a simulation box and solvated with enough
TIP4P-EW water, K* and CI- ions to mimic 1 M excess salt conditions. The system was
energy minimized using the steepest decent algorithm for 10,000 steps with a 1 fs
timestep and a force tolerance of 100 kJ mol' nm-'. Then, NVT equilibration was
conducted for 1 ns using a leapfrog integrator with a 2 fs timestep. A constant
temperature of 300 K was maintained using a V-rescale thermostat (Bussi et al., 2007)
with a time constant of 0.1 ps. Long-range interactions greater than 10 Angstroms were
calculated using PME with a grid size of 0.16. The same parameters were used for NPT
equilibration with the addition of a Parrinello-Rahman barostat maintaining a constant
pressure of 1 atm with a time constant of 2 ps.

Before simulating the folding pathway, an initial model of the SRP RNA in the
pre-rearrangement state had to be constructed. Based on the RNABows visualizations
of the R2D2 results, the 109 nt SRP RNA was split into 3 segments which were folded
separately and then spliced into a single molecule: H1 (nt 1-27), H2 (nt 27-86), and H3
(nt 86-109). Basepairs present in >50% of the R2D2 secondary structures were
enforced via distance-dependent piecewise flat-bottomed harmonic bias restraints (type
10 bonds added to the GROMACS topology file) between the central hydrogen bond
donor and acceptor of paired bases applied at a strength of 0.5 kcal/mol. H2 was folded
in a two-step procedure, where the central hairpin nt 50-66 was folded first and then
spliced to include nt 27-86. Trajectories were then propagated until all base pairs
observed in the pre-transition R2D2 structure were appropriately formed, after which all
3 models were spliced together into a single chain using the ModeRNA software
(Rother et al., 2011) downloaded from the Bujnicki lab webpage genesilici.pl.

After the simulation box for the 109 nt SRP RNA was prepared and properly
equilibrated in the pre-rearrangement state, NVT folding pathway simulations were
conducted using a leapfrog Verlet integrator with a 2 fs time step, a Berendsen barostat
(Berendsen et al., 1984) with a time constant of 1 ps and a V-rescale thermostat with a
time constant of 0.1 ps to maintain a temperature of 450 K. This elevated temperature
facilitates rearrangement by providing sufficient energy to increase RNA flexibility



http://www.gromacs.org/
genesilici.pl

without promoting loss of RNA structure due to excess application of energy. In order to
stimulate rearrangement, only a set of 2-3 base pairs, defining the secondary structure
of the post-transition RNA, were sequentially restrained on the pre-transition RNA. The
restraints consisted of distance-dependent piecewise flat-bottomed harmonic bias
forces (i.e. type 10 bonds in the GROMACS topology file) between the central hydrogen
bond donor and acceptor of paired bases applied at a strength of 0.5 kcal/mol. When
the distance between each pair of restrained bases is below 4 Angstroms, a small
attractive force is applied harmonically as a function of distance. Above the distance of
4 Angstroms, the bias force is applied linearly. The distance dependence and strength
of these restraints should be modulated to weakly encourage long range interactions
without forcing physically unfeasible pathways or significantly disrupting structure in
other portions of the RNA. After each set of restraints was applied, NVT simulations
were conducted for 10 ns. If two bases were not physically close enough to pair during
the simulation, up to four sequential 10 ns cycles were allotted to allow sufficient time
and sampling to encourage base pairing. The simulation was considered stalled if the
new set of base pairs was not achieved. If the new base pairs formed and were stable,
then the process would repeat until all bases in the native fold were paired.

A drawback of the strategy detailed above is that it requires frequent manual
adjustment of the restraining potentials and indefinite simulation restarts. We have
recently developed a novel protocol using a 2D grid of simulation replicas with variable-
strength restraints that greatly streamlines this process (Ebrahimi et al., 2019). The 2D
REMD enhanced sampling protocol allows the simultaneous specification of all base
pairs instead of sequentially restraining the structure 2-3 basepairs at a time. All atom
simulations of the SRP precursor RNA were conducted using both the improved 2D
REMD protocol in addition to the MD protocol above. Similar results were obtained
using either simulation method.
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Figure S1

Diversity of sampled 2-D structures, Related to STAR Methods. (A) and (B) wt E. coli
SRP RNA (117 nt), (C) and (D) wt E. coli SRP RNA (25 nt). Panels A and C show the
number of unique structures versus total number sampled, while panels B and D show
the minimum distance between structures and reactivities at the length calculated in a
sampled structure set. Structures sampled using cotranscriptional SHAPE-seq replicate
3 of wt E. coli SRP RNA were plotted using multidimensional scaling showing increasing
number of structures sampled: (E) 300, (F) 3,000, (G) 15,000, and (H) 150,000. Only
structures that are unique to previously sampled structures were plotted. This analysis
highlights the need for increased sampling number compared to previous sample-and-
select methods (~1,000-10,000) to effectively consider many different secondary
structures in the landscape of possible structures.
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Figure S2

Native E. coli SRP RNA sequence pathway prediction plots for experimental replicates,
Related to Figure 2. The figure layout mirrors Figure 2. (A) Predicted folding pathways
of Replicate 2 for the cotranscriptional (purple) and equilibrium refolded (turquoise)



SHAPE-Seq data. Four different lengths are highlighted: (B) 95 nt, (C) 109 nt, (D) 111
nt, and (E) 117 nt. (F) Predicted folding pathways of Replicate 3 for the cotranscriptional
(purple) and equilibrium refolded (turquoise) SHAPE-Seq data. Four different lengths
are highlighted: (G) 95 nt, (H) 109 nt, (I) 111 nt, and (J) 117 nt.
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Figure S3

Comparison of 5' helices proposed based on our R2D2 data and by Wong et al, 2007,
Related to Figure 2. (A) Wong et al, 2007 proposed 5’ hairpin overlaid with major (solid
black arrow) and minor (dashed black arrow) RNase T1 cleavage sites, as determined
from their study. (B) Wong et al, 2007 proposed &' hairpin overlaid with cleavage sites
from oligonucleotide hybridization (orange, green, and blue lines) followed by RNase H
cleavage (orange, green, and blue arrows). The blue cleavage site was more prevalent
than the others, as determined from their study. R2D2’s predicted H1 overlaid with the
same data in (C) and (D) as in panels A and B, respectively. (E) Heatmap of
cotranscriptional SHAPE-Seq reactivities (original length 48 nt, shown without the 3' 14



nts that are in the RNAP footprint) with dot bracket notation of the Wong et al (2007)
proposed 5 hairpin (above) and H1 predicted by R2D2 (below). Panels A and B are
based off of Wong et al, 2007.
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Figure S4

Comparison of R2D2, RNAstructure-Fold, and KineFold, Related to STAR Methods. (A)
Plot of predicted cotranscriptional folding pathways from R2D2 (purple) and
RNAstructure-Fold without SHAPE-seq data (black) and with cotranscriptional (red) or
equilibrium-refolded (blue) SHAPE-seq data. All sampled structures are shaded in grey.
(B) Plot of predicted folding pathways for KineFold (red) as well as R2D2 (purple) using
replicate 1 wt E. coli SRP RNA cotranscriptional SHAPE-Seq data. We highlight four
different lengths: (C) 25 nt, (D) 62 nt, (E) 109 nt, and (F) 117 nt. We represent the
structures found at these positions as RNAbow depictions where base pairs are drawn
as arcs with the arc width showing higher prevalence of the base pair among the
selected or predicted structures. Colored arcs show base pairs that are more frequent in
either KineFold (red) or R2D2 (purple) predictions. Interestingly, KineFold predicts
structures that are either closer to the MFE structure predictions or farther from the MFE
than R2D2’s predictions (especially from lengths 85 to 117), as is evident from the AG
plot in panel B. We note that some of the structures predicted by KineFold contain non-
canonical mismatches in its predictions, which cause large positive spikes in AG using
the RNAStructure-efn2 energy model that is used in R2D2. KineFold does predict the
major restructuring into the long helical state over 50% of the time at length 105, which
is earlier than R2D2’s predictions with wt cotranscriptional data. According to KineFold,
helix 1 is not stably predicted after length 52 nor is helix 3 predicted with occurrence
over 50% for any length. We also tested if altering the KineFold simulation time to more
closely match cotranscriptional SHAPE-Seq conditions would change KineFold
predictions. To this end, we performed KineFold simulations for a total of 40 seconds for
each intermediate length to let it equilibrate to mimic the transcript in a stalled
elongation complex and highlight the data from such an exercise for lengths (G) 25 nt,
(H) 62 nt, (1) 109 nt, and (J) 117 nt. Extending KineFold simulation time reduced the
number of predicted alternative structures, but it still showed differences compared to
R2D2 predictions. Overall we find that R2D2 has more consistency with its predictions
based on the SHAPE data.
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Figure S5

Comparison of increased U21C R2D2 sampling diversity through combining the
previous 6 lengths’ sampled structures to the current length’s sampled structures (top
and blue) when compared to normal R2D2 sample-and-select protocol (purple and
bottom) in RNAbow diagrams, Related to Figure 3, 4, 7. We highlight 2 lengths in
RNAbow diagrams: (A) 116 nt and (B) 117 nt. U21C cotranscriptional SHAPE-seq
reactivities are shown for (C) replicate 2 and (D) replicate 3. (E) U21C equilibrium-
refolded SHAPE-seq replicate 2 reactivities. (F) RNAbow plots of SRP RNA U21C,
C22U, G93A replicate 2 and 3 (green, top) and U21C replicate 1 (purple, bottom) R2D2
predictions at lengths 109-111 nt. Related to Figure 4. (G) Timecourse assays (final
volume, 20 puL) with 10 nM E. coli RNase P and either 10 nM or 2.5 uM 24+24 pre-SRP
RNA as the substrate. Each plot is derived from the results obtained with three
replicates, and the data depict the mean and standard deviation values with one
exception: the 30-s timepoint for the 2.5 uM substrate assay represents the mean from
two replicates. Initial velocity determined individually from the three assay replicates
with 2.5 uM substrate yielded a turnover number of 5.4 + 0.5 min-'; a representative gel
of this assay is shown in Figure 7B.



Distance function | Parameter values of best average F-Scores | Average F-score

D™ Pc=3.5, Pmax=1.0, a=0.8 86.32
Pc=3.5, Pmax=0.9, 0=0.8

D, Pc=3.5, Pmax=1.0, a=0.8 86.32

D% pc=3.5, a=0.8 85.83

D, P:=2.7, Pmax=2.1, a=0.7 85.77
Pc=2.7, pmax=2.2, 0=0.7

D, pc=2.7,0=0.7 85.61

Dpoe? pc=1.9, a=0.9 7831

Table S1. The best parameter sets for R2D2 distance functions and their respective average F-score over the
benchmarking set, Related to Figure 1.



R2D2

Replicate 1 Replicate 2 Replicate 3

Sensitivity PPV | F-score | Sensitivity | PPV | F-score | Sensitivity | PPV | F-score
58 rRNA, E. coli 0.89 | 0.94 0.91 0.89 | 0.94 0.91 0.86 | 0.91 0.88
Adenine riboswitch, V. 0.86 | 0.82 0.84 0.90 | 0.95 0.93 0.95 | 0.87 0.91
vulnificus
P4-P6, Tetrahymena group | 0.81 | 0.78 0.80 0.79 | 0.84 0.82 0.81 | 0.87 0.84
intron ribozyme
TPP riboswitch, E. coli 0.95 | 0.91 0.93 0.91 | 0.95 0.93 0.91 | 0.95 0.93
Cyclic d-GMP Riboswitch, V. 0.89 | 1.00 0.94 0.64 | 1.00 0.78 0.68 | 0.83 0.75
cholera
tRNAP", E. coli 0.71 | 0.79 0.75 0.71 | 0.83 0.77 0.86 | 1.00 0.92

R2D2-consensus

Replicate 1 Replicate 2 Replicate 3

Sensitivity PPV | F-score | Sensitivity | PPV | F-score | Sensitivity | PPV | F-score
58 rRNA, E. coli 0.91 | 0.94 0.93 0.80 | 0.85 0.82 0.89 | 0.91 0.90
Adenine riboswitch, V. 0.90 | 0.90 0.90 0.86 | 0.90 0.88 0.95 | 0.95 0.95
vulnificus
P4-P6, Tetrahymena group | 0.85 | 0.82 0.84 0.77 | 0.86 0.81 0.75 | 0.86 0.80
intron ribozyme
TPP riboswitch, E. coli 0.95 | 0.91 0.93 0.91 | 0.95 0.93 0.91 | 0.95 0.93
Cyclic d-GMP Riboswitch, V. 0.89 | 1.00 0.94 0.54 | 1.00 0.70 0.68 | 0.90 0.78
cholera
tRNAP", E. coli 0.71 | 0.79 0.75 0.71 | 0.88 0.79 0.86 | 1.00 0.92

RNAstructure-Fold with SHAPE RNAstructure-Fold with no

SHAPE
Replicate 1 Replicate 2 Replicate 3 Sequence alone

Sensitivity | PPV | F-score | Sensitivity | PPV | F-score | Sensitivity | PPV | F-score | Sensitivity | PPV | F-score
58 rRNA, E. coli 0.97 | 0.92 0.94 0.97 | 0.92 0.94 0.94 | 0.92 0.93 0.29 | 0.25 0.27
Adenine riboswitch, V. 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00 1.00 | 1.00 1.00
vulnificus
P4-P6, Tetrahymena group | 0.90 | 0.83 0.86 0.79 | 0.78 0.78 0.92 | 0.88 0.90 0.90 | 0.78 0.83
intron ribozyme
TPP riboswitch, E. coli 0.77 | 0.85 0.81 0.77 | 0.85 0.81 0.77 | 0.85 0.81 0.77 | 0.85 0.81
Cyclic d-GMP Riboswitch, V. 0.96 | 0.93 0.95 0.68 | 0.73 0.70 0.68 | 0.83 0.75 0.75 | 0.78 0.76
cholera
tRNAP", E. coli 1.00 | 1.00 1.00 0.81 | 0.89 0.85 0.95 | 1.00 0.98 0.95 | 1.00 0.98




Table S2. Sensitivity, PPV, and F-score of R2D2 predictions with SHAPE-Seq reactivities and RNAstructure-Fold with
and without SHAPE-Seq reactivities on the benchmarking set of equilibrium refolded RNAs, Related to STAR Methods.
R2D2 is a single iteration of R2D2’s sample-and-select method and R2D2-consensus is the structure consisting of base
pairs that occur in at least 50% in 100 iterations of R2D2’s sample-and-select method. Predictions are separated based
on SHAPE-Seq reactivity replicates.



