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ABSTRACT
Vehicle accidents are one of the greatest cause of death and
injury in urban areas for pedestrians, workers, and police
alike. In this work, we present CSafe, a low power audio-
wearable platform that detects, localizes, and provides alerts
about oncoming vehicles to improve construction worker
safety. Construction worker safety is a much more challeng-
ing problem than general urban or pedestrian safety in that
the sound of construction tools can be up to orders of magni-
tude greater than that of vehicles, making vehicle detection
and localization exceptionally di�cult. To overcome these
challenges, we develop a novel sound source separation al-
gorithm, called Probabilistic Template Matching (PTM), as
well as a novel noise �ltering architecture to remove loud
construction noises from our observed signals. We show that
our architecture can improve vehicle detection by up to 12%
over other state-of-art source separation algorithms. We inte-
grate PTM and our noise �ltering architecture into CSafe and
show through a series of real-world experiments that CSafe
can achieve up to an 82% vehicle detection rate and a 6.90�
mean localization error in acoustically noisy construction
site scenarios, which is 16% higher and almost 30� lower
than the state-of-art audio wearable safety works.

CCS CONCEPTS
• Computer systems organization! Sensor networks;
Embedded systems; •Human-centered computing!Ubiq-
uitous and mobile computing.
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Figure 1: (Left) The CSafe embedded platform, con-
sisting of an an array of four microphones integrated
into a feature extraction system introduced in [1]. Two
microphones are shown (the front and right micro-
phones), while the other two are on the back and left
side of the helmet. (Right) Screenshot ofCSafe’s smart-
phone system.
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1 INTRODUCTION
Vehicle-related accidents are one of the largest sources of
construction worker injury. In fact, motor vehicle crashes are
the number one cause of work-related deaths in the United
States [2, 3]. These accidents arise in part because the worker
is distracted by their work. To help reduce the number of
worker-related vehicle accidents, we present CSafe, a low-
cost wearable and smartphone platform, that can be easily
integrated into common wearables such as helmets, hats, and
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headphones. CSafe leverages an array of low-power micro-
phones, signal processing, andmachine learning classi�ers to
detect and localize oncoming vehicles, and alert construction
workers in real-time.

There are two main challenges that make construction
worker safety a di�cult problem. The �rst challenge is that
our wearable is battery-powered, resource-constrained and
needs to run all of our noise �ltering, vehicle detection, and
vehicle localization machine learning classi�ers in real-time.
Speci�cally, our system needs to detect and alert the worker
well in advance of when a vehicle would pass the user to
give them ample time to react.

The second major challenge is that construction sites are
very noisy. The power tools that construction workers will be
operating by the side of the road can be orders of magnitude
greater than the engine and tire sounds of an approaching
vehicle, which will adversely a�ect any acoustic detection
or localization algorithm we may decide to implement.
We take an audio-based approach to detect, localize, and

alert users to oncoming vehicles in real-time and in a resource-
limited wearable. Works that leverage sensors that provide
more rich information about the environment, such as cam-
era or LIDAR, have high computational and battery require-
ments, making it di�cult to create a long-lasting battery-
powered platform. Although audio does not provide as rich
information about the environment as sensors like cameras,
standard microphones provide 360 degree coverage and re-
quire less computation to sample and extract features. As
such, we chose to create a hardware platform consisting
of an array of microphones sampled by a low-power em-
bedded platform. The embedded platform performs feature
extraction and transmits wirelessly to the more powerful
smartphone platform, which runs signal processing and ma-
chine learning algorithms to perform vehicle detection and
localization, and send alerts to the user. Our embedded plat-
form can be easily integrated into common wearables, such
as headphones, helmets, and hats. In this work, we chose to
integrate our hardware platform into a construction worker
helmet, as shown in Figure 1.

To account for loud construction tools that will be present
in a construction site we propose an energy-e�cient sound
�ltering architecture that contains content-based separation
and spatial separation in a feedback con�guration, which
utilizes known or learned models of sounds to iteratively
remove noise and boost target sounds. Our goal is to show
that our novel �ltering architecture can be used in conjunc-
tion with existing vehicle detectors to boost performance in
noisy construction site environments rather than serve as a
complete replacement. We �rst develop a novel noise �lter-
ing algorithm called Probabilistic Template Matching (PTM).
PTM is a low computation source separation algorithm that
leverages statistical "templates" of noises to �lter out these

sounds. Next, we develop a novel noise �ltering architecture
that intelligently leverages PTM and multi-channel �ltering
methods to robustly �lter out construction tool sounds from
the environment. Our novel �ltering architecture di�ers from
existing works in sound source separation in that we intelli-
gently leverage both single-channel source separation and
multi-channel source separation in a feedback architecture
to more robustly remove overpowering construction noise
over time. We show that our novel �ltering architecture can
run in real-time on a low-resource embedded + smartphone
platform and can improve vehicle detection by up to 12%
more than other state-of-art source separation algorithms.

We make the following contributions in this paper:

• We create, CSafe, a low-cost, end-to-end wearable
system to provide real-time alerts of oncoming cars to
construction workers even in environments with tools
that are orders of magnitude louder than approaching
vehicles.We perform real-world experiments and show
an improvement in vehicle detection by 16% and a 30�
reduced localization error over existing systems.

• We develop a novel and light-weight single-channel
source separation algorithm, called Probabilistic Tem-
plate Matching (PTM) that uses learned statistical mod-
els or "templates" of construction tool sounds to �lter
them out.

• We develop an adaptive and selective noise �ltering ar-
chitecture that allows users and applications to select
speci�c types of construction sounds to �lter out. Our
architecture integrates both PTM and multi-channel
source separation methods in an adaptive feedback
architecture to robustly �lter out overpowering con-
struction tool noise over time.

• We show that by applying our novel adaptive �ltering
architecture to vehicle detection, we can improve the
overall vehicle detection accuracy by up to 15%. We
also show that our architecture improves the vehicle
detection rate by up to 12% more than other state-of-
art audio source separation methods.

2 RELATEDWORKS
Pedestrian safety has similar aims as construction worker
safety, in that both attempt to reduce the number of ve-
hicle accidents. However, the technical challenges between
these two problems are very di�erent. In constructionworker
safety, the presence of construction tools, that are many or-
ders of magnitude louder than that of approaching vehicles
poses a challenge that is typically not seen in pedestrian
safety. In these scenarios, the sounds of loud tools e�ectively
mask the sounds of oncoming vehicles.
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Existing works on pedestrian safety can be broadly di-
vided into two categories: communication-based and sensing-
based. Communications based safety systems leverage devel-
opments in vehicle to vehicle, pedestrian, and infrastructure
communication protocols, such as Dedicated Short Range
Communication (DSRC) or even WiFi, to directly communi-
cate the presence of vehicles to nearby people [4, 5]. How-
ever, these protocols are currently not natively supported by
most smartphones, vehicles, and city infrastructure, making
widespread adoption of these methods currently infeasible.

Sensing-based solutions equip users with sensors to de-
tect and alert people of nearby vehicles. Image-based sensors,
such as cameras and LIDAR, are commonly used in many ap-
plications, including vehicular safety. These solutions, lever-
aging machine learning and deep learning, have been shown
capable of detecting nearby objects and predicting nearby ve-
hicle movements [6–8]. However, these solutions both have
high sampling and computational requirements, making it
di�cult to incorporate into a low-power wearable. A sec-
ondary issue is that both LIDAR and cameras provide rich
sensory information, introducing user privacy concerns.
Microphones that passively measure surrounding audio

may not provide as much sensory information as sensors
such as LIDAR or camera, but provide 360 degree coverage
around the user and are low power. It has been shown in
various communities that audio can be used to detect and/or
localize a variety of di�erent sounds [9–11], and has been
used in a wide range of mobile and wearable applications to
address concrete challenges [12–14]. [15] introduces a smart-
phone based system for detecting vehicles that requires the
user to constantly hold out their smartphone, which is im-
practical for workers. [16] introduces a system that out�ts
vehicles with an ultrasound emitter and uses a smartphone
to detect emitted chirp patterns. Requiring all vehicles to be
out�tted with an ultrasound emitter makes widespread adop-
tion of this method di�cult. [1, 17–20] introduce systems
that detect and localize vehicles using smartphone systems
and microphones embedded into wearable systems. How-
ever, these works do not account for situations in which
non-vehicle noise is orders of magnitude greater than that of
approaching vehicles, making them infeasible for ensuring
the safety of construction workers.
There are a variety of commercial products and research

works that address construction worker safety, including
jackets, helmets, and smartphone systems, that monitor fa-
tigue and posture [21, 22] or provide cooling and heating
relief [23]. These methods do not warn workers of oncoming
dangers such as approaching vehicles. There are also works
and products that deploy sensors (e.g. RFID or proximity sen-
sors) on either the construction worker or large equipment.
These sensors can then be used to quickly locate workers in
case accidents occur [24] or can send an alert to the worker

if s/he comes too close to dangerous equipment [25]. These
works require an installation phase in the construction site
and cannot account for passing non-construction vehicles.

3 OVERVIEW OF SOURCE SEPARATION
AND SELECTIVE NOISE FILTERING

It is di�cult to detect and localize vehicles using audio signals
in real-time and on a resource-constrained platform. Our
problem ismade evenmore challenging because construction
workers work in sites that are extremely noisy, with loud
machinery and tools prevalent in the environment.

To clean and remove overpowering construction tool sounds
from the environment, we consider incorporating audio
source separation methods into CSafe. We recognize that
there are decades of work on noise �ltering and source sepa-
ration and that there is no way for us to address all aspects
on the topic. As such, we summarize these works into two
broad groups: spatial separation and content-based sep-
aration, that we will discuss next.

3.1 Spatial Source Separation
Spatial source separation techniques rely on observing mul-
tiple observations of the environment with multiple micro-
phones in placed in di�erent locations. Because these meth-
ods require multiple microphones, these methods are also
called multi-channel source separation methods. Some meth-
ods that fall into this category include beamforming [26–
28], general adaptive �ltering techniques (e.g. least means
squares and weiner �ltering) [29, 30], blind source separation
techniques (e.g. independent component analysis) [31, 32].
With the exception of blind source separation techniques
and adaptive �ltering, spatial source separation techniques
generally require the location of the source to perform sepa-
ration. As such, many of these works assume the location
of the source is known in advance, which is not true in a
dynamic urban environment.
Traditional blind source separation techniques do not re-

quire the location of the source to be known in advance.
However, these techniques generally perform poorly in real-
world scenarios [33].

Adaptive �ltering techniques, such as least means squares,
�lter out noise by observing a second correlated noise sig-
nal. In the context of audio wearables, we would require
a two microphone setup where one microphone observes
the environment for vehicles. In a construction setting, this
microphone would also observe construction tools sounds.
A second "noise" microphone would ideally observe just the
noise of the construction tools, which would be used to clean
the signal from the �rst microphone. However, the position
of the microphones in a practical wearable would be close
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together. If we were to integrate microphones into a hel-
met, then both microphones would observe relatively similar
signals (e.g. the "noise" microphone would also observe the
sound of passing vehicles). The denoising process would
not only reduce the sound of construction tools, but that of
passing vehicles, adversely a�ecting vehicle detection.

In light of these shortcomings for blind source separation
and adaptive �ltering, we decide to incorporate ideas in
beamforming into our �ltering architecture (Section 4.2).

3.2 Content-Based Separation
The second class of source separation algorithms is content-
based separation, which uses learned knowledge and statis-
tical models about speci�c sounds and noises in the environ-
ment to �lter them out. Since these methods require data, but
notmultiple channels of audio, thesemethods are also known
as single-channel source separation methods. Classes of tech-
niques that fall into this category include but are not limited
to dictionary learning (e.g. non-negative matrix factorization
or NMF) and deep neural network methods [34–37].
Many deep learning architectures that perform source

separation requiremillions of weights/parameters and a large
amount of training data. For example, the network presented
in [36] requires almost 2 million parameters to separate out
two sources from a single channel of audio sampled at 16 kHz.
Second, source separation neural networks must be trained
using arti�cial mixtures. This is because neural networks
require the ground truth signal to adapt weights for training;
in our application, the ground truth signal would be the
isolated vehicle sound. However, it is not possible to extract
the isolated vehicle sound in a real-world mixture because
the vehicle sound is corrupted by construction tool noise.
Creating a network with these two requirements will not
produce a robust and low-power solution for �ltering out
construction sounds and improving vehicle detection and
localization.We present experiments to back this in Section 5.

Dictionary learning methods learn a set of bases or a "dic-
tionary" that capture most of the important features of a
sound type. When a new signal arrives another optimization
is performed to discover the coe�cients or weights of each
basis or "word" in the "dictionary" that the observed signal
is comprised of.
We observed while experimenting with dictionary learn-

ing methods, like NMF, that the separation quality can be
very poor because dictionary learning seeks to precisely de-
construct an entire signal into a weighted sum of its learned
"words". However, our learned "dictionary" may not contain
a learned representation of all sounds present. For instance,
if we learn a "dictionary" for construction sounds, and some-
one begins speaking, NMF would attempt to �t construction
sound "words" into speech, which would yield poor results.

Figure 2: CSafe’s full source separation architecture
combining PTM (content-based separation) and spa-
tial separation.

This brings up an assumption made by many content-based
separation works: there is a model available for all the types
of sounds present in our observation. This assumption is not
always true in a dynamic environment, and it is not feasible
to have a model of every possible sound in the environment.
These points motivate a need for a fast content-based separa-
tion algorithm that can separate and �lter out noises for which
we have models for, while leaving all other sources, which we
may not have prior knowledge for, intact.
In light of these shortcomings for content-based meth-

ods, we develop a novel light-weight single-channel source
separation algorithm called Probabilistic Template Matching
(PTM) that leverages learned models of construction sounds
to �lter them out. We integrate PTM into a novel �ltering ar-
chitecture described in Section 4.3 that uses a noise detector
to control the level of �ltering that PTM provides based on
how dominant the construction sound is in the environment.
In this way, our architecture only requires models of the
noise (construction tools) and does not require knowledge
of all other sounds in the environment (e.g. vehicles) as dic-
tionary learning algorithms typically require. The algorithm
is also similar to general adaptive �ltering techniques, as
discussed in Section 3.1, but does not require a second mi-
crophone in close proximity, that would likely observe and
diminish vehicle sounds as well.

4 CSAFE FILTERING ARCHITECTURE
To perform robust urban and construction noise separation,
we propose a novel adaptive �ltering architecture, shown in
Figure 2, that leverages both content-based separation and
spatial source separation techniques. Our architecture incor-
porates both a noise detection module and a multi-source
localization module required for both content-based and
spatial separation and uses a feedback loop to adaptively
learn better �lter coe�cients over time. We also propose a
novel and light-weight content-based separation technique
called Probabilistic Template Matching (PTM) that allows
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users and applications to tune the amount of noise suppres-
sion that CSafe provides. Our full architecture allows users
to inject their own recordings of nearby tool sounds for
more robust noise �ltering. In the following subsections, we
�rst introduce our novel content-based separation algorithm,
Probabilistic Template Matching. Next, we introduce howwe
integrate our novel content-based separation algorithm with
our spatial separation module to create an adaptive �ltering
architecture that intelligently leverages both multi-channel
and single-channel separation techniques to more robustly
�lter out construction sounds and improve vehicle detection
and localization. All �gures of waveforms, mixtures, and
quantitative analysis presented throughout this paper were
generated with real-world recordings of mixtures over the
air rather than digitally mixing sources, which is commonly
performed in many works that propose source separation
algorithms. This is to ensure that our examples and methods
are representative of real-world scenarios.

4.1 Content-Based Separation:
Probabilistic Template Matching

We propose Probabilistic Template Matching (PTM) a light-
weight content-based source separation algorithm to �lter
out construction noises, while reducing the amount of sup-
pression of other interesting sounds, such as vehicles, in
the environment. The algorithm uses "templates" of di�er-
ent noises commonly found in urban environments to sta-
tistically extract and �lter them out. PTM does not require
knowledge of every source in the environment to perform noise
�ltering, unlike in traditional dictionary-learning methods.

4.1.1 Probabilistic Template Matching. The main idea be-
hind Probabilistic Template Matching (PTM) is to generate
a �lter, or a set of coe�cients U8 (=) given a window of au-
dio, where

�!
- (=) = [|G (l1,=) |, |G (l2,=) |, ..., |G (l⌫,=) |]) is

the magnitude of the time-frequency representation of time
window =, such that the probability of the �ltered window
�!
/ ⇤ (=) being an instance of a noise of class 20 is minimized.
The de�nitions of our inputs (

�!
- (=)) and outputs (�!/ ⇤ (=) and

U8 (=)) are summarized next.

�!
- (=) = [|G (l1,=) |, |G (l2,=) |, ..., |G (l⌫,=) |])

⇤= = 3806 (U1 (=), ...,U⌫ (=))

�!
/ ⇤ (=) = ⇤=

�!
- (=)

⌫ refers to the number of frequency bins in our time-
frequency signal representation. The 3806 operator creates a
diagonal matrix of size ⌫ x ⌫, where the o�-diagonal entries

are all zero and the diagonal entries are �lled with the �lter
coe�cients, U1 (=), ...,U⌫ (=).
We �rst make the assumption that the loud noise that

we wish to �lter out, 20, can be described by a "template"
represented by a Gaussian distribution:

20 ⇠ #
⇣�!̀

20 , ⌃20

⌘
From this assumption, an observed signal containing noise

20 at timestep = is generated by drawing a ⌫ dimensional
vector from #

⇣�!̀
20 , ⌃20

⌘
. This vector is the time-frequency

representation of the noise 20 at timestep =, where each
dimension corresponds to a di�erent frequency component
of the noise. The noise corrupted signal,

�!
- (=) would then

be generated by adding in the other unknown signals (e.g.
vehicle) from the environment. If 20 has high energy over
most other sounds in the environment, then the probability
that our observed signal

�!
- (=) is an instance of noise class

20, %
⇣�!
/ ⇤ (=) |20

⌘
, will be very high. Our goal is to generate

�lter coe�cients U8 (=) that will reduce this probability.
However, if we minimize this probability without any

constraints, all coe�cients will tend to 0, cancelling out all
sounds in the environment. To avoid this we introduce a
novel constraint, yielding the following optimization prob-
lem shown in Equation 1.

argmin
U1,...,U⌫

%
⇣�!
/ ⇤ (=) |20

⌘
(1)

B .C .⇡
⇣�!
/ ⇤ (=) | |

�!
- (=)

⌘
< V

⇡
⇣�!
/ ⇤ (=) | |

�!
- (=)

⌘
=

⌫’
8=1

 �!
/ ⇤ (=)8
�!
- (=)8

� log

�!
/ ⇤ (=)8
�!
- (=)8

� 1

!
(2)

The idea is still to minimize %
⇣�!
/ ⇤ (=) |20

⌘
as much as pos-

sible, removing out as much of noise 20 from our observation.
The divergence constraint ⇡

⇣�!
/ ⇤ (=) | |

�!
- (=)

⌘
is in place to

keep the amount of change between the �ltered signal and
the raw signal within a threshold V so that the �lter coe�-
cients do not completely remove all sounds from the envi-
ronment. We use a static divergence constraint rather than
another probabilistic constraint because we cannot assume
that we have models of every possible sound in the environ-
ment. Making the assumption of knowing every sound in
the environment is not feasible as there is an in�nite num-
ber of potential sounds that could occur in the environment.
Additionally, we chose to use the Itakura-Saito divergence
metric, because of its equal weight on frequency bins with
low and high energy, which is favorable for audio processing
applications [38].
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Optimizing over this loss function using Lagrange multi-
pliers yields Equation 3.

! = log
⇣
%

⇣�!
/ ⇤ (=) |20

⌘⌘
+ _⇡

⇣�!
/ ⇤ (=) | |

�!
- (=)

⌘
(3)

Finally, we arrive at the gradient update for each time
window by taking the partial derivatives of our loss function
! with respect to our �lter coe�cients U8 (=) and substituting
it into the gradient update shown in Equation 4.

U8 (= + 1) = U8 (=) � A
m!

mU8 (=)
(4)

One subtle point to note is that the learning rate A and the
_ weight term are application tunable parameters that can
be used to increase or decrease noise suppression. Higher
levels of suppression will remove more noise, but will also
leave a higher chance of removing out non-noise sounds
from the environment. Conversely a lower suppression level
will remove less noise, but will also remove less non-noise
sounds from the environment. Through experimentation, we
found values of _ = 14 �5 and A = 1 to consistently yield the
best separation results and highest improvement in vehicle
detection rate. We use these values in our evaluation and
experiments in Sections 5 and 8.
A visualization of the concept behind PTM is shown in

Figure 3. In each of these four plots, we simplify our sig-
nal and models to one dimension (⌫ = 1) for visualization
purposes only. A probability distribution is shown in each
of the four plots, corresponding to the Gaussian "template"
probability distribution. Figure 3a shows a template in which
we have high con�dence in. This corresponds to a template
with low covariance or variance. Since we are very con�dent
in our model, PTM estimates and extracts out a noise value
that is very close to the "template" mean. Figure 3b shows
a template with low con�dence. This means that for this
dimension, we have observed values that �uctuate greatly,
thus yielding a "template" with high variance. As such, PTM
is more conservative and �lters out less of the signal.

Figure 4 shows examples of a clean passing vehicle, a jack-
hammer, and the two sounds mixed over the air and recorded
in a real-world setting. Sounds generated from moving vehi-
cles are primarily from their engines as well as the friction of
tires on the ground. As such, throughout this work, we pri-
marily focus on detecting and localizing these sounds from
an approaching vehicle. As a comparison to neural network
methods, we cleaned the mixed signal using a state-of-art
neural network based source separation algorithm (MM-
DenseLSTM [36]). We trained the MMDenseLSTM network
using arti�cial mixtures of vehicle and construction sounds
as described in Section 5, since it is not possible to train
source separation neural networks using mixtures recorded
in the real world.

(a) (b)

Figure 3: a) Plot demonstrating the extraction process
of PTMwith a highly con�dent "template".We see that
if we are more con�dent in the frequency component
of our sound source (lower variance), PTMwill extract
coe�cients or generated "predicted values" closer to
the mean of the model template. b) However, if the
model of the frequency component has higher vari-
ance (e.g. we are less con�dent in value of the fre-
quency component), PTM will extract coe�cients fur-
ther away from the mean of the template.

(a) Vehicle. (b) Jackhammer. (c) Vehicle and
Jackhammer.

(d) Neural network [36]. (e) PTM.

Figure 4: Examples of �ltering results of a vehicle
soundmixed over-the-air in the real worldwith a jack-
hammer sound. We played the vehicle sound (4a) and
jackhammer sound (4b) through two di�erent speak-
ers and recorded the mixture with a 4-channel uni-
form circularmicrophone array to generate themixed
waveform (4c). We see from visually inspecting the �l-
tered waveforms that the MMDenseLSTM neural net-
work approach (4d) was not able to remove asmuch of
the jackhammer noise as PTM. (4e).

We show the �ltered results in Figures 4d and 4e. Through
visual inspection, we can see that PTM is able to recover
more of the characteristics of the clean vehicle sound than
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the tested neural network method. A large part of the neural
network’s poor real-world performance is because it is not
possible to use real mixtures to train a neural network for
source separation. Using arti�cial mixtures may not capture
all of the intricacies of themixing process over the air in a real
environment. One of PTM’s strengths over neural network-
based approaches is that it only requires models and data
from a single sound source (e.g. the construction sound) and
does not require sound mixtures (e.g. vehicle + construction
sound) and the isolated cleaned signal (e.g. vehicle) that
would require us to use arti�cial mixtures during training.
Since CSafe is a construction worker safety platform, PTM
and CSafe’s overall �ltering architecture will only bene�t
the system if it can improve vehicle detection. We present
results that support this in Section 5.

Although we represent distributions of our frequency do-
main noise "templates" as Gaussians, we show in Section 5
that our adaptive noise �ltering architecture, that utilizes
PTM, can still improve vehicle detection more than state-of-
art source separation methods.
As a �nal note, we made the assumption that the "tem-

plate" of our noise 20 was available. This implies a need for a
noise detector that can detect the presence of the noise and
can provide a correct "template" that PTM can use to �lter
out noise. We describe and address both of these points next.

4.1.2 Noise Detection and Template Learning. One common
assumption in many content-based separation works is that
the sound they are trying to separate is present in the au-
dio stream. This assumption is not always true in real and
dymamic scenarios. Hence, a noise detector is required to
determine whether to perform noise separation or not. The
second concern is how to learn and obtain "templates" of
noise to use for �ltering, as described in Section 4.1.1. We
incorporate a noise detector to solve both the requirement of
detecting the presence of noise in the environment and as a
method for learning and providing templates required for PTM.

In general, sound event detectors operate as follows:

% (- 2 2) > V

- is the input representation of the signal (e.g. frequency
spectrum), and 2 is the class of sound we are interested in
detecting. If the probability that our input observation is an
example of a noise of class 2 is greater than some threshold
V , then we would detect sound 2 in this window.
We create our noise detector in a similar fashion and

choose to use a Gaussian mixture model (GMM) to model
this probability distribution for each class of noise. GMMs
model a probability distribution using a linear combination
of Gaussian distributions to model sub-populations within
the data. Each Gaussian can be described with a mean and
a covariance matrix. The mean value is the most probable

value that our features will take on if our signal is indeed
a sound of the speci�c class we are trying to detect; this is
another way of saying that the mean values of the Gauss-
ian distributions that make our GMM noise detector can be
used as templates for PTM. The covariance is a measure of
uncertainty in our template and will also be used in PTM as
described in Section 4.1.1. In this way, we not only create a
noise detector, necessary for intelligently applying content-
based source separation, we can also leverage the way GMMs
model data to provide and learn templates required for our
content-based separation algorithm, PTM.

4.1.3 Generalizability. Sound source separation, like many
problems that have been addressed with machine learning
and deep learning, su�ers immensely from lack of general-
izability. When we refer to generalizability, we refer to the
ability of our models and algorithms to separate out and
deal with unseen examples of our target noise. We are not
referring to the ability of our architecture to denoise all dif-
ferent types of sounds. We concern ourselves only with loud
construction sounds, as these are the sounds in environment
that are most likely to overpower the sound of the engines
and tires of passing vehicles. Other urban noises such as pass-
ing animals or the sounds of walking are generally lower in
volume and will not be as consistently present; a well-trained
vehicle detector can more easily account for these scenarios
than situations where, for example, a worker is continuously
operating a loud jackhammer.

In CSafe, we provide pretrained models of common power
tool sounds in construction sites. However, we realize that
such models could not possibly account for every single type
of tool. As such, we allow users the option to record sounds
in the environment of their work, allowing CSafe to build
template and noise detection models on the spot that are
tailored to the current work environment.

4.2 Spatial Separation: A Filter Bank
Approach

Most spatial source separation methods require the location
of the sound source in advance. Since there could be multiple
sources in the environment that we may need to identify
(e.g. vehicles) or �lter out (e.g. loud construction sounds),
we �rst need to identify and localize these sources before
performing spatial separation.

4.2.1 Multiple Source Localization. A common method to
perform localization is to estimate the relative delay of a
sound source arriving between multiple microphones in
an array and use these estimates to triangulate and esti-
mate the direction of arrival. A power-based metric, such
as cross-correlation, is commonly used to accomplish this.
First, the cross-correlation is computed between di�erent
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microphones at di�erent time shifts. The shift with the high-
est cross-correlation is estimated as the relative delay. These
relative delays between microphones can then be passed into
a machine learning classi�er or directly used to triangulate
the direction of the source. This architecture was used in a
similar audio safety platform [1]. The biggest drawback in
using a power-based metric and selecting the greatest peak
is that it will tend to localize the loudest sound source. In
construction sites, this is often the tool that the worker is
operating, not the approaching vehicle. As such, it is neces-
sary to consider methods that can estimate the location of
multiple sources in the environment.
There are numerous works that introduce methods to

perform multiple source acoustic localization, including MU-
SIC/ESPRIT and their variants [39, 40]. They all work by gen-
erating and analyzing a probability distribution of sources
present at each direction of interest. This probability distribu-
tion is generated by comparing the phase di�erence between
microphones in an array to the expected phase di�erence
given the locations of each microphone in an array and a
sound source coming from a speci�c direction. Once this
probability distribution across all directions is generated,
then a peak detection algorithm is employed to detect sig-
ni�cant peaks and sources. The exact details and algorithms
employed at each step varies from method to method.

We adopt the algorithm presented in [26] to perform mul-
tiple source localization due to a simpli�cation that reduces
the computational complexity of generating the probability
distribution of the presence of sources across di�erent direc-
tions. Algorithms like MUSIC and ESPRIT generate proba-
bility distributions by taking a subspace approach, by �rst
dividing the energy found in a single frequency, 5 , to di�er-
ent directions based on the probability of a source appearing
at each direction. This is repeated and aggregated for every
frequency of interest. Generating a probability distribution
across every frequency signi�cantly increases computation,
making it di�cult to use such algorithms for real-time ap-
plications. The algorithm presented in [26] makes a simpli�-
cation by assigning all the energy of a speci�c frequency to
just a single direction, which reduces computation.

Localization algorithms generally do not consider the con-
tent or the class of sounds we are localizing. This means
that as long as a single sound is loud enough, our source
localization module can detect and localize this source. After
our �ltering architecture reduces the energy of construction
tool sounds, we expect to observe greater energy from ve-
hicle sounds, which would be detected and localized. This
means that our source localization module that we incorporate
to localize noise sources in the environment will also double as
our vehicle localization module.

(a)

(b)

Figure 5: a) (Left) A wider and less directional �lter.
(Right) More energy of the original signal is preserved.
b) (Left) A more directional �lter. (Right) More energy
from other directions are �ltered out at the cost of
greater signal distortion. The signal shown in both sce-
narioswere recordedwith a fourmicrophone uniform
circular array by playing a vehicle and jackhammer
sound with separate speakers on repeat. The �ltered
signals (right plots) were generated by applying �lters
(left plots) to diminish the construction tool sound.

4.2.2 Filter Bank Spatial Separation. Spatial separationmeth-
ods such as the DUET algorithm and beamforming create �l-
ters to apply tomicrophone channels that diminish frequency
components that are not in phase with a signal coming from
the direction of the sound source [41]. Adaptive beamform-
ing methods achieve this by continuously updating the �lter
based on a cost function that captures and improves certain
quality measures of the received signal (e.g. SNR) [27]. To
reduce computational requirements over an adaptive approach
and allow for application and user tunability, we take a static
approach, where we pre-generate a �lter bank that we apply
onto channels based on how close each frequency component
aligns in phase with a signal coming from the direction of the
sound source. Figure 5 demonstrates our proposed approach.
For every direction 3 , we generate a con�ned Gaussian

window centered around direction 3 , with variance f2. This
variance term can be used to tune the amount of suppres-
sion of other directions provided by the �lter. We apply this
�lter by scaling the energy of each frequency in the spec-
trum by the �lter coe�cient corresponding to the direction
assigned to that frequency. The direction assigned to each
frequency is generated while performing source localization,
as described in Section 4.2.1. Figure 5a shows an example of
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a �lter with a higher variance and wider beamwidth, which
suppresses out less energy from frequencies that do not align
with the direction. While a �lter with a more narrow beam
and lower variance, shown in Figure 5b suppresses more
energy from other directions, but may also remove more
energy corresponding to other sounds in the environment
(e.g. vehicles).

For all experiments and in the CSafe wearable platform
presented throughout this paper, we choose to scan across
3 = 24 directions divided evenly across 360�, yielding a 15�
granularity. We select this parameter because it provides
enough localization granularity for vehicle localization and
noise separation while remaining low-cost enough to main-
tain real-time performance.

4.3 Full Filtering Architecture
In this section, we bring together all the di�erent components
proposed and introduced up until now to form CSafe’s adap-
tive �ltering architecture for robustly �ltering out common
urban construction noises from the environment. Figure 2
shows the full noise �ltering architecture of CSafe. First, we
sample a window of audio from our microphone array and
compute each channel’s FFT. Next, the content-based separa-
tion �lters learned from our adaptive PTM algorithm during
the feedback loop is then applied to clean up the audio chan-
nels. The individual channels are then provided as input to
the source localization algorithm to obtain source locations.
The source locations and cleaned microphone signals are
then provided as input to the spatial separation module. The
spatial separation module separates the individual sources in
the environment. Each separated source is then passed to the
noise detector to determine which sources are noise. Then,
the noise sources are passed into the PTMmodule, where our
content-based separation �lters are adapted and applied to
remove all detected noise in the environment, completing the
loop. Sources that are not detected as noise are then fed into
a vehicle detector to determine if there is a vehicle present.
We use a 50 tree random forest as our vehicle detector, just
like the vehicle detector used in the state-of-art audio safety
platform presented here [1].

5 CSAFE FILTERING ARCHITECTURE
REAL-WORLD EVALUATION

In this section, we compare the improvements in vehicle
detection provided by CSafe’s construction noise �ltering
architecture, introduced in Section 4, with existing noise
�ltering algorithms and a state-of-art source separation neu-
ral network. Throughout this section, all of our �gures and
quantitative analysis is performed on recordings of sounds in
the real-world, not arti�cially mixed signals as is commonly

Figure 6: Experiment setup at a construction site.

done in many works presenting sound source separation
methods. We also utilize two datasets for evaluation:

• Training dataset: Consists of 175 audio clips of com-
mon construction sounds divided into jackhammer,
drilling, hammering, sanding, sawing, and vacuuming.
Each clip is 10 seconds long, yielding 30 minutes of
construction noise recordings. We also added an ad-
ditional 5 minutes of audio clips containing vehicles
passing by for a total of 35 minutes of audio. All clips
were extracted from labeled YouTube clips found in
the Google Audioset dataset [42].

• Construction site dataset: To generate this dataset we
created a four microphone uniform circular array with
a diameter of 15 cm, which is around the average width
of a human head [43], and took audio recordings from
a real construction site. Our experimental setup and
construction site is shown in Figure 6. We recorded
a total of 40 minutes of audio, during which 76 vehi-
cles passed by. The noises prevalent in this site were
jackhammering, drilling, and vacuuming sounds.

To show the improvements in vehicle detection that PTM
andCSafe’s noise �ltering architecture can provide, we present
comparisonswith 3 other algorithms: the linearly constrained
minimum variance (LCMV) beamformer [27], hierarchical
alternating least squares nonnegative matrix factorization
(HALS NMF) [44], and the state-of-art source separation neu-
ral network MMDenseLSTM [36]. These algorithms were
chosen as representative algorithms of a content-based sepa-
ration algorithm (HALS NMF), a spatial separation algorithm
(beamforming), and a neural network based algorithm (MM-
DenseLSTM). There is a training phase required for all of the
algorithms except for the adaptive beamforming algorithm.

We trained the MMDenseLSTM network using arti�cially
mixed construction and vehicle sounds generated from the
training dataset for 12, 000 epochs using a batch size of 1
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Table 1: Confusion matrix metrics of vehicle detec-
tors under di�erent �ltering schemes in a construc-
tion site environment.

True Pos. True Neg. False Pos. False Neg. Vehicles Detected
CSafe 95% 94% 6% 5% 20/20
CSafe - Generic 89% 96% 4% 11% 20/20
CSafe - Spatial 85% 94% 6% 15% 17/20
MMDenseLSTM [36] 84% 92% 8% 16% 17/20
NMF HALS [44] 83% 94% 6% 17% 16/20
LCMV Adaptive BF [27] 84% 95% 5% 16% 17/20
Non�ltered 80% 92% 8% 20% 16/20

clip. It is not possible to use real mixtures to train a neural
network for source separation because neural networks re-
quire the exact ground truth signal to adapt weights during
training. The ground truth signal in this case would be the
isolated vehicle sound during the period where both sounds
are occurring. However, if the sounds are both occurring
at the same time, then the isolated signals of both sounds
would not be available.

We trained the HALS NMF algorithm using the training
dataset to learn a 50 bases dictionary of "words" to separate
vehicle and construction sounds.

To gain better insight into CSafe, we evaluated threemodes
of operation. First, we evaluated CSafe using only the spatial
separation module; we denote this as CSafe - spatial. Next,
we add in the content-based separation module to see how
adding this next module could improve vehicle detection.
There are two modes of operation for this module, as men-
tioned in Section 4.1.3. In the �rst mode, the user does not
record noises from the environment for separation and uses
an existing noise detector; we denote this mode as CSafe -
generic. To train this construction noise detection and sep-
aration model, we use the construction sounds from the
training dataset and create a 20 mixture GMM. The second
mode of operation is where the worker records a segment
of the loud tool s/he will be operating to use for detection
and separation; we denote this as the default CSafe mode.
To train the noise detector and source separation model for
this mode, we take a small 10 second segment where only
the tool sound is present from clips in the construction site
dataset to create a 5 mixture GMM. Since there were three
periods of di�erent tools (jackhammer, vacuum, drill), we
train three models for these individual sounds and apply the
corresponding model (e.g. if a jackhammer is in use, we use
the the jackhammer model learned from the environment).

Finally, to train and evaluate the vehicle detector, we used
the construction site dataset with an 80%/20% train/test split.
56 out of the 76 recorded segments where vehicles were
present were used for training and 20 segments were used
for testing. All clips were divided and processed into 250ms
windows with 50% overlap.

Table 1 shows the confusion matrix metrics for the vehi-
cle detector under the di�erent source separation and noise

Table 2: True positive (recall) for vehicle detection bro-
ken down by SNR and tool type of the environment.

Drill (1.6 dB) Vacuum (-5.5 dB) Jackhammer (-8.6 dB)
CSafe 99% 96% 93%
CSafe - Generic 95% 93% 87%
CSafe - Spatial 91% 87% 83%
MMDenseLSTM [36] 72% 90% 84%
NMF HALS [44] 83% 92% 83%
LCMV Adaptive BF [27] 87% 84% 81%
Non�ltered 83% 82% 76%

�ltering schemes. The confusion matrix metrics measure the
portion of 250ms windows that fall into each category. For
instance, a 94% true negative rate means that the detector
was able to correctly reject the presence of vehicles in 94%
of windows where a vehicle was not actually present. The
table also records the number of vehicles (out of the 20 pass-
ing vehicles used for testing) that the detector successfully
detected. First, we see that the true negative and false pos-
itive rates of all the methods are relatively similar (> 90%
and < 10%) respectively. This means that the detector is able
to correctly identify periods where no vehicles are present
very well (true negative) and does not mistakenly detect a
vehicle when no vehicles are present (false positive). The
di�erences are pronounced when we look at the true positive
rates. The true positive rate is the percentage of windows
where a vehicle is present in the environment and the vehicle
detector is able to detect that vehicle. We see that when there
is no �ltering involved, the detector was only able to detect
a vehicle in 80% of windows where a vehicle was actually
present. We see that the LCMV beamformer, HALS NMF al-
gorithm, and the MMDenseLSTM neural network were able
to improve the detection rate to around 84%. CSafe - spatial
also achieves a similar performance. This is because CSafe
- spatial is using only the spatial separation module, which
performs separation using similar concepts as beamforming.
However, when we add in CSafe’s content-based separation
module, we see noticeable improvements in the true positive
detection rate. Using a pretrained model of construction tool
sounds (CSafe - generic) improved the the true detection
rate to 89%. Further, if the worker decides to record the tool
he is using to use for construction tool �ltering (CSafe), the
true positive rate improves even further to 95%. This is a
15% improvement over just using a vehicle detector with
no �ltering. Since more windows where vehicles are present
are correctly identi�ed, CSafe also improves the number of
vehicles detected as shown in the same table.

Table 2 further breaks down the true positive detection
rate by the signal-to-noise ratio (SNR) of vehicles to the
construction tool sounds. There were three prevalent con-
struction noises in the environment: jackhammering (-8.6dB),
vacuuming (-5.5dB), and drilling (1.6dB). Only one construc-
tion tool noise was present at any given moment. Though
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(a) (b)

Figure 7: The two plots show a recording of an ap-
proaching vehicle in presence of a power tool sound
when: a) No noise �ltering is applied, and b) CSafe’s
noise �ltering architecture is applied. The green seg-
ments highlight the ground truth for when a vehicle
is present and the red arrows highlight the segments
where the vehicle detector detects the presence of a ve-
hicle. We see in this example, that the vehicle detector
can detect the presence of vehicles earlier in each seg-
ment after applying our noise �ltering architecture.

a bigger construction site may see many more tools being
used at once, the microphones in the CSafe wearable plat-
form will often observe only a single strong tool, which is
the tool that the worker is currently operating or is closest
to. As such, �ltering out just this single tool can still account
for many scenarios in construction worker safety. We obtain
estimates of the SNR of these environments by taking the
ratio between the average power of passing vehicles when
no construction sounds were present with the average power
of the construction tools when no vehicles were present.

In Table 2, CSafe followed by CSafe - generic attained the
highest true positive detection rate across all SNRs, even
when the power of the construction tool (jackhammer: -
8.6dB) is almost an order of magnitude higher. An interest-
ing point is that both HALS NMF and the MMDenseLSTM
network see a decrease in performance between when the
SNR improves from -5.5dB to 1.6dB. This is because at 1.6dB,
vehicle sounds overpower construction sounds. Blindly ap-
plying a content-based �ltering techniquewill result in signal
degradation and distortion if the construction noise is low
or not present at all. The CSafe noise �ltering architecture
does not su�er from this problem because it includes a con-
struction noise detector that adaptively tunes the amount of
construction tool sound to �lter out.
Another subtle improvement that our noise �ltering ar-

chitecture provides is a reduction in detection latency. We
illustrate this in Figure 7. The signals presented in this �gure
is that of a vehicle sound being played on repeat andmixed in
the real-world with a sound of a power tool. Figure 7a shows
the raw recorded signal, while Figure 7b shows the signal
after applying our novel �ltering architecture. First, we note

Figure 8: Average latency of vehicle detection of our
vehicle detector without applying noise �ltering and
after introducing noise �ltering. We see that CSafe’s
noise �ltering architecture is able to reduce detection
latency from 42.5ms, without any �ltering, down to
16ms, which is a greater reduction than any of the
other methods tested.

that the peaks corresponding to the passing of the vehicle
is much more noticeable in Figure 7b now that the majority
of the construction sounds have been �ltered out. Next, we
placed each clip through our random forest vehicle detector.
The segments highlighted in green are segments where the
vehicle is audibly present. Segments highlighted in red show
the time frames where our vehicle detector detected the pres-
ence of the vehicle. We can see that after applying our noise
�ltering architecture, we can detect a greater portion of the
time frame that the vehicle is present. Additionally, we see
that without applying our noise �ltering architecture, the de-
tector is only detecting the vehicle at its loudest point when
the vehicle is passing by. Detecting a vehicle and alerting
the user at this point is already too late because we need
to give the user enough time to react. After applying our
noise �ltering algorithm, we see that the vehicle is detected
much earlier before the peak when the vehicle is passing
the user, giving the user much more time to react. In this
example, the detector was able to detect the vehicle 90ms
after the vehicle comes into audible range without applying
any �ltering, while the detector was able to detect the vehi-
cle in 15ms when our noise �ltering architecture is applied.
This is critical in our worker safety platform, where every
millisecond of reduced latency allows that much more time
for the user to react to oncoming dangers.
To further quantify this improvement in latency, we re-

peated the steps described above for Figure 7 for every sam-
ple in our noisy dataset and plot the mean and variance in
detection latency for each tested method in Figure 8. Without
any �ltering, our vehicle detector was able to detect vehicles
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Figure 9: CSafe’s full systemarchitecture spanning the
embedded and smartphone sub-platforms.

with an average of 42.5ms after the vehicle comes into audi-
ble range. Each separation method was able to decrease this
lag, but CSafe - generic was able to bring the average delay
down to 22.5ms. CSafe’s non-generic mode was able to bring
this delay even further down to 16.4ms, which is lower than
any other method, allowing users that much more time to
react after receiving an alert. We note that these latencies
were generated using computer implementations of each
algorithm while we experimented with di�erent source sep-
aration algorithms to use in the �nal CSafe wearable system.
A latency analysis of the full CSafe wearable platform is
presented in Section 7.2.

6 CSAFE PLATFORM
In this section we introduce the CSafe wearable and smart-
phone platform. We also discuss our data�ow for the entire
system spanning noise �ltering, vehicle detection, and vehi-
cle localization.

6.1 System Architecture
Figure 9 shows the full system architecture of CSafe spanning
the embedded hardware platform and smartphone system.
The hardware platform houses and samples from the mi-
crophone array. The FFT of each window sampled is then
computed and these features are sent to the smartphone plat-
form via Bluetooth Low-Energy (BLE), a low-power wireless
transmission protocol. The features from the microphone
array are then passed onto our novel adaptive noise �lter-
ing architecture (Section 4.3) that �lters and removes urban
and construction noise sounds from our signals. The outputs
from this module are the �ltered non-construction sound
sources currently present as well as their current location
with respect to the user. These sources are then passed to
our vehicle detector to determine if any of the sources are
vehicles. We use a 50 tree random forest detector, just like
the vehicle detector employed by this [1] audio safety plat-
form for pedestrian safety. Finally, an alert containing the
direction of vehicles nearby is sent to the user if any of the
sources are detected to be vehicles.

6.2 Embedded Hardware Platform
The CSafe embedded hardware platform was shown in Fig-
ure 1. We integrated the same embedded circuit consisting
of a Cortex-M4 microcontroller and BLE module, presented
in this work on pedestrian safety [1], into CSafe along with
an array of four low-power MEMS microphones. These com-
ponents are integrated onto a construction helmet, with the
total cost of the major electrical components coming out to
less than 20USD. We note that though the embedded circuit
is the same, almost every other aspect, from the architecture
and algorithms is novel because of the unique challenges
present in construction worker safety.

The embedded hardware platform samples from the four
microphone channels and computes the FFT for windows of
250mswith 50% overlap for each channel. These features are
then transmitted to the smartphone over BLE. This provides
enough granularity for CSafe to reliably detect vehicles with
low latency while satisfying BLE’s bandwidth limitations.
For this work, we embed our hardware platform into a

helmet commonly worn by construction workers, but note
that our platform can be easily incorporated into many other
kinds of wearables, such as hats and headphones, for various
kinds of users.

6.3 Smartphone Platform
Once the smartphone platform receives the frequency spec-
tra of the microphone array, the smartphone executes our
novel adaptive noise �ltering architecture, introduced in Sec-
tion 4.3. The output to the noise �ltering architecture is the
separated sound sources and corresponding locations. The
outputs from the noise �ltering architecture are then passed
onto the vehicle detector. If any of the separated sources
are detected as vehicles, a visual alert is sent to the user
through the smartphone system indicating the direction and
distance of the vehicle from the user. Since construction
workers are often busy working and may not be able to look
at their phones, we also send an audio alert to the user’s
headset/audio-enabled ear protection and provide haptic
feedback through the smartphone system.
We decided to leverage the smartphone platform to exe-

cute most of the algorithms found on CSafe, as shown by
the uneven partition of computation between the embedded
hardware platform and the smartphone system in Figure 9.
This is because there is a low amount of computational re-
sources available on our Cortex-M4 based hardware platform
when compared to much stronger processors available on
modern-day smartphones. Additionally, we allow users to
record audio clips of urban and construction noise in the im-
mediate environment to generate models that are tailored to
the current environment, allowing our architecture to more
robustly �lter construction tool sounds.
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Figure 10: Breakdown of latency of each component
of CSafe. CSafe completes one cycle of data sampling
and computation in 236ms, which is on par with the
reaction time of an average person.

7 SYSTEM EVALUATION
7.1 Power Consumption
CSafe’s embedded hardware platform sees a 69 mA current
draw o� of a 3.3V power source. This allows CSafe to run
for 14.5 hours o� of two standard AAA batteries, connected
in series, each with a 1000 mAh capacity, before recharging.
This duration is more than enough for frequent daily use.

7.2 Latency
We measured the execution time of every component in our
data pipeline, as shown in Figure 10. CSafe �rst samples
250ms windows of audio from its microphone array with
50% overlap. This means that CSafe calculates and transmits
features every 125ms. The feature computation and wireless
transmission to the phone takes 100ms and 3ms to execute,
respectively. The CSafe smartphone system executes its en-
tire pipeline, including the noise �ltering pipeline, vehicle
localization + detection, and sending user alerts in less than
8ms. This yields a full end-to-end latency, from when CSafe
begins sampling a window to when CSafe is able to send ve-
hicle presence and location alerts to the user, of 236ms. This
is on par with the average human reaction time, allowing
users enough time to react to oncoming vehicles.

8 CSAFE PLATFORM REAL-WORLD
EVALUATION

In this section, we evaluate CSafe through a series of real-
world experiments. We evaluated two aspects of CSafe: vehi-
cle detection accuracy and localization accuracy. We evalu-
ated CSafe in the same environment shown in Figure 6. To
obtain the ground truth vehicle presence and location, we
record all scenarios with an additional video recorder and
sync the recorded video and audio with output logs from

Table 3: Confusion matrix metrics comparing both
modes of CSafe with a state-of-art pedestrian safety
system [1]

True Pos. True Neg. False Pos. False Neg. Vehicles Detected
CSafe 82% 96% 4% 18% 29/30
CSafe - Generic 78% 99% 1% 22% 30/30
PAWS [1] 66% 99% 1% 34% 21/30

CSafe. In all experiments we compare CSafe with the state-of-
art PAWS [1] audio safety platform, developed for pedestrian
safety. In the following experiments, we analyzed 30 vehicles
that passed by for the PAWS system. We also analyzed 30
vehicles each for CSafe and CSafe - generic.

8.1 Vehicle Detection
Both CSafe and CSafe - generic detected a high percentage
of vehicles (29 out of 30 and 30 out of 30, respectively). The
PAWS system was only able to detect 21 out of 30 vehicles.
Table 3 compares the confusion matrix metrics for vehicle de-
tection of CSafe and PAWS. The confusion matrix metrics list
the percentage of audio frames, rather than vehicle counts,
that were categorized as a true positive, true negative, false
positive, and false negative.

We see that for CSafe, both true positive and true negative
rates are very high (CSafe - generic: 78% and 99%; CSafe:
82% and 96% respectively), while PAWS has a much lower
true positive rate (66%) because of the presence of the loud
construction tools obfuscating the sound of the oncoming
vehicles. CSafe improves the true positive vehicle detection
rate over PAWS by 16%.

The usability of the system is greatly a�ected by the false
positive rate, which is the percentage of windows where a
vehicle is not present, but the detector incorrectly detects
a vehicle. If the false positive rate is too high, a user may
become annoyed and less likely to heed the alerts of the
system later on. We see that the false positive rates of both
PAWS and CSafe are relatively low.

Finally, the false negative rate should be very low to avoid
missing too many vehicles, which could be life threatening.
We see that due to the added overpowering noise of con-
struction tools and its lack of a mechanism to deal with this
unexpected noise, PAWS’s false negative rate is very high,
at 34%. Because of their noise �ltering mechanisms to �lter
out the loud construction sounds in the environment, both
modes of operation for CSafe achieve a much lower false
negative rate of around 20% or lower.

Overall, the high true positive rate and low false negative
detection rates contribute signi�cantly to CSafe’s improved
performance over PAWS as an audio safety platform suitable
for construction worker safety and other scenarios beyond
pedestrian safety.
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Table 4: Localization error comparison between CSafe
and a state-of-art pedestrian safety system, PAWS [1]

Avg. Error (degree) Std. Dev. Error (degree)
CSafe 6.90� 5.70�
CSafe - Generic 11.30� 10.07�
PAWS [1] 38.7� 18.60�

8.2 Vehicle Localization
Table 4 compares the average direction of arrival localization
error between CSafe, CSafe - generic, and PAWS in degrees.
We see that the average error rate of PAWS is much higher
than that of both modes of CSafe despite PAWS using a lo-
calization algorithm with more granularity. This is because
PAWS uses a cross-correlation based method to estimate rel-
ative delays between microphones in its array. As mentioned
in Section 4.2.1 these methods are only capable of capturing
a single source in the environment. Most of the time, the
source that is captured is the loudest sound in the environ-
ment as the sound with the highest energy in�uences the
values of the cross-correlation function the greatest. Since
the construction tool is often the loudest sound in the en-
vironment, rather than the approaching vehicle, PAWS will
tend to localize the sound of the construction tool rather than
the vehicle, leading to high localization errors. On the other
hand, CSafe’s novel adaptive noise �ltering architecture is
able to �lter out most construction sounds and localize mul-
tiple targets in the environment. This reduces the e�ect of
the overpowering construction noises in the environment on
the detection and localization of oncoming vehicles, which
leads to higher localization accuracy.

9 CONCLUSION
We present CSafe, a low-power, wearable, audio safety plat-
form for construction worker safety. CSafe uses an array of
low-power microphones integrated into an embedded hard-
ware platform along with an accompanying smartphone sys-
tem to detect + localize oncoming vehicles and provide alerts
to users. The key di�erence between construction worker
safety and general urban or pedestrian safety is the presence
of construction noises that are often orders of magnitude
louder than that of oncoming vehicles, greatly reducing the
e�ectiveness of general audio-based urban safety platforms.
To address this challenge, we introduce a novel noise �l-
tering called Probabilistic Template Matching (PTM) that is
integrated into a novel adaptive noise �ltering architecture
that leverages both single-channel and multi-channel source
separation techniques with a feedback loop to more robustly
�lter out common overpowering construction and urban
noises from the environment. We show that by applying
our novel �ltering architecture, we can improve our vehi-
cle detector’s detection rate by more than 10% compared

with no �ltering and other state-of-art source separation
algorithms. Finally, we show through a series of real-world
experiments that CSafe improves upon vehicle detection rate
by up to 16% and reduces localization error by almost 30�
in noisy construction environments over other state-of-art
audio safety systems.
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