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ABSTRACT: Recently, site-directed Cu2+ labeling has emerged as an incisive biophysical
tool to directly report on distance constraints that pertain to the structure, conformational
transitions, and dynamics of proteins and nucleic acids. However, short phase memory times
inherent to the Cu2+ labels limit measurable distances to 4−5 nm. In this work we
systematically examine different methods to dampen electron−nuclear and electron−
electron coupled interactions to decrease rapid relaxation. We show that using Cu2+ spin
concentrations up to ca. 800 μM has an invariant effect on relaxation and that increasing the
cryoprotectant concentration reduces contributions of solvent protons to relaxation. On the
other hand, the deuteration of protein and solvent dramatically increases the duration of the
dipolar modulated signal by over 6-fold to 32 μs. Based on this increase in signal longevity,
distances up to 9 nm and beyond can potentially be measured with Cu2+ labels.

The ability to measure long-range distance distributions
has given pulsed electron paramagnetic resonance (EPR)

a powerful role in the elucidation of the atomic-scale details of
protein structure and function.1−5 By introducing two or more
EPR-active species into a macromolecule via spin labeling,6

pulsed EPR methods can determine interspin distance
distributions by measurement of the dipolar interaction.7,8

Such distance distributions are exploited to shed light on
biomolecular assembly,9,10 quaternary structure,11 induced
conformational changes,12,13 and substrate/metal binding
sites.14,15

Recently, a straightforward site-directed labeling technique
through Cu2+ coordination to strategically substituted double
histidine sites (dHis) into a protein backbone has been
developed.16 Specifically, histidine residues are placed at i,i+4
positions for α-helices and i,i+2 positions for β-sheets to enable
specific cis coordination of a Cu2+-NTA (nitrilotriacetate)
complex.17 Such site-directed Cu2+ labeling creates a small
rigid spin label with a restricted spatial occupancy, providing
distance distributions up to 5 times narrower than common
nitroxide labels.18 In return, the rigidity allows for the
measurement of distance distributions that are more directly
related to conformational changes,19,20 site-specific dynam-
ics,21 and relative orientations of the protein.22 The labeling is
implementable in a variety of buffers,23 the Cu2+-NTA
chelation to dHis has sufficient affinity, especially at cryogenic
temperatures,24,25 and is relatively resistant to competition by
other metal ions.26 Additionally, the combination of dHis-
based Cu2+ labeling with nitroxides can provide a pathway to
measurements at 100 nM protein concentration.27 Following
these results, simple Cu2+ labeling strategies, such as using a
2,2′-dipicolylamine (DPA) Cu2+ chelator, have also been

developed for nucleic acids to report accurately on duplex
backbone distances.28

Despite these early promising results, the phase memory
relaxation time (Tm) of the Cu

2+ labels at 20 K has been found
to be ca. 3.5−4.0 μs in a wide variety of systems.29 Such short
values of Tm lead to echo signals of low intensities, which
places a practical limit on the upper distances. With current
technology, the measurable modulated signal between Cu2+

spin labels only lasts ca. 4−5 μs. In this work we show the
potential of deuteration to significantly go beyond the current
bottleneck that relaxation times place on distance measure-
ments using Cu2+ spin labels.
For this work, the E15H/T17H/K28H/Q32H mutant of

protein GB1 was labeled by the addition of a 1:1 molar
equivalent of Cu2+-NTA per dHis site in 50 mM MOPS buffer
at a pH of 7.4. All stock preparation and protein expression
details are presented in the Supporting Information (SI). First,
we used a two-pulse sequence to measure the Tm at different
protein concentrations, temperature, and the amount of
cryoprotectant. These factors affect the modulation of
electron−nuclear dipolar coupling and nuclear spin diffusion,
which are leading contributors to Tm

30−33 at cryogenic
temperatures. The data, shown in the SI, suggests that the
Tm is largely invariant to Cu2+ spin concentration in the range
of 20−800 μM (cf. Figure S1A). In addition, the balance of Tm
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and T1 suggests that 18 K is a reasonable operating
temperature to optimize Tm without increasing collection
time (cf. Figure S1A). The glycerol concentration has a more
pronounced effect on the Tm, and a ratio of 40% (v/v) glycerol
maximizes the Tm (cf. Figure S1B). Based on these results, we
determined that 150 μM Cu2+-NTA, 40% glycerol (v/v), at an
operating temperature of 18 ± 1 K optimizes the Tm to 4.1 μs.
These optimized conditions were used for all samples
presented throughout this work.
Next, we investigated the effects of deuteration on the Tm of

Cu2+ spin labels, given that previous work on nitroxide spin
label systems has demonstrated that deuteration of solvent
protons, biomolecules, and cryoprotectants provides dramatic
increases in Tm

34,35 by reducing the electron−nuclear dipolar
interaction. Figure 1C shows the integrated double-electron
electron resonance (DEER)36 echo as the dipolar evolution
time, τ2, is increased sequentially by 0.2 μs from an initial value
of 1.2 μs. In DEER, the longer the distance, the longer the
duration of τ2 that is required for experimentation (Figure 1B).
Interestingly, the use of D2O and d8-glycerol led to significant
gains in the echo intensity at large dipolar evolution times and,
indeed, sustaining a measurable signal for ca. 13 μs.
Next, we sought to increase the relaxation time even longer

by deuterating GB1. Accordingly, we deuterated GB1 using a
cell expression protocol described in the SI.37 Deuteration of
GB1 was estimated to be at least 76% isotopically labeled, as
determined by liquid chromatography−mass spectrometry
(Figure S2). In addition, continuous-wave (CW) EPR spectra
showed the same coordination of Cu2+-NTA to both the
deuterated and naturally abundant GB1 dHis mutants (Figure

S3). Interestingly, when deuterated dGB1 was used with non-
deuterated water and glycerol, there was only a small gain in
the phase memory time, leading to marginal improvements in
the upper range of dipolar evolution time (Figure 1C). This
result is likely due to dGB1 amide deuterium−proton exchange
during the 30 min incubation time for coordination of Cu2+-
NTA to dHis prior to freezing.23 The hydrogen−deuteration
exchange halftimes for solvent-exposed amide protons have
been shown to occur in seconds at a physiological pH.38

Additionally, solvent atoms are densely packed around the spin
center, which provides a significant contribution to signal
dephasing.39

To overcome relaxation induced by solvent protons, we
incorporated combinations of d8-glycerol and D2O with dGB1.
Protein deuteration leads to a substantial increase in the size of
the echo at large dipolar evolution times, with the signal
sustaining until 32 μs (cf. Figure 1C). These results are
reasonable, since the close proximity of the Cu2+ label to the
protein backbone and side chains is expected to contribute
most efficiently to relaxation.40 Also, this data demonstrates
the necessity of combining deuterated protein with deuterated
solvent to drive long relaxation times. In non-deuterated
systems, a dipolar evolution time of 4.4 μs is generally the
upper limit for such Cu2+ labels, which imposes a practical limit
of ca. 4−5 nm on the range of measurable distances. Figure 1D
shows that, with complete deuteration, the echo at 22 μs is
comparable to the 4.4 μs echo, demonstrating the enhance-
ment in feasible values of dipolar evolution times. Indeed, with
deuteration, longer dipolar modulation times up to ca. 32 μs
become possible (Figure 1C). Such a striking amplification of

Figure 1. (A) Crystal structure of GB1 (PDB: 4WH4) showing the positions of the dHis sites. Green spheres represent His residues. The chemical
structure of the dHis-Cu2+-NTA complex is shown on the right. (B) The four-pulse DEER sequence utilized in the echo tracking experiment. (C)
The integrated stimulated DEER echo as a function the dipolar evolution time (τ2) is shown for each sample. Each echo was one scan at 20 shots
per point. All other parameters were held constant and are described in the SI. The echo areas are presented as normalized logs, and the dashed
gray line represents the point when the echo falls beneath the noise. Deuteration of protein and solvent leads to a dramatic increase in echo size at
higher dipolar evolution times. (D) Illustrative examples of stimulated DEER echoes for each sample combination. The echo of the fully deuterated
system is comparable to that of the non-deuterated sample (with τ2 = 4.40 μs) even at a much larger dipolar modulation time of 22.0 μs.
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dipolar evolution time offers a pathway for Cu2+ spin labels to
measure distances up to 9 nm and beyond. Further
improvements can be made by the use of deuterated buffer,
if available, and by exploiting Carr−Purcell pulse sequences to
increase relaxation times.41 Specifically, such sequences
increase signal duration by 92, 44, and 9.8% for GB1 + H2O
+ glycerol, GB1 + D2O + d8-glycerol, and dGB1 + D2O + d8-
glycerol, respectively (cf. Figure S4).
To exemplify the effects deuteration has on DEER sensitivity

with respect to Cu2+ spin labels, time traces were collected for
the various GB1 samples shown in Figure 2. The E15H/
T17H/K28H/Q32H GB1 mutant has a most probable
distance of 2.3 nm23 and requires ∼1 μs of dipolar evolution
time to accurately capture multiple periods of modulation.

However, to replicate long-range distance measurements,
DEER time traces were also collected using a 4 μs acquisition
time with 398 points at a 10 ns step size (Figure S6). An
acquisition time of 4 μs was chosen as this dipolar evolution
time is near the upper limit on non-deuterated samples. Figure
2A shows the dramatic gain in sensitivity for long-range DEER
distance measurements through system deuteration. With
deuteration, a 4 μs time trace can be collected in only one
hour with a signal-to-noise ratio (SNR) on par with that of a 1
μs DEER on the non-deuterated sample. Specifically, system
deuteration leads to a ca. 29-fold improvement in the SNR of
the refocused DEER echo (cf. Figure 2B), which expedites
collection time extraordinarily (Figure 2B). In fact, substantial
gains are achieved simply by using D2O or d8-glycerol with

Figure 2. (A) Background-subtracted DEER time traces for the different sample deuteration combinations. Each DEER was collected using a 100
MHz observer-pump offset, with the pump pulse applied at the maximum magnetic field. All other parameters were held constant for each sample
and are provided in the SI. A 1 μs DEER time trace for a naturally abundant GB1 system is also shown for comparison. (B) Refocused DEER
echoes and estimated experiment run time comparisons for each sample shown at a 4 μs.

Figure 3. (A) Structure of the DPA-DNA + Cu2+ duplex with a base-pair separation of 18 between DPA chelators. X represents the substituted
DPA, and Z is the complementary abasic site. The structure of DPA phosphoramidite + Cu2+ is shown on the right. (B) Background-subtracted
DEER time trace of a DPA-DNA + Cu2+ duplex and simulated fit (purple). The inset depicts the normalized log of the integrated DEER stimulated
echo versus the dipolar evolution time.tracking at (C) Extracted distance distribution centered at 5.6 ± 0.7 nm. The 2.0 μs MD showed a C′−C′
distance of 5.8 ± 0.39 nm (dashed blue) and a Cu2+−Cu2+ distance of 6.1 ± 0.29 nm (dotted purple).
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naturally abundant biomolecules. We did not analyze these
data to extract distance because an acquisition at one field with
dHis at Q-band is susceptible to effects of orientation
selectivity.22 Nevertheless, the data shows the clear enhance-
ment in sensitivity by deuteration.
Next, we performed DEER on a DPA-DNA + Cu2+ duplex

with an 18 base-pair separation (Figure 3A) to observe the
impact of using only d8-glycerol and D2O on long-range
distance measurements for Cu2+ spin labels (Figure 3). The
inset to Figure 3A shows that the DEER echo decay as a
function of the dipolar evolution time was consistent with the
D2O + d8-glycerol echo decay for GB1 in Figure 1C.
Subsequently, a DEER signal with 8 μs of dipolar evolution
time was collected using Cu2+ spin labels (Figure 3B, Figure
S7). The extracted distance distribution gave a most probable
distance of 5.6 ± 0.7 nm and a distribution breadth
characteristic of the DPA motif42 (Figure 3C). The
experimental most probable distance is consistent with the
prediction of C′−C′ and Cu2+−Cu2+ distances from a 2.0 μs
Molecular Dynamics (MD) simulation. Note that previous
work has shown that a MD trajectory of such a length is
sufficient to reasonably estimate the most probable distance
but may not be sufficient to capture the full distribution width
due to slow mobility of the DPA side chains.43

In summary, we present a systematic examination of factors
that enhance the phase memory times for Cu2+ labels. In
particular, we show that deuteration of the solvent and
cryoprotectant can provide improvements that allow for the
rapid measurement of distances up to 6.7 nm. For instance, we
applied only D2O and d8-glycerol to efficiently obtain DEER
distances with an 8 μs dipolar evolution time. In addition,
deuteration of the biomolecule can readily extend the
measurable distances using Cu2+ labels to 9 nm and beyond
by dramatically increasing spin phase memory relaxation.
Further improvements can be made by enhancing the
modulation depths in DEER by using specialized shaped
pulses.44 Cumulatively, this work offers a straightforward
sample preparation scheme to increase sensitivity, reduce
experiment run times, and increase the ceiling on accessible
distance constraints for Cu2+ labels with uncomplicated
deuteration schemes.
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