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Abstract

We consider a critically-loaded multiclass queueing control problem with model uncertainty. The
odel consists of I types of customers and a single server. At any time instant, a decision-maker

DM) allocates the server’s effort to the customers. The DM’s goal is to minimize a convex holding
ost that accounts for the ambiguity with respect to the model, i.e., the arrival and service rates. For
his, we consider an adversary player whose role is to choose the worst-case scenario. Specifically, we
ssume that the DM has a reference probability model in mind and that the cost function is formulated
y the supremum over equivalent admissible probability measures to the reference measure with two
omponents, the first is the expected holding cost, and the second one is a penalty for the adversary
layer for deviating from the reference model. The penalty term is formulated by a general divergence
easure.

We show that although that under the equivalent admissible measures the critically-load condition
ight be violated, the generalized cµ rule is asymptotically optimal for this problem.
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1. Introduction

In this article we consider a multiclass queueing control problem (QCP) under diffusion-
caled heavy-traffic condition, wherein the decision-maker (DM) is uncertain about the under-
ying model, in the sense that she is unsure about the arrival and service rates. Upon arrival
ustomers are kept in queues in accordance to their types. The DM allocates customers to the
erver, trying to minimize a convex holding cost functional. The ambiguity modeling is done
s follows. We assume that the DM has a reference probability model in mind, and to account
or the uncertainty she tries to optimize among a family of models, penalizing the deviation of
model from the reference model using a class of general divergence measures. Thus the cost

unction the DM is facing is given by

sup
Q

{
EQ
[∫ ∞

0
ϱ(t)C(X̂ (t))dt

]
− L(Q ∥ P)

}
.

he supremum is taken over a set of candidate admissible probability measures. The first term
s the discounted holding cost term (ϱ is the discounting, X (t) is a vector whose components are
he sizes of the queues, and C is a holding cost function). The second term is the penalty term
ccounting for the ambiguity, where P is the reference probability measure, Q is a candidate
robability measure, and L is a divergence measure. The complete description of the terms is
iven in the next section.

In general, QCPs are almost intractable. So, an approach pioneered by Harrison [29], is
o approximate the QCP via a diffusion control problem (DCP). To this end, DCP is first
olved and then its optimal control is used to find an asymptotically optimal control of the
riginal QCP.2 In order to carry out the asymptotic analysis, the QCP needs to be scaled.
pecifically, one considers a sequence of queueing systems, labeled by a scaling parameter
∈ N. It is assumed that, for each queue, the traffic intensity, which is the ratio between

he rate of arrivals to the rate of service is 1 − O(1/
√

n) (see [21]). The arrival and service
ates for each queue are of order O(n). Queue lengths are scaled (divided) by

√
n. In the

iterature of queueing systems, this scaling is referred to as the heavy traffic diffusion scaling
egime, see [14,18,19] and references therein. The terminology stems from the fact that given
sequence of ‘reasonable’ controls, one for each n, there is a limiting diffusion process, along
subsequence as n → ∞. Note that if the traffic intensity is not of order 1 −O(1/

√
n), then,

s n → ∞, the scaled queue length becomes degenerate (converges to either infinity or zero).
his explains the terminology critically loaded system. In absence of the penalizing term (or,
lternatively, the supremum), by the martingale central limit theorem argument (see [26, Section
]), the QCP can be approximated by an optimal control problem of a diffusion process. We
etail more in the sequel about the specific structure of the QCP studied here, with and without
mbiguity.

Aside from the diffusion scaling, there are other well-studied asymptotic regimes for QCPs.
he first example we provide is the fluid scaling, which emerges from the functional law of

2 Note that here, the pre-limit model (with uncertainty) is of interest. The limiting model is more tractable and
from which we are able to derive a simple index policy. Hence, it serves us as an auxiliary model. This is typical,
but not restricted to queueing theory; see also the following examples [34] in biology, [31] in actuary, and [22] in
parameter estimation. This is in contrast to cases where one may be interested in the limiting model and would
use a sequence of approximating models, which are either more tractable or for which numerical analysis is more
feasible. When the limiting process is of interest, one may care about stability results, that is: how properties, such
as optimal behavior, are affected by (small) misspecifications of the underlying model; see e.g., [9,12,39,44] and
the references therein.
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large numbers and leads to a limiting deterministic control problem, see [2,7,48] and references
therein. As with the relationship between the central limit theorem and the law of large
numbers, the fluid scaling is less fine. Specifically, the traffic intensity is O(1) and queues are
scaled by n. Two other regimes are the heavy traffic moderate deviation scaling (see [1,3,4,16]
and references therein) and the large deviation scaling (see [5,6] and references therein). The
optimization criteria in the last two setups are risk-sensitive costs. While the standard diffusion
scaling (without ambiguity) leads to a stochastic control problem, the moderate-deviation and
large-deviation regimes lead to two-player minimax games, where the minimizer stands for the
DM from the QCP and the maximizer is an adverse player that models a worst-case scenario.
These games are deterministic. In this paper we follow a similar philosophy and use a diffusion
scaling. Since the optimization is over a class of models, the limiting control problem in our
case is in fact a stochastic game.

In QCPs one of the aims is to come up with easily implementable asymptotically optimal
policies. This issue is even more crucial when the dimension of the problem is high. One of the
most classical such policies in the setup of multiclass queueing network is the cµ rule which
is asymptotically optimal in the case of a linear holding cost. A generalized version of this was
introduced by van Mieghem [41], the dynamic priority rule known as the generalized cµ rule

here the parameter c is variable and obtained by feedback from the system’s state. Specifically,
f the holding cost rate of a class-i customer is given by Ci , where Ci are given smooth, convex
unctions then the rule is to prioritize the classes according to the index µi C ′

i (Q̂n
i (t)), where

is the scaling parameter, µi and Q̂n
i (t) are the corresponding service rate and diffusion scaled

ueue length at time t , and C ′

i denotes the derivative of Ci . Hence, it is clear that this index
olicy handles well the curse of dimensionality. In [8], Atar and Saha show the asymptotic
ptimality of the generalized cµ rule in the moderate deviation heavy-traffic regime. However,
n the large deviation regime, asymptotic optimality of the generalized cµ rule is not to be
xpected. In fact, in [6], the authors show that a rule other than the cµ rule is optimal in the
etup of linear holding cost.

Thus the main contribution of this article is that we extend the robustness of the generalized
µ rule as an asymptotically optimal policy to the setup of model uncertainty with a general
ivergence measure. Model uncertainty is a very realistic assumption in the real life situation.
ue to the complexity of real-world systems, lack of sufficient calibration, and inaccurate

ssumptions, one cannot precisely model the arrival and departure processes, see e.g. [20,35,49]
nd references therein. In recent years there has been increasing interest in robust analysis
f stochastic control problems. We consider uncertainty in the diffusion scale of the QCP
n a way that is also referred to as the Knightian uncertainty with a reference model.3 As
escribed in the first paragraph of the introduction, the DM chooses a stochastic control
nd the maximizer responses in a non-anticipating way with respect to the proper filtration
y choosing a ‘worst case scenario’. A popular choice for the penalty function L(Q ∥ P)
s the Kullback–Leibler divergence, which due to the tractability it yields, has been widely
xploited in the literature in recent years in various fields, e.g., in control theory [17,32,43,46],
ctuary and finance [13,27,40], economics [28], distributional robust optimization [15], and in
ueueing systems (not under the heavy traffic regime though) [17,33,38]. This choice leads to
n equivalent stochastic differential game, where the maximizer responses to the DM’s control

3 Another type of Knightian uncertainty that is considered in the literature is one where there is no reference
model and the worst case scenario is formulated via a collection of measures, which are not necessarily equivalent
to each other. This type of ambiguity gained popularity in the mathematical finance community and is associated
with the G-expectation introduced by Peng [45], for further reading see e.g., [10,42,47] and the references therein.
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by stochastically perturbing the drift of the state dynamics in a non-anticipating way using a
stochastic process and is quadratically penalized. Uncertainty in fluid models of queueing was
studied e.g., in [11,25,49]. Recently, Krishnasamy et al. [36] took a different approach from
the Knightian uncertainty considered here and studied a learning-based variant of the cµ rule
or scheduling in multi-class queueing systems, where the service rates are unknown and the
M’s objective is to minimize a regret criterion comparing between the cµ rule that uses the

mpirically learned service rates and the cµ rule with the known rates.
This paper continues a line of research initiated in [23,24], where asymptotic analysis of a

ulticlass QCP under uncertainty is being studied with linear holding cost, finite buffers, and
penalty ambiguity term that is formulated via the Kullback–Leibler divergence. Paper [23]

tudies the limiting stochastic game and characterizes the value function as the unique solution
o a free-boundary ordinary differential equation. The solvability of this differential equation
eavily relies on the special structure of the Kullback–Leibler divergence, which is shown to
ead to an equivalent quadratic penalty term. Paper [24] establishes asymptotic optimality using
he limiting problem and crucially relies on the ordinary differential equation and again on the
uadratic penalty term that follows by the Kullback–Leibler divergence. To compare with the
urrent work, we consider here a convex holding cost, infinite buffers, and a general divergence
easure. Thus, the model considered in this paper is very different from [23,24]. The more

eneral structure of the model adds to the subtlety of the arguments as we detail in the next
aragraph. Another very important contribution of this paper that it gives an insight about a
ufficient condition on the structure of the penalty term depending on the growth rate of the
ost function, so that asymptotic optimality of the generalized cµ rule is still true.

After setting up the limiting stochastic minimax game, the asymptotic optimality of the
eneralized cµ rule is established by showing that asymptotically the value function of this
ame forms both lower and upper bounds for the QCP. The important fact that we take
dvantage of is that the limiting game problem has an explicit solution (in terms of optimal
ontrol for the minimizer and value function) in terms of the Skorohod map and a minimizing
urve describing the optimal workload distribution in the limiting problem. Therefore, we avoid
ifferential equations analysis. In order to establish the lower bound, we take an arbitrary
equence of controls in the QCP and compare it with the cost in the limiting game associated
ith the optimal control of the minimizer. Recall that the cost function in both the QCP and

he limiting game involve suprema over probability measures. Here, one should pay attention
hat the randomness in the limiting problem is generated by a Brownian motion and in the
CP by Poisson random measures. Hence, for the comparison between the suprema we use a
iscretization technique due to Kushner, see Lemma 4.1. For this, we associate each admissible
robability measure in the limiting problem with a stochastic process via the Radon–Nikodym
erivative. Then, we approximate it by stochastic processes adapted to the filtrations of the
CPs, which in turn are translated to admissible probability measures in the QCP; these

pproximated processes are the arrival and service rates under the admissible measures. In
ddition, the proof of the lower bound uses tightness and martingale arguments under the
pproximated probability measure. For the proof of the upper bound we equip the minimizer of
he QCP with the generalized cµ rule and fix an arbitrary sequence of admissible probability

easures for the maximizer. Again, the probability measures are translated to rates. We show
n two steps that the maximizer will abstain from making large perturbations to the arrival and
ervice rates, in the sense that in average the critically load heavy-traffic condition is preserved,
ee Proposition 4.2. Then, we use a truncation technique to approximate the rates with bounded
nes, see Proposition 4.3. The rest of the proof uses a state-collapse property and again tightness
nd martingale arguments.
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The rest of the paper is organized as follows. In the next subsection we enlist the notations
sed throughout the paper. In Section 2, we describe the queueing model and the robust
ptimization problem. In Section 3, we describe the limiting stochastic game and its solution. In
ection 4, we describe the generalized cµ rule and prove its asymptotic optimality by proving

he convergence of the prelimit value functions to the limiting value function.

.1. Notation

We use the following notation. For a, b ∈ R, a ∧ b = min{a, b} and a ∨ b = max{a, b}. For
a positive integer k and c, d ∈ Rk , c · d denotes the usual scalar product and ∥c∥ = (c · c)1/2.
We denote [0,∞) by R+. For subintervals I1, I2 ⊆ R and m ∈ {1, 2} we denote by C(I1, I2),
Cm(I1, I2), and D(I1, I2) the space of continuous functions [resp., functions with continuous
derivatives of order m, functions that are right-continuous with finite left limits (RCLL)]
mapping I1 → I2. The space D(I1, I2) is endowed with the usual Skorohod topology. For
f : R+ → RI and t > 0, set ∥ f ∥t = sup0≤s≤t ∥ f (s)∥.

2. The queueing model

2.1. The reference probability space and some fundamental processes

Consider a single server model with I classes of customers. Each class has its own
designated unbounded buffer. Upon arrival, customers are queued in the corresponding buffers.
Processor sharing is allowed, but two customers from the same class cannot be served
simultaneously. The system is studied under heavy-traffic. Hence, we consider a sequence of
systems, indexed by n ∈ N, which is referred to as the scaling parameter. Each class of
customers is associated with two rates: arrival and service. To account for the ambiguity in
each of the total 2I parameters it is convenient to work with a probability space in a product
form. For every i ∈ [I ] := {1, . . . , I } and n ∈ N we consider two reference probability spaces
(Ωn

A,i ,Fn
A,iPn

A,i ) and (Ωn
S,i ,Fn

S,i ,Pn
S,i ). The first one supports a Poisson process An

i with a given
rate λn

i and the second one a Poisson process Sn
i with rate µn

i . An
i counts the number of arrivals

to the i th buffer. The process Sn
i is referred to as the potential service time process, in the sense

that, for every t ∈ R+, Sn
i (t) is the number of service completions of class i customers had the

erver worked on class i for t units of time.
In order to account for different level of ambiguities for each of the 2I processes, we

onstruct the complete reference probability space that supports the processes An
= (An

i :

∈ [I ]) and Sn
= (Sn

i : i ∈ [I ]) and which is given in a product form as follows,

(Ωn,Fn,Pn) :=

( I∏
i=1

(Ωn
A,i × Ωn

S,i ),⊗
I
i=1(Fn

A,i ⊗ Gn
S,i ),

I∏
i=1

(Pn
A,i × Pn

S,i )
)
,

here ⊗
I
i=1(Fn

A,i ⊗ Gn
S,i ) = (Fn

A,1 ⊗ Gn
A,2) ⊗ · · · ⊗ (Fn

A,I ⊗ Gn
S,I ). Notice that from the structure

f the probability space it follows that for every fixed n ∈ N, under the measure Pn , the
processes An

1, Sn
1 , . . . , An

I , Sn
I are mutually independent. Moreover, Pn

◦ (An
i )−1

= Pn
A,i ◦ (An

i )−1

and Pn
◦ (Sn

i )−1
= Pn

S,i ◦ (Sn
i )−1, i ∈ [I ].

Let U n
= (U n

i : i ∈ [I ]) be an RCLL process taking values in {x = (x1, . . . , x I ) ∈ [0, 1]I
:∑ n
xi ≤ 1}. The term Ui (t) represents the fraction of effort devoted at time t by the server to
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the class-i customer at the head of the line. For each i ∈ [I ], the process (T n
i (t))t∈R+

given
y

T n
i (t) :=

∫ t

0
U n

i (s)ds, t ∈ R+, (2.1)

epresents the units of time that the server devoted to class i until time t . For every t ∈ R+

and i ∈ [I ], Sn
i (T n

i (t)) is the number of service completions of class i customers until time t .
This is a Cox process with intensity µn

i U n
i .

Denote by Xn
i (t) the number of class i customers in the system at time t . Then,

Xn
i (t) = Xn

i (0) + An
i (t) − Sn

i (T n
i (t)), t ∈ R+, i ∈ [I ]. (2.2)

he system is assumed to be critically loaded. That is, the rate parameters satisfy

λn
i := λi n + λ̂i n1/2

+ o(n1/2), µn
i := µi n + µ̂i n1/2

+ o(n1/2), (2.3)

here λi , µi ∈ (0,∞) and λ̂i , µ̂i ∈ R are fixed and
∑I

i=1 ρi = 1, where ρi := λi/µi , i ∈ [I ].
Using the diffusion scaling

Ân
i (t) := n−1/2(An

i (t) − λn
i t), Ŝn

i (t) := n−1/2(Sn
i (t) − µn

i t),

X̂n
i (t) := n−1/2 Xn

i (t), Ŷ n
i (t) := µn

i n−1/2(ρi t − T n
i (t)), m̂n

i := n−1/2(λn
i − ρiµ

n
i ),

(2.4)

e obtain the following scaled version of (2.2),

X̂n
i (t) = X̂n

i (0) + m̂n
i t + Ân

i (t) − Ŝn
i (T n

i (t)) + Ŷ n
i (t), t ∈ R+

enote Ln(t) = (Ln
i (t) : i ∈ [I ]) for Ln

= Ân, Ŝn, T n, X̂n, Ŷ n and also m̂n
= (m̂n

i : i ∈ [I ]). It
ill be assumed throughout that,

∃ lim
n→∞

X̂n(0) =: x̂0.

or simplicity, we assume that {Xn
i (0)}i,n are deterministic, hence so is x̂0.

The process U n is regarded as an admissible control in the nth system if it is adapted to
he filtration Fn

t = Fn(t) := σ {An
i (s), Sn

i (T n
i (s)), i ∈ [I ], s ≤ t} and U n

i (t) = 0 whenever
Xn

i (t) = 0. The latter condition asserts that the server cannot devote any effort to an empty
lass. We denote the set of admissible controls for the DM in the nth system by An .

.2. The robust optimization problem

We now describe the cost function. Fix a discount function ϱ : R+ → R+ and a holding
ost C : RI

+
→ R+, which satisfy some regularity and growth conditions (see Assumption 2.1

elow).
The risk-neutral optimization problem is given by

inf
Un∈An

EPn
[∫ ∞

0
ϱ(t)C(X̂n(t))dt

]
.

variation of this problem with convex delay costs was studied by van Mieghem [41].
In order to capture the uncertainty of the DM about the underlying probability measure

e consider a set of candidate probability measures and the DM optimizes against the worst

easure. Each such measure is being penalized in accordance to its deviation from the reference
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measure by a divergence. Notice that given a process Ŷ n adapted to Fn
t , satisfying (2.4), there

xists an admissible control U n for which (2.4) holds with T n given by (2.1). Hence, we refer to
Ŷ n as well as the control in the nth system. The DM is facing the following robust optimization
roblem:

V n
:= inf

Ŷ n∈An
sup

Qn∈Qn
J n(Ŷ n,Qn),

here

J n(Ŷ n,Qn) := EQn
[∫ ∞

0
ϱ(t)C(X̂n(t))dt

]
−

I∑
i=1

LA,i (Qn
A,i ∥ Pn

A,i ) −

I∑
i=1

LS,i (Qn
S,i ∥ Pn

S,i )

(2.5)

nd its components are the following:

• Qn is the set of all the measures of the form Qn
=
∏I

i=1(Qn
A,i × Qn

S,i ), satisfying

dQn
A,i

dPn
A,i

(t) = exp
{∫ t

0
log

(
ψn

A,i (s)
λn

i

)
d An

i (s) −

∫ t

0
(ψn

A,i (s) − λn
i )ds

}
, (2.6)

dQn
S,i

dPn
S,i

(t) = exp
{∫ t

0
log

(
ψn

S,i (s)
µn

i

)
d Sn

i (T n
i (s)) −

∫ t

0
(ψn

S,i (s) − µn
i )dT n

i (s)
}
, (2.7)

for measurable and positive processes ψn
j,i that are predictable w.r.t. the filtration gen-

erated by the arrival and service completions processes, satisfying
∫ t

0 ψ
n
j,i (s)ds < ∞

Pn
j,i -a.s., j ∈ {A, S}, i ∈ [I ]. We refer to the elements of Q as admissible controls for the

adverse player, which is also called the maximizer. Occasionally we abuse terminology
and refer to the processes ψn

j,i as the maximizer’s controls.
• For every j ∈ {A, S}, i ∈ [I ], and equivalent measures Q and P, the divergence L j,i , is

given by

L j,i (Q ∥ P) := EQ
[∫ ∞

0
ϱ(t)g j,i

(
log
(dQ

dP
(t)
))

dt
]
,

where g j,i : R → R satisfy some regularity and growth conditions given below in
Assumption 2.1.

emark 2.1.

1. The conditions asserted on {ψn
j,i } guarantee that the right-hand sides in (2.6) are

Pn
j,i -martingales, and that under the measure Qn

A,i (resp., Qn
S,i ), the process An

i (resp.,
Sn

i (T n
i )) is a counting process with infinitesimal intensity ψn

A,i (t)dt (resp., ψn
2,i dT n

i (t)).
2. Notice that we do not assume that the critically load condition is preserved under the

measure Qn , that is ψn
A,i (t) − λn

i = O(n1/2), uniformly over t ∈ R+. However, as we
show in Proposition 4.2, this condition holds in average.

Assumption 2.1. There exist constants p̄ ≥ p ≥ 1, c0, c2 > 0, and c1 ∈ R, such that the
functions C , {g j,i } j∈{A,S},i∈[I ], and ϱ, satisfy the following conditions.

1. There are strictly increasing, strictly convex, continuously differentiable functions Ci :

R → R , i ∈ [I ], such that,
+ +
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• C ′

i (0) = Ci (0) = 0;
• C(x) =

∑I
i=1 Ci (xi ), where x = (xi : i ∈ [I ]);

• there exist constants c0 > 0 and p ≥ 1 such that for every i ∈ [I ] and x ∈ R+,
Ci (x) ≤ c0(1 + x p).

2. For every j ∈ {A, S} and i ∈ [I ], g j,i are convex and non-decreasing. There exist
constants c1 ∈ R, c2, c3 > 0, such that |g j,i (x)| ≤ c3(1 + |x |

p̄) for any x ∈ R, and
gi, j (x) ≥ c1 + c2x p̄ for x ∈ R+.

3. ϱ : R+ → R+ is non-increasing and satisfies
∫

∞

0 ϱ(t)t p̄dt < ∞.

Throughout the entire paper we assume that Assumption 2.1 is in force.

emark 2.2.

1. The assumptions on Ci , other than the growth condition, are identical to those in [8].
They ensure the existence of a continuous minimizing curve which is necessary for
the explicit solution of the limiting differential game. The intuition behind the relation
between the growth condition on Ci and the lower bound on the growth of gi, j is that it
ensures that the maximizer does not perturb the rate by “too much” and the heavy traffic
condition is preserved on the “average”. This suggests the correct order of the penalty
term that should be considered if the cost function has more than linear growth.

2. Note that aside of having finite buffers, the model in [23,24] considers a linear cost and
the KL divergence, which corresponds to the case p = p̄ = 1. Nevertheless, the linear
cost cannot be considered as a private of the current model because the cost function is
strictly convex and its derivative is zero at the origin. A better comparison in this case
is studied in [8] under the moderate-deviation model with risk-sensitive cost. There, the
cost term within the exponent satisfies all the assumptions mentioned above and has
a linear growth. The penalty term, which emerges from the moderate-deviation scale,
corresponds to the case p = p̄ = 1; that is, g is linear, and the penalty term is expressed
in terms of the KL divergence.

3. The structure of the divergence considered here by composing g on log(dQ/dP) emerges
from the need to set the penalty term and the cost function on the same scale. A
similar structure was considered by Hernández-Hernández and Schied in [30] in a control
theoretic setup. With an adaptation to our model, the function g is composed on the
integrands of (2.6)–(2.7). The cost function in [30] is the log of the state process, which
has an exponential growth. Thus, it corresponds to a linear growth of the cost function.
In turn, their penalty g has at least a quadratic growth. This is the same growth that the
KL divergence has, which corresponds to the linear growth in the cost.

. The limiting problem — a stochastic differential game

.1. The game setup

The QCP is approximated by a two-player stochastic differential game. To set it up we need
he following notation. Set the vectors

θ := lim
n→∞

(n/µn
1, . . . , n/µn

I ) = (µ−1
1 , . . . , µ−1

I ),

m̂ := lim
n→∞

m̂n
= (λ̂i − ρi µ̂i : i ∈ [I ]),
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and the n × n matrix

σ = (σi j )1≤i, j≤I := Diag
(
(λ1)1/2, . . . , (λI )1/2) .

We now define admissible controls for both players in the game, which due to their roles
will be referred to as the minimizer and the maximizer.

• An admissible control for the minimizer is a tuple E := (Ω ,F , {Ft },P, B̂, Ŷ ), where
(Ω ,F , {Ft },P), is a filtered probability space supporting the collection of independent
one-dimensional Ft -adapted standard Brownian motions (SBMs) {B̂ j,i : ( j, i) ∈ {A, S}×

[I ]}, and an RI -valued Ft -adapted process Ŷ with RCLL sample paths such that θ · Ŷ is
nonnegative and nondecreasing.

• An admissible control for the maximizer is a measure Q defined on (Ω ,F) such that for
any ( j, i) ∈ {A, S} × [I ],

dQ j,i

dP j,i
(t) = exp

{∫ t

0
ψ̂ j,i (s)d B̂ j,i (s) −

1
2

∫ t

0
ψ̂2

j,i (s)ds
}
, t ∈ R+, (3.1)

for an Ft -progressively measurable process ψ̂ j := (ψ̂ j,1, . . . , ψ̂ j,I ) satisfying

EP
[∫ ∞

0
ϱ(s)ψ̂2

j,i (s)ds
]
< ∞ and EP

[
e

1
2
∫ t

0 ψ̂
2
j,i (s)ds

]
< ∞ t ∈ supp(ϱ), i ∈ [I ],

(3.2)

where Q j,i := Q ◦ (B̂ j,i )−1 and P j,i := P ◦ (B̂ j,i )−1. Moreover, the processes in the
collection {B̂ j,i : ( j, i) ∈ {A, S} × [I ]} are independent under Q.

Denote by A the set of all admissible controls for the minimizer, where we often abuse notation
and denote Ŷ ∈ A, keeping in mind that the control includes a filtered probability space.
The set of all admissible controls for the maximizer is denoted by Q. Here as well we abuse
erminology from time to time and refer to ψ̂ as the maximizer’s control.

Set B̂ j := (B̂ j,1, . . . , B̂ j,I ), j = A, S, and let

X̂ (t) = x̂0 + m̂t + σ (B̂A(t) − B̂S(t)) + Ŷ (t), t ∈ R+, (3.3)

e the state process of the game . An alternative form to the dynamics is as follows

X̂ (t) = x̂0 + m̂t +

∫ t

0
σ [ψ̂A(s) − ψ̂S(s)]ds + σ (B̂Q

A (t) − B̂Q
S (t)) + Ŷ (t), t ∈ R+,

here B̂Q
j (·) := B̂ j (·) −

∫
·

0 ψ̂ j (s)ds, is an I -dimensional Ft -SBM under Q.
Recall the definition of the cost in the QCP given in (2.5). The cost associated with the

trategy profile (Ŷ ,Q) is given by

J (Ŷ ,Q) := EQ
[∫ ∞

0
ϱ(t)C(X̂ (t))dt

]
−

I∑
i=1

LA,i (QA,i ∥ PA,i ) −

I∑
i=1

LS,i (QS,i ∥ PS,i ).

he value function is thus

V = inf
Ŷ∈A

sup
Q∈Q

J (Ŷ ,Q)
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3.2. The solution of the game

In this section we provide a minimizing control for the minimizer in the game. For this, we
resent a key lemma regarding the minimizing curve.

emma 3.1 (Lemma 3.1 in [8]). There exists a continuous function f : R+ → RI
+

such that
for every w ∈ R+,

θ · f (w) = w and C( f (w)) = inf{C(q) : q ∈ RI
+
, θ · q = w}. (3.4)

This function satisfies

µ1C ′

1( f1(w)) = · · · = µI C ′

I ( f I (w)).

Moreover, the mappings w ↦→ Ci ( fi (w)), i ∈ [I ], are increasing.

One last ingredient for the definition of the candidate policy is the one-dimensional
Skorokhod map Γ : D(R+,R) → D(R+,R) given by

Γ [l](t) = l(t) − inf{l(s) ∧ 0 : s ∈ [0, t]}, t ∈ R+.

Pay attention that Γ [l](t) ≥ 0 for every t ∈ R+. Moreover, it is well-known that for any
1, l2 ∈ D(R+,R) and t ∈ R+,

|Γ [l1] − Γ [l2]|t ≤ 2|l1 − l2|t . (3.5)

Another nice feature of this function that serves us in the sequel is the pathwise minimality
property of Γ . It says that for any l, y ∈ D(R+,R) such that y is nonnegative and
nondecreasing, and l(t) + y(t) ≥ 0 for all t ∈ R+, one has

l(t) + y(t) ≥ Γ [l](t), t ≥ 0. (3.6)

Consider a filtered probability space as described in the previous subsection. Denote

L̂(t) = x̂0 + m̂t + σ (B̂A(t) − B̂S(t))

and set

X̂ f (t) = f (Γ [θ · L̂](t)) and Ŷ f (t) = X̂ f (t) − L̂(t), t ∈ R+.

We refer to the control (Ω ,F , {Ft },P, B̂, Ŷ f ) as the f -reflecting control. Occasionally, we
abuse terminology and refer to Y f as the f -reflecting control.

Proposition 3.1. The control E := (Ω ,F , {Ft },P, B̂, Ŷ f ) is admissible and optimal for the
minimizer. That is,

V = sup
Q∈Q

J (Ŷ f ,Q).

The proof follows from the pathwise minimality property of the Skorokhod map combined with
Lemma 3.1 in the following sense. Let E := (Ω ′,F ′, {F ′

t },P′, B̂ ′, Ŷ ′) be an arbitrary admissible
strategy for the minimizer and let X̂ ′ be the associated dynamics via (3.3). Since B̂ = (B̂A, B̂S)
and B̂ ′

= ((B̂A)′, (B̂S)′) are SBMs, we may couple between the two probability spaces such
that both BMs are identified.

Now, by the definition of f , and (3.6), for any t ∈ R+,

θ · X̂ (t) = Γ [θ · L̂](t) ≤ θ · (L̂(t) + Ŷ ′(t)) = θ · X̂ ′(t).
f
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So, by (3.4), for any path of the BM ω and every t ∈ R+,

C(X̂ f (t))(ω) ≤ C(X̂ ′(t))(ω).

ence, for any measure Q̂ ∈ Q,

J (Y f , Q̂) ≤ J (Y ′, Q̂).

emark 3.1. Note that the pathwise minimality property and the minimizing curve introduced
in Lemma 3.1 allow us to provide the optimal control for the minimizer in the limiting game
without using differential equations and the dynamic programming principle. This is in contrast
with [24] where the differential equation is required to set the level of rejection and the best
response of the maximizer player. The best response of the maximizer in the game plays an
essential role in establishing the lower bound part of the convergence result in [24]. Since our
buffers are infinite, we are not required to have a rejection level. Furthermore, as the last proof
hints, the pathwise minimality property allows us to establish the lower bound in Section 4.2
without a characterization of the optimal control for the maximizer in the limiting game. Hence,
we do not perform a differential equations analysis.

4. Asymptotic optimality of the generalized cµ-rule

.1. The generalized cµ-rule and the main result

We now describe the generalized cµ rule. First we describe the preemptive version.
This dynamic priority policy gives preemptive priority at time t to the class i for which
µi C ′

i (X̂n
i (t)) ≥ µ j C ′

j (X̂n
j (t)) for all j , where ties are broken in some arbitrary but predefined

anner. To define it precisely we need some additional notation. Given a set of real numbers
R = {ri , i ∈ [I ]}, denote arg max R = {i : ri ≥ max j r j }, and let arg max∗ R be the smallest

ember of arg max R. The control, that we denote by U ∗,n , is defined by setting

U ∗,n
i (t) = 1

{X̂n (t)∈Xi }
, i ∈ [I ],

where Xi , i ∈ [I ] partition RI
+

\ {0} according to

Xi = {x ∈ RI
+

\ {0} : arg max∗
{µ j C ′

j (x j ), j ∈ [I ]} = i}, i ∈ [I ].

Thus, in case of a tie, priority is given to the lowest index.) Note that if, for some i , x ∈ Xi ,
e have xi > 0 thanks to the assumption that, for all i , C ′

i (x) = 0 iff x = 0; as a result, the
ueue selected for service is nonempty.

The non-preemptive version of the generalized cµ rule is a policy, denoted by U #,n , that
upon completion of a job selects a customer from the class i for which X̂n

∈ Xi . Namely, if
τ is any time of departure, then U #,n(τ ) = 1

{X̂n (τ )∈Xi }
. Note that the job departing at time τ is

not counted in X̂n(τ ), due to right-continuity. Both the policies have the non-idling property:
when a customer is admitted into an empty system, it is immediately served. Now we state our
main theorem.

Theorem 4.1. The value function of the QCP converges to the value function of the limiting
game problem, i.e., limn→∞ V n

= V . Moreover, the generalized cµ rule (both preemptive as
well as non-preemptive) is optimal. That is, if Ŷ n is the control corresponding to the generalized
cµ rule (preemptive or non-preemptive), then

lim sup
n→∞

sup
Qn∈Qn

J n(Ŷ n,Qn) ≤ V .
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The proof of the theorem is given in Sections 4.2 and 4.3, where lower and upper bounds are
established, respectively.

4.2. Lower bound

By Proposition 3.1 we need to show that

lim inf
n→∞

V n
≥ sup

Q∈Q
J (Ŷ f ,Q). (4.1)

r alternatively, for any arbitrary sequence of controls {Ŷ n
}n ,

lim inf
n→∞

sup
Qn∈Qn

J n(Ŷ n,Qn) ≥ sup
Q∈Q

J (Ŷ f ,Q). (4.2)

learly, we may assume without loss of generality that the {Ŷ n
}n is taken s.t. for every

∈ N,

sup
Q∈Q

J (Ŷ f ,Q) + 1 ≥ sup
Qn∈Qn

J n(Ŷ n,Qn), (4.3)

therwise, the lower bound holds trivially for such Ŷ n . To this end, we need to follow these
teps:

1. Comparison between the two suprema. Notice that the suprema on both sides of (4.3)
are taken over very different sets. On the right-hand side (r.h.s.) the probability measures
are w.r.t. discrete processes and on the left-hand side (l.h.s.) the measures take care of
the drift of the continuous process. In order to compare between the suprema we show
that up to a small term ε > 0, the supremum on the l.h.s. of (4.3) can be replaced by a
supremum over measures whose corresponding ψ’s are nice functions of the Brownian
motions. That is ψ(t) = Fε(B̂), for a nice function Fε. This way, we may compare
between the two suprema by setting up a change of measure in the prelimit using the
same function Fε, substituting the scaled arrival and departure processes in Fε instead
of B̂.

2. Tightness and convergence. Showing tightness of a sequence of some relevant processes
enables us to talk about converging sub-sequences. Restricting ourselves to such a
subsequence, using the same function Fε for the change of measure for the prelimit and
limiting process, we show convergence of the divergence components. Moreover, using
Lemma 3.1 and the pathwise minimality property of the Skorokhod mapping (3.6) we
bound from below the running cost of the prelimit problem, by the prelimit running cost
associated with the f -reflecting control.

The following lemma establishes the claim in the first part given above. Specifically, we
how that for the limiting game there is an ε-optimal ψ̂ε for the maximizer that is a bounded,
nd a continuous function of a finite sample of the BM, in a non-anticipating way. Its proof
ollows by the same arguments given in the proof of [37, Theorem 10.3.1], hence omitted.

emma 4.1. For every ε > 0 there is a system Ξ ε .
= (Ω ε,F ε, {F ε

t },Pε, B̂ε) and ψ̂ε
∈ Π (Ξ ε)

ith the following properties.

• (X̂ ε
f , Ŷ ε

f ) satisfies the following equation for every t ∈ R+.

X̂ ε (t) = f (Γ [θ · L̂ε](t)) and Ŷ ε(t) = X̂ ε (t) − L̂ε(t),
f f f
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where L̂ε(t) = x̂0 + m̂t + σ (B̂εA(t) − B̂εS(t)), and B̂ε = (B̂εA, B̂εS) is an Ft -adapted,
2I -dimensional SBM under Pε.

• For some δ > 0, ψ̂ε is piecewise constant on intervals of the form [lδ, (l + 1)δ),
l = 0, 1, 2, . . . . For every s ∈ R+, ψ̂ε(s) takes values in a finite subset of R2I , denoted
by Z ε.

• For some θ > 0, for each u ∈ Z ε

Pε(ψ̂ε(lδ) = u | B̂ε(s), s ≤ lδ, ψ̂ε( jδ), j < l)

= Pε(ψ̂ε(lδ) = u | B̂ε(pθ ), pθ ≤ lδ, ψ̂ε( jδ), j < l)

= Fε
u

((
B̂ε(pθ )

)⌊lδ/θ⌋
p=0 ,

(
ψ̂ε( jδ)

)l−1
j=0

)
,

where for suitable k1, k2 ∈ N, Fε
u : Rk1 × (Z ε)k2 → [0, 1] is a measurable function such

that Fu(·,u) is continuous on Rk1 for every u ∈ (Z ε)k2 ,
• Set the measure Qε

= Π I
i=1(Qε

A,i ×Qε
S,i ) associated with (ψ̂ε

j,i ) j∈{A,S},i∈[I ] via (3.1)–(3.2).
Then,

J (Ŷ ε
f ,Q

ε) ≥ sup
Q∈Q

J (Ŷ ε
f ,Q) − ε. (4.4)

Fix ε > 0 and Qε such that (4.4) holds. The next proposition together with (4.2) establishes
the lower bound (4.1).

Proposition 4.1. The following asymptotic bound holds

lim inf
n→∞

J (Ŷ n,Qn,ε) ≥ J (Ŷ ε
f ,Q

ε).

Before providing its proof, we need some notation and preliminary results.
For every n ∈ N set the process (ψ̂n,ε(t)) to be random and fixed on the time interval

[lδ, (l + 1)δ), that is a Z ε-valued, Fn
t -measurable according the conditional distribution

Pn(ψ̂n,ε(t) = u | Fn
t ) = Fε

u

(
M̂n(pθ )⌊lδ/θ⌋

p=0 ,
(
ψ̂n,ε( jδ)

)l−1
j=0

)
,

where M̂n
:= ( Ân, Ŝn(T n)). Let Qn,ε

=
∏I

i=1(Qn,ε
A,i ×Qn,ε

S,i ) be such that the measures Qn,ε
A,i and

Qn,ε
S,i are respectively associated with the intensities ψn,ε

A,i and ψn,ε
S,i , which are given by

ψ
n,ε
A,i (t) := λn

i + ψ̂
n,ε
A,i (t)(λi n)1/2, ψ

n,ε
S,i (t) := µn

i + ψ̂
n,ε
S,i (t)(µi n)1/2, t ∈ R+.

lso, define the Qn,ε-martingales

Ǎn
i (t) := n−1/2

(
An

i (t) −

∫ t

0
ψ

n,ε
A,i (s)ds

)
,

Ďn
i (t) := n−1/2

(
Sn

i (T n
i (t)) −

∫ t

0
ψ

n,ε
S,i (s)dT n

i (s)
)
.

(4.5)

ay attention that

Ǎn
i (t) = Ân

i (t) − λ1/2
∫ t

ψ̂
n,ε
A,i (s)ds, Ďn

i (t) = Ŝn
i (T n

i (t)) − µ1/2
∫ t

ψ̂
n,ε
S,i (s)dT n

i (s),

0 0
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and therefore,

X̂n
i (t) = X̂n

i (0)+m̂n
i t+ Ǎn

i (t)− Ďn
i (t)+Ŷ n

i (t)+λ1/2
i

∫ t

0
ψ̂

n,ε
A,i (s)ds−µ

1/2
i

∫ t

0
ψ̂

n,ε
S,i (s)dT n

i (s).

(4.6)

The next lemma provides the first step in the proof of the second part.

Lemma 4.2. For any given ε > 0, the sequence of processes {T n
}n converges in probability

to ρ under the measures {Qn,ε
}n .

Proof. Throughout the proof we assume that ϱ > 0. The case where ϱ(t0) = 0 for some t0 > 0,
nd by monotonicity ϱ(t) = 0 for every t > t0 (finite horizon case), is treated similarly and
herefore it is omitted. Set

θn
:= lim

n→∞
(n/µn

1, . . . , n/µn
I ).

rom (2.4) it is sufficient to show that for each T > 0, the sequence {Qn,ε
◦ (∥Ŷ n

∥T )−1
}n is

ight. This follows once we show that the following two limits hold.

lim
K→∞

lim sup
n→∞

Qn,ε
(

inf
i∈[I ]

inf
0≤t≤T

Ŷ n
i (t) ≤ −K

)
= 0, (4.7)

lim
K→∞

lim sup
n→∞

Qn,ε
(
θn

· Ŷ n(T ) ≥ K
)

= 0. (4.8)

o observe it, we now show that for sufficiently large n, the event ∥Ŷ n
∥T ≥ 2K/θmin

mplies that either (i) there exists i ∈ [I ] such that inf0≤t≤T θ
n
i Ŷ n

i (t) ≤ −K/(4I ) or
ii) θn

· Ŷ n(T ) ≥ K/2, where θmin := mini∈[I ] θi .

Indeed, assume that ∥Ŷ n
∥T ≥ 2K/θmin and let n be sufficiently large such that for every

∈ [I ], θn
i ≥ θi − θmin/2, where θmin := mini∈[I ] θi . Now,∑

i∈[I ]

∥θn
i Ŷ n

i ∥T +
θmin

2

∑
i∈[I ]

∥Ŷ n
i ∥T ≥

∑
i∈[I ]

∥θi Ŷ n
i ∥T ≥ θmin

∑
i∈[I ]

∥Ŷ n
i ∥T .

Hence,∑
i∈[I ]

∥θn
i Ŷ n

i ∥T ≥
θmin

2

∑
i∈[I ]

∥Ŷ n
i ∥T ≥

θmin

2
∥Ŷ n

∥T .

herefore, the event ∥Ŷ n
∥T ≥ 2K/θmin implies that

∑
i∈[I ] ∥θ

n
i Ŷ n

i ∥T ≥ K . Now, either

(1) there exists i ∈ [I ] such that inf0≤t≤T θ
n
i Ŷ n

i (t) ≤ −K/(4I ); or
(2) for every i ∈ [I ], inf0≤t≤T θ

n
i Ŷ n

i (t) > −K/(4I ). This condition implies that θn
·

Ŷ n(T ) ≥ K/2. Indeed, arguing by contradiction, assume that θn
· Ŷ n(T ) < K/2. Now,

θn
· Ŷ n(T ) =

∑
i∈[I ] θ

n
i Ŷ n

i (T ) can be decomposed into two partial sums, one that runs
over the positive terms θn

i Ŷ n
i (T ) and the other over the negative ones. Denote them

respectively by Σ+ and Σ−. Since θn
· Ŷ n(T ) = Σ+ + Σ− < K/2, it follows that

Σ+ < −Σ− + K/2 < K/4 + K/2, where the last inequality follows by the case
considered in this part. Therefore,

∑
i∈[I ] ∥θ

n
i Ŷ n

i ∥T = Σ+ −Σ− < K , a contradiction to

the conclusion mentioned above.
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T

T

t

Notice that for a sufficiently large n, for every i ∈ [I ], θn
i ≤ θmax+1, where θmax := maxi∈[I ] θi .

hus, once (4.7)–(4.8) are established, we get,

lim sup
K→∞

lim sup
n→∞

Qn,ε
(
∥Ŷ n

i ∥T ≥ 2K/θmin

)
≤ lim sup

K→∞

lim sup
n→∞

Qn,ε
(

inf
i∈[I ]

inf
0≤t≤T

Ŷ n
i (t) ≤ −K/(4I (θmax + 1))

)
+ lim sup

K→∞

lim sup
n→∞

Qn,ε
(
θn

· Ŷ n(T ) ≥
K
2

)
= 0.

Establishing (4.7): Recall (4.6) and that X̂n
i ≥ 0 and {ψ̂

n,ε
j,i } j,i,n are uniformly bounded. Hence,

there exists a constant a1 > 0 such that for every n ∈ N and t ∈ [0, T ],

Ŷ n
i (t) ≥ −a1 − Ǎn

i (t) + Ďn
i (t).

The event {inf0≤t≤T Ŷ n
i (t) ≤ −K } implies that either {∥ Ǎn

i ∥T ≥ (K − a1)/2} or {∥Ďn
i ∥T ≥

(K −a1)/2}. By the Burkholder–Davis–Gundy (BDG) inequality there exists a constant a2 > 0
such that

sup
n

EQn,ε
[
∥ Ǎn

i ∥
2
T

]
≤ a2 sup

n

{
n−1EQn,ε [

∥An
i (T )∥

]}
=: MA,i < ∞,

where the last inequality follows since An
i (T ) is a Poisson random variable with mean

EQn,ε
[
∫ T

0 ψ
n,ε
A,i (t)dt] and since the processes {ψ̂

n,ε
j,i } j,i,n are uniformly bounded. A similar bound

holds for Ďn
i with an associated constant MS,i < ∞. Therefore,

Qn,ε
(

inf
0≤t≤T

inf
i∈[I ]

Ŷ n
i (t) ≤ −K

)
≤

I∑
i=1

{
Qn,ε(

∥ Ǎn
i ∥T ≥ (K − a1)/2

)
+ Qn,ε(

∥Ďn
i ∥T ≥ (K − a1)/2

)}
≤

2
K − a1

I∑
i=1

(MA,i + MS,i ).

he r.h.s. converges to 0 as K → ∞.

Establishing (4.8): Throughout this part, a is a positive constant, independent of n and t ,
which may change from one line to the next. Set Ỹ n

= (Ỹ n
i : i ∈ [I ]), Z̄n

= (Z̄n
i : i ∈ [I ]),

Ān
= ( Ān

i : i ∈ [I ]), and D̄n
= (D̄n

i : i ∈ [I ]) by

Ỹ n
i (t) =

θn
i
θi

Ŷ n
i (t), Z̄n

i (t) =

⏐⏐⏐θn
i
θi

− 1
⏐⏐⏐|Ŷ n

i (t)|, Ān
i (t) = | Ǎn

i (t)|, D̄n
i (t) = |Ďn

i (t)|.

Also, set e = (1, . . . , 1) ∈ RI . From (4.6) and the uniform boundedness of {ψ̂
n,ε
j,i } j,i,n , we get

that,

0 ≤ θn
· Ŷ n(t) = θ · Ỹ n(t) ≤ θ ·

(
X̂n(t) + ate + Ān(t) + D̄n(t) + Z̄n(t)

)
≤ θ ·

(
X̂n(t) + ate + Ān(t) + D̄n(t)

)
,

where the last inequality follows by modifying a, recalling that |1 − θn
i /θi | is of order n−1/2 and

hat |Ŷ n(t)| ≤ a tn1/2 for some a > 0 independent of n, i and t . Denote ρ−1
= (ρ−1

: i ∈ [I ]).
i 3 3 i
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By the monotonicity of C ◦ f , (3.4), and the convexity of C , we get that

EQn,ε
[∫ 2T

0
ϱ(t)C( f ( 1

4θ
n
· Ŷ n(t)))dt

]
≤ EQn,ε

[∫ 2T

0
ϱ(t)C( f (θ · ( 1

4 [X̂n(t) + ate + Ān(t) + D̄n(t)])))dt
]

≤ EQn,ε
[∫ 2T

0
ϱ(t)C( 1

4 [X̂n(t) + ate + Ān(t) + D̄n(t)])dt
]

≤
1
4

(
EQn,ε

[∫ 2T

0
ϱ(t)C(X̂n(t))dt

]
+ EQn,ε

[∫ 2T

0
ϱ(t)C(aet)dt

]
+EQn,ε

[∫ 2T

0
ϱ(t)C( Ān(t))dt

]
+ EQn,ε

[∫ 2T

0
ϱ(t)C(D̄n(t))dt

])
.

(4.9)

nce we show that the r.h.s. is uniformly bounded over n, we get by the monotonicity of Ci ◦ fi ,
n
· Ŷ n , and ϱ, in addition to our assumption that ϱ > 0, that

sup
n

EQn,ε
[
Ci ( fi ( 1

4θ
n
· Ŷ n(T )))

]
≤ a sup

n
EQn,ε

[∫ 2T

T
ϱ(t)Ci ( fi ( 1

4θ
n
· Ŷ n(t)))dt

]
≤ a sup

n
EQn,ε

[∫ 2T

0
ϱ(t)Ci ( fi ( 1

4θ
n
· Ŷ n(t)))dt

]
< ∞.

y an application of Markov inequality and the monotonicity of Ci ◦ fi , we obtain that (4.8)
olds.

The rest of the proof is dedicated to uniformly bound the four terms on the r.h.s. of (4.9).
he second term is deterministic and independent of n. Its bound follows by the polynomial
rowth of Ci asserted in Assumption 2.1 and the last part of the assumption. To tackle the third
erm, we use again the polynomial growth of C as follows

sup
n

EQn,ε
[∫ 2T

0
ϱ(t)Ci (| Ǎn

i (t)|)dt
]

≤ a sup
n

EQn,ε
[
∥ Ǎn

i ∥
p
2T

]
≤ a sup

n
n−p/2EQn,ε

[
∥An

i (2T )∥p/2
]
.

he last supremum is finite since An
i (2T ) is a Poisson random variable with mean

∫ 2T
0 ψ

n,ε
A,i (t)dt , the

equence {ψ̂n,ε
}n is uniformly bounded, and the p/2-moment of the Poisson random variables is a

olynomial of order p/2. The bound of the fourth term is similar and therefore omitted.
In order to estimate the first expectation, recall (4.3). Hence, for every i ∈ [I ] and n ∈ N,

EQn,ε
[∫ 2T

0
ϱ(t)Ci (X̂n

i (t))dt
]

≤ V + 1 +

I∑
i=1

LA,i (Qn,ε
A,i ∥ Pn

A,i ) +

I∑
i=1

LS,i (Qn,ε
S,i ∥ Pn

S,i ).

We now uniformly bound the divergence terms. We bound only the LA,i -terms and the same arguments
holds also for the LS,i -terms. The growth condition of gA,i and simple algebraic manipulation of the
Radon–Nikodym derivative from (2.6) yield that

EQn,ε
[∫ 2T

0
ϱ(t)gA,i

(
log
(dQn,ε

A,i

dPn
A,i

(t)
))

dt
]

≤ a + aEQn,ε
[

sup
0≤t≤2T

⏐⏐⏐ log
(dQn,ε

A,i

dPn
A,i

(t)
)⏐⏐⏐ p̄]

≤ a + aEQn,ε
[

sup
0≤t≤2T

⏐⏐⏐ ∫ t

0

(
ψ

n,ε
A,i (s) log

(ψn,ε
A,i (s)

λn
i

)
− ψ

n,ε
A,i (s) + λn

i

)
ds
⏐⏐⏐ p̄]

+ aEQn,ε
[

sup
⏐⏐⏐ ∫ t

log
(ψn,ε

A,i (s)
n

)(
An

i (s) −

∫ s
ψ

n,ε
A,i (u)du

)⏐⏐⏐ p̄]
.

0≤t≤2T 0 λi 0
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By the definition of ψn,ε
A,i and the inequality (1 + y) log(1 + y) − y ≤ y2/2 for y in a neighborhood of

applied to yn
= ψ̂

n,ε
A,i (t)(λi n)1/2/λn

i and the uniform bound over {ψ̂
n,ε
A,i }n , one obtains that the first

xpectation on the r.h.s. is bounded above. In order to estimate the second expectation pay attention
hat ∫ t

0
log
(ψn,ε

A,i (s)

λn
i

)
d
(

An
i (s) −

∫ s

0
ψ

n,ε
A,i (u)du

)
is a martingale.

enote its quadratic variation, estimated at time 2T by [
∫

·

0 . . . ]2T . Now, applying the BDG inequality
nd using the bound | log(1 + y)| ≤ 2|y| on a neighborhood of 0 applied to yn , we get that

EQn,ε
[

sup
0≤t≤2T

⏐⏐⏐ ∫ t

0
log
(ψn,ε

A,i (s)

λn
i

)
d
(

An
i (s) −

∫ s

0
ψ

n,ε
A,i (u)du

)⏐⏐⏐ p̄]
≤ aEQn,ε

[[∫ ·

0
log
(ψn,ε

A,i (s)

λn
i

)
d
(

An
i (s) −

∫ s

0
ψ

n,ε
A,i (u)du

)] p̄/2

2T

]
≤ an− p̄/2EQn,ε

[(An
i (2T )) p̄/2] < ∞.

he last bound follows since An
i (2T ) is a Poisson random variable with mean

∫ 2T
0 ψ

n,ε
A,i (t)dt , the

sequence {ψ̂
n,ε
A,i }n is uniformly bounded, and the p̄/2-moment of the Poisson random variables is a

polynomial of order p̄/2. □
The lower bound will be established via weak convergence and tightness arguments. For this, we

set up the rest of the processes required for this purpose. We start with breaking the logarithm of the
Radon–Nikodym derivatives (2.6), (2.7), and (3.1) into two parts each. For every n ∈ N and i ∈ [I ],
et the processes Hn

A,i ,Gn
A,i , Hn

S,i , and Gn
S,i by

Hn
A,i (t) =

∫ t

0
n1/2 log

(ψn,ε
A,i (s)

λn
i

)
d Ǎn(s),

Gn
A,i (t) =

∫ t

0

(
ψ

n,ε
A,i (s) log

(ψn,ε
A,i (s)

λn
i

)
− ψ

n,ε
A,i (s) + λn

i

)
ds,

Hn
S,i (t) =

∫ t

0
n1/2 log

(ψn,ε
S,i (s)

µn
i

)
d Ďn(s),

Gn
S,i (t) =

∫ t

0

(
ψ

n,ε
S,i (s) log

(ψn,ε
S,i (s)

µn
i

)
− ψ

n,ε
S,i (s) + µn

i

)
dT n

i (s).

oreover, set the processes HA,i ,G A,i , HS,i , and GS,i by

HA,i (t) =

∫ t

0
ψ̂εA,i (s)d B̂ε,Q

ε

A,i (s), G A,i (t) =
1
2

∫ t

0
(ψ̂εA,i (s))2ds,

HS,i (t) =

∫ t

0
ψ̂εS,i (s)d B̂ε,Q

ε

S,i (s), GS,i (t) =
1
2

∫ t

0
(ψ̂εS,i (s))2ds,

where

(B̂ε,Q
ε

A,i , B̂ε,Q
ε

S,i )(·) := (BεA,i , BεS,i )(·) −

∫
·

0
(ψ̂εA,i (s), ψ̂εS,i (s))ds.

Denote Hn
= (Hn

j,i : j = A, S; i ∈ [I ]),Gn
= (Gn

j,i : j = A, S; i ∈ [I ]) and similarly
H = (H j,i : j = A, S; ti ∈ [I ]),G = (G j,i : j = A, S; i ∈ [I ]). Furthermore, recall that we aim
t bounding the limit inferior of V n by the robust cost associated with generalized cµ control, which
n turn is defined via reflection. To reach this cost, we need to pass through a process with a reflection
tructure in the prelimit. Hence, we set up the following. Let L̂n

= (L̂n
: i ∈ [I ]), X̂n , and Ŷ n be
i f f
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defined as follows

L̂n
i (t) = X̂n

i (0) + m̂n
i t + Ân

i (t) − Ŝn
i (T n

i (t)) + n−1/2(µn
i − nµi )(ρi t − T n

i (t)),

nd

X̂n
f (t) = f (Γ [θ · L̂n(·)](t)), Ŷ n

f (t) = X̂n
f (t) − L̂n(t).

Lemma 4.3. The following sequence of measures{
Qn,ε

◦

(
Ân, Ŝn, T n, Ŝn(T n), Ǎn, Ďn, {ψ̂

n,ε
j,i } j,i , Hn,Gn, L̂n, X̂n

f , Ŷ n
f

)−1
}

n
(4.10)

is C-tight. Moreover, every limit point of this sequence has the same distribution as

Qε ◦

(
σ B̂εA, (ρ)−1σ B̂εS, ρ, σ B̂εS, σ B̂ε,Q

ε

A , σ B̂ε,Q
ε

S , {ψ̂εj,i } j,i , H,G, L̂ε, X̂εf , Ŷ εf
)−1

, (4.11)

here, the process (B̂ε,Q
ε

A,i , B̂ε,Q
ε

S,i ) is a 2I -dimensional SBM under the measure Qε and the filtration F
hat is generated by the processes in (4.11).

roof. The tightness argument is standard and therefore omitted. As for the limit, using the martingale
entral limit theorem as well as Lemma 4.1 we obtain the convergence of all the terms besides that
f (ψ̂n,ε, Hn,Gn). To show the convergence of the latter, notice that the continuity of Fεu implies
n,ε

◦ (ψ̂n,ε)−1
⇒ Qε ◦ (ψ̂ε)−1. By the definition of ψn,ε , the uniformly boundedness of {ψ̂n,ε

}n , and
he martingale central limit theorem, we finally obtain that Qε ◦ (Hn,Gn)−1

⇒ Qε ◦ (H,G)−1. □

roof of Proposition 4.1. From the previous lemma we may reduce to a converging subsequence of
(4.10), which we relabel by {n}. In order to establish the desired lower bound it is sufficient to prove
he following asymptotic estimates:

lim
n→∞

{ I∑
i=1

LA,i (Qn,ε
A,i ∥ Pn

A,i ) +

I∑
i=1

LS,i (Qn,ε
S,i ∥ Pn

S,i )
}

(4.12)

=

I∑
i=1

LA,i (QA,i ∥ PεA,i ) −

I∑
i=1

L j,i (QS,i ∥ PεS,i )

nd

lim inf
n→∞

∫
∞

0
ϱ(t)C(X̂n(t))dt ≥

∫
∞

0
ϱ(t)C(X̂ f (t))dt. (4.13)

The limit (4.12) follows from Lemma 4.3 and the representations

L j,i (Qn,ε
j,i ∥ Pn

j,i ) = EQn,ε
[∫ ∞

0
ϱ(t)g j,i (Hn

j,i (t) + Gn
j,i (t))dt

]
,

L j,i (Qεj,i ∥ Pεj,i ) = EQε
[∫ ∞

0
ϱ(t)g j,i (H j,i (t) + G j,i (t))dt

]
.

We now turn to proving the lower bound (4.13). The idea in this part is to use the properties of
f given in Lemma 3.1 and the pathwise minimality property of the Skorokhod map, see (3.6), applied
o θ · L̂n . For this, notice that

θ · X̂n(t) = θ · L̂n(t) + n1/2
(

1 −

I∑
i=1

T n
i (t)

)
,

ith θ · X̂n
≥ 0 and

(
1 −

∑I
i=1 T n

i (t)
)

is nonnegative and nondecreasing. Hence, (3.6) implies that

ˆ n ˆ n
θ · X (t) ≥ Γ [θ · L (·)](t), t ∈ [0, T ].
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From Lemma 3.1, the monotonicity of C ◦ f , and the last bound, we get that∫
∞

0
ϱ(t)C(X̂n(t))dt

≥

∫
∞

0
ϱ(t)C( f (θ · X̂n(t)))dt

≥

∫
∞

0
ϱ(t)C( f (Γ [θ · L̂n(·)](t)))dt

=

∫
∞

0
ϱ(t)C(X̂n

f (t))dt.

inally, Lemma 4.3 implies that

lim inf
n→∞

∫
∞

0
ϱ(t)C(X̂n(t))dt ≥

∫
∞

0
ϱ(t)C(X̂εf (t))dt. □

.3. Upper bound

In this part we show that the generalized cµ rule asymptotically attains the value of the limiting
roblem V . We denote by Ŷ n the control corresponding to the generalized cµ rule (preemptive or
on-preemptive) and show that

lim sup
n→∞

sup
Qn∈Qn

J n(Ŷ n,Qn) ≤ V . (4.14)

or this we set up in Section 4.3.1 an arbitrary sequence of measures {Qn
}n and show that for

ny “reasonable” sequence from the point of view of the maximizer, the p-means of the drifts and
he logarithms of the Radon–Nikodym derivatives of the nth systems are uniformly bounded. Then,
n Section 4.3.2 we use this uniform bound to show that the measures {Qn

}n can be uniformly
pproximated by measures {Qn,k

}n for some sufficiently large k > 0, such that the associated rates
n,k
j,i satisfy,

ψ
n,k
A,i (t) = λn

i + (λi n)1/2ψ̂
n,k
A,i (t) + o(n−1/2),

here |ψ
n,k
A,i | ≤ k, and similarly for ψn,k

S,i . The motivation behind this step is that while
∫

·

0 ψ̂
n
j,i (t)dt has

convergence subsequence, the limit is not necessarily absolutely continuous, hence, the limit might
ot have an integral form

∫
·

0 ψ̂ j,i (s)ds. Hence, we cannot compare it with the limiting game. Moreover,
e use it to obtain the convergence of the Radon–Nikodym derivatives. Finally, in Section 4.3.3 we

haracterize the limiting process by providing the state-space collapse and in Section 4.3.4 we establish
he upper bound.

.3.1. p-mean bound for the intensities
Consider an arbitrary sequence of measures chosen by the maximizer in the QCP, {Qn

}n , satisfying
2.6)–(2.7) for some {ψn

j,i }n, j,i . The first step in establishing the truncation reduction is showing that the
aximizer can be restricted to measures Qn

∈ Qn , which are close in average to the reference measure
n . The reason it holds is because for high values of n−1/2(|ψn

A,i − λn
i | + |ψn

S,i − µn
i |), the divergence

erms (in absolute values) significantly dominate the running costs, which are affected through X̂n .
ithout loss of generality, we may assume that for any n ∈ N,

J n(Ŷ n,Qn) ≥ V − 1. (4.15)

therwise, the upper bound holds trivially for such Qn’s.
Recall the definitions of Ǎn and Ďn given in (4.5) and set

ψ̂n (t) := (λ n)−1/2 (ψn (t) − λn) , and ψ̂n (t) := (µ n)−1/2 (ψn (t) − µn) .
A,i i 1,i i S,i i 2,i i
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R
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Notice that

LA,i (Qn
A,i ∥ Pn

A,i )

= EQn
[∫ ∞

0
ϱ(t)gA,i

(∫ t

0
f n

A,i (ψ̂
n
A,i (s))ds +

∫ t

0
n1/2 log

(ψn
A,i (s)

λn
i

)
d Ǎn

i (s)
)

dt
]
,

LS,i (Qn
S,i ∥ Pn

S,i )

= EQn
[∫ ∞

0
ϱ(t)gA,i

(∫ t

0
f n
S,i (ψ̂

n
S,i (s))dT n

i (s) +

∫ t

0
n1/2 log

(ψn
S,i (s)

µn
i

)
d Ďn

i (s)
)

dt
]
,

(4.16)

where f n
A,i :

(
−λn

i (λi n)−1/2,∞
)

→ R+ and f n
S,i :

(
−µn

i (µi n)−1/2,∞
)

→ R+ are given by

f n
A,i (x) := λn

i

[(
1 +

(λi n)1/2

λn
i

x
)

log
(

1 +
(λi n)1/2

λn
i

x
)

−
(λi n)1/2

λn
i

x
]
,

f n
S,i (x) := µn

i

[(
1 +

(µi n)1/2

µn
i

x
)

log
(

1 +
(µi n)1/2

µn
i

x
)

−
(µi n)1/2

µn
i

x
]
.

In the sequel, we need the following properties of f n
j,i , j ∈ {A, S}, i ∈ [I ]:

• the function x ↦→ f n
j,i (x)/x is increasing on (0,∞),

• limx→∞ supn f n
j,i (x)/x = ∞.

Pay attention that we do not assume that the processes sup j,i,n |ψ̂n
j,i (t)| are uniformly bounded.

ather, we use the next proposition to claim that one may restrict these processes to be uniformly
ounded without too much loss.

roposition 4.2. There exists M > 0 such that for every n ∈ N and every i ∈ [I ],

EQn
[∫ ∞

0
ϱ(t)

{⏐⏐⏐ ∫ t

0
ψ̂n

A,i (s)ds
⏐⏐⏐ p̄

+

⏐⏐⏐ ∫ t

0
ψ̂n

S,i (s)dT n
S,i (s)

⏐⏐⏐ p̄}
dt
]

≤ M, (4.17)

EQn
[∫ ∞

0
ϱ(t)

{(∫ t

0
f n

A,i (ψ̂
n
A,i (s))ds

) p̄
+

(∫ t

0
f n
S,i (ψ̂

n
S,i (s))dT n

i (s)
) p̄}

dt
]

≤ M, (4.18)

and

EQn
[∫ ∞

0
ϱ(t)(X̂n

i (t)) p̄dt
]

≤ M. (4.19)

Proof. Throughout the proof, the parameter a stands for a positive constant that is independent of
n and t and which can change from one line to the next. Pay attention that 0 < n−1ψn

j,i (t) ≤

(1 + n−1/2ψ̂n
j,i (t)), t ∈ R+. Applying the BDG inequality to Ǎn and Ďn , we have

EQn
[∥ Ǎn

i ∥
p
t ] ≤ an−p/2EQn

[⏐⏐⏐ ∫ t

0
ψn

A,i (s)ds
⏐⏐⏐p/2]

≤ a
(

t p/2
+ n−p/4EQn

[⏐⏐⏐ ∫ t

0
ψ̂n

A,i (s)ds
⏐⏐⏐p/2])

,

EQn
[∥Ďn

i ∥
p
t ] ≤ an−p/2EQn

[⏐⏐⏐ ∫ t

0
ψn

S,i (s)dT n
i (s)

⏐⏐⏐p/2]
≤ a

(
t p/2

+ n−p/4EQn
[⏐⏐⏐ ∫ t

0
ψ̂n

S,i (s)dT n
i (s)

⏐⏐⏐p/2])
.

(4.20)

Recall that both versions of the generalized cµ-policy, preemptive and non-preemptive, are work
conserving, that is

∑
i∈[I ] U∗,n

i (t) = 1 and
∑

i∈[I ] U ♯,n
i (t) = 1 whenever X̂n,k (t) is nonzero. By the

definitions of T n,k and Ŷ n,k it follows that the nondecreasing process θn
·Y n,k , does not increase when
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θn
· Xn,k > 0. From (4.6) we get that for any t ∈ R+,

θn
· X̂n(t) (4.21)

= Γ
[
θn

·

(
X̂n(0) + m̂n

· + Ǎn(·) + Ďn(·) +

∫
·

0
σψ̂n

A,i (s)ds −

∫
·

0
σSψ̂

n
S,i (s)dT n

i (s)
)]

(t),

where σS := Diag(µ1/2
1 , . . . , µ

1/2
I ). By (3.5), the above, the uniform bound 0 ≤ X̂n

i (t) ≤ aθn
· X̂n(t),

and since {θn
}n is uniformly bounded, it follows that for any t ∈ R+,

(X̂n
i (t))p

≤ a
I∑

i=1

(
1 + t p

+ (∥ Ǎn
i ∥t )p

+ (∥Ďn
i ∥t )p

+

⏐⏐⏐ ∫ t

0
ψ̂n

A,i (s)ds
⏐⏐⏐p

+

⏐⏐⏐ ∫ t

0
ψ̂n

S,i (s)dT n
S,i (s)

⏐⏐⏐p)
.

(4.22)

By the polynomial growth of the running cost and the bound
∫

∞

0 ϱ(t)t pdt < ∞, both given in
Assumption 2.1,

I∑
i=1

EQn
[∫ ∞

0
ϱ(t)Ci (X̂n

i (t))dt
]

≤ a
I∑

i=1

(
1 + EQn

[∫ ∞

0
ϱ(t)

{⏐⏐⏐ ∫ t

0
ψ̂n

A,i (s)ds
⏐⏐⏐p

+

⏐⏐⏐ ∫ t

0
ψ̂n

S,i (s)dT n
S,i (s)

⏐⏐⏐p}
dt
])
.

Combining it with the definition of the cost function J n and (4.15) one obtains that

LA,i (Qn
A,i ∥ Pn

A,i ) + LS,i (Qn
S,i ∥ Pn

S,i ) (4.23)

≤ a
(

1 + EQn
[∫ ∞

0
ϱ(t)

{⏐⏐⏐ ∫ t

0
ψ̂n

A,i (s)ds
⏐⏐⏐p

+

⏐⏐⏐ ∫ t

0
ψ̂n

S,i (s)dT n
S,i (s)

⏐⏐⏐p}
dt
])
.

Pay attention that for any t ∈ R+,

EQn
[∫ t

0
n1/2 log

(ψn
A,i (s)

λn
i

)
d Ǎn

i (s)
⏐⏐ Fψn

t

]
= 0,

here Fψn

t := σ {ψn
j,i (s) : s ≤ t , j = A, S , i ∈ [I ]}. Also, recall that the functions g j,i ,

j ∈ {A, S}, i ∈ [I ] are convex. Hence, by Jensen’s inequality

EQn
[
gA,i

(∫ t

0
f n

A,i (ψ̂
n
A,i (s))ds +

∫ t

0
n1/2 log

(ψn
A,i (s)

λn
i

)
d Ǎn

i (s)
)]

≥ EQn
[
gA,i

(
EQn

{∫ t

0
f n

A,i (ψ̂
n
A,i (s))ds +

∫ t

0
n1/2 log

(ψn
A,i (s)

λn
i

)
d Ǎn

i (s)
⏐⏐ Fψn

t

})]
= EQn

[
gA,i

(
EQn

{∫ t

0
f n

A,i (ψ̂
n
A,i (s))ds

⏐⏐ Fψn

t

})]
= EQn

[
gA,i

(∫ t

0
f n

A,i (ψ̂
n
A,i (s))ds

)]
,

and similarly by conditioning on σ {ψn
j,i (s), T n

i (s) : s ≤ t , j = A, S , i ∈ [I ]},

EQn
[
gS,i

(∫ t

0
f n
S,i (ψ̂

n
S,i (s))dT n

i (s) +

∫ t

0
n1/2 log

(ψn
S,i (s)

µn
i

)
d Ďn

i (s)
)]

≥ EQn
[
gS,i

(∫ t

0
f n
S,i (ψ̂

n
S,i (s))dT n

i (s)
)]
.
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Plugging in the expressions of the divergences given in (4.16) and using the two bounds above together
with the bound g j,i (x) ≥ c1 + c2x p̄ that Assumption 2.1 asserts, (4.23) yields that

EQn
A,i

[∫ ∞

0
ϱ(t)

(∫ t

0
f n

A,i (ψ̂
n
A,i (s))ds

) p̄
dt
]

+ EQn
S,i

[∫ ∞

0
ϱ(t)

(∫ t

0
f n
S,i (ψ̂

n
S,i (s))dT n

i (s)
) p̄

dt
]
(4.24)

≤ a
(

1 + EQn
[∫ ∞

0
ϱ(t)

{⏐⏐⏐ ∫ t

0
ψ̂n

A,i (s)ds
⏐⏐⏐p

+

⏐⏐⏐ ∫ t

0
ψ̂n

S,i (s)dT n
S,i (s)

⏐⏐⏐p}
dt
])
.

Denote for every t ∈ R+,

yn
A,i (t) :=

(λi n)1/2

λn
i

ψ̂n
A,i (t), yn

S,i (t) :=
(µi n)1/2

µn
i

ψ̂n
S,i (t).

Now, one can simply verify that for all y > −1,

1
4

y21{y<4} + y1{y≥4} ≤ (1 + y) log(1 + y) − y.

sing this inequality and the one from (4.24) in addition to the definitions of λn
i and µn

i given in (2.3),
we get that there exists a1 > 0, such that for any n ∈ N and t ∈ R+,

EQn
[∫ ∞

0
ϱ(t)

(∫ t

0

{
(ψ̂n

A,i (s))21{yn
A,i (s)<4} + n1/2ψ̂n

A,i (s)1{yn
A,i (s)≥4}

}
ds
) p̄

dt
]

+ EQn
[∫ ∞

0
ϱ(t)

(∫ t

0

{
(ψ̂n

S,i (s))21{yn
S,i (s)<4} + n1/2ψ̂n

S,i (s)1{yn
S,i (s)≥4}

}
dT n

i (s)
) p̄

dt
]

≤ a1

(
1 + EQn

[∫ ∞

0
ϱ(t)

{⏐⏐⏐ ∫ t

0
ψ̂n

A,i (s)ds
⏐⏐⏐p

+

⏐⏐⏐ ∫ t

0
ψ̂n

S,i (s)dT n
S,i (s)

⏐⏐⏐p}
dt
])
.

ince the mapping ψ ↦→ ψ2 is super-linear, there is a constant a2 < 0 such that for any ψ ∈ R,
2

≥ a2 + 2a1|ψ |. Applying this inequality for ψ̂n
j,i (t) on the left-hand side of the above, we get that

or every n ≥ 4a2
1 ,

a2 + 2a1

(
EQn

[∫ ∞

0
ϱ(t)

{⏐⏐⏐ ∫ t

0
ψ̂n

A,i (s)ds
⏐⏐⏐ p̄

+

⏐⏐⏐ ∫ t

0
ψ̂n

S,i (s)dT n
S,i (s)

⏐⏐⏐ p̄}
dt
])

≤ a1

(
1 + EQn

[∫ ∞

0
ϱ(t)

{⏐⏐⏐ ∫ t

0
ψ̂n

A,i (s)ds
⏐⏐⏐p

+

⏐⏐⏐ ∫ t

0
ψ̂n

S,i (s)dT n
S,i (s)

⏐⏐⏐p}
dt
])
.

ecall also that p̄ ≥ p, then,

EQn
[∫ ∞

0
ϱ(t)

{⏐⏐⏐ ∫ t

0
ψ̂n

A,i (s)ds
⏐⏐⏐ p̄

+

⏐⏐⏐ ∫ t

0
ψ̂n

S,i (s)dT n
S,i (s)

⏐⏐⏐ p̄}
dt
]

≤ 1 − a2/a1,

nd (4.17) is established. The bound in (4.18) follows by another application of (4.24) and the
ound above. Finally, the bound in (4.19) follows by combining the bounds from (4.17), (4.20),
∞

0 ϱ(t)t p̄dt < ∞, and (4.22). □

.3.2. Reduction to uniformly truncated intensities
Having at hand the uniform bound (over the expectations) from the previous proposition, we now

laim that up to a small loss from the maximizer’s point of view , the terms {ψ̂n
j,i } j,i,n can be uniformly

ounded. For this, we set up for every k > 0 the processes

ψ
n,k
A,i (t) := ψn

A,i (t) − (λi n)1/2ψ̂n
A,i (t)1{|ψ̂n

A,i (t)|>k}
,

ψ
n,k
S,i (t) := ψn

S,i (t) − (µi n)1/2ψ̂n
S,i (t)1{|ψ̂n

S,i (t)|>k}
.
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Also, denote by T n,k
= (T n,k

i : i ∈ [I ]) the DM’s generalized cµ rule given in Section 4.1 associated
ith the environment associated with the intensities {ψ

n,k
j,i } j,i . The arrival and service processes

associated with these truncated intensities are An,k and Sn,k , and they are coupled with An and Sn

as follows. Set the following independent Poisson processes (with rate 1): {Pj,i,m : j ∈ {A, S}, i ∈

[I ],m = 1, . . . , 4}. For every i ∈ [I ] set up the following processes

Mn,−
A,i (·) = PA,i,1

(∫ ·

0

(
λn

+ n1/2ψ̂n
A,i (s)1

{ψ̂n
A,i (s)<0}

)
ds
)
,

K n,−
A,i (·) = PA,i,2

(∫ ·

0
n1/2

(
−ψ̂n

A,i (s)
)
1

{ψ̂n
A,i (s)<−k}

ds
)
,

K n,+
A,i (·) = PA,i,3

(∫ ·

0
n1/2ψ̂n

A,i (s)1
{0<ψ̂n

A,i (s)≤k}
ds
)
,

Mn,+
A,i (·) = PA,i,4

(∫ ·

0
n1/2ψ̂n

A,i (s)1
{ψ̂n

A,i (s)>k}
ds
)
,

nd similarly,

Mn,−
S,i (·) = PS,i,1

(∫ ·

0
(µn

+ n1/2ψ̂n
S,i (s)1

{ψ̂n
S,i (s)<0}

)dT n
i (s)

)
,

Mn,k,−
S,i (·) = PS,i,1

(∫ ·

0
(µn

+ n1/2ψ̂n
S,i (s)1

{ψ̂n
S,i (s)<0}

)dT n,k
i (s)

)
,

K n,k,−
S,i (·) = PS,i,2

(∫ ·

0
n1/2(−ψ̂n

S,i (s))1
{ψ̂n

S,i (s)<−k}
dT n,k

i (s)
)
,

K n,+
S,i (·) = PS,i,3

(∫ ·

0
n1/2ψ̂n

S,i (s)1
{0<ψ̂n

S,i (s)≤k}
dT n

i (s)
)
,

K n,k,+
S,i (·) = PS,i,3

(∫ ·

0
n1/2ψ̂n

S,i (s)1
{0<ψ̂n

S,i (s)≤k}
dT n,k

i (s)
)
,

Mn,+
S,i (·) = PS,i,4

(∫ ·

0
n1/2ψ̂n

S,i (s)1
{ψ̂n

S,i (s)>k}
dT n

i (s)
)
.

ow set, An
= (An

i : i ∈ [I ]), An,k
= (An,k

i : i ∈ [I ]), Dn
= (Dn

i : i ∈ [I ]), Dn,k
= (Dn,k

i : i ∈ [I ]) as
ollows

An
:= Mn,−

A + K n,+
A + Mn,+

A , An,k
:= Mn,−

A + K n,−
A + K n,+

A

Dn
:= Mn,−

S + K n,+
S + Mn,+

S , Dn,k
:= Mn,k,−

S + K n,k,−
S + K n,k,+

S .

lso, denote by Ǎn, Ǎn,k , Ďn , and Ďn,k the compensated versions of An, An,k , Dn , and Dn,k ,
espectively. Finally, set Ŷ n,k

= (Ŷ n,k
i : i ∈ [I ]) with Ŷ n,k (·) = µn

i n−1/2(ρi · −T n,k
i (·)) and the state

rocess

X̂n,k
i (t) = X̂n

i (0) + m̂n
i t + Ǎn,k

i (t) − Ďn,k
i (t) + Ŷ n,k

i (t)

+ λ
1/2
i

∫ t

0
ψ̂

n,k
A,i (s)ds − µ

1/2
i

∫ t

0
ψ̂

n,k
S,i (s)dT n,k

i (s).

s in (4.21), we have as well for any t ∈ R+,

θn
· X̂n,k (t) (4.25)

= Γ
[
θn

·

(
X̂n(0) + m̂n

· + Ǎn,k (·) + Ďn,k (·) +

∫
·

0
σψ̂

n,k
A,i (s)ds −

∫
·

0
σSψ̂

n,k
S,i (s)dT n,k

i (s)
)]

(t),

here recall that σS = Diag(µ1/2
1 , . . . , µ

1/2
I ).
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Lemma 4.4. For any given k > 0, the sequence of processes {(T n, T n,k )}n converges in probability
to (ρ, ρ) under the measures {Qn

}n .

Once we establish the convergence in probability for each of the components, the joint convergence
follows. As in the proof of Lemma 4.2, in order to establish the convergence of each of the components,
it is sufficient to prove that for every T > 0, {Qn

◦ ((∥Ŷ n
∥T )−1) is tight. The proof here is similar,

where now the uniform boundedness of
∫ T

0 ψ̂
n,ε
A,i (t)dt , asserted in Section 4.2, is replaced by the uniform

boundedness of EQn [⏐⏐ ∫ T
0 ψ̂n

A,i (t)dt
⏐⏐ p̄] and similarly for j = S. The proof is therefore, omitted.

Proposition 4.3. The following asymptotic bound holds

lim
k→∞

lim inf
n→∞

{
J (Ŷ n,k ,Qn,k ) − J (Ŷ n,Qn)

}
≥ 0.

Proof. Throughout the proof, the parameter a stands for a positive constant, independent of n, t , and
k, and which can change from one line to the next. The proof is done in two parts, separately taking
care of the holding costs and the divergence terms.

Part (i). We start with showing that

lim inf
n→∞

EQn
[∫ ∞

0
ϱ(t)

{
C(X̂n,k (t)) − C(X̂n(t))

}
dt
]

≥ 0. (4.26)

he convexity of Ci implies that for every i ∈ [I ],

EQn
[∫ ∞

0
ϱ(t)

{
Ci (X̂n,k

i (t)) − Ci (X̂n
i (t))

}
dt
]

≥ EQn
[∫ ∞

0
ϱ(t)C ′

i (X̂n
i (t))(X̂n,k

i (t) − X̂n
i (t))dt

]
.

Assumption 2.1 implies that C ′(x) ≤ a(1 + x p−1). Hence, it is sufficient to show that for every
∈ [I ],

lim
n→∞

EQn
[∫ ∞

0
ϱ(t)

(
1 + (X̂n

i (t))p−1
) ⏐⏐X̂n,k

i (t) − X̂n
i (t)

⏐⏐dt
]

= 0.

y Hölder’s inequality (using the powers p/(p − 1) and p) and (4.19) it is sufficient to show that

lim
n→∞

EQn
[∫ ∞

0
ϱ(t)

⏐⏐X̂n,k
i (t) − X̂n

i (t)
⏐⏐pdt

]
= 0.

oreover, since, {θn
i }i,n are bounded away from 0, the latter follows once we show that

lim
n→∞

EQn
[∫ ∞

0
ϱ(t)|θn

· X̂n(t) − θn
· X̂n,k (t)|

p
dt
]

= 0. (4.27)

ay attention that by the BDG inequality,

EQn
[
∥M̌n,−

− M̌n,k,−
∥

p
t

]
≤ an−p/2EQn

[{∫ t

0

(
µn

+ n1/2ψ̂n
S,i (s)1

{ψ̂n
S,i (s)<0}

)
d|T n

i (s) − dT n,k
i (s)|

}p/2]
≤ aEQn

[
∥T n

i − T n,k
i ∥

p/2
t

]
.

y (4.21) and (4.25),

EQn
[⏐⏐θn

· X̂n(t) − θn
· X̂n,k (t)

⏐⏐p
]

≤ a
I∑{

EQn
[(∫ t

|ψ̂n
A,i (s)|1

{|ψ̂n
A,i (s)|>k}

ds
)p]
i=1 0
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+ EQn
[(∫ t

0
|ψ̂n

S,i (s)|1
{|ψ̂n

S,i (s)|>k}
dT n

i (s)
)p]

+ EQn
[(∫ t

0

(
|ψ̂

n,k
S,i (s)|

)
d
(
T n

i (s) − T n,k
i (s)

))p]
+ EQn

[
∥T n

i − T n,k
i ∥

p/2
t

]}
.

Therefore,

EQn
[∫ ∞

0
ϱ(t)|θn

· X̂n(t) − θn
· X̂n,k (t)|

p
dt
]

≤ a
I∑

i=1

{
EQn

[∫ ∞

0
ϱ(t)

(∫ t

0
|ψ̂n

A,i (s)|1
{|ψ̂n

A,i (s)|>k}
ds
)p

dt
]

+ EQn
[∫ ∞

0
ϱ(t)

(∫ t

0
|ψ̂n

S,i (s)|1
{|ψ̂n

S,i (s)|>k}
dT n

i (s)
)p

dt
]

+ EQn
[∫ ∞

0
ϱ(t)

(∫ t

0
|ψ̂

n,k
S,i (s)|d

(
T n

i (s) − T n,k
i (s)

))p
dt
]

+ EQn
[∫ ∞

0
ϱ(t)∥T n

i − T n,k
i ∥

p/2
t dt

]}
.

(4.28)

We show that by taking limk→∞ lim infn→∞ the four terms of the sum on the r.h.s. of the above
converge to zero. The convergence of the first two terms follows by the same argument, which for
convenience, we provide only for the first one. For every t ∈ R+,∫ t

0
|ψ̂n

A,i (s)|1
{|ψ̂n

A,i (s)|>k}
ds

=

∫ t

0
ψ̂n

A,i (s)1
{ψ̂n

A,i (s)>k}
ds +

∫ t

0
−ψ̂n

A,i (s)1
{−ψ̂n

A,i (s)>k}
ds

≤
k

f n
A,i (k)

∫ t

0
f n

A,i (ψ̂
n
A,i (s))1

{ψ̂n
A,i (s)>k}

ds + a
n
k

∫ t

0

( (λi n)1/2ψ̂n
A,i (s)

λn
i

)2
1

{ψ̂n
A,i (s)<−k}

ds

≤

( k
f n

A,i (k)
+

a
k

) ∫ t

0
f n

A,i (ψ̂
n
A,i (s))ds.

The first inequality follows since the function x ↦→ f n
j,i (x)/x is increasing, since for x > k,

x ≤ x2/k, and since (λi n)1/2/λn
i is or order n−1/2. The second one follows since for x < 0,

x2
≤ (1+x) log(1+x)−x and again since (λi n)1/2/λn

i is of order n−1/2. Taking EQn
[
∫

∞

0 ϱ(t)(· · · ) p̄dt]
on both sides and using (4.18) and the limit limk→∞ supn f n

j,i (k)/k = ∞, one obtains the convergence
of the first term of (4.28). For any given k > 0, the third term on the r.h.s. of (4.28) converges to zero
as n → ∞ since |ψ̂

n,k
A,i | ≤ k and by Lemma 4.4. Finally, the last term on the r.h.s. of (4.28) converges

to zero by Lemma 4.4. These limits imply that (4.27) holds, which in turn implies that (4.26) holds.

Part (ii). We now turn to the divergence terms. We show that for any i ∈ [I ],

lim
k→∞

lim sup
n→∞

{
LA,i (Qn,k

A,i∥P
n
A,i ) − LA,i (Qn

A,i∥P
n
A,i )

}
≤ 0,

lim
k→∞

lim sup
n→∞

{
LS,i (Qn,k

S,i ∥ Pn
S,i ) − LS,i (Qn

S,i ∥ Pn
S,i )
}

≤ 0.
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The proofs of both asymptotic bounds are similar, however, the components T n and T n,k add another
level of complication to the proof of the second limit. Hence, we only prove the latter. Denote

En(t) :=

∫ t

0
f n
S,i (ψ̂

n
S,i (s))dT n

i (s), Fn(t) :=

∫ t

0
n1/2 log

(ψn
S,i (s)

µn
i

)
d Ďn

i (s),

En,k (t) :=

∫ t

0
f n
S,i (ψ̂

n,k
S,i (s))dT n,k

i (s), Fn,k (t) :=

∫ t

0
n1/2 log

(ψn,k
S,i (s)

µn
i

)
d Ďn,k

i (s).

The conditional expectation of Fn(t) given Fψn

t = σ {ψn
j,i (s) : s ≤ t , j = A, S , i ∈ [I ]} is zero.

From (4.16) and the convexity of gS,i if follows that

LS,i (Qn
S,i ∥ Pn

S,i ) − LS,i (Qn,k
S,i ∥ Pn

S,i ) (4.29)

= EQn
[
EQn

{∫ ∞

0
ϱ(t)gS,i

(
En(t) + Fn(t)

)
dt
⏐⏐⏐ Fψn

}]
− EQn

[∫ ∞

0
ϱ(t)gS,i

(
En,k (t) + Fn,k (t)

)
dt
]

≥ EQn
[∫ ∞

0
ϱ(t)gS,i

(
EQn{

En(t) + Fn(t) | Fψn

t
})

dt
]

− EQn
[∫ ∞

0
ϱ(t)gS,i

(
En,k (t) + Fn,k (t)

)
dt
]

≥ EQn
[∫ ∞

0
ϱ(t)g′

S,i

(
En,k (t) + Fn,k (t)

) (
EQn{

En(t) | Fψn

t
}

− En,k (t) − Fn,k (t)
)

dt
]
.

We now show that limk→∞ lim infn→∞ of the r.h.s. is 0. To this end, we show that

lim
k→∞

lim inf
n→∞

EQn
[∫ ∞

0
ϱ(t)g′

S,i

(
En,k (t) + Fn,k (t)

)
Fn,k (t)dt

]
= 0, (4.30)

lim
k→∞

lim inf
n→∞

EQn
[∫ ∞

0
ϱ(t)g′

S,i

(
En,k (t) + Fn,k (t)

) (
EQn{

En(t) | Fψn

t
}

− En,k (t)
)

dt
]

≥ 0.

(4.31)

We start with the proof of (4.30). The conditions on gS,i imply that its derivative has at most a
polynomial growth of order p̄ − 1. Applying Hölder’s inequality as in the first part of the proof, we
get that it is sufficient to show that

lim sup
k→∞

lim sup
n→∞

EQn
[∫ ∞

0
ϱ(t)|En(t)| p̄dt

]
< ∞,

and

lim
k→∞

lim sup
n→∞

EQn
[∫ ∞

0
ϱ(t)|Fn,k (t)|

p̄
dt
]

= 0. (4.32)

The first bound follows from Proposition 4.2. To obtain the second bound we first apply the BDG
inequality and obtain that

EQn
[∫ ∞

0
ϱ(t)|Fn,k (t)|

p̄
dt
]

≤ aEQn
[(∫ t

0
n
⏐⏐⏐ log

(ψn
S,i (s)

µn
i

)⏐⏐⏐21
{|ψ̂n

S,i (s)|≤k}
d Dn,k

i (s)
n

) p̄/2]
.

Pay attention that for any given k > 0, there is nk > 0 such that for all n ≥ nk , and any s ∈ R+,

n1/2
⏐⏐⏐ log

(ψn
S,i (s)

n

)⏐⏐⏐1
{|ψ̂n (s)|≤k}

≤ 2|ψ̂n
S,i (s)|.
µi S,i
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Therefore, the r.h.s. of the above is bounded above by

EQn
[∫ ∞

0
ϱ(t)|Fn,k (t)|

p̄
dt
]

≤ aEQn
[(∫ t

0

⏐⏐ψ̂n
S,i (s)

⏐⏐21
{|ψ̂n

S,i (s)|≤k}
d Dn,k

i (s)
n

) p̄/2]
.

inally, Jensen’s inequality together with the order n rate of Dn,k and the same arguments given at the
nd of part (i) of this proof, relying on Proposition 4.2, imply that (4.33) holds and (4.30) is established.

We now turn to the proof of (4.31). Pay attention that

EQn [
En(t) | Fψn

t
]
− En,k (t) = EQn

[∫ t

0
f n
S,i (ψ̂

n
S,i (s))1

{|ψ̂n
S,i (t)|>k}

dT n
i (s)

⏐⏐⏐ Fψn

t

]
+ EQn

[∫ t

0
f n
S,i (ψ̂

n,k
S,i (s))d(T n

i (s) − ρi s)
⏐⏐⏐Fψn

t

]
+

∫ t

0
f n
S,i (ψ̂

n,k
S,i (s))d(ρi s − T n,k

i (s)).

Since g′

j,i is non-decreasing we can use the last display together with the fact that f n
j,i is nonnegative

to get

lim
k→∞

lim inf
n→∞

EQn
[∫ ∞

0
ϱ(t)g′

S,i

(
En,k (t) + Fn,k (t)

) (
EQn [

En(t) | Fψn

t
]
− En,k (t)

)
dt
]

≥ lim
k→∞

lim inf
n→∞

EQn
[∫ t

0

{
ϱ(t)g′

S,i

(
En,k (t) + Fn,k (t)

)
EQn

[∫ t

0
f n
S,i (ψ̂

n,k
S,i (s))d(T n

i (s) − ρi s)
⏐⏐⏐Fψn

t

]}
dt
]

+ lim
k→∞

lim inf
n→∞

EQn
[∫ t

0

{
ϱ(t)g′

S,i

(
En,k (t) + Fn,k (t)

) ∫ t

0
f n
S,i (ψ̂

n,k
S,i (s))d(ρi s − T n,k

i (s))
}

dt
]
.

We now show that the last two limits are zero. Since the proofs for both limits are similar, we
focus only on the second one and show that

lim
k→∞

lim sup
n→∞

EQn
[∫ t

0

{
ϱ(t)g′

S,i

(
En,k(t) + Fn,k(t)

)
Bn,k(t)

}
dt
]

= 0,

where

Bn,k(t) :=

⏐⏐⏐ ∫ t

0
f n

S,i (ψ̂
n,k
S,i (s))d(ρi s − T n,k

i (s))
⏐⏐⏐.

Now, the conditions on gS,i imply that its derivative has at most a polynomial growth of order
p̄ − 1. Again applying Hölder’s inequality, we get that it is sufficient to show that

lim sup
k→∞

lim sup
n→∞

EQn
[∫ ∞

0
ϱ(t)|En,k(t)|

p̄
dt
]
< ∞,

lim sup
k→∞

lim sup
n→∞

EQn
[∫ ∞

0
ϱ(t)|Fn,k(t)|

p̄
dt
]
< ∞,

nd

lim
k→∞

lim sup
n→∞

EQn
[∫ ∞

0
ϱ(t)|Bn,k(t)|

p̄
dt
]

= 0. (4.33)

he first two bounds were established before. Finally, the last limit follows by Lemma 4.4 and
ince for any given k, supn f n

S,i (ψ̂
n,k
S,i (s)) is uniformly bounded. □

.3.3. State-space collapse
We now focus on the truncated processes. Fix as arbitrary k > 0 and define

Ŵ n,k (t) := Ǎn,k (t) − Ďn,k (t) + m̂n t, Ψ̂n,k
j =

∫ t
ψ̂

n,k
j (s)ds, j ∈ {A, S}, t ∈ R+.
0
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We now state the state-space collapse property. Its proof follows by the same arguments given
n [8,23,41] and relies on the fact that on any given compact time interval Ψn,k

j , j = A, S, are uniformly
bounded (for the fixed k). Therefore, it is omitted.

Proposition 4.4. The following limit holds

lim
n→∞

Qn,k
◦

(
X̂n,k

− f (θn
· X̂n,k )

)−1
= 0.

Next we provide a limiting result.

Lemma 4.5. The following sequence of probability measures is C-tight⎧⎨⎩Qn,k
◦

(
Ǎn,k , Ďn,k , Ŵ n,k , X̂n,k , Ŷ n,k , Ψ̂n,k

A , Ψ̂n,k
S , T n,k ,

{dQn,k
j,i

dPn
j,i

}
i, j

)−1

,

Pn,k
◦

(
Ǎn,k , Ďn,k , Ŵ n,k , X̂n,k , Ŷ n,k , Ψ̂n,k

A , Ψ̂n,k
S , T n,k ,

{dQn,k
j,i

dPn
j,i

}
i, j

)−1
⎫⎬⎭

n

nd any sub-sequential limit of it

Q◦,k
◦

(
Ǎ◦,k , Ď◦,k , Ŵ ◦,k , X̂◦,k , Ŷ ◦,k , Ψ̂◦,k

A , Ψ̂◦,k
S , ρ, {H j,i } j,i

)−1
,

P◦,k
◦

(
Ǎ◦,k , Ď◦,k , Ŵ ◦,k , X̂◦,k , Ŷ ◦,k , Ψ̂◦,k

A , Ψ̂◦,k
S , ρ, {H j,i } j,i

)−1

satisfies

1. X̂◦,k (0) = X̂ (0) = x̂0 and a.s. under both Q◦,k and P◦,k , for every t ∈ R+,

X̂◦,k (t) = f
(
Γ
[
θ ·

(
X̂◦,k (0) + Ŵ ◦,k (·)

)
+ σ Ψ̂◦,k

A (·) − σSΨ̂
◦,k
S (·)

]
(t)
)
,

Ŷ ◦,k (t) = X̂◦,k (t) −

(
X̂◦,k (0) + Ŵ ◦,k (·) + σ Ψ̂◦,k

A (·) − σSΨ̂
◦,k
S (·)

)
,

2. Ŵ ◦,k
= m̂ + Ǎ◦,k

− Ď◦,k , where (σ−1 Ǎ◦,k , σ−1
S Ď◦,k ) is a 2I -dimensional SBM under Q◦,k and

(σ−1 Ǎ◦,k
+Ψ̂◦,k

A , σ−1
S Ď◦,k

+Ψ̂◦,k
A ) is a 2I -dimensional SBM under P◦,k , both w.r.t. the filtration

F◦,k
t :=

{
Ǎ◦,k (s), Ď◦,k (s), Ŵ ◦,k (s), X̂◦,k (s), Ŷ ◦,k (s), Ψ̂◦,k

A (s), Ψ̂◦,k
S (s) : 0 ≤ s ≤ t

}
,

3. Ψ◦,k
j (·) =

∫
·

0 φ̂ j (s)ds, j ∈ {A, S}, for some [−k, k]I -valued, F◦,k
t -progressively measurable

processes {φ̂ j = (φ̂ j,i : i ∈ [I ])} j .
4. For every t ∈ R+,

HA,i (t) =
d(Q◦,k

◦ ( Ǎ◦,k
i )−1)

d(P◦,k ◦ ( Ǎ◦,k
i )−1)

(t) = exp
{∫ t

0
φ̂A,i (s)d Ǎ◦,k

A,i (s) −
1
2

∫ t

0
φ̂2

A,i (s)ds
}
,

HS,i (t) =
d(Q◦,k

◦ (Ď◦,k
i )−1)

d(P◦,k ◦ (Ď◦,k
i )−1)

(t) = exp
{∫ t

0
φ̂S,i (s)d Ď◦,k

S,i (s) −
1
2

∫ t

0
φ̂2

S,i (s)ρi ds
}
.

Proof. The C-tightness and the first three properties follow by standard martingale techniques and
Proposition 4.4. We now prove the fourth property. Pay attention that both right-hand sides follow by
the second property. Hence, we are only required to establish the left-hand sides, which we provide
only for j = A. Fix t > 0 and a continuous and bounded function h : D[0, T ] → R. Then,

EQn,k
[
h
(

Ǎn,k
i

⏐⏐ )]
= EPn,k

[
h
(

Ǎn,k
i

⏐⏐ ) dQn,k
A,i
n,k

⏐⏐ ]
,
[0,t] [0,t] dPA,i

[0,t]
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where here and below for any process E , its restriction to the time interval [0, t] is denoted by E |[0,t].
y tightness and converging along a subsequence, we get that

EQ◦,k
[
h
(

Ǎ◦,k
i

⏐⏐
[0,t]

)]
= EP◦,k

[
h
(

Ǎ◦,k
i

⏐⏐
[0,t]

)
HA,i

⏐⏐
[0,t]

]
.

Therefore, HA,i (t) = d(Q◦,k
◦ ( Ǎ◦,k

i )−1)/d(P◦,k
◦ ( Ǎ◦,k

i )−1)(t). □

.3.4. Convergence of the cost components
Recall Proposition 4.3. Fix ε > 0 and kε > 0 such that

lim inf
n→∞

{
J (Ŷ n,k ,Qn,k ) − J (Ŷ n,Qn)

}
≥ −ε.

o,

lim sup
n→∞

J (Ŷ n,Qn) ≤ lim inf
n→∞

J (Ŷ n,k ,Qn,k ) + ε ≤ J (Ŷ ◦,k ,Q◦,k ) ≤ V + ε.

he second inequality follows by the limit given in Lemma 4.5 and the last equality follows by the
tructure of Ŷ ◦,k and by Proposition 3.1. This establishes (4.14).
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