ATTRIBUTION OF SURFACE URBAN HEAT ISLANDS

1	Surface urban heat and cool islands and their drivers: an
2	observational study in Nanjing, China
3	Liang Wang ¹ , Dan Li ^{1*}
4	1: Department of Earth and Environment, Boston University, MA 02215, USA.
5	Ning Zhang ² , Jianning Sun ² , Weidong Guo ²
6	2: School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
7	
8	* corresponding author: lidan@bu.edu
9	

Abstract Urban heat islands (UHIs) are caused by a multitude of changes induced by urbanization. However, the relative importance of biophysical and atmospheric factors in controlling the UHI intensity remains elusive. In this study, we quantify the magnitude of surface UHIs (SUHIs), or surface urban cool islands (SUCIs), and elucidate their biophysical and atmospheric drivers based on observational data collected from one urban site and two rural grassland sites in and near the city of Nanjing, China. Results show that during the daytime a strong SUCI effect is observed when the short grassland site is used as the reference site, while a moderate SUHI effect is observed when the tall grassland is used as the reference site. We find that the former is mostly caused by the lower aerodynamic resistance for convective heat transfer at the urban site, while the latter is primarily caused by the higher surface resistance for evapotranspiration at the urban site. At night, SUHIs are observed when either the short or the tall grassland site is used as the reference site and are predominantly caused by the stronger release of heat storage at the urban site. In general, the magnitude of SUHI is much weaker, and even becomes SUCI during daytime, with the short grassland site being the reference site due to its larger aerodynamic resistance. The study highlights that the magnitude of SUHIs and SUCIs is mostly controlled by urban-rural differences of biophysical factors, with urban-rural differences of atmospheric conditions playing a minor role. **Keywords** Aerodynamic resistance • Heat storage • Surface resistance • Surface urban heat

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

islands Surface urban cool islands

1 Introduction

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Urban population, which comprises more than half of the world's population, is projected to reach 68% by 2050 (United Nations 2019). A well-known consequence of urbanization is the urban heat island (UHI) effect, which describes that urban areas are generally hotter than the surrounding rural areas, especially at night (Oke et al. 2017). UHIs exacerbate the heat stress for city dwellers (Mora et al. 2017; Rydin et al. 2012; Zhao et al. 2018) and threaten urban sustainability in terms of ecosystem functions, energy consumption and air quality (Grimm et al. 2008). The UHI intensity can be quantified through the urban-rural contrast of air and/or surface temperatures. In this study, we focus on the urban-rural contrast of surface temperature (T_s) , hereafter surface urban heat islands (SUHIs). Negative urban-rural contrasts in terms of the surface temperature, which are sometimes observed, are called surface urban cool islands (SUCIs). SUHIs, or UHIs in general, are induced by the unique characteristics of urban environments such as the larger anthropogenic emissions, the lower albedo owing to the use of certain man-made materials and radiative trapping, less evaporative cooling associated with limited green space and low surface moisture, as well as the larger heat release at night due to the higher thermal admittance of built materials (Arnfield 2003; Grimm et al. 2008; Grimmond 2007; Oke 1982; Ramamurthy et al. 2014; Taha 1997; Zhao et al. 2014). A logical starting point to understand the drivers of SUHIs is to use the surface energy balance equation. For a volume of outdoor space, which extends from the infinitesimal interfacial layer below the surface to the top of buildings, the surface energy balance equation can be expressed as:

$$R_n + AF + AH = H + LE + G \tag{1}$$

where R_n is the net radiation, AF is the anthropogenic heat release within the volume, AHis the net horizontal heat transfer by wind. The sum of these three terms is the total energy input to the control volume, which is partitioned into the sensible heat flux (H), the latent heat flux (LE), and the ground heat flux or heat storage (G). From Eq. (1) one can see that a larger anthropogenic heat flux or a larger net radiation (e.g., caused by a lower albedo) in the urban environment means more energy inputs, thus favoring higher SUHIs. In contrast, a larger heat flux going into the ground, which often occurs during daytime, tends to cool the surface, which may cause SUCIs. The opposite tends to occur during nighttime which heats the surface and leads to strong SUHIs. Similarly, a larger sensible/latent heat flux going into the atmosphere would cool the surface while a larger sensible/latent heat flux from the atmosphere to the surface would heat the surface. The sensible and latent heat fluxes are turbulent fluxes which are strongly controlled by aerodynamic features and vegetation/moisture conditions at the surface. In particular, urban areas usually have limited vegetation cover and low soil moisture, which tends to cause lower latent heat fluxes into the atmosphere and thus SUHIs. One way to link the sensible and latent heat fluxes to surface temperature is through the concepts of aerodynamic and surface resistances (Brutsaert 2005, 1982; Monteith and Unsworth 2007), as follows:

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

73

74

75

$$H = \frac{\rho c_p}{r_a} (T_s - T_a) \tag{2}$$

72
$$LE = \frac{\rho L_v}{r_a + r_s} (q^*(T_s) - q_a)$$
 (3)

where ρ is the air density, c_p is the specific heat of air at constant pressure, r_a is the aerodynamic resistance, T_a is the air temperature, L_v is the latent heat of vaporization, r_s is the surface resistance, q^* is the saturated specific humidity at T_s , and q_a is the atmospheric

specific humidity. Here we use air temperature to replace potential temperature because the observational data we will be using are collected very close to the surface. It should be stressed that the aerodynamic resistance in Eq. (2) represents the efficiency with which the land convects sensible heat (i.e., not momentum) from the surface to the lower atmosphere through turbulence. While the aerodynamic resistances for both convective heat transfer and momentum transfer are affected by the mean wind shear near the surface and the gradient in the air temperature (Brutsaert 2005, 1982; Garratt 1992), there is a strong distinction between momentum and heat transfer over rough surfaces, as reviewed elsewhere (Brutsaert 1982; Li 2019) and demonstrated by recent large-eddy simulations (Li et al. 2020; Li and Bou-Zeid 2019). A rougher surface characterized by a larger momentum roughness length, which is a concept closely related to the building geometry in urban areas (Oke et al. 2017), does not necessarily imply a higher efficiency for convective heat transfer. In fact, there are "trade-off effects" in the effectiveness of a veryrough surface in exchanging momentum and scalars (e.g., heat) with a turbulent boundary layer (Li et al. 2020). As the surface becomes rougher in terms of momentum transfer, convective heat transfer may or may not become more efficient (Li et al. 2020), namely, the aerodynamic resistance for convective heat transfer may or may not decrease. In comparison, the surface resistance in Eq. (3) represents the efficiency with which the land extracts water from the saturated zone to the soil surface or from the vegetation inside to the leaf surface, and is strongly dependent on soil moisture and vegetation stresses (Brutsaert 2005, 1982; Garratt 1992). The lack of vegetation and the prevalence of impervious surface in urban areas imply that the urban surface resistance is often larger than its rural counterpart.

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

Many studies explore the importance of each energy component in the surface energy balance equation in controlling the magnitude of SUHIs or SUCIs. Nighttime SUHIs are known to be mostly caused by the larger heat release at night due to the higher thermal admittance of built materials and the larger anthropogenic heat flux in urban areas (Oke et al. 2017). On the other hand, daytime SUHIs are thought to be primarily caused by the lack of evaporative cooling in cities, with other factors such as the urban-rural difference in albedo also playing important roles (Carlson and Boland 1978; Gu and Li 2018; Imhoff et al. 2010; Li et al. 2019; Oke 1982; Peng et al. 2012; Taha 1997; Zhou et al. 2016). However, there is a recent debate regarding the dominant factor controlling the spatial variations of daytime SUHIs within the context of large-scale urban modelling. The study by Zhao et al. (2014) found that the spatial variations of the daytime SUHIs in North America can be largely explained by the spatial variations of the urban-rural difference in the aerodynamic resistance, which seems to be at odds with the traditional paradigm that attributes the daytime SUHIs mainly to the lack of evaporative cooling in cities. According to their analysis (Zhao et al. 2014), stronger SUHIs in wetter climates are caused by the fact that the rural areas have higher efficiencies to transfer sensible heat from the surface into the lower atmosphere than the urban areas; while weaker SUHIs or even SUCIs in drier climates are due to that the rural areas have lower convective heat transfer efficiencies than the urban areas. Later, Li et al. (2019) argued that the spatial variations of daytime SUHIs over North America are more controlled by the spatial variations of urban-rural difference in the surface resistance, with the spatial variations of urban-rural difference in the aerodynamic resistance also playing a role (see also Manoli et al. 2019). In a wetter climate,

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

the rural vegetation tends to have a higher evaporative cooling capacity and thus the SUHI is stronger.

Both studies by Zhao et al. (2014) and Li et al. (2019) used subgrid outputs from offline land simulations with global climate or earth system models (Li et al. 2016a, 2016b; Oleson et al. 2008b, 2008a) to diagnose the spatial variations of SUHIs at continental scales. The use of subgrid outputs from global climate or earth system models allow (or equivalently force) them to assume that urban and rural lands share the same atmospheric conditions, so the urban-rural difference in surface temperature is solely a result of urban-rural differences in surface biophysical factors. The objective of this study is to revisit this debate using observational data collected at paired flux tower sites across urban-rural gradients and to assess the assumption of similar atmospheric conditions between urban and rural land made by Zhao et al. (2014) and Li et al. (2019) as well as other studies using global climate or earth system model outputs.

To do so, we need to extend the framework used in Zhao et al. (2014) and Li et al. (2019), which largely follows Lee et al. (2011), to consider urban-rural differences in

To do so, we need to extend the framework used in Zhao et al. (2014) and Li et al. (2019), which largely follows Lee et al. (2011), to consider urban-rural differences in atmospheric conditions that do exist in the real world. This is motivated by previous attempts trying to apply the framework used in Zhao et al. (2014) and Li et al. (2019) to diagnosing surface temperature differences measured by paired flux towers but those attempts either ignored the atmospheric differences (Burakowski et al. 2018), or only considered the near-surface air temperature difference but ignored other key parameters such as incoming shortwave radiation (Chen and Dirmeyer 2016; Liao et al. 2018; Wang et al. 2017). In this study, we will conduct a more comprehensive attribution of SUHIs (or SUCIs), with the aim of more appropriately quantifying the contributions from urban-rural

differences in atmospheric factors, in addition to those from surface biophysical factors, to
the SUHIs (or SUCIs).

The paper is organized as follows: section 2 describes the data and methodology, section 3 presents the main results, and section 4 concludes the paper and discusses the implications and future work.

2 Data and Methodology

2.1 Observational data

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

The observational data used in this study are collected at one urban site and two rural (grassland) sites in Nanjing, China (Figure 1). We use two rural reference sites since it allows for an exploration of the influence of the selection of reference site on the computed SUHIs and the associated drivers. The urban site (32°2′24" N, 118°47′24" E) is located in the central area of Nanjing and surrounded by residential and commercial buildings with an average building height of 19.7 m and building coverage up to 70%. One of the rural sites (32°7′14″ N, 118° 57′10″ E) is located in the Xianlin Campus of Nanjing University in eastern suburb of Nanjing. This rural site is located over short grassland with an average height of 7 cm and is 18 km away from the urban site. Another rural site (31°43'08" N, 118°58′51″ E) is located in the Lishui County of Nanjing, which is 38 km away from the urban site. The land cover type is also grassland but the grass height is much taller with an average value of 60 cm. Therefore, we refer to this rural site as the tall grassland site and the previously mentioned rural site as the short grassland site. Automatic weather stations (AG1000, Campbell Scientific) are employed to measure air temperature, humidity and wind speed at 2 m, air pressure at 8 m, and radiation fluxes at 1.5 m. Turbulent heat fluxes are measured by the eddy covariance system (EC3000, Campbell Scientific) deployed at 3 m at the two grassland sites and 36.5 m above a 22-m high building at the urban site. All the turbulent flux measurements are strictly screened and quality controlled following Guo et al. (2016) and Wang et al. (2017). The data used in this study are measurements at half-hourly intervals during the two summers (June, July and August) in 2012 and 2013. This period is chosen because the measurements are relatively complete. More detailed descriptions of the sites and instruments can be found in Guo et al. (2016) and Wang et al. (2017).

2.2 The attribution method

In this study, we use the Two-Resistance Mechanism (TRM) model (Chen et al. 2020; Li et al. 2019; Li and Wang 2019; Liao et al. 2018; Moon et al. 2020; Rigden and Li 2017; Wang et al. 2019) to attribute the SUHI or SUCI to contributions from different surface and atmospheric factors. The TRM model starts from the surface energy balance equation given by:

180
$$R_n = SW_{in} (1 - \alpha) + \varepsilon LW_{in} - \varepsilon \sigma T_s^4 = H + LE + G \tag{4}$$

where R_n is again the net surface radiation, SW_{in} is the incoming shortwave radiation, α is the surface albedo, ε is the surface emissivity, LW_{in} is the incoming longwave radiation, σ is the Stephan-Boltzmann constant, T_s is the surface temperature, H is the sensible heat flux, LE is the latent heat flux, and G is the ground heat flux. Comparing Eq. (1) and Eq. (4) indicates that the effects of anthropogenic heat flux and the net horizontal heat transfer by wind are implicitly lumped into G when G is estimated as the residual in Eq. (4).

Substituting Eqs. (2-3) into Eq. (4) yields a non-linear equation for T_s , which is further linearized by applying first-order Taylor series expansion to the outgoing longwave

radiation and the saturated specific humidity terms, so that an analytical expression for T_s can be obtained:

191
$$T_{s} = \frac{SW_{in}(1-\alpha) + \varepsilon LW_{in} - \varepsilon \sigma T_{a}^{4} - G - \frac{\rho L_{v}}{r_{a} + r_{s}}(q^{*}(T_{a}) - q_{a})}{4\varepsilon \sigma T_{a}^{3} + \frac{\rho c_{p}}{r_{a}} + \frac{\rho L_{v}}{(r_{a} + r_{s})} \frac{\partial q^{*}}{\partial T}|_{T_{a}}} + T_{a}$$
 (5)

Further, the difference in the surface temperature between urban and rural sites is expressed as the sum of the contributions from various factors using first-order Taylor series expansion of Eq. (5), as follows:

$$\Delta T_{s} = \left(\frac{\partial T_{s}}{\partial \varepsilon}\right) \Delta \varepsilon + \left(\frac{\partial T_{s}}{\partial \alpha}\right) \Delta \alpha + \left(\frac{\partial T_{s}}{\partial G}\right) \Delta G + \left(\frac{\partial T_{s}}{\partial r_{a}}\right) \Delta r_{a} + \left(\frac{\partial T_{s}}{\partial r_{s}}\right) \Delta r_{s} + \cdots + \left(\frac{\partial T_{s}}{\partial SW_{in}}\right) \Delta SW_{in} + \left(\frac{\partial T_{s}}{\partial LW_{in}}\right) \Delta LW_{in} + \left(\frac{\partial T_{s}}{\partial T_{a}}\right) \Delta T_{a} + \left(\frac{\partial T_{s}}{\partial q_{a}}\right) \Delta q_{a} + \left(\frac{\partial T_{s}}{\partial P}\right) \Delta P$$
 (6)

where P is the near-surface air pressure, and Δ indicates the urban-rural difference in each factor (i.e., urban minus rural values). The partial derivative represents the sensitivity of the surface temperature to the change in each factor, whose analytical formulation can be directly obtained using Eq. (5). Throughout the paper, each term on the right-hand side of Eq. (6) will be called a "contribution". Each contribution is composed of two parts: the sensitivity (Table 2) and the difference (Table 3). The sensitivity refers to how strongly the surface temperature responds to a change in each factor. The difference refers to the change in each factor when comparing the urban and rural sites (i.e., urban minus rural values). Compared with previous studies using the TRM method (Li et al. 2019; Li and Wang 2019; Liao et al. 2018; Rigden and Li 2017), this equation considers the factors affecting SUHIs more comprehensively.

To facilitate our discussion, we categorize the variables and parameters on the r.h.s. of Eq. (6) into two groups: surface biophysical and atmospheric factors. Surface biophysical

factors include emissivity, albedo, ground heat flux, aerodynamic resistance, and surface resistance, which are strong functions of land use type. Atmospheric factors include incoming shortwave radiation, incoming longwave radiation air temperature, air specific humidity and air pressure, which are primarily determined by local background climate and weather conditions. We note that aerodynamic resistance and surface resistance in theory depend on both surface biophysical and atmospheric conditions (Brutsaert 2005, 1982; Monteith and Unsworth 2007) but here they are treated as surface biophysical factors for simplicity. These surface and atmospheric factors, together with surface temperature, fully describe the TRM model.

2.3 Application of the attribution method to the observational data

Most of the required inputs of the TRM model can be obtained directly from the observations. We assume constant emissivity values of 0.95, 0.93 and 0.97 for the urban, short grassland and tall grassland sites, respectively (Oke et al. 2017). Sensitivity tests on these emissivity values are conducted and presented in the Supplemental Material. Based on these prescribed emissivity values, the surface temperature is estimated from the measurements of the outgoing longwave radiation (after subtracting the reflected longwave radiation). Again, the ground heat flux is estimated as the residual of the surface energy balance equation and thus implicitly includes the effects of anthropogenic heat flux, advective flux, as well as measurement errors. The well-known surface energy imbalance is also lumped into the ground heat flux (Foken 2008; Franssen et al. 2010; Leuning et al. 2012; Liu et al. 2011; Mauder et al. 2013; Stoy et al. 2013). The air specific humidity is calculated from the observed vapor pressure and the near-surface air pressure. Then the

aerodynamic and surface resistances can be inferred using Eqs. (2) and (3), respectively.

These calculations are all conducted at the half-hourly scale.

The performance of the TRM model can be evaluated by the extent to which the modelled ΔT_s and the observed ΔT_s are consistent with each other. Acceptable agreement between the TRM-modelled ΔT_s and that inverted from the observed outgoing longwave radiation is the prerequisite for the model to correctly attribute the SUHI. Therefore, in order to improve the model performance, three strategies are adopted following Liao et al. (2018).

First, we find that by aggregating the input variables to the daily scale first and then performing the attribution, the accuracy of the TRM model is higher than that by conducting the attribution at the half-hourly scale and then aggregating the results to the daily scale, which confirms the finding by Liao et al. (2018). Therefore, in this paper, we apply the TRM model to the daytime and nighttime averaged data separately. We define daytime (10am-4pm) and nighttime (10pm-4am) based on the local time.

Second, before aggregating the data to the daily scale, we apply several data filtering criteria to the original data at the half-hourly scale. The basic data filtering strategy is to exclude the half-hourly data when any one of the three sites have a missing value, since only by doing so can the data from different sites be compared. The more stringent data filtering strategy only employed by the TRM model is to exclude the data where the absolute value of the sensible heat flux or latent heat flux is small (less than 15 W m⁻² for daytime and 0.1 W m⁻² for nighttime) and where the inferred aerodynamic resistance or surface resistance is negative. As shall be seen later, the more stringent data filtering does not change ΔT_s much and its main effect is to reduce the uncertainties, especially at night.

254 Third, we adopt the weighted average approach (Liao et al. 2018) to calculate the partial derivatives (e.g., $\partial T_s/\partial \alpha$) in the model, as follows:

$$X = \frac{X_{urban} + mX_{rural}}{1+m} \tag{7}$$

where X is the final partial derivative used in the model, m is average weight, and X_{urban} and X_{rural} are the partial derivatives calculated only using data from the urban site and the rural site, respectively. The introduction of m is to account for the effects of neglected higher-order and cross-order terms in the Taylor series expansion, which can be important when the urban-rural differences are not small. We optimize the value of m by minimizing the root-mean-square error between the modelled and observed ΔT_s (Liao et al. 2018).

3 Results

In the following, we first examine the urban-rural differences in surface temperature and various factors using average diurnal cycles. We then quantitatively attribute the observed SUHIs or SUCIs to each factor based on the TRM model.

3.1 Observed urban-rural differences in surface temperature and fluxes

This section presents the urban-rural differences in surface temperature and fluxes based upon average diurnal cycles over the two summers (June, July and August) in 2012 and 2013. During the daytime (10am-4pm, local standard time), the urban site is on average 3.3 °C cooler than the short grassland site, showing a strong SUCI, but 1.6 °C hotter than the tall grassland site, showing a moderate SUHI (Figure 2). At night (10pm-4am, local standard time), it shows a very strong SUHI (4.8 °C on average) when the tall grassland site is used as the reference site while only a weak SUHI (0.9 °C on average) when the short grassland site is used as the reference site. The observed urban-rural differences in

surface temperature are closely related to the urban-rural differences in the fluxes involved in Eq. (1), as discussed below.

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

First, we examine the incoming radiative fluxes which are important atmospheric factors affecting surface temperature. During the daytime, the incoming shortwave radiation (SW_{in}) of the urban site is on average lower than that of the two grassland sites (Figure 3a), which may be associated with air pollution (Estournel et al. 1983; Gan et al. 2014; Jáuregui and Luyando 1999; Peterson and Flowers 1977) and cloud covers (Stanhill and Moreshet 1994; Wang et al. 2015). Hence the urban-rural differences in the incoming shortwave radiation do not fully explain the urban-rural differences in surface temperature as they would always lead to SUCIs. However, the incoming longwave radiation (LW_{in}) seems to play an important role in nighttime SUHIs since LW_{in} at the urban site is on average larger than that of the short grassland site by 5.8 W m⁻² and larger than that of the tall grassland site by 6.7 W m⁻² at night (Figure 3b). This is consistent with the higher urban air temperature at night (Figure 4c). We acknowledge that the incoming longwave radiation is affected by other factors such as the emissivity of air which further depends on the amounts of water vapor and aerosols (Brutsaert 2005), but previous studies seem to show that their impacts on the urban-rural contrast of incoming longwave radiation are small (Aida and Yaji 1979; Ao et al. 2019; Estournel et al. 1983; Li et al. 2015; Núñez et al. 2000; Oke and Fuggle 1972).

Second, we seek to attribute the unexplained portion to the turbulent fluxes. During the daytime, the sensible heat flux (H) of the urban site is 56 W m⁻² larger than that of the short grassland site (Figure 4a), which also leads to the SUCI effect as SW_{in} . This is related to two factors. First, the overlying air over the urban surface is 0.4 °C cooler than that over

the short grassland (Figure 4c), which creates a larger land-atmosphere temperature gradient and thus creates a larger sensible heat flux at the urban site. Second, with a certain land-atmosphere temperature gradient, the sensible heat flux is directly determined by the efficiency with which the land surface convects heat into the overlying atmosphere, which is higher at the urban site reflected by the lower aerodynamic resistance (r_a) by 117.0 s m⁻¹ ¹ (Figure 4e). In contrast, the urban aerodynamic resistance is higher than that of the tall grassland site by 28.3 s m⁻¹, and therefore the sensible heat flux of the urban site is only on average 2.6 W m⁻² higher than that of the tall grassland site. We also notice there are slight shifts in the peak time of sensible heat flux between urban and grassland sites, which is mainly due to the high thermal admittance of built materials in urban areas and the radiative trapping in the urban canyon (Oke et al. 2017; Ramamurthy et al. 2014). At night, the sensible heat fluxes of the grassland sites become negative, implying that the atmosphere in turn heats the grassland surfaces. But the urban surface still heats the atmosphere with a positive sensible heat flux, which was also observed by many previous studies (Grimmond and Oke 1995; Grimmond et al. 2004; Kalanda et al. 1980; Offerle et al. 2006; Oke 1988; Yap and Oke 1974). As for the latent heat flux, during the daytime, the urban site has a much lower latent heat flux than that of the rural sites (Figure 4b). According to Eq. (3), it is the larger surface resistance of the urban site, which is 562.1 s m⁻¹ and 615.9 s m⁻¹ larger than those at the

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

short and tall grassland sites, respectively (Figure 4f), that leads to the smaller latent heat flux of the urban site and the daytime SUHI. The small latent heat flux of the urban site is mainly due to the lower vegetation fraction (i.e., higher impervious surface fraction, see Figure 1), lower moisture availability caused by faster runoff over impervious surfaces, as

well as negligible irrigation at this urban site. The smaller latent heat flux of urban surfaces has been widely observed before (Christen and Vogt 2004; Cleugh and Oke 1986; Grimmond et al. 2004; Kalanda et al. 1980). In contrast, at night, the latent heat flux at the urban site is on average slightly larger than that at the two grassland sites mainly because of the drier air over the urban surface (Figure 4d).

Lastly, we examine the ground heat flux (G). Due to the higher thermal admittance of the built material in urban areas, the urban surface tends to store more heat into the ground during daytime and release more heat to heat the surface at night (Oke et al. 2017). Therefore, the ground heat flux of the urban site is on average higher than that of the two grassland sites (Figure 5). At night, the absolute magnitude of ground heat flux at the urban site remains higher, indicating stronger heat release from the urban ground and contributes to SUHIs.

3.2 Attribution results

Before we discuss the attribution results, we first evaluate the SUHIs or SUCIs estimated by the TRM model. We find good agreement between the observed and the modelled urban-rural differences in the surface temperature, as illustrated by the dark red and dark green bars in Figure 6. Similar to what we found in Section 3.1, we identify a strong daytime SUCI and a weak nighttime SUHI when using the short grassland site as a reference, while a moderate daytime SUHI and a strong nighttime SUHI when using the tall grassland site as a reference. We highlight that this is not a validation for the modelled T_s , but rather the modelled ΔT_s . This validation remains important because even a model that captures T_s does not necessarily capture ΔT_s due to the linearization process involved in the first-order Taylor series expansion (Eq. 6). This has been demonstrated by a recent

paper by Liao et al. (2018), who argued that acceptable agreement between observed and modeled ΔT_s is the prerequisite for the model to correctly attribute ΔT_s .

We also evaluate the effect of the stringent data filtering used by the TRM model (c.f., the light and dark red/green bars in Figure 6). One can see reasonable consistency in ΔT_s no matter whether the stringent data filtering discussed in Section 2.3 is used. Therefore, the stringent data filtering does not change ΔT_s much and its main effect is to reduce the uncertainties (represented by the error bars), especially at night. Below we focus on discussing individual contributions when the stringent data filtering is applied (the dark blue bars in Figure 6 and also the values presented in Tables 1 to 3).

3.2.1 Daytime attribution results

During the daytime and when the short grassland site is used as the reference site, the aerodynamic resistance, ground heat flux and incoming shortwave radiation contribute - 169%, -86% and -53%, respectively, to the urban-rural surface temperature difference, which are offset by the positive contributions from the surface resistance (185%) and albedo (30%) (see Figure 6a and Table 1). The other factors make much smaller contributions than these five factors. Therefore, the largest contributions come from the aerodynamic resistance (negative) and the surface resistance (positive). The negative contribution from aerodynamic resistance is related to the fact that the urban site has a lower aerodynamic resistance for convective heat transfer than the short grassland site (Figure 4e), which contributes to higher sensible and latent heat fluxes and thus a cooler surface. The sensitivity of surface temperature to the aerodynamic resistance is positive and about 7×10^{-2} K m s⁻¹ (Table 2), implying that the surface temperature tends to increase when the surface becomes smoother. The urban-rural difference in terms of aerodynamic

resistance is -8×10 s m⁻¹ (Table 3), which, combined with the positive sensitivity, leads to a large negative contribution. In contrast, the urban site has a higher surface resistance than the short grassland site (Figure 4f), which contributes to a lower latent heat flux and thus a hotter surface. The sensitivity of surface temperature to the surface resistance is positive and about 9×10^{-3} K m s⁻¹, implying that the surface temperature tends to increase when the surface becomes drier. The urban-rural difference in terms of surface resistance is also positive $(6\times10^2$ s m⁻¹), which leads to a large positive contribution. We note that although their contributions are close in terms of magnitude but the underlying mechanisms are different: the surface temperature is an order of magnitude more sensitive to aerodynamic resistance than to surface resistance but the urban-rural difference in terms of aerodynamic resistance is an order of magnitude smaller than its surface resistance counterpart.

Moreover, the urban site has a larger ground heat flux than the short grassland site (Figure 5), which helps build a cooler surface by conducting more heat from the surface into the ground during the daytime. The sensitivity of surface temperature to ground heat flux is negative (Table 2), and the urban-rural difference of ground heat flux is positive (Table 3), which leads to a moderate negative contribution. In contrast, the urban site has a lower incoming shortwave radiation than the short grassland site (Figure 3a), which contributes to a lower surface temperature. Here, the sensitivity of surface temperature to the incoming shortwave radiation is positive, while the urban-rural difference of incoming shortwave radiation is negative, resulting in a small negative contribution. Compared with the contribution made by the ground heat flux, the contribution from the incoming shortwave radiation is smaller in magnitude due to the smaller urban-rural difference in terms of incoming shortwave radiation (Table 3). In addition, the urban site has a lower

albedo than the short grassland site, which favors more energy inputs and thus a hotter surface. The sensitivity and urban-rural difference for the albedo are both negative, leading to a small positive contribution (Tables 2 and 3).

In summary, the cooler urban surface during daytime, when compared to the short grassland surface, is mainly caused by its higher efficiency in convective heat transfer and the larger heat storage. The larger surface resistance over the urban surface tends to make it hotter but does not overcome the negative contributions from aerodynamic resistance and ground heat flux. The most important atmospheric variable that needs to be considered in the attribution is the incoming shortwave radiation, whose difference between urban and rural sites plays a minor but non-negligible role.

During the daytime but when the tall grassland site is used as the reference site, the surface resistance, aerodynamic resistance and albedo make positive contributions of 140%, 97% and 24%, respectively (Figure 6b and Table 1). The ground heat flux, incoming shortwave radiation and air temperature make negative contributions of 85%, 47% and 21%, respectively. The strongest positive contribution from surface resistance is related to the fact that the urban site has a larger surface resistance than the tall grassland site (Figure 4f), which favors a lower latent heat flux and thus a hotter surface. The sensitivity of surface temperature to surface resistance is positive (Table 2), and the urban-rural difference of surface resistance is also positive (Table 3), which leads to a large positive contribution. The urban site also has a larger aerodynamic resistance than the tall grassland site (Figure 4e), which contributes to lower turbulent heat fluxes and thus a hotter surface. Here the sensitivity of surface temperature to aerodynamic resistance is positive (8×10⁻² K m s⁻¹), and the urban-rural difference of aerodynamic resistance is also positive (3×10 s m⁻¹).

which leads to a moderate positive contribution. Compared with the contribution made by the surface resistance, the aerodynamic resistance contribution is smaller mainly due to the much smaller urban-rural difference of aerodynamic resistance than that of surface resistance. In addition, the albedo of the urban site is lower than that of the tall grassland site, which contributes to its higher net radiation and thus a hotter urban surface. The sensitivity and difference for the albedo are both negative (Tables 2 and 3), leading to a minor positive contribution.

As for the negative contributions, first, the ground heat flux of the urban site is larger than that of the tall grassland site (Figure 5), favoring a cooler surface. The sensitivity for the ground heat flux is negative and about -4×10⁻² K m² W⁻¹, while the difference is positive and about 5×10 W m⁻², which result in a moderate negative contribution. Second, the urban site is lower than the tall grassland site in terms of the incoming shortwave radiation (Figure 3a), which favors a cooler urban surface. The sensitivity of surface temperature to the incoming shortwave radiation is positive and about 3×10⁻² K m² W⁻¹, while the difference is negative and about -4×10 W m⁻², which lead to a small negative contribution. Third, the air temperature of the urban site is lower than that of the tall grassland (Figure 4c), which contributes to a higher sensible heat flux and thus a lower surface temperature. The sensitivity of surface temperature to the air temperature is positive and about 5×10⁻¹ while the difference is negative as -9×10⁻¹ K, which results in a minor negative contribution.

In summary, the hotter urban surface during daytime, when compared to the tall grassland surface, is mainly because that the urban surface is drier and has a lower efficiency for convective heat transfer. While the larger heat storage tends to reduce the

surface temperature, it does not overcome the effects of surface and aerodynamic resistances. The urban-rural differences in terms of atmospheric conditions, most notably incoming shortwave radiation and air temperature, play a minor but non-negligible role.

3.2.2 Nighttime attribution results

During the nighttime and when the short grassland site is used as the reference site, the ground heat flux makes the largest positive contribution (Figure 6c and Table 1). At night, the ground heat flux becomes negative, which indicates that the heat stored in the ground during daytime is released to heat the surface. The urban site has a larger ground heat flux magnitude than the short grassland site, contributing to a hotter surface. The sensitivity for the ground heat flux is negative (Table 2), and the difference is also negative and large in terms of magnitude (Table 3), which leads to a very large positive contribution. The surface resistance, incoming longwave radiation, and air temperature, also make slightly positive contributions. This implies that the urban surface remains drier and the urban air remains hotter at night. The positive contributions are largely offset by the negative contribution from the aerodynamic resistance.

When the tall grassland site is used as the reference site, the biggest positive contributor is still the ground heat flux (79%), followed by the incoming longwave radiation (13%) and the air temperature (13%) (Figure 6d and Table 1). This again implies that the urban surface is hotter due to heat storage release and the urban air remains hotter. Contributions from other factors are minor.

In summary, the hotter urban surface during nighttime, when compared to either the tall grassland surface or the short grassland surface, is mainly because of the larger heat storage release. When the short grassland site is used as the reference site, the SUHI

magnitude is smaller due to the stronger negative contribution from aerodynamic resistance.

The urban-rural differences in terms of atmospheric conditions, most notably incoming

longwave radiation and air temperature, play a minor role.

3.2.3 Differences in the attribution results with two different reference sites

Comparing the daytime attribution results with two different references sites, we find that the attributions resemble each other qualitatively except contributions from the aerodynamic resistance. In particular, the sign of the aerodynamic resistance difference is the opposite. Compared to the aerodynamic resistance of the urban site, the aerodynamic resistance of the short grassland site is much larger while that of the tall grassland site is slightly lower (Figure 4e and Table 3).

We further find that the aerodynamic resistance difference is not entirely caused by the mean wind speed difference. The mean wind speed of the urban site is on average 0.5 m s⁻¹ and 0.3 m s⁻¹ higher than its counterparts at the tall and short grassland sites, respectively, during the daytime (Figure 7). However, the aerodynamic resistance of the urban site is not always lower than that of the grassland sites. At the tall grassland site, although the mean wind is weaker compared to that at the urban site, the aerodynamic resistance is actually lower. In contrast, the short grassland site experiences lower mean wind speed, contributing to a larger aerodynamic resistance. These results suggest that the mean wind speed is not the only factor controlling the aerodynamic resistance and highlight that heat transfer is fundamentally different from momentum transfer over rough surfaces. We again stress that throughout the paper the aerodynamic resistance indicates the efficiency for convective heat transfer, not momentum transfer.

Similar to the daytime results, the fundamental difference between the two reference sites again lies in the contributions made by the aerodynamic resistance during nighttime. The aerodynamic resistance makes negative contribution for one reference site, the short grassland site, but positive contribution for another reference site, the tall grassland site (Tables 1 and 3). Also, the absolute values of the sensitivity and the difference when the tall grassland site is the reference site are smaller than those when the short grassland site is the reference site, causing a much smaller contribution from the aerodynamic resistance (in terms of absolute value) when using the tall grassland site as a reference.

There are two other minor differences that are worth mentioning. First, the contribution of the surface resistance when the tall grassland site is the reference site is smaller than its counterpart when the short grassland site is the reference site for both daytime and nighttime. This is mainly associated with the lower sensitivity of surface temperature to surface resistance at the tall grassland site, which is about 2 times smaller than its counterpart at the short grassland site (Table 2). Second, the contribution of air temperature when the tall grassland site is the reference is larger than that when the short grassland site is the reference site for both daytime and nighttime. This is because both the sensitivity and difference for the air temperature at the tall grassland site are about 2-3 times larger than those at the short grassland site (Tables 2 and 3). While the overall effects of these differences on the attribution results are small, these differences highlight that a change in the reference site can cause both the surface temperature sensitivity and the urban-rural difference to change significantly.

4 Conclusions and discussions

In the present study, we investigate the controlling factors of the SUHIs or SUCIs using pair flux tower data collected in and near the city of Nanjing, China. Two rural reference sites are used: one is over a tall grassland distant from the urban site and the other is over a short grassland relatively closer to the urban site. During the daytime, we identify a strong SUCI when the short grassland site is used as the reference site but a moderate SUHI when the tall grassland site is used as the reference site. The former is mainly caused by the larger aerodynamic resistance for convective heat transfer of the short grassland site than that of the urban site, while the latter is primarily attributed to the lower surface resistance of the tall grassland site than that of the urban site. At night, we find SUHIs when either of the grassland sites is used as the reference site, which are predominantly caused by the larger heat storage release at the urban site. Overall the contributions of urban-rural differences in atmospheric conditions to the SUHIs or SUCIs are minor compared to those of surface biophysical properties but are non-negligible especially for incoming shortwave and longwave radiation and air temperature. One immediate implication of these findings is that the magnitude of SUHI can vary

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

One immediate implication of these findings is that the magnitude of SUHI can vary strongly with the characteristics of the rural land. Even with the same rural land cover type (e.g., grassland), one could obtain either SUHI or SUCI depending on the grass height, and the associated physical drivers of urban-rural surface temperature difference are very different. This poses enormous challenges for applying knowledge obtained from single-point measurements to understanding large-scale observations such as remote sensing or large-scale simulations from global models.

Now let's return to the debate mentioned in the introduction which motivated our study.

If we view the difference in the computed SUHIs when the rural reference site is switched

as a manifestation of the spatial variability of SUHIs, then at first glance it appears that our findings support the conclusion of Zhao et al. (2014), that is, the spatial variations of daytime SUHIs are largely explained by the spatial variations of urban-rural differences in the aerodynamic resistance for convective heat transfer, which are further driven by the spatial variations of aerodynamic resistance of the rural land. Specifically, if the rural site has short and more sparse vegetation, it tends to have a large aerodynamic resistance, which leads to a low sensible heat flux and thus a high surface temperature. On the other hand, if the rural site has tall vegetation, it tends to have a small aerodynamic resistance, which leads to a high sensible heat flux and thus a low surface temperature.

However, this does not come without caveats. The most important caveat is the scale issue (Li and Wang 2019). The spatial variations of SUHIs in this study are intra-urban variations within a metropolitan area while the original debate is about city-to-city variations across a continent. Another caveat is the methodological difference. The contrasting conclusions drawn from the previous two studies are also related to the difference in their attribution methods. Li et al. (2019) used the TRM method, which is similar to our study but did not consider urban-rural differences in atmospheric conditions (they did not need to because when using the subgrid-scale outputs there were no urban-rural differences in atmospheric conditions). On the other hand, Zhao et al. (2014) used the so-called intrinsic biophysical mechanism (IBM) method, which used the Bowen ratio, or the ratio of sensible to latent heat fluxes, to replace the surface resistance in the attribution. In doing so, the IBM method assumed independence between the Bowen ratio and the aerodynamic resistance, just like the TRM method assumed independence between that by

assuming independence between the Bowen ratio and aerodynamic resistance, the contribution of aerodynamic resistance tends to be overestimated (Liao et al. 2018; Rigden and Li 2017) and the dominant control of spatial variations of SUHIs may be changed (Li et al. 2019). Here we only used the TRM method whose assumption is more justified at least from the perspective of land surface modelling.

Lastly, we would like to comment on the role of ground heat flux or heat storage. While our finding that the larger heat storage release over urban areas at night is the main cause of nighttime SUHIs is consistent with the traditional paradigm (Oke et al. 2017), we have to acknowledge that the ground heat flux in our study actually reflects the combined effects of "true" ground heat flux, anthropogenic heat flux, advective heat flux, surface energy imbalance issues, and measurement errors. The available data do not allow us to separate these different players. Among them, however, only the "true" ground heat flux is expected to play opposite roles between day and night, namely, leaving the control volume during daytime and returning to the control volume during nighttime. There is no *a prior* reason to expect the other fluxes to behave in this manner. Thus, the observed opposite roles of ground heat flux during daytime and nighttime indicate that the "true" ground heat flux probably dominates over the other players.

- Acknowledgments: LW and DL acknowledge support from the U.S. Army Research
- Office (Grant No. W911NF-18-1-0360) and the U.S. National Science Foundation (Grant
- No. ICER-1854706). NZ, JNS, WDG acknowledge support from the Chinese National Key
- Research and Development Program (Grant No. 2016YFA0600303) and the National
- Natural Science Foundation of China (Grant No. 41675008).

- 573 References
- Aida, M., Yaji, M., 1979: Observations of atmospheric downward radiation in the Tokyo
- area. Boundary Layer Meteorology, 16, 453–465,
- 576 https://doi.org/10.1007/BF03335384.
- Ao, X., Wang, L., Zhi, X., Gu, W., Yang, H., Li, D., 2019: Observed synergies between
- urban heat islands and heat waves and their controlling factors in Shanghai, China.
- Journal of Applied Meteorology and Climatology, **58**, 1955–1972,
- 580 https://doi.org/10.1175/JAMC-D-19-0073.1.
- Arnfield, A.J., 2003: Two decades of urban climate research: a review of turbulence,
- exchanges of energy and water, and the urban heat island. *International Journal of*
- 583 *Climatology*, **23**, 1–26, https://doi.org/10.1002/joc.859.
- Brutsaert, W., 2005: *Hydrology: An Introduction*. Cambridge University Press, 605 pp.
- Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History and Applications.
- 586 Springer Netherlands, 302 pp.
- Burakowski, E., Tawfik, A., Ouimette, A., Lepine, L., Novick, K., Ollinger, S., Zarzycki,
- 588 C., Bonan, G., 2018: The role of surface roughness, albedo, and Bowen ratio on

- ecosystem energy balance in the Eastern United States. *Agricultural and Forest*
- 590 *Meteorology*, **249**, 367–376, https://doi.org/10.1016/j.agrformet.2017.11.030.
- Carlson, T.N., Boland, F.E., 1978: Analysis of urban-rural canopy using a surface heat
- flux/temperature model. J. Appl. Meteor., 17, 998–1013,
- 593 https://doi.org/10.1175/1520-0450(1978)017<0998:AOURCU>2.0.CO;2.
- Chen, C., Wang, L., Ranga, M., Li, D., 2020: Attribution of land-use/land-cover change
- induced surface temperature anomaly: How accurate is the first-order Taylor series
- expansion? Journal of Geophysical Research: Biogeosciences, 125, e2020JG005787,
- 597 https://doi.org/10.1029/2020JG005787.
- 598 Chen, L., Dirmeyer, P.A., 2016: Adapting observationally based metrics of
- biogeophysical feedbacks from land cover/land use change to climate modeling.
- Environ. Res. Lett., 11, 034002, https://doi.org/10.1088/1748-9326/11/3/034002.
- 601 Christen, A., Vogt, R., 2004: Energy and radiation balance of a central European city.
- The International Journal of Climatology, **24**, 1395–1421,
- 603 https://doi.org/10.1002/joc.1074.
- 604 Cleugh, H.A., Oke, T.R., 1986: Suburban-rural energy balance comparisons in summer
- for Vancouver, B.C. Boundary Layer Meteorology, **36**, 351–369,
- 606 https://doi.org/10.1007/BF00118337.
- 607 Estournel, C., Vehil, R., Guedalia, D., Fontan, J., Druilhet, A., 1983: Observations and
- modeling of downward radiative fluxes (Solar and Infrared) in urban/rural areas.
- Journal of Climate and Applied Meteorology, 22, 134–142,
- 610 https://doi.org/10.1175/1520-0450(1983)022<0134:OAMODR>2.0.CO;2.

- Foken, T., 2008: The energy balance closure problem: An overview. *Ecological*
- *Applications*, **18**, 1351–1367, https://doi.org/10.1890/06-0922.1.
- Franssen, H.J.H., Stöckli, R., Lehner, I., Rotenberg, E., Seneviratne, S.I., 2010: Energy
- balance closure of eddy-covariance data: A multisite analysis for European
- FLUXNET stations. *Agricultural and Forest Meteorology*, **150**, 1553–1567,
- https://doi.org/10.1016/j.agrformet.2010.08.005.
- 617 Gan, C.-M., Pleim, J., Mathur, R., Hogrefe, C., Long, C.N., Xing, J., Roselle, S., Wei, C.,
- 2014: Assessment of the effect of air pollution controls on trends in shortwave
- radiation over the United States from 1995 through 2010 from multiple observation
- networks. *Atmospheric Chemistry and Physics*, **14**, 1701–1715,
- 621 https://doi.org/10.5194/acp-14-1701-2014.
- 622 Garratt, J.R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316
- 623 pp.
- 624 Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., Briggs,
- J.M., 2008: Global change and the ecology of cities. *Science*, **319**, 756–760,
- 626 https://doi.org/10.1126/science.1150195.
- 627 Grimmond, S., 2007: Urbanization and global environmental change: local effects of
- urban warming. *The Geographical Journal*, **173**, 83–88,
- 629 https://doi.org/10.1111/j.1475-4959.2007.232_3.x.
- 630 Grimmond, C., Oke, T., 1995: Comparison of heat fluxes from summertime observations
- in the suburbs of four north American cities. J. Appl. Meteorol., 34, 873-889,
- 632 https://doi.org/10.1175/1520-0450(1995)034<0873:COHFFS>2.0.CO;2.

- 633 Grimmond, C.S.B., Salmond, J.A., Oke, T.R., Offerle, B., Lemonsu, A., 2004: Flux and
- turbulence measurements at a densely built-up site in Marseille: Heat, mass (water
- and carbon dioxide), and momentum. J. Geophys. Res. Atmospheres, 109, D24101,
- https://doi.org/10.1029/2004JD004936.
- 637 Gu, Y., Li, D., 2018: A modeling study of the sensitivity of urban heat islands to
- precipitation at climate scales. *Urban Climate*, **24**, 982–993,
- https://doi.org/10.1016/j.uclim.2017.12.001.
- 640 Guo, W., Wang, X., Sun, J., Ding, A., Zou, J., 2016: Comparison of land-atmosphere
- interaction at different surface types in the mid- to lower reaches of the Yangtze River
- valley. Atmospheric Chemistry and Physics, 16, 9875–9890,
- 643 https://doi.org/10.5194/acp-16-9875-2016.
- Imhoff, M.L., Zhang, P., Wolfe, R.E., Bounoua, L., 2010: Remote sensing of the urban
- heat island effect across biomes in the continental USA. Remote Sensing of
- *Environment*, **114**, 504–513, https://doi.org/10.1016/j.rse.2009.10.008.
- Jáuregui, E., Luyando, E., 1999: Global radiation attenuation by air pollution and its
- effects on the thermal climate in Mexico City. *Int. J. Climatol.*, **19**, 683–694,
- 649 https://doi.org/10.1002/(SICI)1097-0088(199905)19:6<683::AID-JOC389>3.0.CO;2-
- 650 8.
- Kalanda, B., Oke, T., Spittlehouse, D., 1980: Suburban energy balance estimates for
- Vancouver, B.C., using the Bowen ratio-energy balance approach. J. Appl. Meteorol.,
- 653 **19**, 791–802, https://doi.org/10.1175/1520-0450(1980)019<0791:SEBEFV>2.0.CO;2.
- Lee, X., and Coauthors, 2011: Observed increase in local cooling effect of deforestation
- at higher latitudes. *Nature*, 479, 384–387, https://doi.org/10.1038/nature10588.

- 656 Leuning, R., Gorsela, E. van, Massman, W.J., Isaac, P.R., 2012: Reflections on the
- surface energy imbalance problem. *Agricultural and Forest Meteorology*, **156**, 65-74,
- 658 https://doi.org/10.1016/j.agrformet.2011.12.002.
- 659 Li, D., 2019: Turbulent Prandtl number in the atmospheric boundary layer where are
- we now? *Atmospheric Research*, **216**, 86-105,
- https://doi.org/10.1016/j.atmosres.2018.09.015.
- Li, D., Liao, W., Rigden, A.J., Liu, X., Wang, D., Malyshev, S., Shevliakova, E., 2019:
- Urban heat island: Aerodynamics or imperviousness? *Science Advances*, **5**, eaau4299,
- https://doi.org/10.1126/sciadv.aau4299.
- 665 Li, D., Malyshev, S., Shevliakova, E., 2016a: Exploring historical and future urban
- climate in the earth system modeling framework: 1. Model development and
- evaluation. Journal of Advances in Modeling Earth Systems, **8**, 917–935,
- https://doi.org/10.1002/2015MS000578.
- 669 Li, D., Malyshev, S., Shevliakova, E., 2016b: Exploring historical and future urban
- climate in the earth system modeling framework: 2. Impact of urban land use over the
- 671 Continental United States. *Journal of Advances in Modeling Earth Systems*, **8**, 936–
- 672 953, https://doi.org/10.1002/2015MS000579.
- Li, D., Sun, T., Liu, M., Yang, L., Wang, L., Gao, Z., 2015: Contrasting responses of
- urban and rural surface energy budgets to heat waves explain synergies between
- urban heat islands and heat waves. *Environ. Res. Lett.*, **10**, 054009,
- https://doi.org/10.1088/1748-9326/10/5/054009.

- Li, D., Wang, L., 2019: Sensitivity of surface temperature to land use and land cover
- change-induced biophysical changes: The scale issue. Geophysical Research Letters,
- **46**, 9678–9689, https://doi.org/10.1029/2019GL084861.
- 680 Li, Q., Bou-Zeid, E., 2019: Contrasts between momentum and scalar transport over very
- rough surfaces. *Journal of Fluid Mechanics*, **880**, 32-58,
- 682 https://doi.org/10.1017/jfm.2019.687.
- Li, Q., Bou-Zeid, E., Grimmond, S., Zilitinkevich, S., Katul, G., 2020: Revisiting the
- relation between momentum and scalar roughness lengths of urban surfaces. Q. J. R.
- 685 *Meteorol. Soc.*, https://doi.org/10.1002/qj.3839.
- 686 Liao, W., Rigden, A.J., Li, D., 2018: Attribution of local temperature response to
- deforestation. *Journal of Geophysical Research: Biogeosciences*, **123**, 1572–1587,
- https://doi.org/10.1029/2018JG004401.
- 689 Liu, S.M., Xu, Z.W., Wang, W.Z., Jia, Z.Z., Zhu, M.J., Bai, J., Wang, J.M., 2011: A
- comparison of eddy-covariance and large aperture scintillometer measurements with
- respect to the energy balance closure problem. *Hydrology and Earth System Sciences*,
- 692 **15**, 1291–1306, https://doi.org/10.5194/hess-15-1291-2011.
- Manoli, G., and Coauthors, 2019: Magnitude of urban heat islands largely explained by
- 694 climate and population. *Nature*, **573**, 55–60, https://doi.org/10.1038/s41586-019-
- 695 1512-9.
- Mauder, M., Cuntz, M., Drüe, C., Graf, A., Rebmann, C., Schmid, H.P., Schmidt, M.,
- Steinbrecher, R., 2013: A strategy for quality and uncertainty assessment of long-term
- 698 eddy-covariance measurements. Agricultural and Forest Meteorology, 169, 122–135,
- 699 https://doi.org/10.1016/j.agrformet.2012.09.006.

- Monteith, J., Unsworth, M., 2007: Principles of Environmental Physics. Academic Press,
- 701 440 pp.
- Moon, M., Li, D., Liao, W., Rigden, A.J., Friedl, M.A., 2020: Modification of surface
- energy balance during springtime: The relative importance of biophysical and
- meteorological changes. Agricultural and Forest Meteorology, **284**, 107905,
- 705 https://doi.org/10.1016/j.agrformet.2020.107905.
- Mora, C., and Coauthors, 2017: Global risk of deadly heat. Nature Climate Change, 7,
- 707 501–506, https://doi.org/10.1038/nclimate3322.
- Núñez, M., Eliasson, I., Lindgren, J., 2000: Spatial variation of incoming longwave
- radiation in Göteborg, Sweden. *Theor. Appl. Climatol.*, **67**, 181–192,
- 710 https://doi.org/10.1007/s007040070007.
- 711 Offerle, B., Grimmond, C.S.B., Fortuniak, K., Kłysik, K., Oke, T.R., 2006: Temporal
- variations in heat fluxes over a central European city centre. *Theor. Appl. Climatol.*,
- 713 **84**, 103–115, https://doi.org/10.1007/s00704-005-0148-x.
- Oke, T.R., 1982: The energetic basis of the urban heat island. *Quarterly Journal of the*
- 715 *Royal Meteorological Society,* **108**, 1–24, https://doi.org/10.1002/qj.49710845502.
- Oke, T.R., 1988: The urban energy balance. Prog. Phys. Geogr. Earth Environ., 12, 471–
- 717 508, https://doi.org/10.1177/030913338801200401.
- Oke, T.R., Fuggle, R.F., 1972: Comparison of urban/rural counter and net radiation at
- 719 night. Boundary Layer Meteorology, 2, 290–308,
- 720 https://doi.org/10.1007/BF02184771.
- Oke, T.R., Mills, G., Christen, A., Voogt, J.A., 2017: Urban Climate. Cambridge
- 722 University Press, 546 pp.

- Oleson, K.W., Bonan, G.B., Feddema, J., Vertenstein, M., 2008a: An urban
- parameterization for a global climate model. Part II: Sensitivity to input parameters
- and the simulated urban heat island in offline simulations. J. Appl. Meteor. Climatol.,
- 726 **47**, 1061–1076, https://doi.org/10.1175/2007JAMC1598.1.
- Oleson, K.W., Bonan, G.B., Feddema, J., Vertenstein, M., Grimmond, C.S.B., 2008b: An
- urban parameterization for a global climate model. Part I: Formulation and evaluation
- 729 for two cities. *J. Appl. Meteor. Climatol.*, **47**, 1038–1060,
- 730 https://doi.org/10.1175/2007JAMC1597.1.
- Peng, S., and Coauthors, 2012: Surface urban heat island across 419 global big cities.
- 732 Environ. Sci. Technol., 46, 696–703, https://doi.org/10.1021/es2030438.
- Peterson, J., Flowers, E., 1977: Interactions between air-pollution and solar-radiation.
- 734 Sol. Energy, 19, 23–32, https://doi.org/10.1016/0038-092X(77)90085-8.
- Ramamurthy, P., Bou-Zeid, E., Smith, J.A., Wang, Z., Baeck, M.L., Saliendra, N.Z.,
- Hom, J.L., Welty, C., 2014: Influence of subfacet heterogeneity and material
- properties on the urban surface energy budget. J. Appl. Meteor. Climatol., 53, 2114–
- 738 2129, https://doi.org/10.1175/JAMC-D-13-0286.1.
- Rigden, A.J., Li, D., 2017: Attribution of surface temperature anomalies induced by land
- use and land cover changes. *Geophysical Research Letters*, **44**, 6814–6822,
- 741 https://doi.org/10.1002/2017GL073811.
- Rydin, Y., and Coauthors, 2012: Shaping cities for health: complexity and the planning
- of urban environments in the 21st century. *Lancet*, **379**, 2079–2108,
- 744 https://doi.org/10.1016/S0140-6736(12)60435-8.

- Stanhill, G., Moreshet, S., 1994: Global radiation climate change at seven sites remote
- from surface sources of pollution. *Clim. Change*, **26**, 89–103,
- 747 https://doi.org/10.1007/BF01094010.
- Stoy, P.C., and Coauthors, 2013: A data-driven analysis of energy balance closure across
- 749 FLUXNET research sites: The role of landscape scale heterogeneity. *Agricultural and*
- 750 Forest Meteorology, **171–172**, 137–152,
- 751 https://doi.org/10.1016/j.agrformet.2012.11.004.
- 752 Taha, H., 1997: Urban climates and heat islands: albedo, evapotranspiration, and
- anthropogenic heat. *Energy and Buildings*, **25**, 99–103,
- 754 https://doi.org/10.1016/S0378-7788(96)00999-1.
- 755 United Nations, 2019: World Urbanization Prospects: The 2018 Revision. United
- 756 Nations, 103 pp.
- 757 Wang, L., Gao, Z., Miao, S., Guo, X., Sun, T., Liu, M., Li, D., 2015: Contrasting
- characteristics of the surface energy balance between the urban and rural areas of
- 759 Beijing. Adv. Atmospheric Sci., **32**, 505–514, https://doi.org/10.1007/s00376-014-
- 760 3222-4.
- Wang, P., Li, D., Liao, W., Rigden, A., Wang, W., 2019: Contrasting evaporative
- responses of ecosystems to heatwaves traced to the opposing roles of vapor pressure
- deficit and surface resistance. Water Resources Research, 55, 4550–4563,
- 764 https://doi.org/10.1029/2019WR024771.
- 765 Wang, X., Guo, W., Qiu, B., Liu, Y., Sun, J., Ding, A., 2017: Quantifying the
- contribution of land use change to surface temperature in the lower reaches of the

- Yangtze River. *Atmospheric Chemistry and Physics*, **17**, 4989–4996,
- 768 https://doi.org/10.5194/acp-17-4989-2017.
- Yap, D., Oke, T.R., 1974: Sensible heat fluxes over an urban area—Vancouver, B.C. J.
- 770 Appl. Meteorol., **13**, 880–890.
- 771 Zhao, L., Lee, X., Smith, R.B., Oleson, K., 2014: Strong contributions of local
- background climate to urban heat islands. *Nature*, **511**, 216–219,
- 773 https://doi.org/10.1038/nature13462.

- Zhao, L., Oppenheimer, M., Zhu, Q., Baldwin, J.W., Ebi, K.L., Bou-Zeid, E., Guan, K.,
- Liu, X., 2018: Interactions between urban heat islands and heat waves. *Environ. Res.*
- 776 Lett., 13, 034003, https://doi.org/10.1088/1748-9326/aa9f73.
- Zhou, D., Zhang, L., Li, D., Huang, D., Zhu, C., 2016: Climate-vegetation control on the
- diurnal and seasonal variations of surface urban heat islands in China. *Environ. Res.*
- 779 *Lett.*, **11**, 074009, https://doi.org/10.1088/1748-9326/11/7/074009.

Table 1 The surface urban heat islands and the attribution results (unit: °C).

	sum	ε	α	r_a	r_s	G	SW_{in}	LW_{in}	T_a	q_a	P
DS	-3.0	-0.1	0.9	-5.0	5.5	-2.6	-1.6	0.2	-0.2	-0.1	0.0
DT	2.2	0.1	0.5	2.1	3.0	-1.8	-1.0	0.0	-0.5	-0.2	0.0
NS	0.5	-0.1	0.0	-6.0	0.5	5.5	-0.1	0.6	0.1	0.0	0.0
NT	6.0	0.1	0.0	-0.2	0.0	4.7	-0.1	0.8	0.8	-0.1	0.0

Note DS = daytime with the short grassland site as the reference site; DT = daytime with the tall grassland site as the reference site; NS = nighttime with the short grassland site as the reference site; NT = nighttime with the tall grassland site as the reference site. The value is the median of the results at the daily scale. As a result, the values reported here will not be equal to the products of the values reported in Table 2 and those in Table 3.

Table 2 Sensitivities of surface temperature to changes in various factors.

	$\frac{\partial T_s}{\partial \varepsilon}$	$\frac{\partial T_s}{\partial \alpha}$	$\frac{\partial T_s}{\partial r_a}$	$\frac{\partial T_s}{\partial r_s}$	$\frac{\partial T_s}{\partial G}$			$\frac{\partial T_s}{\partial T_a}$	$\frac{\partial T_s}{\partial q_a}$	$\frac{\partial T_s}{\partial P}$
	(K)	(K)	(K m/s)	(K m/s)	(K m ² /W)	(K m ² /W)	(K m ² /W)	(-)	(K)	(K/Pa)
DS	-5×10^0	-3×10^{1}	7×10 ⁻²	9×10 ⁻³	-4×10^{-2}	4×10 ⁻²	4×10 ⁻²	3×10 ⁻¹	$2{\times}10^2$	-2×10 ⁻⁵
DT	-3×10^{0}	-2×10^{1}	8×10 ⁻²	5×10 ⁻³	-4×10^{-2}	3×10^{-2}	3×10 ⁻²	5×10 ⁻¹	1×10^2	-3×10 ⁻⁵
NS	-5×10 ⁰	1×10^{-1}	2×10 ⁻³	2×10 ⁻⁴	-1×10^{-1}	1×10^{-1}	1×10^{-1}	1×10 ⁻¹	1×10^2	1×10 ⁻⁵
NT	-5×10 ⁰	2×10 ⁻¹	-1×10^{-4}	8×10 ⁻⁵	-1×10^{-1}	8×10 ⁻²	9×10 ⁻²	3×10 ⁻¹	7×10^1	1×10 ⁻⁵

Note DS = daytime with the short grassland site as the reference site; DT = daytime with the tall grassland site as the reference site; NS = nighttime with the short grassland site as the reference site; NT = nighttime with the tall grassland site as the reference site. The value is the median of the results at the daily scale.

Table 3 Urban-rural differences in terms of various factors that affect the surface temperature. (Δ: Urban minus rural values)

	$\Delta arepsilon$	Δα	Δr_a	Δr_{s}	ΔG	ΔSW_{in}	ΔLW_{in}	ΔT_a	Δq_a	ΔP
	(-)	(-)	(s/m)	(s/m)	(W/m^2)	(W/m^2)	(W/m^2)	(<i>K</i>)	(-)	(Pa)
DS	2×10 ⁻²	-4×10 ⁻²	-8×10^{1}	6×10^2	6×10^{1}	-4×10^{1}	5×10^{0}	-6×10 ⁻¹	-7×10^{-4}	-5×10^{1}
DT	-2×10 ⁻²	-3×10 ⁻²	3×10^1	6×10^2	5×10^{1}	-3×10^{1}	-3×10 ⁻¹	-9×10 ⁻¹	-2×10 ⁻³	-2×10^2
NS	2×10 ⁻²	0	-4×10^{3}	3×10^3	-5×10^{1}	-5×10 ⁻¹	5×10^{0}	9×10 ⁻¹	-4×10 ⁻⁴	-7×10^{1}
NT	-2×10 ⁻²	0	3×10^2	-2×10^3	-5×10^{1}	-2×10^{0}	1×10^{1}	3×10^{0}	-1×10 ⁻³	-2×10^{2}

Note DS = daytime with the short grassland site as the reference site; DT = daytime with the tall grassland site as the reference site; NS = nighttime with the short grassland site as the reference site; NT = nighttime with the tall grassland site as the reference site. The value is the median of the results at the daily scale.

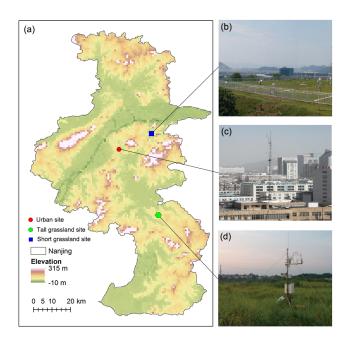


FIGURE 1 (a) Locations, elevations, and land use types of (b) the short grassland site, (c) the urban site and (d) the tall grassland site.

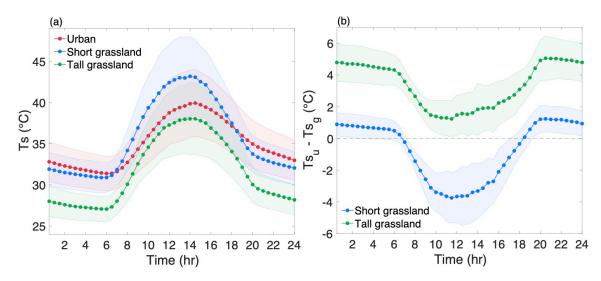
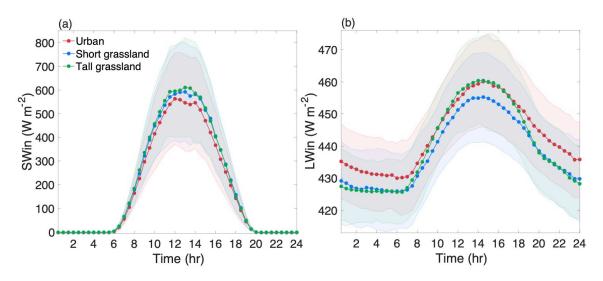



FIGURE 2 Average diurnal cycles of (a) surface temperatures and (b) differences in surface temperature between the urban site and the grassland sites (urban minus grassland). The shading denotes standard deviations.

FIGURE 3 Average diurnal cycles of incoming radiation fluxes: (a) incoming shortwave radiation and (b) incoming longwave radiation. The shading denotes standard deviations.

FIGURE 4 Average diurnal cycles of (a) sensible and (b) latent heat fluxes and their controlling factors, including (c) air temperature, (d) air specific humidity, (e) aerodynamic resistance and (f) surface resistance. For (e) and (f), only the daytime (10am to 4pm local time) results are shown. The shading denotes standard deviations.

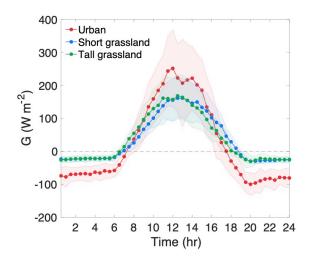


FIGURE 5 Average diurnal cycle of ground heat flux. The shading denotes standard deviations.

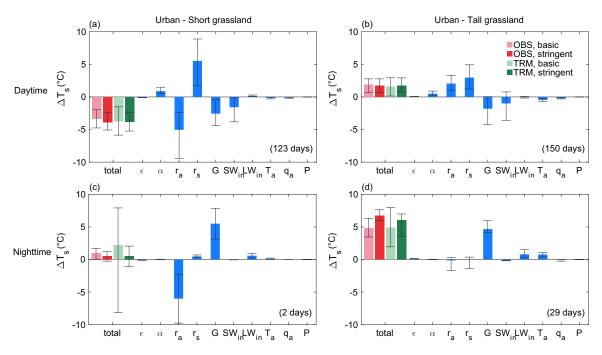


FIGURE 6 Attribution results of surface urban heat islands using the Two Resistance Mechanism (TRM) model during (a, b) daytime (10am-4pm) and (c, d) nighttime (10pm-4am). For (a, c), the short grassland site is used as the reference site, and for (b, d) the tall grassland site is used as the reference site. The sample size is noted in the bracket in the bottom right corner of each panel. The column indicates the median of the results at the daily scale, and the upper and lower error bars are the 80th and 20th percentiles of the results, separately, representing the day-to-day variability of the attribution results. "Basic" refers to applying the basic data filtering strategy, where we only exclude the half-hourly data when any one of the three sites have a missing value. "Stringent" refers to applying the more stringent data filtering strategy, where we further exclude the data when absolute value of the sensible heat flux or latent heat flux is small (less than 15 W m⁻² for daytime and 0.1 W m⁻² for nighttime) and when the inferred aerodynamic resistance or surface resistance is negative.

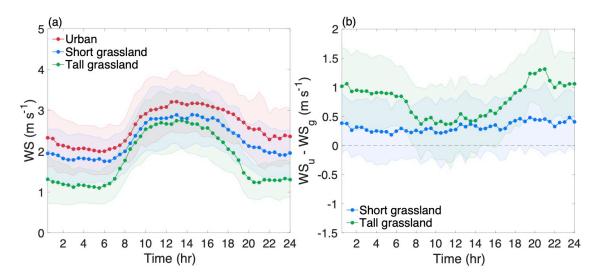


FIGURE 7 Average diurnal cycles of (a) wind speeds and (b) differences in wind speed between the urban site and the grassland sites (urban minus grassland). The shading denotes standard deviations.