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Abstract In this study, we simulate the magnitude of urban heat islands (UHIs) during heat
wave (HWs) in two cities with contrasting climates (Boston and Phoenix) using the
Weather Research and Forecasting (WRF) model and quantify their drivers with a newly
developed attribution method. During the daytime, a surface UHI (SUHI) is found in
Boston mainly caused by the higher urban surface resistance (7;) that reduces the latent
heat flux, and the higher urban aerodynamic resistance (7,) that inhibits convective heat
transfer between the urban surface and the lower atmosphere. In contrast, a surface urban
cool island (SUCI) is found in Phoenix mainly due to the lower urban r, that facilitates
convective heat transfer. In terms of near-surface air UHI (AUHI), there is almost no
daytime AUHI in either city. At night, a SUHI and an AUHI are identified in Boston due
to the stronger release of heat storage in urban areas. In comparison, the lower urban 7, in
Phoenix enhances convective heat transfer from the atmosphere to the urban surface at
night, leading to a positive SUHI but no AUHI. Our study highlights that the magnitude of
UHIs or UClIs is strongly controlled by urban-rural differences in terms of aerodynamic
features, vegetation and moisture conditions, and heat storage, which show contrasting
characteristics in different regions.

Keywords Aerodynamic resistance - Heat waves - Surface resistance - Urban heat islands -

- WRF
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1 Introduction

Despite having no universal definitions, heat waves (HWs) usually refer to a sustained
period (typically more than 2 days) when the temperatures (e.g., daily maximum, mean, or
minimum temperatures) exceed a certain threshold (Robinson 2001). Recent years have
witnessed numerous disastrous HWs worldwide, such as the 2003 HW in Europe (Garcia-
Herrera et al. 2010), the 2010 Russian HW (Dole et al. 2011) and the 2013 HW in eastern
China (Xia et al. 2016), incurring substantial socioeconomic costs (Xia et al. 2018) and
raising concerns about human health (Campbell et al. 2018; Mora et al. 2017; Petkova et
al. 2014), wildfires (Parente et al. 2018), crop failures (Fontana et al. 2015; Wreford and
Adger 2010; Zampieri et al. 2017), and infrastructure damage (Riibbelke and Vogele 2011).
What is worse is that the intensity, duration and frequency of HWs have been increasing
and will likely continue to increase in many parts of the world in a warming climate (Brown
et al. 2008; Donat et al. 2013; Fischer and Schér 2010; Lau and Nath 2012, 2014; Meehl
and Tebaldi 2004; Schér et al. 2004; Tebaldi et al. 2006).

With the high thermal risks imposed by HWs in mind (Patz et al. 2005; Tan et al. 2010),
the urban population, which comprises more than half of the world’s population and is
projected to reach 68% by 2050 (Grimm et al. 2008; United Nations 2019), usually
experiences hotter conditions than the rural counterpart due to the well-known urban heat
island (UHI) effects (Arnfield 2003; Oke 1982). The UHI effects have important impacts
on the atmospheric boundary layer flow, the dispersion of pollutants, the energy and water
consumption in cities, and so on (Han et al. 2014; Hidalgo et al. 2009; Miao et al. 2009;
Pal et al. 2012; Zhang et al. 2014). The UHI intensity, which characterizes the magnitude

of the UHI effect, is typically defined as the temperature difference between the urban and
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the surrounding rural areas, which can be based on either near-surface air temperature (i.e.,
air UHI or AUHI) or surface temperature (i.e., surface UHI or SUHI) (Stewart 2011). The
negative AUHI and SUHI are called air urban cool island (AUCI) and surface urban cool
island (SUCI), respectively, in this study.

Broadly, UHIs can be explained by the surface energy balance equation. For an
imaginary control volume with an arbitrary horizontal scale that extends from the ground
to the roof level and has no net horizontal advection of heat through the sides of the control
volume, the energy balance equation can be expressed as (Oke et al. 2017):

AF + (1 — a)SW,;,, + eLW;,, = H + LE + G + oTg (1)
where AF is the anthropogenic heat flux (W m™?), a is the surface albedo, SW;, is the
incoming shortwave radiation (W m™), ¢ is the surface emissivity, LW¥;, is the incoming
longwave radiation (W m™), H is the sensible heat flux (W m™), LE is the latent heat flux
(W m™), G is the ground heat flux (also called heat storage, W m™), ¢ is the Stefan-
Boltzmann constant (W m™ K™*), and 7j is the land surface temperature (K). The terms on
the left-hand side of Eq. (1) represent the energy input to the control volume either from
anthropogenic emissions or from the radiation (after subtracting the reflected radiation),
which includes the solar insolation and the longwave radiation from the ambient
atmosphere. The input energy can be transferred away from the control volume by either
convection into the lower atmosphere (), conduction into the ground (G), or radiation in
the longwave band (g0 Tg). Part of the input energy is consumed by the evapotranspiration
process in order to transform the water from the liquid phase to the vapor phase, namely,
the latent heat flux (LE). UHIs are mainly caused by the unique urban characteristics such

as less evapotranspiration associated with limited green space and low surface moisture,
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lower albedo owing to radiative trapping, larger heat release at night due to the higher
thermal admittance of built materials as well as the larger anthropogenic emissions
(Arnfield 2003; Grimm et al. 2008; Grimmond 2007; Oke 1982; Ramamurthy et al. 2014;
Taha 1997; Zhao et al. 2014). These unique urban characteristics either increase the energy
input on the left-hand side of Eq. (1) or inhibit the efficiency of heat transfer on the right-
hand side of the equation, leading to hotter urban surfaces and near-surface conditions.
Although the causes of UHIs are generally well understood, it remains a challenge to
quantify and compare the contribution of each individual process to the magnitude of UHIs,
which strongly depends on the nature of the urban and rural environments, human
activities, and meteorological conditions (Grimmond 2007). Moreover, the spatial
variations of UHIs across cities and background climates and their key controlling factors
are still under debate (Li et al. 2019; Manoli et al. 2019; Zhao et al. 2014). To fill this
research gap, the present study simulates the magnitude of UHIs during about 20 HW
events in the period of 2007-2016 over two cities in the United States (i.e., Boston and
Phoenix) with the Weather Research and Forecasting (WRF) model. The objective of this
study is to quantify and compare the underlying drivers of UHIs during HWs in these two
cities with contrasting background climates. Specifically, Boston has a humid continental
climate while Phoenix has a hot desert climate. The annual mean temperature is 9.8 °C in
Boston while 21.5 °C in Phoenix, and the annual mean rainfall is 1122 mm in Boston while
only 211 mm in Phoenix. Therefore, conducting the same analyses over these two cities

can provide insights into the spatial variability of UHIs and their controlling factors.
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The paper is organized as follows: sect. 2 describes the data and methodology, sect. 3
presents the main results, sect. 4 discusses the implications and limitations of our work,

and sect. 5 concludes the paper.

2 Data and Methodology

2.1 Observational data

To identify HWs, we use the 2-m air temperatures from the Integrated Surface Database
(ISD) provided by the National Oceanic and Atmospheric Administration (NOAA,
ncdc.noaa.gov/isd/data-access) and measured at the Boston Logan International Airport
and the Phoenix Sky Harbor International Airport. These data are used because of their
long-term span, which is required for HW identification. However, for validation of WRF
simulation results, we use the 2-m air temperatures from the Meteorological Assimilation
Data Ingest System (MADIS, madis-data.ncep.noaa.gov/madisPublicl/data/archive) due
to their larger spatial coverage (see blue triangles on Figure 1la & ¢). We only use the
MADIS stations whose data availability in the simulation period is more than 90%.

To evaluate the WRF-simulated boundary-layer structure, we use commercial aircraft
data provided by the Aircraft Communications Addressing and Reporting System (ACARS;
madis-data.cprk.ncep.noaa.gov/madisPublicl/data/archive). The ACARS data are proved
to be as good as the radiosonde data in terms of quality in the lower atmosphere, but with
much higher temporal and vertical resolutions (Petersen 2016; Zhang et al. 2019).
Specifically, the root-mean-square error (RMSE) of ACARS against radiosonde below 850
hPa is approximately 1.3 K, while the mean bias error (MBE) falls between -0.16 K and -
0.32 K (Zhang et al. 2019). In this study, we use the temperature profiles collected by

airlines when they take off or land at the Boston Logan International Airport and the
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Phoenix Sky Harbor International Airport (see blue circles on Figure 1b & d), which have
been processed and interpolated onto regular height levels at the hourly scale (Zhang et al.
2019, 2020).

To validate the WRF-simulated land surface temperatures, we use the land surface
temperature data from the 1-km MODI11A1 Version 6 product provided by the Moderate
Resolution Imaging Spectroradiometer (MODIS;
Ipdaac.usgs.gov/products/mod11al1v006).

2.2 HW identification

The HW definitions used in previous studies vary in terms of the temperature variable, the
threshold of its magnitude, and the duration/extent (Anderson and Bell 2011; Chen and
Zhai 2017; Lau and Nath 2014; Liao et al. 2018a; Luo and Lau 2016; Meehl and Tebaldi
2004; Peng et al. 2011; Perkins 2015; Sillmann et al. 2013; Yang et al. 2017). In our
research, we identify a HW as a period of at least 2 consecutive days whose daily mean
temperature exceeds the 95 percentile of the local climatology (Anderson and Bell 2009,
2011; Hajat et al. 2006; Zhang et al. 2020), which is defined based on daily mean
temperatures during the warm seasons (May 1 to September 30) of 2007-2016. The
thresholds of two days and 95 percentile are used to ensure enough HW days selected for
our analysis and also distinct thermal conditions between HW and non-HW days. We
further corroborate these selected HWs using the ACARS temperature profiles (i.e., we
manually check if the start and the end of selected HWs coincide with obvious changes in
the ACARS temperature profiles, see Zhang et al. 2020). Overall, 41 HWs are selected

during 2007-2016, with 20 HWs in Boston and 21 HWs in Phoenix (Table 1).

2.3 WRF simulations
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The WRF model has been widely used to study urban climate (Chen et al. 2011; Georgescu
et al. 2011; Heaviside et al. 2015; Li and Bou-Zeid 2014; Li et al. 2018; Meir et al. 2013;
Ramamurthy et al. 2017; Ramamurthy and Bou-Zeid 2016; Tewari et al. 2019). In this
study, the WRF version 4.0 is used to simulate each HW event, with 5 pre-HW days and 5
post-HW days. Three nested model domains with spatial resolutions of 9, 3 and 1 km,
respectively, are used (Figure 1). For Boston, these three domains have 149 x 149, 150 x
150 and 150 x 150 grid cells, respectively. The 9-km domain covers most of the
northeastern United States, and the innermost domain covers Boston as well as the
surrounding landscapes which are mostly forests. For Phoenix, these three domains have
299 x 299, 300 x 300 and 180 x 180 grid cells, respectively. The 9-km domain covers most
of the southwestern United States as well as a sizeable portion of Mexico, and the innermost
domain covers Phoenix and the surrounding landscapes which are mostly scrublands. All
model domains have 55 vertical levels, and the model top is set as 100 hPa. The North
American Regional Reanalysis (NARR) data with a spatial resolution of about 32 km and
a temporal resolution of 3 hours are used for the initial and boundary conditions. National
Land Cover Database 2011 (NLCD 2011) is used as land use input to the model (Homer et
al. 2015). When used in WREF, this land cover dataset has a 9-second spatial resolution.
The urban land is classified into three categories (commercial urban, high-intensity
residential urban, low-intensity residential urban). Thus, not all urban grid cells have the
same surface properties. The physical parameterizations for the WRF simulations follow
closely the studies by Li and Bou-Zeid (2014) and Wang and Li (2019), including the
Dudhia scheme for shortwave radiation (Dudhia 1988), the rapid radiative transfer model

(RRTM) scheme for longwave radiation (Mlawer et al. 1997), the single-moment 6-Class
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(WSM6) microphysics scheme (Hong and Lim 2006), and the Noah land surface model
(Ek et al. 2003) coupled with the single-layer urban canopy model (Kusaka et al. 2001;
Kusaka and Kimura 2004). Following Wang and Li (2019), we test three planetary
boundary layer (PBL) schemes: the asymmetric convective model, version 2 (ACM2)
scheme (Pleim 2007), the Yonsei University (YSU) scheme (Hong et al. 2006), and the
Mellor-Yamada Janjic (MYJ) scheme (Mellor and Yamada 1974). We focus on a
sensitivity test to the PBL scheme as turbulent heat transfer is an extremely important
process that regulates the magnitude of UHIs (Li and Bou-Zeid 2014). For model
validation, we select 6 HW events with more complete observational records (denoted with
an asterisk in Table 1). We will use the validation results to select a PBL scheme with the
best consistency with the observational data, which will be used for simulating the

remaining HW events.

2.4 The attribution method

2.4.1 Attribution of SUHI

The attribution of SUHI is based on the Two-Resistance Mechanism (TRM) model used in
a number of recent studies (Chen et al. 2020; Li et al. 2019; Li and Wang 2019; Liao et al.
2018b; Moon et al. 2020; Rigden and Li 2017; Wang et al. 2019, 2020). The TRM model
starts from the surface energy balance equation as Eq. (1), with H and LE parameterized
using the concepts of aerodynamic resistance and surface resistance (Brutsaert 1982, 2005;

Monteith and Unsworth 2007), as follows:

H=2 -1 @)
Pl
LE =P (' (1)~ q0) 3)
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where p is the air density (kg m™), Cp is the specific heat of air at constant pressure (J kg™
K™), r, is the aerodynamic resistance between the surface and the lower atmosphere (s m”
", T, is the potential temperature of the lower atmosphere (K, not the near-surface or 2-m
air temperature as discussed below), L, is the latent heat of vaporization (J kg™), 7; is the
surface resistance (s m™), g* is the saturated specific humidity at Ty (kg kg™"), and q, is the
specific humidity of the lower atmosphere (kg kg™). The aerodynamic resistance (7;)
represents the efficiency with which the land surface convects sensible heat to the lower
atmosphere (Brutsaert 1982, 2005; Garratt 1992). It is controlled mostly by the capacity of
atmospheric turbulence in transporting sensible heat but also molecular diffusion at the
interface between the land and the atmosphere (Brutsaert 1982, 2005; Garratt 1992). From
Eq. (2) one can see that a higher aerodynamic resistance results in a lower sensible heat
flux with a given temperature gradient. On the other hand, the surface resistance (7y)
represents the efficiency with which water is extracted from the saturated zone to the
surface or from the vegetation inside to the leaf surface, which is strongly dependent on
soil moisture and vegetation stresses (Brutsaert 1982, 2005; Garratt 1992). From Eq. (3)
one can see that moisture transfer from the land to the atmosphere also experiences the
aerodynamic resistance (1), in addition to the surface resistance (ry). With everything else
being equal, a higher surface resistance leads to a smaller latent heat flux.

Substituting Egs. (2-3) into Eq. (1) yields a non-linear equation for 75, which is further
linearized by applying first-order Taylor series expansion to the outgoing longwave
radiation and the saturated specific humidity terms, so that an analytical expression for 7

can be obtained:

10
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Based on this solution, the difference in the surface temperature between urban and rural
surfaces can be further expressed as the sum of the contributions from various factors again

using first-order Taylor series expansion, as follows:

AT, = (aT )AAF+<6T)AS+<6T)A +<6T)AG+<6T)Ar +<6T5)Ars+---

0AF de Jda G ar, ar
+< )ASW +< 9T, )ALW +<6T)AT +<6T)A (aT)AP 5
aSW,, n T\GLw,, in T\GT, 3g,) "9 T \5p ®)

where P is the pressure (Pa), and A indicates the urban-rural difference in each factor (i.e.,
urban minus rural values). In Eq. (5), the partial derivative represents the sensitivity of the
surface temperature to the change in each factor, whose analytical formulation can be
obtained using Eq. (4). Throughout the paper, each term on the right-hand side of Eq. (5)
will be called a contribution. Each contribution is the product of the sensitivity (Table 3),
which represents how sensitive the surface temperature is to a change in each factor, and
the difference (Table 5), which represents the urban-rural contrast of that factor (i.e., urban
minus rural values).

Compared with previous attribution methods (such as Li et al. 2019; Zhao et al. 2014),
Eq. (5) not only considers the influence of differences in land surface biophysical
parameters (such as albedo) on SUHIs, but also the influence of differences in atmospheric
conditions (such as incoming shortwave radiation) on SUHIs. This is important for our
study because unlike previous studies assuming that urban and rural lands share the same
atmospheric conditions due to their use of sub-grid outputs from global climate or earth

system models (Li et al. 2019; Zhao et al. 2014), the SUHIs in our study are the surface

11
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temperature differences between urban and rural grid cells, which have different overlying

atmospheric conditions.
2.4.2 Attribution of AUHI

The original TRM method was designed for the attribution of surface temperature
differences (i.e., SUHIs). In this study, we further develop the TRM method to attribute
the near-surface air temperature differences (i.e., AUHIs). The mathematical link between
the surface temperature and near-surface air temperature is provided by the constant heat
flux assumption in the atmospheric surface layer. This assumption is the basis for deriving
the so-called 2-m air temperature in models like WRF. With this assumption, the sensible
heat flux derived from the temperature difference between the land surface and the lower
atmosphere (i.e., Eq. 2) should be equal to the sensible heat flux derived from the
temperature difference between the air at 2 meters above the displacement height and the
lower atmosphere. Thus the 2-m air temperature (T, ) can be related to the surface

temperature (T5) and the potential temperature of the lower atmosphere (T, ), as follows:

!

T,
T, = r_a(Ts - Ta) + T, (6)

a

where 7, is the aerodynamic resistance between the reference height (i.e., 2 meters above
the displacement height) and the lower atmosphere (s m™). Hence, 7, is different from 7,
which is the aerodynamic resistance between the surface and the lower atmosphere.

Thus, the urban-rural difference in the 2-m air temperature can be expressed as follows:

12
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where f = ~2. Again, A indicates the urban-rural difference in each factor (Table 5) while

Ta

the remainder of each term represents the sensitivity of T, to each factor (Table 4).
2.5 Application of the attribution method to the WRF outputs

The attribution analysis in general follows previous research by Liao et al. (2018b) and Li
et al. (2019). Most variables needed in Egs. (5 & 7) are direct outputs of the WRF model
including the surface temperature, 2-m air temperature, emissivity, albedo, ground heat
flux, incoming shortwave radiation, incoming longwave radiation, pressure, and the
potential temperature at the lowest level of the atmospheric model (which is about 30 m in
our simulations). The specific humidity is calculated from the water vapor mixing ratio
(OVAPOR) through q, = QVAPOR/(QVAPOR + 1). Since our WRF simulations do not
include anthropogenic heat fluxes in the form of both sensible and latent heat, AF is set to
zero in the attribution. The implication of neglecting anthropogenic heat fluxes will be
discussed in section 4.2.

The aerodynamic resistances (7, and ) and the surface resistance (r;) are not direct
outputs from the WRF model. To infer them at the grid-cell scale, we use the WRF
simulated sensible and latent heat fluxes, as well as the surface temperature, 2-m air
temperature, and the potential temperature and specific humidity at the lowest level of the

atmospheric model following Eqgs. (2, 3, and 6). It should be stressed that we use the
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potential temperature and specific humidity at the lowest level of the atmospheric model
(~30 m), instead of the 2-m air temperature and specific humidity, to represent T,, and q,
in Egs. (2, 3, and 6), because the 2-m air temperature and specific humidity are not
prognostic variables in the model. We also stress that 7, is different from r,, arising from
the fundamental dependence of aerodynamic resistance on the height z in the bulk
formulations for surface fluxes (Garratt 1992): 7, represents the resistance to convective
heat transfer between the surface and the lowest level of the atmospheric model while 7,
represents the resistance to convective heat transfer between the reference height (i.e., 2 m
above the displacement height) and the lowest level of the atmospheric model.

The aerodynamic resistances and surface resistance are inferred using Egs. (2, 3, and
6) at the hourly scale for grid cells in the innermost domain. In this study, we only consider
grid cells with the dominant urban land cover (i.e., high-intensity residential urban for both
cites) and the dominant rural land cover (i.e., evergreen forest for Boston and shrub for
Phoenix). In total, there are 1372 (1452) urban grid cells and 1798 (25502) rural grid cells
in Boston (Phoenix). We consider only one urban type because each urban type
corresponds to a unique set of urban parameters and thus considering only one urban type
simplifies the comparison between the two cities and reveals more information about the
role played by the background climate. We use the default values of urban parameters in
WREF (Chen et al. 2011). The high-intensity residential urban corresponds to the average
building height of 7.5 m, the average roof and road widths of 9.4 m, and the impervious
surface fraction of 0.9. Other thermodynamic parameters such as albedo, emissivity, heat
capacity, and thermal conductivity can be found in Chen et al. (2011). When the resistances

are estimated at the hourly scale, they may be of negative values, especially for
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aerodynamic resistances. This issue is fundamentally linked to the fact that the TRM model
parameterizes turbulent heat fluxes using the bulk transfer relations (i.e., Egs. 2-3), which
are local turbulence closures and assume uniform distributions of heat sources at the
surface (i.e., with a single surface temperature). In the WRF model, the heat sources are
not uniformly distributed (e.g., the single-layer urban canopy model considers the roof, the
wall, and the ground separately). In this situation, the inferred aerodynamic resistances
(e.g., based on Eq. 2) might appear to be negative. Since the negative resistances are
physically meaningless, the grid cells with negative aerodynamic or surface resistances are
filtered out following previous work (L1 et al. 2019; Liao et al. 2018b). The numbers of the
filtered urban/rural grid cells vary from hour to hour, and are on average about 6% (1%)
for Boston (Phoenix) during the daytime, and about 56% (3%) for Boston (Phoenix) during
the nighttime. To further reduce the uncertainties of the inferred resistances, we remove
the grid cells in which the magnitudes or absolute values of sensible and latent heat fluxes
are smaller than 15 W m™ in the daytime (10am-4pm, local standard time) and 0.1 W m™
in the nighttime (10pm-4am, local standard time). These thresholds are needed because the
fluxes appear in the denominator when inferring the resistances. The exact values of these
thresholds are chosen as a compromise between ensuring that the uncertainty of the inferred
resistance is sufficiently small but in the meantime still maintaining a reasonably large
sample of grid cells. After applying these data filtering strategies, there remain on average
about 1300 and 350 urban grid cells in Boston during the daytime and nighttime,
respectively, and 1500 and 1000 rural grid cells in Boston during the daytime and
nighttime, respectively. For Phoenix, there are on average about 200 (10000) and 100

(20000) urban (rural) grid cells during the daytime and nighttime, respectively. We note
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that these data filtering strategies are only applied when the attribution analysis is
conducted (i.e., in section 3.3). The consistency between the average diurnal cycle results
in section 3.2 and the attribution results in section 3.3, as shall be seen later, implies that
these data filtering strategies do not alter our key findings.

Then we spatially average each variable across the dominant urban and rural land cover
types, which results in one urban value and one rural value for each variable in each hour.
After performing the spatial average, we further average the data over daytime and
nighttime for each HW day and then conduct the attribution analysis at the daytime average
and nighttime average scales (hereafter the daily scale). In doing so, the consistency
between the TRM modelled UHIs and the WRF simulated UHIs is higher compared to
performing the attribution at the hourly scale and then aggregating the results to the daily

scale. This is similar to what previous studies found (Li et al. 2019; Liao et al. 2018Db).

3 Results

3.1 Assessment of the WRF simulations with different PBL schemes

This section aims to assess the WRF-simulated results, with a focus on comparing the
performances of WRF with different PBL schemes. To do so, 6 out of the 41 HWs are
selected (noted with an asterisk in Table 1), with 3 in Boston and 3 in Phoenix.

First, we validate the WRF-simulated temperature profiles against the ACARS
observations at the airports. Figure 2 shows an example (HW case 1, June 25-28, 2007) in
Boston. We find that the WRF model simulates the “heat dome” over HW days (June 25-
28) as observed by the ACARS data. A significant warming and a sharp cooling are
captured by WREF in the lowest 4 km of the atmosphere on the days right before (June 24)

and after (June 29) the HW, respectively (Figure 2b-d). We do not observe obvious
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differences among the WRF simulations with different PBL schemes (Figure 2b-d), which
is also reflected by the similar RMSEs between the WRF simulated results with the three
PBL schemes and the ACARS data (Table 2). When the validation against the ACARS
data is further applied to the other 5 HW cases, the weighted average RMSEs in Table 2
show that ACM2 is slightly superior to the other two PBL schemes but the differences
between the PBL schemes are rather small.

Second, we validate the WRF-simulated 2-m air temperatures against the weather
station data from MADIS. Figure 3 shows the results from the same HW event as in Figure
2 at two weather stations (i.e., the urban site KBED and the rural site KMQE in Boston
marked by yellow triangles in Figure 1b). Although some biases exist, the WRF-simulated
results show overall good agreement with the observations and can reasonably reflect the
onset and demise of the HW. Different PBL schemes show contrasting performances. For
example, at the urban site KBED (Figure 3a, ¢ & ¢), the WRF results using MYJ deviate
from the observations more strongly than those using the other two PBL schemes.
However, at the rural site KMQE (Figure 3b, d & f), the WRF results with MY are closer
to the observations than those with the other two PBL schemes. The weighted average
RMSEs based upon all available weather station data (Table 2) show that ACM2 is slightly
better than YSU, with MYJ showing the worst performance, which is consistent with the
previous findings using ACARS.

Third, we compare the land surface temperatures simulated by WRF and remotely
sensed by MODIS. Figure 4 shows two snapshots of the simulated and observed land
surface temperature patterns at around 11 am and 9 pm (local standard time) on June 27,

2007 in Boston. Unlike ACARS and MADIS that have continuous observations over the

17



350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

course of the day, MODIS only provides land surface temperature measurements at its
overpassing time. Moreover, the availability of MODIS data is often reduced by the
presence of clouds. For this particular HW day, the WRF simulations are able to capture
the broad urban-rural land surface temperature contrast, with some underestimation of
SUHI during the daytime and overestimation during the nighttime. When the temperatures
are averaged over urban areas, the WRF simulations yield 311.0 K (300.5 K), 311.2 K
(300.2 K), 310.4 K (299.6 K) for ACM2, YSU and MY/, respectively; and the MODIS
gives 312.3 K (298.4 K) during the daytime (nighttime). For the rural average land surface
temperatures, the WRF simulations yield 304.7 K (296.2 K), 304.8 K (295.2 K), 305.0 K
(294.9 K) for ACM2, YSU and MY, respectively, and the MODIS gives 305.7 K (296.3
K) during the daytime (nighttime).

The performance of the WRF model presented here is broadly consistent with previous
studies (Kalverla et al. 2016; Li and Bou-Zeid 2014; Liao et al. 2014; Meir et al. 2013;
Ramamurthy et al. 2017; Salamanca et al. 2018; Wang and Li 2019). Based on the findings
from Figures 2 to 4 and Table 2, we choose the ACM2 scheme to perform simulations for

the remaining HW cases.
3.2 WRF-simulated urban-rural differences in temperatures and fluxes

In this section, we investigate the WRF-simulated urban-rural differences in surface and 2-
m air temperatures and fluxes using average diurnal cycles over HW days. The average
diurnal cycles present a general picture of urban-rural contrasts during HWs and how they
differ between day and night and between Boston and Phoenix.

During the daytime (10am-4pm, local standard time), Phoenix is much hotter than

Boston (Figure 5a & c), as expected from its lower latitude and desert climate. When the
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urban and rural surface temperatures are compared, Boston shows a daytime SUHI, while
Phoenix presents a daytime SUCI (Figure 5b). During the nighttime (10pm-4am, local
standard time), both cities show a SUHI (Figure 5b). Compared to the surface temperature,
the 2-m air temperature shows smaller differences between cities (Figure 5¢) and also
smaller urban-rural differences for each city (Figure 5d). As far as the daytime and
nighttime average results are concerned, Phoenix shows almost no AUHI during both
daytime and nighttime; Boston shows no AUHI during the daytime but a nighttime AUHI
(Figure 5d). However, we also point out that there are some variations within the
daytime/nighttime periods. For example, the urban-rural differences of 2-m air temperature
in both cities drop in the early morning, which is possibly due to the rapid growth of the
convective boundary layer as shown by Theeuwes et al. (2015).

The radiative fluxes including incoming shortwave and longwave radiation, and
outgoing shortwave and longwave radiation are examined in Figure 6. During the daytime,
the incoming shortwave radiation of Phoenix is on average larger than that of Boston due
to its lower latitude (Figure 6a). Within each city, the incoming shortwave radiation is
nearly identical for both urban and rural surfaces (Figure 6a). Note that we did not modify
the aerosol profiles in WRF, and thus the urban-rural difference in terms of aerosol loading
is not considered here. In contrast, the urban-rural difference in outgoing shortwave
radiation is large (Figure 6c¢), which reflects the large urban-rural contrast of albedo
considering that the urban-rural difference in incoming shortwave radiation is rather small.
Specifically, the urban land of Boston has a higher surface albedo than the rural land of

Boston (forests) and thus reflects more shortwave radiation. Conversely, the urban land of
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Phoenix has a smaller surface albedo than the rural land of Phoenix (shrubs) and thus
reflects less shortwave radiation.

The urban-rural contrast in the incoming longwave radiation is positive for both cities
(Figure 6b), which is consistent with the findings from previous studies using flux tower
measurements in other metropolitan regions (Li et al. 2015; Ao et al. 2019). The incoming
longwave radiation is dependent on the temperature and humidity profiles in the whole
atmospheric column (Brutsaert 2005) and thus it is difficult to identify exactly which
factors cause such differences. In terms of urban-rural difference in outgoing longwave
radiation (Figure 6d), the results in both cities are consistent with the expectation that the
outgoing longwave radiation difference should be of the same sign as the surface
temperature difference (Figure 5a; i.e., a hotter surface tends to have larger outgoing
longwave radiation).

Now we examine the turbulent fluxes. During the daytime, the urban sensible heat flux
is much larger than the rural one in both cities (Figure 7a), with a significant time lag in
Boston that has been also observed by other studies (Oke et al. 2017; Ramamurthy et al.
2014). To explain this daytime urban-rural difference in sensible heat flux, we first note
that the urban-rural difference in T, is very small for both cities (less than 0.1 K) (Figure
7¢). This is again because T, in our study refers to the potential temperature at the lowest
level of the atmospheric model (~30 m). The dynamics of T, are controlled by horizontal
advection of heat and mixing in the boundary layer, which are complicated and simulated
by the atmospheric component of the WRF model. However, it is not surprising that the
urban-rural differences of T, are smaller than the surface and 2-m air temperature

differences due to the mixing power of surface-layer turbulence. With this in mind, we
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further note that the urban-rural difference in sensible heat flux is strongly modulated by
aerodynamic resistances (i.e., 1, & 1) according to Egs. (2) and (6). During the daytime,
the urban-rural difference in 7, is positive in Boston but negative in Phoenix (Figure 8a &
b). This implies that the urban land is more efficient in convecting heat from the surface to
the lower atmosphere than the rural land in Phoenix, but the opposite is true in Boston.
This is broadly consistent with the fact that the rural land of Phoenix is short shrubs and
thus has lower surface roughness, while the rural land of Boston is tall forests and thus has
higher surface roughness. Typically, larger obstacles generate more turbulence with which
the heat can be transferred more efficiently from the surface to the overlying air, although
we stress that convective heat transfer is fundamentally different from momentum transfer
(Brutsaert 1982; Garratt 1992). Here the aerodynamic resistance refers to the resistance to
convective heat transfer, not to momentum transfer. In comparison, the urban-rural
difference in 7, is smaller for both Boston and Phoenix (Figure 8c & d). This highlights the
important difference between r, and 7, and demonstrates the height-dependence of
aerodynamic resistance as alluded to earlier. During the nighttime, sensible heat flux
becomes negative (Figure 7a), indicating that the lower atmosphere in turn heats the surface.
The magnitude of the urban sensible heat flux is smaller than the rural sensible heat flux in
Boston but larger in Phoenix (Figure 7a), which indicates that the urban land in Boston
(Phoenix) has a weaker (stronger) capacity to transfer heat from the overlying air to the
surface than the rural land at night. Combined with the daytime results, this reflects that
the urban land is less (more) efficient than the rural land in convecting heat between the

land surface and the lowest model level in Boston (Phoenix).
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During the daytime, the urban latent heat flux is much lower than the rural latent heat
flux in Boston, while in Phoenix both urban and rural latent heat fluxes are extremely small
(Figure 7b). In both cities, the urban-rural differences in latent heat flux are not caused by
the differences in the specific humidity at the lowest level of the atmospheric model, which
are very small (Figure 7d). According to Eq. (3), the latent heat flux is strongly modulated
by surface resistance in addition to aerodynamic resistance. We use Eq. (3) to infer the
surface resistance and find that the urban surface resistance is larger than the rural surface
resistance in Boston during the daytime (Figure 8e). This explains why the urban latent
heat flux is much smaller than the rural counterpart in Boston during the daytime. Both
urban and rural surface resistances in Phoenix inferred from Eq. (3) are exceptionally large
due to the desert climate (Figure 8f). During the nighttime, there are rather small urban-
rural differences in latent heat flux for both cities as urban and rural latent heat fluxes tend
to be close to zero (Figure 7b).

Last but not the least, we examine the ground heat flux. Between the two cities, the
magnitude of rural ground heat flux differs strongly: the forests in Boston have much
smaller ground heat fluxes than the shrubs in Phoenix (Figure 9). This has been observed
before and is due to the difference in the canopy height: a taller canopy tends to reduce the
shortwave radiation reaching the ground and thus has less ground heat flux (Garratt 1992).
When the urban and rural ground heat fluxes are compared, we find that in both cities, the
urban ground heat flux is on average larger than the rural ground heat flux during the
daytime (Figure 9), but is more negative during the nighttime. The results indicate that in

both cities the urban land stores more energy into the ground than the rural land during the
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daytime. As a result, the urban surface and near-surface air are heated more at night due to

the heat storage release.
3.3 Attribution results

While the results shown in the previous section are informative, they do not directly
quantify the contributions of different factors to the magnitude of UHIs. To do so, we apply
the TRM attribution method to the WRF-simulated UHIs and UCIs in terms of surface
temperature T, (section 3.3.1) and 2-m air temperature T, (section 3.3.2). The comparison
between Boston and Phoenix results is presented in section 3.3.3.

The credibility of the TRM method is supported by the consistency between the TRM-
modelled (Figures 10 & 11, red bars) and the WRF-simulated (Figures 10 & 11, orange
bars) urban-rural temperature differences. Based on the TRM-modelled results, we find a
SUHI (AT = 6.1 K) in Boston but a SUCI (AT = —3.3 K) in Phoenix during the daytime
(Figure 10). At night, we find a SUHI (AT, = 3.3 K) in Boston and also a SUHI (AT, = 3.7
K) in Phoenix. In terms of the AUHI, we find almost no daytime AUHIs in both cities
(Figure 11). At night, we find an AUHI (AT, = 2.4 K) in Boston and no AUHI in Phoenix.
In the following, we discuss the individual contributions from different factors to SUHIs
and AUHIs (Figures 10 & 11, blue bars). The individual sensitivities and urban-rural
differences are presented in Tables 3 to 5. Note that the values reported in Tables 3 to 5 are

the median values of the results over all HW days.

3.3.1 SUHI attribution results

3.3.1.1 Boston

During the daytime, the urban-rural difference in the surface temperature (ATy) in Boston

is mainly contributed by 7y (+73.3%), 1, (+69.9%), G (-30.2%), and a (-15.9%) (see
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Figure 10a). Hence the hotter urban surface in Boston during the daytime, when compared
to the rural surface (forests), is mainly caused by the drier nature (i.e., a larger urban ry)
and the lower heat transfer efficiency between the surface and the lower atmosphere (i.e.,
a larger urban r, ). The larger G and the larger a tend to lower the urban surface
temperature, but do not overcome the positive contributions from the resistances.
Specifically, the sensitivity of Ty to 15 is positive (Table 3), implying that a drier surface
tends to be hotter. Therefore, the r; makes a large positive contribution to the AT due to
the larger urban 7y than the rural r; in Boston (Table 5). The sensitivity of T to 7, is also
positive (Table 3), indicating that a surface with a larger r,, tends to be hotter during the
daytime. This is because with a larger 7, it is more difficult to convect the heat to the
atmosphere. As the urban 7, is larger than the rural 7, in Boston (Table 5), the r, also
makes a large positive contribution to the AT;. The sensitivity of T to a is negative (Table
3), showing that a darker surface tends to be hotter. Thus, the @ makes a negative
contribution to the AT as the urban surface has a larger a than the rural surface in Boston
(Table 5). The sensitivity of T to G is also negative (Table 3), which means that a larger
ground heat flux going into the soil or built materials tends to cause a cooler surface during
the daytime. Therefore, the larger urban G (Table 5) results in a small negative contribution
to the AT.

The nighttime AT in Boston is primarily contributed by G (see Figure 10b). That is,
the hotter urban surface mostly results from the larger heat storage release at night. The
sensitivity of Ty to G is negative (Table 3), which indicates that the surface becomes hotter

when there is a larger release of the heat storage (i.e., a more negative G). Thus, when the
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urban G is smaller (i.e., more negative) than the rural G (Table 5 and Figure 9a), the G

makes a positive contribution to the AT.
3.3.1.2 Phoenix

In Phoenix, the daytime ATy is mainly contributed by 7, (-159.7%) and a (+67.9%) (see
Figure 10c). Hence the cooler urban surface in Phoenix during the daytime is mainly
because the urban areas have a stronger convective heat transfer efficiency compared to
the rural areas. Although the urban surface is darker in Phoenix, it does not overcome the
negative contribution from the aerodynamic resistance.

The nighttime AT in Phoenix is mainly contributed by 7, (+56.9%), LW;,, (+33.0%),
and G (+22.1%). Namely, the hotter urban surface is caused by its lower urban
aerodynamic resistance, the larger urban incoming longwave radiation, and the stronger
heat storage release. While the latter two factors are straightforward to understand, the
importance of 7, requires some explanation. The sensitivity of Ty to 7, is negative (Table
3), which indicates that a smaller 7,, leads to a higher Ty. This is because more heat can be
transferred downward to warm the surface at night. Therefore, the smaller urban 7, in
Phoenix (Table 5) contributes positively to the AT,. Here we highlight that the sensitivity
of Ts to 1, changes its sign compared to the daytime counterpart. During the daytime, a
surface with a larger 7, tends to be hotter due to the reduced efficiency to transfer sensible
heat to the atmosphere. However, during the nighttime a surface with a smaller 7, tends to
be hotter because it becomes easier for the atmosphere to transfer heat towards the surface.
This diurnal asymmetry has been well documented in studies examining the impacts of
deforestation on land surface temperature (Burakowski et al. 2018; Lee et al. 2011; Liao et

al. 2018b; Schultz et al. 2017).
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3.3.2 AUHI attribution results

Close inspection of the AUHI attribution results reveals that most factors work in a similar
way as in the SUHI attribution results but with a smaller magnitude (Figures 10 & 11).
This is understandable as the 2-m air temperature is effectively derived by interpolating
between the surface temperature and the potential temperature at the lowest level of the
atmospheric model (see Eq. 6). Hence most factors affecting SUHI also impact AUHI, but
the magnitude of such impact is damped due to turbulent mixing between the surface and
the 2-m level, which manifests as the difference between r, and r, (i.c., the f in Eq. 7).
The major differences between the AUHI and SUHI attribution results lie in the new
contributions from r, and the different sensitivities of Ty and T, to r,, which are of
opposite signs as shown in Tables 3 and 4. We will focus on these differences in this section.

3.3.2.1 Boston

During the daytime, the urban-rural difference in the 2-m air temperature (AT,) is mainly
controlled by 7y and 7, in Boston (see Figure 11a). The new contribution from 7, is
negative (Figure 11a). The sensitivity of T, to 7, is three orders of magnitude larger than
the sensitivity of T, to 7, (Table 4), which indicates that the 2-m air temperature is more
controlled by 7, than . Moreover, the sensitivity of T, to 7, is positive, which means that
the 2-m air temperature tends to be smaller when the heat at the 2-m level can be more
casily transferred upward during the daytime (i.e., with a smaller 7). The urban 7, is
slightly lower than the rural 7;; in Boston (Table 5), resulting in a negative contribution to
the AT,.

During the nighttime, the AT, is predominately contributed by G in Boston (see Figure

11b). Nonetheless, the r, makes a negative contribution (Figure 11b). The sensitivity of T,
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to 7;, is negative (Table 4), which has an opposite sign compared to the daytime counterpart
because the heat is transferred upward in the day but downward at night. As the 7, becomes
larger, it is more difficult for the heat to be transferred downward to warm the near-surface
air at 2 m at night, leading to a lower T,. Therefore, when 7, is larger in urban areas than
in rural areas at night (Table 5), the r;, makes a negative contribution to the AT,. The
magnitude of the sensitivity of T, to 7, is also 3.5 times that of the sensitivity of T, to 7,
explaining why the contribution from 7, is much smaller than that from r,.

3.3.2.2 Phoenix

In Phoenix, the daytime AT, is more controlled by 7, than 7, with also some positive
contribution from a (Figure 11c). This is because the sensitivity of T, to 7, is positive and
two orders of magnitude larger than the sensitivity of T, to 1, (Table 4). This is similar to
the Boston results and again indicates that a larger r, results in a higher T, because it is
more difficult for heat at the 2-m level to be transferred to the atmosphere above during the
daytime. Therefore, the larger urban 7, (Table 5) leads to a positive contribution to the AT,.

During the nighttime, both 7, and r, make important contributions to AT, (Figure 11d),
but they play opposite roles and roughly cancel each other. The sensitivity of T, to 7, is
negative at night (Table 4), which indicates that a lower 1, raises T, as the near-surface air
can gain heat more easily from the atmosphere above. Thus, the smaller urban 7, makes a
positive contribution to the AT,. On the other hand, the r, makes a negative contribution.
The contribution from 7, changes its sign when compared to the SUHI results because the
sensitivity of T, to 7, always has the opposite sign as the sensitivity of T to 7, (Tables 3 &
4). Physically this means that convection either raises the surface temperature at the

expense of reducing the near-surface air temperature, or raises the near-surface air
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temperature at the expense of reducing the surface temperature. In this case, the smaller
urban 7, causes more heat to be transferred from the overlying air to the surface, which
positively contributes to SUHI (Figure 10) but negatively contributes to AUHI (Figure 11).

3.3.3 Differences in the attribution results between Boston and Phoenix

Comparing the attribution results between Boston and Phoenix, we find that the major
contributors work in an opposite way during the daytime due to the opposite sign of the
urban-rural difference in these factors (Table 5). First, compared to the urban land, the rural
land in Boston has a lower 7, but the rural land in Phoenix has a higher r,. Thus, the urban-
rural difference in the aerodynamic resistance between the surface and the lowest
atmospheric model level (Ary) is positive in Boston but negative in Phoenix. Therefore, the
1, contribution to AT is positive in Boston, but negative in Phoenix (Figures 10 & 11).
Second, the urban-rural difference in the aerodynamic resistance between the 2-m level
and the lowest atmospheric model level (Ar,) is negative in Boston but positive in Phoenix
during the daytime (Table 5). Therefore, the contribution of r;, to AT, is negative in Boston
but positive in Phoenix (Figure 11). Third, compared to urban areas, rural areas (forests) in
Boston have lower albedo (a) while rural areas (shrubs) in Phoenix have higher a (Table
5). Thus, the contributions of a to ATy and AT, are negative in Boston, but positive in
Phoenix (Figures 10 & 11). Fourth, the urban-rural difference in surface resistance (Ary) is
positive in Boston (Table 5), which leads to positive contributions to AT, and AT,. But the
urban-rural difference in surface resistance (Ary) has almost no effects on AT, and AT, in
Phoenix (Figures 10 & 11) due to the much lower sensitivities (0T /01y & 9T, /07y) (Tables

3 & 4). This indicates that the surface temperature is more sensitive to the surface moisture
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availability in Boston than in Phoenix, possibly due to the already very dry conditions in
Phoenix.

The comparison of the nighttime results is simpler. The nighttime SUHI and AUHI in
Boston are predominantly caused by the stronger urban heat storage release. For Phoenix,
the contributions from 7, and r, are large, but the heat storage release still plays a role

especially for SUHI.

4 Discussions

4.1 Comparison to previous studies

Our SUHI attribution results can shed important insights on the recent debate about the
spatial variability of daytime SUHIs over North America. Cites with more annual mean
rainfall, such as Boston in our case, tend to have stronger daytime SUHIs than those with
less rainfall, such as Phoenix in our case, as shown by a number of previous studies
(Clinton and Gong 2013; Imhoff et al. 2010; Li et al. 2019; Peng et al. 2012; Zhao et al.
2014). Zhao et al. (2014) found that aerodynamic resistance is the dominant factor
controlling the daytime SUHI spatial variability across cities in North America at the
annual mean scale. On the other hand, Li et al. (2019) found that it is surface resistance
that more strongly controls the daytime SUHI spatial variability at the annual mean scale,
although the attribution results in Li et al. (2019) also indicated an important role of
aerodynamic resistance. Our results show that both aerodynamic resistance and surface
resistance contribute significantly to the differences between Boston and Phoenix results
in the daytime, which is consistent with the findings of Li et al. (2019) and Manoli et al.
(2019) albeit at vastly different temporal scales. The importance of aerodynamic resistance

for the SUHI spatial variability results from the fact that the urban-rural difference in
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aerodynamic resistance shows opposite signs in the two cities. Our results show that in
Boston the aerodynamic resistance to convective heat transfer between the surface and the
lower atmosphere is larger in urban areas than in rural areas, while the opposite is true in
Phoenix. On the other hand, the importance of surface resistance for the daytime SUHI
variability stems from the fact that the urban-rural difference in surface resistance
contributes strongly to the SUHI in Boston but not in Phoenix.

Our nighttime results in Boston are consistent with the traditional paradigm that the
stronger release of ground heat flux in urban areas predominantly causes the nighttime
SUHIs (Oke et al. 2017). However, the results in Phoenix suggest that the role of
aerodynamic resistance cannot be neglected. When the land surface becomes cooler than
the atmosphere at night, the sensible heat goes from the atmosphere to the surface. This
transfer of heat is more efficient over surfaces with a lower 7, (the urban surface in
Phoenix’s case) and hence positively contributes to the nighttime SUHI. While this effect
is less documented in observational studies on SUHIs, it has been demonstrated in studies
on the impacts of deforestation on land surface temperature (Burakowski et al. 2018; Lee
etal. 2011; Liao et al. 2018b; Schultz et al. 2017).

4.2 Limitations of our study

There are a few limitations of our study that are important to appreciate. First, we do not
consider anthropogenic heat flux (4F) in our simulations and attributions. Within the
confines of our attribution method (see Eq. 4), the sensitivity of T and T, to AF should be
identical to that to ground heat flux (G) but with an opposite sign, which is on the order of
10% to 10" K m? W' for T, and on the order of 10~ to 102 K m? W™ for T,. Using the

fixed diurnal profile for AF prescribed in the single-layer urban canopy model (Kusaka et
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al. 2001; Kusaka and Kimura 2004), the urban-rural difference in AF is estimated to be on
the order of 75 W m™ (including both sensible and latent anthropogenic heat fluxes). Thus,
the contributions of AF are estimated to be around 0.75 to 7.5 K for the SUHI and 0.075 to
0.75 K for the AUHI. We point out that the simple estimate presented here might suffer
from the uncertainties associated with the magnitude of AF (Allen et al. 2011; Salamanca
et al. 2014). Moreover, the simulated sensitivities of T and T, to AF depend on how
exactly AF is incorporated in the energy balance computation in WRF, and might be
different from the values shown here. While these complications are left for future
investigations, we note that the signs of the sensitivities of T; and T, to AF and the urban-
rural contrast of AF are expected to be positive. Hence AF always tends to make positive
contributions to the UHIs.

Second, our analysis only focuses on HW days and thus the findings might not be
extrapolated to other weather conditions. We do not investigate the responses of UHIs to
HWs by comparing the results in pre-HW, HW, and post-HW days. Many studies have
shown that there exist synergies between UHIs and HWs, namely, the magnitude of UHIs
is larger under HWs (e.g., Ao et al. 2019; Founda et al. 2015; Founda and Santamouris
2017; Li and Bou-Zeid 2013; Li et al. 2015; Ramamurthy et al. 2017; Schatz and Kucharik
2015). However, there are also studies reporting that the magnitude of UHIs is reduced
under HW conditions (e.g., Rogers et al. 2019; Scott et al. 2018). Our attribution method
may shed new insights into this debate but this is left for future research.

Third, as with most studies using models like WRF, the validation is centered on land
surface temperature patterns, 2-m air temperatures at a number of weather stations, as well

as the boundary layer temperature profiles at the two airports due to data availability. Given
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the lack of observations, we could not directly validate the fluxes from our simulations.
More thorough validation, especially on parameters and variables related to near-surface

heat transfer, is recommended.
5. Conclusions

In the present study, we investigate the controlling factors of UHIs and UCIs during HWs
in Boston and Phoenix using WRF simulations. During the daytime, we find a SUHI in
Boston mainly caused by the higher urban 7, that reduces the latent heat flux, and the higher
urban 7, which inhibits convective heat transfer from the urban surface to the atmosphere.
In contrast, we find a daytime SUCI in Phoenix mainly due to the lower urban r, that
facilitates convective heat transfer. At night, we identify a SUHI and an AUHI in Boston
due to the stronger release of urban heat storage. In comparison, the lower urban 7, in
Phoenix facilitates convective heat transfer from the atmosphere to the urban surface at
night, leading to a SUHI but no AUHI. Our study highlights that the magnitude of UHIs or
UCls is strongly controlled by urban-rural differences in terms of aerodynamic features,
vegetation and moisture conditions, and heat storage, which show contrasting
characteristics in different regions. Further investigations on the roles of anthropogenic
heat flux and weather conditions, and more thorough validation of the simulated results are

recommended.
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1008  Table 1 Identified heat waves (HWs) during 2007-2016 in Boston and Phoenix

Boston Phoenix
?\‘?se Date HW days (f\?se Date HW days

N 20070625 — 20070628 4 217 20070705 — 20070706 2

2 20070802 — 20070804 3 22 20070717 — 20070719 3

3 20090817 — 20090819 3 23 20070812 — 20070813 2

4 20100703 — 20100706 4 24 20080616 — 20080617 2

5 20100716 — 20100718 3 25 20090710 — 20090714 5

6 20100728 — 20100729 2 26 20090716 — 20090719 4

7 20100829 — 20100902 5 27 20090727 — 20090728 2

8 20110717 — 20110718 2 28 20090803 — 20090806 4

9 20110721 — 20110723 3 29 20100714 — 20100716 3

10 20120620 — 20120622 3 30° 20110701 — 20110703 3

11 20120629 — 20120701 3 31 20110823 — 20110826 4

12 20120715 - 20120717 3 32 20110829 —20110901 4

13 20130530 — 20130602 4 33 20120707 — 20120711 5

14 20130623 — 20130625 3 34 20120806 — 20120814 9

15 20130703 — 20130707 5 35 20130628 — 20130630 3

16° 20130714 — 20130720 7 36 20130816 — 20130817 2

17 20160712 — 20160716 5 37 20140722 — 20140724 3

18 20160721 — 20160723 3 38 20150617 — 20150619 3

19 20160811 — 20160812 2 39 20150814 — 20150816 3

20 20160814 — 20160815 2 40" 20160619 — 20160620 2

41 20160726 — 20160728 3

1009 Note. The asterisk indicates that the HW is selected for validation.

1010
1011
1012

1013  Table 2 Averaged root-mean-square errors (RMSEs) between the model simulated results and the
1014  observations (MADIS and ACARS) over 6 heat waves

ACARS MADIS

Case No. ACM2 YSUMY]J Availability (%) Sample size ACM2 YSU MY Availability (%) Sample size

1 1.91 1.90 1.89 64.48 21946  2.16 2.13 2.50 99.06 10015

7 221 221217 60.42 22031 2.04 2.052.44 96.91 10495

16 231 245247 60.18 24861 235 227243 98.79 10505

21 232 2.26 245 46.65 13618  3.05 3.19 3.60 98.93 6290

30 2.47 245273 65.62 20743 3.11 3.09 3.34 98.49 6782

40 276 2.78 2.79 88.81 25922 291 3.03 3.49 99.87 4618
Weighted mean 2.33 2.34 2.42 249 2.50 2.82

1015 Note. Availability refers to the percentage of available data for the whole HW period, including 5 pre-HW days, all HW days and 5
1016 post-HW days. The weighted mean RMSE is calculated based upon the weight of the sample size.

1017
1018
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1019  Table 3 Sensitivities of surface temperature to changes in various factors

T, 9T, 0T, T, T, T, T, T, adT, T,
9 da  or,  or G asw; aLw,, T, dq, 0P
K (K (Km/s) (Km/s) Km?*/W) (Km?/W) (Km?/W) (=) (K) (K/Pa)

DB 3x10° -2x10 2x107" 7x107°  -2x107 2x107 2x107%  7x10" 1x10% -5x107

DP 5x10° -2x10 3x1071 5%x10° -2x107 2x107 2x102  8x107" 6x10° -8x107°
NB 3x10° 0 -4x107 6x10°  -7x107 6x1072 7x10%  6x107" 3x10 1x107

NP SIx100 0 -1x107 4x107 -1x10! 1x10"! 1x10"  2x107" 4x10° 1x107

1020 Note. DB = daytime Boston; DP = daytime Phoenix; NB = nighttime Boston; NP = nighttime Phoenix. The value is the median of the
1021 results at the daily scale.

1022

1023

1024  Table 4 Sensitivities of 2-m air temperature to changes in various factors
aT, 4T, 0T, dT, 0T, oT, oT, aT, oT, dT, aT,
9  da or, or,  on G asw, aLw, T, dq, 0P

K)  (K) (Km/s) (Km/s) (Km/s) (Km*/W) (Km?/W) (Km?/W) (=) (K) (K/Pa)
DB -3x10" -2x10° -1x10* 2x10" 1x10° -2x10°  2x107 2x107  1x10°  2x10 -5x10°
DP -5x107" -2x10° -2x107 3x10" 4x10° -2x107 1x107 2x10°  1x10° 5x10" -6x10°
NB -2x10° 0 2x10° -7x10° 5x10° -6x107  5x107 5x10%  6x10"  3x10 2x107

NP 3x10° 0 1x10° -6x107 1x107 -3x107 3x107 3x10%  8x10" 1x10° 2x10°

1025 Note. DB = daytime Boston; DP = daytime Phoenix; NB = nighttime Boston; NP = nighttime Phoenix. The value is the median of the
1026 results at the daily scale.

1027
1028
1029

1030  Table 5 Urban-rural differences in terms of various factors (A: Urban minus rural values)
Ae Aa A, Ay A AG ASW,, ALW,, AT, Aq, AP
) (=) (s/m) /m) (s/m) W/m?*) (W/m?*) W/m?*) (K) (kg/kg) (Pa)
DB 2x107 5x107 2x10 -3x10° 6x10* 8x10  6x10"  4x10° 4x10" -4x10* 6x10
DP  5x107 -1x10" -2x10 2x10° -1x10° -5x10°  -3x10°  2x10 -1x10" -4x10° 3x10°
NB  2x107 5x102 -2x10 1x10 2x10* -4x10 0 5x10°  5x10" 2x107° 5x10°

NP 5x107 -1x10" -2x10° -4x10> 4x10° -6x10° 0 9x10° -6x10" -2x10* 2x10’
Note. DB = daytime Boston; DP = daytime Phoenix; NB = nighttime Boston; NP = nighttime Phoenix. The value is the median of the

1031
1032 results at the daily scale.
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1035
1036
1037

A MADIS © ACARS A MADIS in Figure 3

I Open Water Il Developed High Intensity [ Dwarf Scrub [ Moss

[1Perennial Ice/Snow [ Barren Land (Rock/Sand/Clay) [] Shrub/Scrub [] Pasture/Hay

[ I Developed, Open Space [ Deciduous Forest [ Grassland/Herbaceous Il Cultivated Crops

[ Developed, Low Intensity Il Evergreen Forest [ Sedge/Herbaceous [ 1Woody Wetlands

Il Developed, Medium Intensity ] Mixed Forest [ Lichens [ Emergent Herbaceous Wetlands

FIGURE 1 The WRF domain configuration (left), terrain height (left), and land use map (right) over Boston
(a, b) and Phoenix (c, d). The yellow triangles mark the locations of the two MADIS sites used in Figure 3.
The northern one is an urban site “KBED” at 42.47°N, 71.28°W, and the southern one is a rural site “KMQE”

at 42.21°N, 71.11°W. The blue circles mark the locations of the Boston and Phoenix airports.
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FIGURE 2 The evolution of air temperature profile in the lowest 4 km at the Boston Logan International
Airport from June 20 to July 3, 2007. June 25 to 28 is the heat wave period. The panels are (a) ACARS data
and WRF simulation results with the (b) ACM2, (c¢) YSU and (d) MYJ schemes. The height is above the
ground level. The blank areas are due to the lack of ACARS data, which typically occur from late night to

early morning.
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FIGURE 3 Comparisons between WRF-simulated (black circle) and MADIS weather-station measured (red
circle) 2-m air temperature from June 20 to July 3, 2007 in Boston. June 25 to 28 is the heat wave period.
The left panels are comparisons at an urban site (KBED) for WRF simulations with (a) ACM2, (¢) YSU and
(e) MYJ. The right panels are comparisons at a rural site (KMQE) for WRF simulations with (b) ACM2, (d)
YSU and (f) MY]J. Please see the yellow triangles in Figure 1 for the locations of KBED and KMQE. The

root-mean-square error (RMSE) and sample size (n) are denoted in the upper right corner of each panel.

52



Daytime (11am) Nighttime (9pm)

(h)

i

1052

1053  FIGURE 4 Land surface temperatures from (a, b) MODIS and WRF simulations using (c, d) ACM2, (e, f)

1054  YSU and (g, h) MYJ schemes at (a, ¢, e, g) 11 am and (b, d, f, h) 9 pm on June 27, 2007 in Boston.
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FIGURE 5 Average diurnal cycles of (a) surface temperatures (75), and (c) 2-m air temperature (73), and the
urban-rural (urban minus rural temperature) differences in (b) surface temperature and (d) 2-m air
temperature from WRF simulations. The shading denotes standard deviations. BOS = Boston; PHX =

Phoenix. Time represents the local standard time.
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FIGURE 6 Average diurnal cycles of (a) incoming shortwave radiation (SW;,), (b) incoming longwave
radiation (LW},), (c) outgoing shortwave radiation (SW,,,), and (d) outgoing longwave radiation (LW, from
WREF simulations. The shading denotes standard deviations. BOS = Boston; PHX = Phoenix. Time represents

the local standard time.



(a) (b)
-+-BOS Urban
400 = BOS Rural 500
~+PHX Urban

—~-PHX Rural

320 14

315 12 i‘tp:ﬁ .d

2310% '3,10
305 2 g
o
300 GW
295 4
290 - - 2
5 10 15 20 5 10 15 20
Time (hr Time (hr
1066 (hr) (hr)

1067 FIGURE 7 Average diurnal cycles of (a) sensible heat flux (H), (b) latent heat flux (LE), (c) potential
1068 temperature (7,) at the lowest level of the atmospheric model, and (d) specific humidity (g,) at the lowest
1069 level of the atmospheric model from WRF simulations. The shading denotes standard deviations. BOS =

1070 Boston; PHX = Phoenix. Time represents the local standard time.
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FIGURE 8 The inferred resistances from WRF simulations, including (a, b) aerodynamic resistance between
the surface and the lowest atmospheric model level (1), (¢, d) aerodynamic resistance between the 2-m level

and the lowest atmospheric model level (1), and (e, f) surface resistance (13). The shading denotes standard
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1076  deviations. BOS = Boston; PHX = Phoenix. Time represents the local standard time. Only the daytime (10am

1077  to 4pm local standard time) results are shown.
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FIGURE 9 Average diurnal cycles of ground heat flux (G) from WRF simulations in (a) Boston and (b)

Phoenix. The shading denotes standard deviations. BOS = Boston; PHX = Phoenix. Time represents the local

standard time.
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FIGURE 10 Attribution of surface urban heat islands (AT, urban minus rural surface temperature) using the
Two Resistance Mechanism (TRM) model during (a, ¢) daytime (10am-4pm) and (b, d) nighttime (10pm-
4am) in (a, b) Boston and (c, d) Phoenix. The orange and red bars represent WRF-simulated and TRM-
modelled ATy, respectively. The blue bars represent contributions from different factors, including emissivity
(¢), albedo (), aerodynamic resistance between the surface and the lowest atmospheric model level (r,),
surface resistance (r5), ground heat flux (G), incoming shortwave radiation (SW;,), incoming longwave
radiation (LW};,), potential temperature (T,) at the lowest atmospheric model level, specific humidity (q,) at
the lowest atmospheric model level, and pressure (P). The sample size is noted in the bracket on the left. HW
= heat wave. The column indicates the median of the attribution results at the daily scale. The error bars are
the 80th and 20th percentiles of the results, respectively, representing the day-to-day variability of the

attribution results.
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FIGURE 11 Attribution of near-surface air urban heat islands (AT,, urban minus rural 2-m air potential
temperature) using the Two Resistance Mechanism (TRM) model during (a, ¢) daytime (10am-4pm) and (b,
d) nighttime (10pm-4am) in (a, b) Boston and (c, d) Phoenix. The orange and red bars represent WRF-
simulated and TRM-modelled AT,, respectively. The blue bars represent contributions from different factors,
including emissivity (¢), albedo (@), aerodynamic resistance between the surface and the lowest atmospheric
model level (13,), aerodynamic resistance between the 2-m level and the lowest atmospheric model level (1),
surface resistance (r5), ground heat flux (G), incoming shortwave radiation (SW;,), incoming longwave
radiation (LW;;,), potential temperature (T,) at the lowest atmospheric model level, specific humidity (q,) at
the lowest atmospheric model level, and pressure (P). The sample size is noted in the bracket on the left. HW
= heat wave. The column indicates the median of the attribution results at the daily scale. The error bars are
the 80th and 20th percentiles of the results, respectively, representing the day-to-day variability of the

attribution results.
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