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Abstract In this study, we simulate the magnitude of urban heat islands (UHIs) during heat 1 

wave (HWs) in two cities with contrasting climates (Boston and Phoenix) using the 2 

Weather Research and Forecasting (WRF) model and quantify their drivers with a newly 3 

developed attribution method. During the daytime, a surface UHI (SUHI) is found in 4 

Boston mainly caused by the higher urban surface resistance (𝑟") that reduces the latent 5 

heat flux, and the higher urban aerodynamic resistance (𝑟#) that inhibits convective heat 6 

transfer between the urban surface and the lower atmosphere. In contrast, a surface urban 7 

cool island (SUCI) is found in Phoenix mainly due to the lower urban 𝑟# that facilitates 8 

convective heat transfer. In terms of near-surface air UHI (AUHI), there is almost no 9 

daytime AUHI in either city. At night, a SUHI and an AUHI are identified in Boston due 10 

to the stronger release of heat storage in urban areas. In comparison, the lower urban 𝑟# in 11 

Phoenix enhances convective heat transfer from the atmosphere to the urban surface at 12 

night, leading to a positive SUHI but no AUHI. Our study highlights that the magnitude of 13 

UHIs or UCIs is strongly controlled by urban-rural differences in terms of aerodynamic 14 

features, vegetation and moisture conditions, and heat storage, which show contrasting 15 

characteristics in different regions. 16 

Keywords Aerodynamic resistance • Heat waves • Surface resistance • Urban heat islands • 17 

• WRF 18 

19 
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1 Introduction 20 

Despite having no universal definitions, heat waves (HWs) usually refer to a sustained 21 

period (typically more than 2 days) when the temperatures (e.g., daily maximum, mean, or 22 

minimum temperatures) exceed a certain threshold (Robinson 2001). Recent years have 23 

witnessed numerous disastrous HWs worldwide, such as the 2003 HW in Europe (García-24 

Herrera et al. 2010), the 2010 Russian HW (Dole et al. 2011) and the 2013 HW in eastern 25 

China (Xia et al. 2016), incurring substantial socioeconomic costs (Xia et al. 2018) and 26 

raising concerns about human health (Campbell et al. 2018; Mora et al. 2017; Petkova et 27 

al. 2014), wildfires (Parente et al. 2018), crop failures (Fontana et al. 2015; Wreford and 28 

Adger 2010; Zampieri et al. 2017), and infrastructure damage (Rübbelke and Vögele 2011). 29 

What is worse is that the intensity, duration and frequency of HWs have been increasing 30 

and will likely continue to increase in many parts of the world in a warming climate (Brown 31 

et al. 2008; Donat et al. 2013; Fischer and Schär 2010; Lau and Nath 2012, 2014; Meehl 32 

and Tebaldi 2004; Schär et al. 2004; Tebaldi et al. 2006). 33 

With the high thermal risks imposed by HWs in mind (Patz et al. 2005; Tan et al. 2010), 34 

the urban population, which comprises more than half of the world’s population and is 35 

projected to reach 68% by 2050 (Grimm et al. 2008; United Nations 2019), usually 36 

experiences hotter conditions than the rural counterpart due to the well-known urban heat 37 

island (UHI) effects (Arnfield 2003; Oke 1982). The UHI effects have important impacts 38 

on the atmospheric boundary layer flow, the dispersion of pollutants, the energy and water 39 

consumption in cities, and so on (Han et al. 2014; Hidalgo et al. 2009; Miao et al. 2009; 40 

Pal et al. 2012; Zhang et al. 2014). The UHI intensity, which characterizes the magnitude 41 

of the UHI effect, is typically defined as the temperature difference between the urban and 42 
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the surrounding rural areas, which can be based on either near-surface air temperature (i.e., 43 

air UHI or AUHI) or surface temperature (i.e., surface UHI or SUHI) (Stewart 2011). The 44 

negative AUHI and SUHI are called air urban cool island (AUCI) and surface urban cool 45 

island (SUCI), respectively, in this study. 46 

Broadly, UHIs can be explained by the surface energy balance equation. For an 47 

imaginary control volume with an arbitrary horizontal scale that extends from the ground 48 

to the roof level and has no net horizontal advection of heat through the sides of the control 49 

volume, the energy balance equation can be expressed as (Oke et al. 2017): 50 

𝐴𝐹 + (1 − 𝛼)𝑆𝑊./	 + 𝜀𝐿𝑊./ = 𝐻 + 𝐿𝐸 + 𝐺 + 𝜀𝜎𝑇"9 1            51 

where AF is the anthropogenic heat flux (W m-2), α is the surface albedo, SWin is the 52 

incoming shortwave radiation (W m-2), ε is the surface emissivity, LWin is the incoming 53 

longwave radiation (W m-2), H is the sensible heat flux (W m-2), LE is the latent heat flux 54 

(W m-2), G is the ground heat flux (also called heat storage, W m-2), σ is the Stefan-55 

Boltzmann constant (W m-2 K-4), and Ts is the land surface temperature (K). The terms on 56 

the left-hand side of Eq. (1) represent the energy input to the control volume either from 57 

anthropogenic emissions or from the radiation (after subtracting the reflected radiation), 58 

which includes the solar insolation and the longwave radiation from the ambient 59 

atmosphere. The input energy can be transferred away from the control volume by either 60 

convection into the lower atmosphere (H), conduction into the ground (G), or radiation in 61 

the longwave band (𝜀𝜎𝑇"9). Part of the input energy is consumed by the evapotranspiration 62 

process in order to transform the water from the liquid phase to the vapor phase, namely, 63 

the latent heat flux (LE). UHIs are mainly caused by the unique urban characteristics such 64 

as less evapotranspiration associated with limited green space and low surface moisture, 65 
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lower albedo owing to radiative trapping, larger heat release at night due to the higher 66 

thermal admittance of built materials as well as the larger anthropogenic emissions 67 

(Arnfield 2003; Grimm et al. 2008; Grimmond 2007; Oke 1982; Ramamurthy et al. 2014; 68 

Taha 1997; Zhao et al. 2014). These unique urban characteristics either increase the energy 69 

input on the left-hand side of Eq. (1) or inhibit the efficiency of heat transfer on the right-70 

hand side of the equation, leading to hotter urban surfaces and near-surface conditions. 71 

Although the causes of UHIs are generally well understood, it remains a challenge to 72 

quantify and compare the contribution of each individual process to the magnitude of UHIs, 73 

which strongly depends on the nature of the urban and rural environments, human 74 

activities, and meteorological conditions (Grimmond 2007). Moreover, the spatial 75 

variations of UHIs across cities and background climates and their key controlling factors 76 

are still under debate (Li et al. 2019; Manoli et al. 2019; Zhao et al. 2014). To fill this 77 

research gap, the present study simulates the magnitude of UHIs during about 20 HW 78 

events in the period of 2007-2016 over two cities in the United States (i.e., Boston and 79 

Phoenix) with the Weather Research and Forecasting (WRF) model. The objective of this 80 

study is to quantify and compare the underlying drivers of UHIs during HWs in these two 81 

cities with contrasting background climates. Specifically, Boston has a humid continental 82 

climate while Phoenix has a hot desert climate. The annual mean temperature is 9.8 °C in 83 

Boston while 21.5 °C in Phoenix, and the annual mean rainfall is 1122 mm in Boston while 84 

only 211 mm in Phoenix. Therefore, conducting the same analyses over these two cities 85 

can provide insights into the spatial variability of UHIs and their controlling factors. 86 
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The paper is organized as follows: sect. 2 describes the data and methodology, sect. 3 87 

presents the main results, sect. 4 discusses the implications and limitations of our work, 88 

and sect. 5 concludes the paper. 89 

2 Data and Methodology 90 

2.1 Observational data 91 

To identify HWs, we use the 2-m air temperatures from the Integrated Surface Database 92 

(ISD) provided by the National Oceanic and Atmospheric Administration (NOAA, 93 

ncdc.noaa.gov/isd/data-access) and measured at the Boston Logan International Airport 94 

and the Phoenix Sky Harbor International Airport. These data are used because of their 95 

long-term span, which is required for HW identification. However, for validation of WRF 96 

simulation results, we use the 2-m air temperatures from the Meteorological Assimilation 97 

Data Ingest System (MADIS, madis-data.ncep.noaa.gov/madisPublic1/data/archive) due 98 

to their larger spatial coverage (see blue triangles on Figure 1a & c). We only use the 99 

MADIS stations whose data availability in the simulation period is more than 90%. 100 

To evaluate the WRF-simulated boundary-layer structure, we use commercial aircraft 101 

data provided by the Aircraft Communications Addressing and Reporting System (ACARS; 102 

madis-data.cprk.ncep.noaa.gov/madisPublic1/data/archive). The ACARS data are proved 103 

to be as good as the radiosonde data in terms of quality in the lower atmosphere, but with 104 

much higher temporal and vertical resolutions (Petersen 2016; Zhang et al. 2019). 105 

Specifically, the root-mean-square error (RMSE) of ACARS against radiosonde below 850 106 

hPa is approximately 1.3 K, while the mean bias error (MBE) falls between -0.16 K and -107 

0.32 K (Zhang et al. 2019). In this study, we use the temperature profiles collected by 108 

airlines when they take off or land at the Boston Logan International Airport and the 109 
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Phoenix Sky Harbor International Airport (see blue circles on Figure 1b & d), which have 110 

been processed and interpolated onto regular height levels at the hourly scale (Zhang et al. 111 

2019, 2020). 112 

To validate the WRF-simulated land surface temperatures, we use the land surface 113 

temperature data from the 1-km MOD11A1 Version 6 product provided by the Moderate 114 

Resolution Imaging Spectroradiometer (MODIS; 115 

lpdaac.usgs.gov/products/mod11a1v006). 116 

2.2 HW identification 117 

The HW definitions used in previous studies vary in terms of the temperature variable, the 118 

threshold of its magnitude, and the duration/extent (Anderson and Bell 2011; Chen and 119 

Zhai 2017; Lau and Nath 2014; Liao et al. 2018a; Luo and Lau 2016; Meehl and Tebaldi 120 

2004; Peng et al. 2011; Perkins 2015; Sillmann et al. 2013; Yang et al. 2017). In our 121 

research, we identify a HW as a period of at least 2 consecutive days whose daily mean 122 

temperature exceeds the 95 percentile of the local climatology (Anderson and Bell 2009, 123 

2011; Hajat et al. 2006; Zhang et al. 2020), which is defined based on daily mean 124 

temperatures during the warm seasons (May 1 to September 30) of 2007-2016. The 125 

thresholds of two days and 95 percentile are used to ensure enough HW days selected for 126 

our analysis and also distinct thermal conditions between HW and non-HW days. We 127 

further corroborate these selected HWs using the ACARS temperature profiles (i.e., we 128 

manually check if the start and the end of selected HWs coincide with obvious changes in 129 

the ACARS temperature profiles, see Zhang et al. 2020). Overall, 41 HWs are selected 130 

during 2007-2016, with 20 HWs in Boston and 21 HWs in Phoenix (Table 1). 131 

2.3 WRF simulations 132 
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The WRF model has been widely used to study urban climate (Chen et al. 2011; Georgescu 133 

et al. 2011; Heaviside et al. 2015; Li and Bou-Zeid 2014; Li et al. 2018; Meir et al. 2013; 134 

Ramamurthy et al. 2017; Ramamurthy and Bou-Zeid 2016; Tewari et al. 2019). In this 135 

study, the WRF version 4.0 is used to simulate each HW event, with 5 pre-HW days and 5 136 

post-HW days. Three nested model domains with spatial resolutions of 9, 3 and 1 km, 137 

respectively, are used (Figure 1). For Boston, these three domains have 149 × 149, 150 × 138 

150 and 150 × 150 grid cells, respectively. The 9-km domain covers most of the 139 

northeastern United States, and the innermost domain covers Boston as well as the 140 

surrounding landscapes which are mostly forests. For Phoenix, these three domains have 141 

299 × 299, 300 × 300 and 180 × 180 grid cells, respectively. The 9-km domain covers most 142 

of the southwestern United States as well as a sizeable portion of Mexico, and the innermost 143 

domain covers Phoenix and the surrounding landscapes which are mostly scrublands. All 144 

model domains have 55 vertical levels, and the model top is set as 100 hPa. The North 145 

American Regional Reanalysis (NARR) data with a spatial resolution of about 32 km and 146 

a temporal resolution of 3 hours are used for the initial and boundary conditions. National 147 

Land Cover Database 2011 (NLCD 2011) is used as land use input to the model (Homer et 148 

al. 2015). When used in WRF, this land cover dataset has a 9-second spatial resolution. 149 

The urban land is classified into three categories (commercial urban, high-intensity 150 

residential urban, low-intensity residential urban). Thus, not all urban grid cells have the 151 

same surface properties. The physical parameterizations for the WRF simulations follow 152 

closely the studies by Li and Bou-Zeid (2014) and Wang and Li (2019), including the 153 

Dudhia scheme for shortwave radiation (Dudhia 1988), the rapid radiative transfer model 154 

(RRTM) scheme for longwave radiation (Mlawer et al. 1997), the single-moment 6-Class 155 
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(WSM6) microphysics scheme (Hong and Lim 2006), and the Noah land surface model 156 

(Ek et al. 2003) coupled with the single-layer urban canopy model (Kusaka et al. 2001; 157 

Kusaka and Kimura 2004). Following Wang and Li (2019), we test three planetary 158 

boundary layer (PBL) schemes: the asymmetric convective model, version 2 (ACM2) 159 

scheme (Pleim 2007), the Yonsei University (YSU) scheme (Hong et al. 2006), and the 160 

Mellor-Yamada Janjic (MYJ) scheme (Mellor and Yamada 1974). We focus on a 161 

sensitivity test to the PBL scheme as turbulent heat transfer is an extremely important 162 

process that regulates the magnitude of UHIs (Li and Bou-Zeid 2014). For model 163 

validation, we select 6 HW events with more complete observational records (denoted with 164 

an asterisk in Table 1). We will use the validation results to select a PBL scheme with the 165 

best consistency with the observational data, which will be used for simulating the 166 

remaining HW events. 167 

2.4 The attribution method 168 

2.4.1 Attribution of SUHI 169 

The attribution of SUHI is based on the Two-Resistance Mechanism (TRM) model used in 170 

a number of recent studies (Chen et al. 2020; Li et al. 2019; Li and Wang 2019; Liao et al. 171 

2018b; Moon et al. 2020; Rigden and Li 2017; Wang et al. 2019, 2020). The TRM model 172 

starts from the surface energy balance equation as Eq. (1), with H and LE parameterized 173 

using the concepts of aerodynamic resistance and surface resistance (Brutsaert 1982, 2005; 174 

Monteith and Unsworth 2007), as follows: 175 

𝐻 =
𝜌𝑐<
𝑟#

𝑇" − 𝑇# 2  176 

𝐿𝐸 =
𝜌𝐿>
𝑟# + 𝑟"

𝑞∗ 𝑇" − 𝑞# 3  177 
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where 𝜌 is the air density (kg m-3), 𝑐< is the specific heat of air at constant pressure (J kg-1 178 

K-1), 𝑟# is the aerodynamic resistance between the surface and the lower atmosphere (s m-179 

1), 𝑇# is the potential temperature of the lower atmosphere (K, not the near-surface or 2-m 180 

air temperature as discussed below), 𝐿> is the latent heat of vaporization (J kg-1), 𝑟" is the 181 

surface resistance (s m-1), 𝑞∗ is the saturated specific humidity at 𝑇" (kg kg-1), and 𝑞# is the 182 

specific humidity of the lower atmosphere (kg kg-1). The aerodynamic resistance (𝑟# ) 183 

represents the efficiency with which the land surface convects sensible heat to the lower 184 

atmosphere (Brutsaert 1982, 2005; Garratt 1992). It is controlled mostly by the capacity of 185 

atmospheric turbulence in transporting sensible heat but also molecular diffusion at the 186 

interface between the land and the atmosphere (Brutsaert 1982, 2005; Garratt 1992). From 187 

Eq. (2) one can see that a higher aerodynamic resistance results in a lower sensible heat 188 

flux with a given temperature gradient. On the other hand, the surface resistance (𝑟" ) 189 

represents the efficiency with which water is extracted from the saturated zone to the 190 

surface or from the vegetation inside to the leaf surface, which is strongly dependent on 191 

soil moisture and vegetation stresses (Brutsaert 1982, 2005; Garratt 1992). From Eq. (3) 192 

one can see that moisture transfer from the land to the atmosphere also experiences the 193 

aerodynamic resistance (𝑟#), in addition to the surface resistance (𝑟"). With everything else 194 

being equal, a higher surface resistance leads to a smaller latent heat flux. 195 

Substituting Eqs. (2-3) into Eq. (1) yields a non-linear equation for Ts, which is further 196 

linearized by applying first-order Taylor series expansion to the outgoing longwave 197 

radiation and the saturated specific humidity terms, so that an analytical expression for Ts 198 

can be obtained: 199 
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𝑇" =
𝐴𝐹 + 𝑆𝑊./ 1 − 𝛼 + 𝜀𝐿𝑊./ − 𝜀𝜎𝑇#9 − 𝐺 −

𝜌𝐿>
𝑟# + 𝑟"

𝑞∗ 𝑇# − 𝑞#

4𝜀𝜎𝑇#C +
𝜌𝑐<
𝑟#

+ 𝜌𝐿>
(𝑟# + 𝑟")

𝜕𝑞∗
𝜕𝑇 |FG

+ 𝑇# 4  200 

Based on this solution, the difference in the surface temperature between urban and rural 201 

surfaces can be further expressed as the sum of the contributions from various factors again 202 

using first-order Taylor series expansion, as follows: 203 

∆𝑇" =
𝜕𝑇"
𝜕𝐴𝐹

∆𝐴𝐹 +
𝜕𝑇"
𝜕𝜀

∆𝜀 +
𝜕𝑇"
𝜕𝛼

∆𝛼 +
𝜕𝑇"
𝜕𝐺

∆𝐺 +
𝜕𝑇"
𝜕𝑟#

∆𝑟# +
𝜕𝑇"
𝜕𝑟"

∆𝑟" + ⋯

+
𝜕𝑇"
𝜕𝑆𝑊./

∆𝑆𝑊./ +
𝜕𝑇"
𝜕𝐿𝑊./

∆𝐿𝑊./ +
𝜕𝑇"
𝜕𝑇#

∆𝑇# +
𝜕𝑇"
𝜕𝑞#

∆𝑞# +
𝜕𝑇"
𝜕𝑃

∆𝑃 (5)
 204 

where P is the pressure (Pa), and Δ indicates the urban-rural difference in each factor (i.e., 205 

urban minus rural values). In Eq. (5), the partial derivative represents the sensitivity of the 206 

surface temperature to the change in each factor, whose analytical formulation can be 207 

obtained using Eq. (4). Throughout the paper, each term on the right-hand side of Eq. (5) 208 

will be called a contribution. Each contribution is the product of the sensitivity (Table 3), 209 

which represents how sensitive the surface temperature is to a change in each factor, and 210 

the difference (Table 5), which represents the urban-rural contrast of that factor (i.e., urban 211 

minus rural values). 212 

Compared with previous attribution methods (such as Li et al. 2019; Zhao et al. 2014), 213 

Eq. (5) not only considers the influence of differences in land surface biophysical 214 

parameters (such as albedo) on SUHIs, but also the influence of differences in atmospheric 215 

conditions (such as incoming shortwave radiation) on SUHIs. This is important for our 216 

study because unlike previous studies assuming that urban and rural lands share the same 217 

atmospheric conditions due to their use of sub-grid outputs from global climate or earth 218 

system models (Li et al. 2019; Zhao et al. 2014), the SUHIs in our study are the surface 219 
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temperature differences between urban and rural grid cells, which have different overlying 220 

atmospheric conditions. 221 

2.4.2 Attribution of AUHI 222 

The original TRM method was designed for the attribution of surface temperature 223 

differences (i.e., SUHIs). In this study, we further develop the TRM method to attribute 224 

the near-surface air temperature differences (i.e., AUHIs). The mathematical link between 225 

the surface temperature and near-surface air temperature is provided by the constant heat 226 

flux assumption in the atmospheric surface layer. This assumption is the basis for deriving 227 

the so-called 2-m air temperature in models like WRF. With this assumption, the sensible 228 

heat flux derived from the temperature difference between the land surface and the lower 229 

atmosphere (i.e., Eq. 2) should be equal to the sensible heat flux derived from the 230 

temperature difference between the air at 2 meters above the displacement height and the 231 

lower atmosphere. Thus the 2-m air temperature (𝑇L ) can be related to the surface 232 

temperature (𝑇") and the potential temperature of the lower atmosphere (𝑇#), as follows: 233 

𝑇L =
𝑟#M

𝑟#
𝑇" − 𝑇# + 𝑇# 6  234 

where 𝑟#M is the aerodynamic resistance between the reference height (i.e., 2 meters above 235 

the displacement height) and the lower atmosphere (s m-1). Hence, 𝑟#M is different from 𝑟#, 236 

which is the aerodynamic resistance between the surface and the lower atmosphere. 237 

Thus, the urban-rural difference in the 2-m air temperature can be expressed as follows: 238 
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∆𝑇L = 𝑓
𝜕𝑇"
𝜕𝐴𝐹

∆𝐴𝐹 + 𝑓
𝜕𝑇"
𝜕𝜀

∆𝜀 + 𝑓
𝜕𝑇"
𝜕𝛼

∆𝛼 + 𝑓
𝜕𝑇"
𝜕𝐺

∆𝐺 +⋯

+ 𝑓
𝜕𝑇"
𝜕𝑟#

−
𝑟#M

𝑟#L
(𝑇" − 𝑇#) ∆𝑟# +

𝑇" − 𝑇#
𝑟#

∆𝑟#M + 𝑓
𝜕𝑇"
𝜕𝑟"

∆𝑟" + ⋯

+𝑓
𝜕𝑇"
𝜕𝑆𝑊./

∆𝑆𝑊./ + 𝑓
𝜕𝑇"
𝜕𝐿𝑊./

∆𝐿𝑊./ + 𝑓
𝜕𝑇"
𝜕𝑇#

− 𝑓 + 1 ∆𝑇# +⋯

+𝑓
𝜕𝑇"
𝜕𝑞#

∆𝑞# + 𝑓
𝜕𝑇"
𝜕𝑃

∆𝑃

7  239 

where 𝑓 = QGR

QG
. Again, Δ indicates the urban-rural difference in each factor (Table 5) while 240 

the remainder of each term represents the sensitivity of 𝑇L to each factor (Table 4). 241 

2.5 Application of the attribution method to the WRF outputs 242 

The attribution analysis in general follows previous research by Liao et al. (2018b) and Li 243 

et al. (2019). Most variables needed in Eqs. (5 & 7) are direct outputs of the WRF model 244 

including the surface temperature, 2-m air temperature, emissivity, albedo, ground heat 245 

flux, incoming shortwave radiation, incoming longwave radiation, pressure, and the 246 

potential temperature at the lowest level of the atmospheric model (which is about 30 m in 247 

our simulations). The specific humidity is calculated from the water vapor mixing ratio 248 

(QVAPOR) through 𝑞# = 𝑄𝑉𝐴𝑃𝑂𝑅/(𝑄𝑉𝐴𝑃𝑂𝑅 + 1). Since our WRF simulations do not 249 

include anthropogenic heat fluxes in the form of both sensible and latent heat,	𝐴𝐹 is set to 250 

zero in the attribution. The implication of neglecting anthropogenic heat fluxes will be 251 

discussed in section 4.2. 252 

  The aerodynamic resistances (𝑟# and 𝑟#M) and the surface resistance (𝑟") are not direct 253 

outputs from the WRF model. To infer them at the grid-cell scale, we use the WRF 254 

simulated sensible and latent heat fluxes, as well as the surface temperature, 2-m air 255 

temperature, and the potential temperature and specific humidity at the lowest level of the 256 

atmospheric model following Eqs. (2, 3, and 6). It should be stressed that we use the 257 
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potential temperature and specific humidity at the lowest level of the atmospheric model 258 

(~30 m), instead of the 2-m air temperature and specific humidity, to represent 𝑇# and 𝑞# 259 

in Eqs. (2, 3, and 6), because the 2-m air temperature and specific humidity are not 260 

prognostic variables in the model. We also stress that 𝑟# is different from 𝑟#M, arising from 261 

the fundamental dependence of aerodynamic resistance on the height z in the bulk 262 

formulations for surface fluxes (Garratt 1992): 𝑟# represents the resistance to convective 263 

heat transfer between the surface and the lowest level of the atmospheric model while 𝑟#M 264 

represents the resistance to convective heat transfer between the reference height (i.e., 2 m 265 

above the displacement height) and the lowest level of the atmospheric model. 266 

The aerodynamic resistances and surface resistance are inferred using Eqs. (2, 3, and 267 

6) at the hourly scale for grid cells in the innermost domain. In this study, we only consider 268 

grid cells with the dominant urban land cover (i.e., high-intensity residential urban for both 269 

cites) and the dominant rural land cover (i.e., evergreen forest for Boston and shrub for 270 

Phoenix). In total, there are 1372 (1452) urban grid cells and 1798 (25502) rural grid cells 271 

in Boston (Phoenix). We consider only one urban type because each urban type 272 

corresponds to a unique set of urban parameters and thus considering only one urban type 273 

simplifies the comparison between the two cities and reveals more information about the 274 

role played by the background climate. We use the default values of urban parameters in 275 

WRF (Chen et al. 2011). The high-intensity residential urban corresponds to the average 276 

building height of 7.5 m, the average roof and road widths of 9.4 m, and the impervious 277 

surface fraction of 0.9. Other thermodynamic parameters such as albedo, emissivity, heat 278 

capacity, and thermal conductivity can be found in Chen et al. (2011). When the resistances 279 

are estimated at the hourly scale, they may be of negative values, especially for 280 
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aerodynamic resistances. This issue is fundamentally linked to the fact that the TRM model 281 

parameterizes turbulent heat fluxes using the bulk transfer relations (i.e., Eqs. 2-3), which 282 

are local turbulence closures and assume uniform distributions of heat sources at the 283 

surface (i.e., with a single surface temperature). In the WRF model, the heat sources are 284 

not uniformly distributed (e.g., the single-layer urban canopy model considers the roof, the 285 

wall, and the ground separately). In this situation, the inferred aerodynamic resistances 286 

(e.g., based on Eq. 2) might appear to be negative. Since the negative resistances are 287 

physically meaningless, the grid cells with negative aerodynamic or surface resistances are 288 

filtered out following previous work (Li et al. 2019; Liao et al. 2018b). The numbers of the 289 

filtered urban/rural grid cells vary from hour to hour, and are on average about 6% (1%) 290 

for Boston (Phoenix) during the daytime, and about 56% (3%) for Boston (Phoenix) during 291 

the nighttime. To further reduce the uncertainties of the inferred resistances, we remove 292 

the grid cells in which the magnitudes or absolute values of sensible and latent heat fluxes 293 

are smaller than 15 W m-2 in the daytime (10am-4pm, local standard time) and 0.1 W m-2 294 

in the nighttime (10pm-4am, local standard time). These thresholds are needed because the 295 

fluxes appear in the denominator when inferring the resistances. The exact values of these 296 

thresholds are chosen as a compromise between ensuring that the uncertainty of the inferred 297 

resistance is sufficiently small but in the meantime still maintaining a reasonably large 298 

sample of grid cells. After applying these data filtering strategies, there remain on average 299 

about 1300 and 350 urban grid cells in Boston during the daytime and nighttime, 300 

respectively, and 1500 and 1000 rural grid cells in Boston during the daytime and 301 

nighttime, respectively. For Phoenix, there are on average about 200 (10000) and 100 302 

(20000) urban (rural) grid cells during the daytime and nighttime, respectively. We note 303 
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that these data filtering strategies are only applied when the attribution analysis is 304 

conducted (i.e., in section 3.3). The consistency between the average diurnal cycle results 305 

in section 3.2 and the attribution results in section 3.3, as shall be seen later, implies that 306 

these data filtering strategies do not alter our key findings. 307 

Then we spatially average each variable across the dominant urban and rural land cover 308 

types, which results in one urban value and one rural value for each variable in each hour. 309 

After performing the spatial average, we further average the data over daytime and 310 

nighttime for each HW day and then conduct the attribution analysis at the daytime average 311 

and nighttime average scales (hereafter the daily scale). In doing so, the consistency 312 

between the TRM modelled UHIs and the WRF simulated UHIs is higher compared to 313 

performing the attribution at the hourly scale and then aggregating the results to the daily 314 

scale. This is similar to what previous studies found (Li et al. 2019; Liao et al. 2018b). 315 

3 Results 316 

3.1 Assessment of the WRF simulations with different PBL schemes  317 

This section aims to assess the WRF-simulated results, with a focus on comparing the 318 

performances of WRF with different PBL schemes. To do so, 6 out of the 41 HWs are 319 

selected (noted with an asterisk in Table 1), with 3 in Boston and 3 in Phoenix. 320 

First, we validate the WRF-simulated temperature profiles against the ACARS 321 

observations at the airports. Figure 2 shows an example (HW case 1, June 25-28, 2007) in 322 

Boston. We find that the WRF model simulates the “heat dome” over HW days (June 25-323 

28) as observed by the ACARS data. A significant warming and a sharp cooling are 324 

captured by WRF in the lowest 4 km of the atmosphere on the days right before (June 24) 325 

and after (June 29) the HW, respectively (Figure 2b-d). We do not observe obvious 326 
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differences among the WRF simulations with different PBL schemes (Figure 2b-d), which 327 

is also reflected by the similar RMSEs between the WRF simulated results with the three 328 

PBL schemes and the ACARS data (Table 2). When the validation against the ACARS 329 

data is further applied to the other 5 HW cases, the weighted average RMSEs in Table 2 330 

show that ACM2 is slightly superior to the other two PBL schemes but the differences 331 

between the PBL schemes are rather small. 332 

Second, we validate the WRF-simulated 2-m air temperatures against the weather 333 

station data from MADIS. Figure 3 shows the results from the same HW event as in Figure 334 

2 at two weather stations (i.e., the urban site KBED and the rural site KMQE in Boston 335 

marked by yellow triangles in Figure 1b). Although some biases exist, the WRF-simulated 336 

results show overall good agreement with the observations and can reasonably reflect the 337 

onset and demise of the HW. Different PBL schemes show contrasting performances. For 338 

example, at the urban site KBED (Figure 3a, c & e), the WRF results using MYJ deviate 339 

from the observations more strongly than those using the other two PBL schemes. 340 

However, at the rural site KMQE (Figure 3b, d & f), the WRF results with MYJ are closer 341 

to the observations than those with the other two PBL schemes. The weighted average 342 

RMSEs based upon all available weather station data (Table 2) show that ACM2 is slightly 343 

better than YSU, with MYJ showing the worst performance, which is consistent with the 344 

previous findings using ACARS. 345 

Third, we compare the land surface temperatures simulated by WRF and remotely 346 

sensed by MODIS. Figure 4 shows two snapshots of the simulated and observed land 347 

surface temperature patterns at around 11 am and 9 pm (local standard time) on June 27, 348 

2007 in Boston. Unlike ACARS and MADIS that have continuous observations over the 349 
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course of the day, MODIS only provides land surface temperature measurements at its 350 

overpassing time. Moreover, the availability of MODIS data is often reduced by the 351 

presence of clouds. For this particular HW day, the WRF simulations are able to capture 352 

the broad urban-rural land surface temperature contrast, with some underestimation of 353 

SUHI during the daytime and overestimation during the nighttime. When the temperatures 354 

are averaged over urban areas, the WRF simulations yield 311.0 K (300.5 K), 311.2 K 355 

(300.2 K), 310.4 K (299.6 K) for ACM2, YSU and MYJ, respectively; and the MODIS 356 

gives 312.3 K (298.4 K) during the daytime (nighttime). For the rural average land surface 357 

temperatures, the WRF simulations yield 304.7 K (296.2 K), 304.8 K (295.2 K), 305.0 K 358 

(294.9 K) for ACM2, YSU and MYJ, respectively, and the MODIS gives 305.7 K (296.3 359 

K) during the daytime (nighttime). 360 

The performance of the WRF model presented here is broadly consistent with previous 361 

studies (Kalverla et al. 2016; Li and Bou-Zeid 2014; Liao et al. 2014; Meir et al. 2013; 362 

Ramamurthy et al. 2017; Salamanca et al. 2018; Wang and Li 2019). Based on the findings 363 

from Figures 2 to 4 and Table 2, we choose the ACM2 scheme to perform simulations for 364 

the remaining HW cases. 365 

3.2 WRF-simulated urban-rural differences in temperatures and fluxes 366 

In this section, we investigate the WRF-simulated urban-rural differences in surface and 2-367 

m air temperatures and fluxes using average diurnal cycles over HW days. The average 368 

diurnal cycles present a general picture of urban-rural contrasts during HWs and how they 369 

differ between day and night and between Boston and Phoenix. 370 

During the daytime (10am-4pm, local standard time), Phoenix is much hotter than 371 

Boston (Figure 5a & c), as expected from its lower latitude and desert climate. When the 372 
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urban and rural surface temperatures are compared, Boston shows a daytime SUHI, while 373 

Phoenix presents a daytime SUCI (Figure 5b). During the nighttime (10pm-4am, local 374 

standard time), both cities show a SUHI (Figure 5b). Compared to the surface temperature, 375 

the 2-m air temperature shows smaller differences between cities (Figure 5c) and also 376 

smaller urban-rural differences for each city (Figure 5d). As far as the daytime and 377 

nighttime average results are concerned, Phoenix shows almost no AUHI during both 378 

daytime and nighttime; Boston shows no AUHI during the daytime but a nighttime AUHI 379 

(Figure 5d). However, we also point out that there are some variations within the 380 

daytime/nighttime periods. For example, the urban-rural differences of 2-m air temperature 381 

in both cities drop in the early morning, which is possibly due to the rapid growth of the 382 

convective boundary layer as shown by Theeuwes et al. (2015). 383 

The radiative fluxes including incoming shortwave and longwave radiation, and 384 

outgoing shortwave and longwave radiation are examined in Figure 6. During the daytime, 385 

the incoming shortwave radiation of Phoenix is on average larger than that of Boston due 386 

to its lower latitude (Figure 6a). Within each city, the incoming shortwave radiation is 387 

nearly identical for both urban and rural surfaces (Figure 6a). Note that we did not modify 388 

the aerosol profiles in WRF, and thus the urban-rural difference in terms of aerosol loading 389 

is not considered here. In contrast, the urban-rural difference in outgoing shortwave 390 

radiation is large (Figure 6c), which reflects the large urban-rural contrast of albedo 391 

considering that the urban-rural difference in incoming shortwave radiation is rather small. 392 

Specifically, the urban land of Boston has a higher surface albedo than the rural land of 393 

Boston (forests) and thus reflects more shortwave radiation. Conversely, the urban land of 394 
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Phoenix has a smaller surface albedo than the rural land of Phoenix (shrubs) and thus 395 

reflects less shortwave radiation. 396 

The urban-rural contrast in the incoming longwave radiation is positive for both cities 397 

(Figure 6b), which is consistent with the findings from previous studies using flux tower 398 

measurements in other metropolitan regions (Li et al. 2015; Ao et al. 2019). The incoming 399 

longwave radiation is dependent on the temperature and humidity profiles in the whole 400 

atmospheric column (Brutsaert 2005) and thus it is difficult to identify exactly which 401 

factors cause such differences. In terms of urban-rural difference in outgoing longwave 402 

radiation (Figure 6d), the results in both cities are consistent with the expectation that the 403 

outgoing longwave radiation difference should be of the same sign as the surface 404 

temperature difference (Figure 5a; i.e., a hotter surface tends to have larger outgoing 405 

longwave radiation). 406 

Now we examine the turbulent fluxes. During the daytime, the urban sensible heat flux 407 

is much larger than the rural one in both cities (Figure 7a), with a significant time lag in 408 

Boston that has been also observed by other studies (Oke et al. 2017; Ramamurthy et al. 409 

2014). To explain this daytime urban-rural difference in sensible heat flux, we first note 410 

that the urban-rural difference in 𝑇# is very small for both cities (less than 0.1 K) (Figure 411 

7c). This is again because 𝑇# in our study refers to the potential temperature at the lowest 412 

level of the atmospheric model (~30 m). The dynamics of 𝑇# are controlled by horizontal 413 

advection of heat and mixing in the boundary layer, which are complicated and simulated 414 

by the atmospheric component of the WRF model. However, it is not surprising that the 415 

urban-rural differences of 𝑇#  are smaller than the surface and 2-m air temperature 416 

differences due to the mixing power of surface-layer turbulence. With this in mind, we 417 
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further note that the urban-rural difference in sensible heat flux is strongly modulated by 418 

aerodynamic resistances (i.e., 𝑟# & 𝑟#M) according to Eqs. (2) and (6). During the daytime, 419 

the urban-rural difference in 𝑟# is positive in Boston but negative in Phoenix (Figure 8a & 420 

b). This implies that the urban land is more efficient in convecting heat from the surface to 421 

the lower atmosphere than the rural land in Phoenix, but the opposite is true in Boston. 422 

This is broadly consistent with the fact that the rural land of Phoenix is short shrubs and 423 

thus has lower surface roughness, while the rural land of Boston is tall forests and thus has 424 

higher surface roughness. Typically, larger obstacles generate more turbulence with which 425 

the heat can be transferred more efficiently from the surface to the overlying air, although 426 

we stress that convective heat transfer is fundamentally different from momentum transfer 427 

(Brutsaert 1982; Garratt 1992). Here the aerodynamic resistance refers to the resistance to 428 

convective heat transfer, not to momentum transfer. In comparison, the urban-rural 429 

difference in 𝑟#M is smaller for both Boston and Phoenix (Figure 8c & d). This highlights the 430 

important difference between 𝑟#  and 𝑟#M  and demonstrates the height-dependence of 431 

aerodynamic resistance as alluded to earlier. During the nighttime, sensible heat flux 432 

becomes negative (Figure 7a), indicating that the lower atmosphere in turn heats the surface. 433 

The magnitude of the urban sensible heat flux is smaller than the rural sensible heat flux in 434 

Boston but larger in Phoenix (Figure 7a), which indicates that the urban land in Boston 435 

(Phoenix) has a weaker (stronger) capacity to transfer heat from the overlying air to the 436 

surface than the rural land at night. Combined with the daytime results, this reflects that 437 

the urban land is less (more) efficient than the rural land in convecting heat between the 438 

land surface and the lowest model level in Boston (Phoenix). 439 
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During the daytime, the urban latent heat flux is much lower than the rural latent heat 440 

flux in Boston, while in Phoenix both urban and rural latent heat fluxes are extremely small 441 

(Figure 7b). In both cities, the urban-rural differences in latent heat flux are not caused by 442 

the differences in the specific humidity at the lowest level of the atmospheric model, which 443 

are very small (Figure 7d). According to Eq. (3), the latent heat flux is strongly modulated 444 

by surface resistance in addition to aerodynamic resistance. We use Eq. (3) to infer the 445 

surface resistance and find that the urban surface resistance is larger than the rural surface 446 

resistance in Boston during the daytime (Figure 8e). This explains why the urban latent 447 

heat flux is much smaller than the rural counterpart in Boston during the daytime. Both 448 

urban and rural surface resistances in Phoenix inferred from Eq. (3) are exceptionally large 449 

due to the desert climate (Figure 8f). During the nighttime, there are rather small urban-450 

rural differences in latent heat flux for both cities as urban and rural latent heat fluxes tend 451 

to be close to zero (Figure 7b). 452 

Last but not the least, we examine the ground heat flux. Between the two cities, the 453 

magnitude of rural ground heat flux differs strongly: the forests in Boston have much 454 

smaller ground heat fluxes than the shrubs in Phoenix (Figure 9). This has been observed 455 

before and is due to the difference in the canopy height: a taller canopy tends to reduce the 456 

shortwave radiation reaching the ground and thus has less ground heat flux (Garratt 1992). 457 

When the urban and rural ground heat fluxes are compared, we find that in both cities, the 458 

urban ground heat flux is on average larger than the rural ground heat flux during the 459 

daytime (Figure 9), but is more negative during the nighttime. The results indicate that in 460 

both cities the urban land stores more energy into the ground than the rural land during the 461 
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daytime. As a result, the urban surface and near-surface air are heated more at night due to 462 

the heat storage release. 463 

3.3 Attribution results 464 

While the results shown in the previous section are informative, they do not directly 465 

quantify the contributions of different factors to the magnitude of UHIs. To do so, we apply 466 

the TRM attribution method to the WRF-simulated UHIs and UCIs in terms of surface 467 

temperature 𝑇" (section 3.3.1) and 2-m air temperature 𝑇L (section 3.3.2). The comparison 468 

between Boston and Phoenix results is presented in section 3.3.3. 469 

The credibility of the TRM method is supported by the consistency between the TRM-470 

modelled (Figures 10 & 11, red bars) and the WRF-simulated (Figures 10 & 11, orange 471 

bars) urban-rural temperature differences. Based on the TRM-modelled results, we find a 472 

SUHI (∆𝑇" = 6.1 K) in Boston but a SUCI (∆𝑇" = –3.3 K) in Phoenix during the daytime 473 

(Figure 10). At night, we find a SUHI (∆𝑇" = 3.3 K) in Boston and also a SUHI (∆𝑇" = 3.7 474 

K) in Phoenix. In terms of the AUHI, we find almost no daytime AUHIs in both cities 475 

(Figure 11). At night, we find an AUHI (∆𝑇L = 2.4 K) in Boston and no AUHI in Phoenix. 476 

In the following, we discuss the individual contributions from different factors to SUHIs 477 

and AUHIs (Figures 10 & 11, blue bars). The individual sensitivities and urban-rural 478 

differences are presented in Tables 3 to 5. Note that the values reported in Tables 3 to 5 are 479 

the median values of the results over all HW days. 480 

3.3.1 SUHI attribution results 481 

3.3.1.1 Boston 482 

During the daytime, the urban-rural difference in the surface temperature (∆𝑇") in Boston 483 

is mainly contributed by 𝑟"  (+73.3%), 𝑟#  (+69.9%), 𝐺  (-30.2%), and 𝛼  (-15.9%) (see 484 
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Figure 10a). Hence the hotter urban surface in Boston during the daytime, when compared 485 

to the rural surface (forests), is mainly caused by the drier nature (i.e., a larger urban 𝑟") 486 

and the lower heat transfer efficiency between the surface and the lower atmosphere (i.e., 487 

a larger urban 𝑟# ). The larger 𝐺  and the larger 𝛼  tend to lower the urban surface 488 

temperature, but do not overcome the positive contributions from the resistances. 489 

Specifically, the sensitivity of 𝑇" to 𝑟" is positive (Table 3), implying that a drier surface 490 

tends to be hotter. Therefore, the 𝑟" makes a large positive contribution to the ∆𝑇" due to 491 

the larger urban 𝑟" than the rural 𝑟" in Boston (Table 5). The sensitivity of 𝑇" to 𝑟# is also 492 

positive (Table 3), indicating that a surface with a larger 𝑟# tends to be hotter during the 493 

daytime. This is because with a larger 𝑟#  it is more difficult to convect the heat to the 494 

atmosphere. As the urban 𝑟#  is larger than the rural 𝑟#  in Boston (Table 5), the 𝑟#  also 495 

makes a large positive contribution to the ∆𝑇". The sensitivity of 𝑇" to 𝛼 is negative (Table 496 

3), showing that a darker surface tends to be hotter. Thus, the 𝛼  makes a negative 497 

contribution to the ∆𝑇" as the urban surface has a larger 𝛼 than the rural surface in Boston 498 

(Table 5). The sensitivity of 𝑇" to 𝐺 is also negative (Table 3), which means that a larger 499 

ground heat flux going into the soil or built materials tends to cause a cooler surface during 500 

the daytime. Therefore, the larger urban 𝐺 (Table 5) results in a small negative contribution 501 

to the ∆𝑇". 502 

The nighttime ∆𝑇" in Boston is primarily contributed by G (see Figure 10b). That is, 503 

the hotter urban surface mostly results from the larger heat storage release at night. The 504 

sensitivity of 𝑇" to 𝐺 is negative (Table 3), which indicates that the surface becomes hotter 505 

when there is a larger release of the heat storage (i.e., a more negative 𝐺). Thus, when the 506 
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urban 𝐺 is smaller (i.e., more negative) than the rural 𝐺 (Table 5 and Figure 9a), the 𝐺 507 

makes a positive contribution to the ∆𝑇". 508 

3.3.1.2 Phoenix 509 

In Phoenix, the daytime ∆𝑇" is mainly contributed by 𝑟# (-159.7%) and 𝛼 (+67.9%) (see 510 

Figure 10c). Hence the cooler urban surface in Phoenix during the daytime is mainly 511 

because the urban areas have a stronger convective heat transfer efficiency compared to 512 

the rural areas. Although the urban surface is darker in Phoenix, it does not overcome the 513 

negative contribution from the aerodynamic resistance.  514 

The nighttime ∆𝑇" in Phoenix is mainly contributed by 𝑟# (+56.9%), 𝐿𝑊./ (+33.0%), 515 

and 𝐺  (+22.1%). Namely, the hotter urban surface is caused by its lower urban 516 

aerodynamic resistance, the larger urban incoming longwave radiation, and the stronger 517 

heat storage release. While the latter two factors are straightforward to understand, the 518 

importance of 𝑟# requires some explanation. The sensitivity of 𝑇" to 𝑟# is negative (Table 519 

3), which indicates that a smaller 𝑟# leads to a higher 𝑇". This is because more heat can be 520 

transferred downward to warm the surface at night. Therefore, the smaller urban 𝑟#  in 521 

Phoenix (Table 5) contributes positively to the ∆𝑇". Here we highlight that the sensitivity 522 

of 𝑇" to 𝑟# changes its sign compared to the daytime counterpart. During the daytime, a 523 

surface with a larger 𝑟# tends to be hotter due to the reduced efficiency to transfer sensible 524 

heat to the atmosphere. However, during the nighttime a surface with a smaller 𝑟# tends to 525 

be hotter because it becomes easier for the atmosphere to transfer heat towards the surface. 526 

This diurnal asymmetry has been well documented in studies examining the impacts of 527 

deforestation on land surface temperature (Burakowski et al. 2018; Lee et al. 2011; Liao et 528 

al. 2018b; Schultz et al. 2017). 529 
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3.3.2 AUHI attribution results 530 

Close inspection of the AUHI attribution results reveals that most factors work in a similar 531 

way as in the SUHI attribution results but with a smaller magnitude (Figures 10 & 11). 532 

This is understandable as the 2-m air temperature is effectively derived by interpolating 533 

between the surface temperature and the potential temperature at the lowest level of the 534 

atmospheric model (see Eq. 6). Hence most factors affecting SUHI also impact AUHI, but 535 

the magnitude of such impact is damped due to turbulent mixing between the surface and 536 

the 2-m level, which manifests as the difference between 𝑟# and 𝑟#M (i.e., the 𝑓 in Eq. 7). 537 

The major differences between the AUHI and SUHI attribution results lie in the new 538 

contributions from 𝑟#M  and the different sensitivities of 𝑇"  and 𝑇L  to 𝑟# , which are of 539 

opposite signs as shown in Tables 3 and 4. We will focus on these differences in this section. 540 

3.3.2.1 Boston 541 

During the daytime, the urban-rural difference in the 2-m air temperature (∆𝑇L) is mainly 542 

controlled by 𝑟"  and 𝑟#M  in Boston (see Figure 11a). The new contribution from 𝑟#M  is 543 

negative (Figure 11a). The sensitivity of 𝑇L to 𝑟#M is three orders of magnitude larger than 544 

the sensitivity of 𝑇L to 𝑟# (Table 4), which indicates that the 2-m air temperature is more 545 

controlled by 𝑟#M than 𝑟#. Moreover, the sensitivity of 𝑇L to 𝑟#M is positive, which means that 546 

the 2-m air temperature tends to be smaller when the heat at the 2-m level can be more 547 

easily transferred upward during the daytime (i.e., with a smaller 𝑟#M ). The urban 𝑟#M  is 548 

slightly lower than the rural 𝑟#M in Boston (Table 5), resulting in a negative contribution to 549 

the ∆𝑇L. 550 

During the nighttime, the ∆𝑇L is predominately contributed by 𝐺 in Boston (see Figure 551 

11b). Nonetheless, the 𝑟#M makes a negative contribution (Figure 11b). The sensitivity of 𝑇L 552 
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to 𝑟#M is negative (Table 4), which has an opposite sign compared to the daytime counterpart 553 

because the heat is transferred upward in the day but downward at night. As the 𝑟#M becomes 554 

larger, it is more difficult for the heat to be transferred downward to warm the near-surface 555 

air at 2 m at night, leading to a lower 𝑇L. Therefore, when 𝑟#M is larger in urban areas than 556 

in rural areas at night (Table 5), the 𝑟#M  makes a negative contribution to the ∆𝑇L . The 557 

magnitude of the sensitivity of 𝑇L to 𝑟#M is also 3.5 times that of the sensitivity of 𝑇L to 𝑟#, 558 

explaining why the contribution from 𝑟# is much smaller than that from 𝑟#M. 559 

3.3.2.2 Phoenix 560 

In Phoenix, the daytime ∆𝑇L  is more controlled by 𝑟#M  than 𝑟# , with also some positive 561 

contribution from 𝛼 (Figure 11c). This is because the sensitivity of 𝑇L to 𝑟#M is positive and 562 

two orders of magnitude larger than the sensitivity of 𝑇L to 𝑟# (Table 4). This is similar to 563 

the Boston results and again indicates that a larger 𝑟#M results in a higher 𝑇L because it is 564 

more difficult for heat at the 2-m level to be transferred to the atmosphere above during the 565 

daytime. Therefore, the larger urban 𝑟#M (Table 5) leads to a positive contribution to the ∆𝑇L.  566 

During the nighttime, both 𝑟#M and 𝑟# make important contributions to ∆𝑇L(Figure 11d), 567 

but they play opposite roles and roughly cancel each other. The sensitivity of 𝑇L to 𝑟#M is 568 

negative at night (Table 4), which indicates that a lower 𝑟#M raises 𝑇L as the near-surface air 569 

can gain heat more easily from the atmosphere above. Thus, the smaller urban 𝑟#M makes a 570 

positive contribution to the ∆𝑇L. On the other hand, the 𝑟# makes a negative contribution. 571 

The contribution from 𝑟# changes its sign when compared to the SUHI results because the 572 

sensitivity of 𝑇L to 𝑟# always has the opposite sign as the sensitivity of 𝑇" to 𝑟# (Tables 3 & 573 

4). Physically this means that convection either raises the surface temperature at the 574 

expense of reducing the near-surface air temperature, or raises the near-surface air 575 
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temperature at the expense of reducing the surface temperature. In this case, the smaller 576 

urban 𝑟# causes more heat to be transferred from the overlying air to the surface, which 577 

positively contributes to SUHI (Figure 10) but negatively contributes to AUHI (Figure 11). 578 

3.3.3 Differences in the attribution results between Boston and Phoenix 579 

Comparing the attribution results between Boston and Phoenix, we find that the major 580 

contributors work in an opposite way during the daytime due to the opposite sign of the 581 

urban-rural difference in these factors (Table 5). First, compared to the urban land, the rural 582 

land in Boston has a lower 𝑟# but the rural land in Phoenix has a higher 𝑟#. Thus, the urban-583 

rural difference in the aerodynamic resistance between the surface and the lowest 584 

atmospheric model level (∆𝑟#) is positive in Boston but negative in Phoenix. Therefore, the 585 

𝑟# contribution to ∆𝑇" is positive in Boston, but negative in Phoenix (Figures 10 & 11). 586 

Second, the urban-rural difference in the aerodynamic resistance between the 2-m level 587 

and the lowest atmospheric model level (∆𝑟#M) is negative in Boston but positive in Phoenix 588 

during the daytime (Table 5). Therefore, the contribution of 𝑟#M to ∆𝑇L is negative in Boston 589 

but positive in Phoenix (Figure 11). Third, compared to urban areas, rural areas (forests) in 590 

Boston have lower albedo (𝛼) while rural areas (shrubs) in Phoenix have higher 𝛼 (Table 591 

5). Thus, the contributions of 𝛼 to ∆𝑇"  and ∆𝑇L  are negative in Boston, but positive in 592 

Phoenix (Figures 10 & 11). Fourth, the urban-rural difference in surface resistance (∆𝑟") is 593 

positive in Boston (Table 5), which leads to positive contributions to ∆𝑇" and ∆𝑇L. But the 594 

urban-rural difference in surface resistance (∆𝑟") has almost no effects on ∆𝑇" and ∆𝑇L in 595 

Phoenix (Figures 10 & 11) due to the much lower sensitivities (𝜕𝑇"/𝜕𝑟" & 𝜕𝑇L/𝜕𝑟") (Tables 596 

3 & 4). This indicates that the surface temperature is more sensitive to the surface moisture 597 
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availability in Boston than in Phoenix, possibly due to the already very dry conditions in 598 

Phoenix.  599 

The comparison of the nighttime results is simpler. The nighttime SUHI and AUHI in 600 

Boston are predominantly caused by the stronger urban heat storage release. For Phoenix, 601 

the contributions from 𝑟#  and 𝑟#M  are large, but the heat storage release still plays a role 602 

especially for SUHI. 603 

4 Discussions 604 

4.1 Comparison to previous studies 605 

Our SUHI attribution results can shed important insights on the recent debate about the 606 

spatial variability of daytime SUHIs over North America. Cites with more annual mean 607 

rainfall, such as Boston in our case, tend to have stronger daytime SUHIs than those with 608 

less rainfall, such as Phoenix in our case, as shown by a number of previous studies 609 

(Clinton and Gong 2013; Imhoff et al. 2010; Li et al. 2019; Peng et al. 2012; Zhao et al. 610 

2014). Zhao et al. (2014) found that aerodynamic resistance is the dominant factor 611 

controlling the daytime SUHI spatial variability across cities in North America at the 612 

annual mean scale. On the other hand, Li et al. (2019) found that it is surface resistance 613 

that more strongly controls the daytime SUHI spatial variability at the annual mean scale, 614 

although the attribution results in Li et al. (2019) also indicated an important role of 615 

aerodynamic resistance. Our results show that both aerodynamic resistance and surface 616 

resistance contribute significantly to the differences between Boston and Phoenix results 617 

in the daytime, which is consistent with the findings of Li et al. (2019) and Manoli et al. 618 

(2019) albeit at vastly different temporal scales. The importance of aerodynamic resistance 619 

for the SUHI spatial variability results from the fact that the urban-rural difference in 620 
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aerodynamic resistance shows opposite signs in the two cities. Our results show that in 621 

Boston the aerodynamic resistance to convective heat transfer between the surface and the 622 

lower atmosphere is larger in urban areas than in rural areas, while the opposite is true in 623 

Phoenix. On the other hand, the importance of surface resistance for the daytime SUHI 624 

variability stems from the fact that the urban-rural difference in surface resistance 625 

contributes strongly to the SUHI in Boston but not in Phoenix. 626 

Our nighttime results in Boston are consistent with the traditional paradigm that the 627 

stronger release of ground heat flux in urban areas predominantly causes the nighttime 628 

SUHIs (Oke et al. 2017). However, the results in Phoenix suggest that the role of 629 

aerodynamic resistance cannot be neglected. When the land surface becomes cooler than 630 

the atmosphere at night, the sensible heat goes from the atmosphere to the surface. This 631 

transfer of heat is more efficient over surfaces with a lower 𝑟#  (the urban surface in 632 

Phoenix’s case) and hence positively contributes to the nighttime SUHI. While this effect 633 

is less documented in observational studies on SUHIs, it has been demonstrated in studies 634 

on the impacts of deforestation on land surface temperature (Burakowski et al. 2018; Lee 635 

et al. 2011; Liao et al. 2018b; Schultz et al. 2017). 636 

4.2 Limitations of our study 637 

There are a few limitations of our study that are important to appreciate. First, we do not 638 

consider anthropogenic heat flux (AF) in our simulations and attributions. Within the 639 

confines of our attribution method (see Eq. 4), the sensitivity of 𝑇" and 𝑇L	to AF should be 640 

identical to that to ground heat flux (G) but with an opposite sign, which is on the order of 641 

10-2 to 10-1 K m2 W-1 for 𝑇" and on the order of 10-3 to 10-2 K m2 W-1 for 𝑇L. Using the 642 

fixed diurnal profile for AF prescribed in the single-layer urban canopy model (Kusaka et 643 
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al. 2001; Kusaka and Kimura 2004), the urban-rural difference in AF is estimated to be on 644 

the order of 75 W m-2 (including both sensible and latent anthropogenic heat fluxes). Thus, 645 

the contributions of AF are estimated to be around 0.75 to 7.5 K for the SUHI and 0.075 to 646 

0.75 K for the AUHI. We point out that the simple estimate presented here might suffer 647 

from the uncertainties associated with the magnitude of AF (Allen et al. 2011; Salamanca 648 

et al. 2014). Moreover, the simulated sensitivities of 𝑇"  and 𝑇L	to AF depend on how 649 

exactly AF is incorporated in the energy balance computation in WRF, and might be 650 

different from the values shown here. While these complications are left for future 651 

investigations, we note that the signs of the sensitivities of 𝑇" and 𝑇L to AF and the urban-652 

rural contrast of AF are expected to be positive. Hence AF always tends to make positive 653 

contributions to the UHIs. 654 

Second, our analysis only focuses on HW days and thus the findings might not be 655 

extrapolated to other weather conditions. We do not investigate the responses of UHIs to 656 

HWs by comparing the results in pre-HW, HW, and post-HW days. Many studies have 657 

shown that there exist synergies between UHIs and HWs, namely, the magnitude of UHIs 658 

is larger under HWs (e.g., Ao et al. 2019; Founda et al. 2015; Founda and Santamouris 659 

2017; Li and Bou-Zeid 2013; Li et al. 2015; Ramamurthy et al. 2017; Schatz and Kucharik 660 

2015). However, there are also studies reporting that the magnitude of UHIs is reduced 661 

under HW conditions (e.g., Rogers et al. 2019; Scott et al. 2018). Our attribution method 662 

may shed new insights into this debate but this is left for future research. 663 

Third, as with most studies using models like WRF, the validation is centered on land 664 

surface temperature patterns, 2-m air temperatures at a number of weather stations, as well 665 

as the boundary layer temperature profiles at the two airports due to data availability. Given 666 
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the lack of observations, we could not directly validate the fluxes from our simulations. 667 

More thorough validation, especially on parameters and variables related to near-surface 668 

heat transfer, is recommended. 669 

5. Conclusions  670 

In the present study, we investigate the controlling factors of UHIs and UCIs during HWs 671 

in Boston and Phoenix using WRF simulations. During the daytime, we find a SUHI in 672 

Boston mainly caused by the higher urban 𝑟" that reduces the latent heat flux, and the higher 673 

urban 𝑟# which inhibits convective heat transfer from the urban surface to the atmosphere. 674 

In contrast, we find a daytime SUCI in Phoenix mainly due to the lower urban 𝑟#  that 675 

facilitates convective heat transfer. At night, we identify a SUHI and an AUHI in Boston 676 

due to the stronger release of urban heat storage. In comparison, the lower urban 𝑟#  in 677 

Phoenix facilitates convective heat transfer from the atmosphere to the urban surface at 678 

night, leading to a SUHI but no AUHI. Our study highlights that the magnitude of UHIs or 679 

UCIs is strongly controlled by urban-rural differences in terms of aerodynamic features, 680 

vegetation and moisture conditions, and heat storage, which show contrasting 681 

characteristics in different regions. Further investigations on the roles of anthropogenic 682 

heat flux and weather conditions, and more thorough validation of the simulated results are 683 

recommended. 684 
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Table 1 Identified heat waves (HWs) during 2007-2016 in Boston and Phoenix 1008 
                              Boston                                    Phoenix 
Case 
No. Date HW days Case 

No. Date HW days 

1* 20070625 – 20070628 4 21* 20070705 – 20070706 2 
2 20070802 – 20070804 3 22 20070717 – 20070719 3 
3 20090817 – 20090819 3 23 20070812 – 20070813 2 
4 20100703 – 20100706 4 24 20080616 – 20080617 2 
5 20100716 – 20100718 3 25 20090710 – 20090714 5 
6 20100728 – 20100729 2 26 20090716 – 20090719 4 
7* 20100829 – 20100902 5 27 20090727 – 20090728 2 
8 20110717 – 20110718 2 28 20090803 – 20090806 4 
9 20110721 – 20110723 3 29 20100714 – 20100716 3 

10 20120620 – 20120622 3 30* 20110701 – 20110703 3 
11 20120629 – 20120701 3 31 20110823 – 20110826 4 
12 20120715 – 20120717 3 32 20110829 – 20110901 4 
13 20130530 – 20130602 4 33 20120707 – 20120711 5 
14 20130623 – 20130625 3 34 20120806 – 20120814 9 
15 20130703 – 20130707 5 35 20130628 – 20130630 3 
16* 20130714 – 20130720 7 36 20130816 – 20130817 2 
17 20160712 – 20160716 5 37 20140722 – 20140724 3 
18 20160721 – 20160723 3 38 20150617 – 20150619 3 
19 20160811 – 20160812 2 39 20150814 – 20150816 3 
20 20160814 – 20160815 2 40* 20160619 – 20160620 2 

   41 20160726 – 20160728 3 
Note. The asterisk indicates that the HW is selected for validation. 1009 
 1010 
 1011 
 1012 
Table 2 Averaged root-mean-square errors (RMSEs) between the model simulated results and the 1013 
observations (MADIS and ACARS) over 6 heat waves  1014 

 ACARS MADIS 

Case No. ACM2 YSU MYJ Availability (%) Sample size ACM2 YSU MYJ Availability (%) Sample size 

1 1.91 1.90 1.89 64.48 21946 2.16 2.13 2.50 99.06 10015 

7 2.21 2.21 2.17 60.42 22031 2.04 2.05 2.44 96.91 10495 

16 2.31 2.45 2.47 60.18 24861 2.35 2.27 2.43 98.79 10505 

21 2.32 2.26 2.45 46.65 13618 3.05 3.19 3.60 98.93 6290 

30 2.47 2.45 2.73 65.62 20743 3.11 3.09 3.34 98.49 6782 

40 2.76 2.78 2.79 88.81 25922 2.91 3.03 3.49 99.87 4618 

Weighted mean 2.33 2.34 2.42   2.49 2.50 2.82   
Note. Availability refers to the percentage of available data for the whole HW period, including 5 pre-HW days, all HW days and 5 1015 
post-HW days. The weighted mean RMSE is calculated based upon the weight of the sample size. 1016 
 1017 
  1018 
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Table 3 Sensitivities of surface temperature to changes in various factors 1019 
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(−) 
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𝜕𝑞#

 

(K) 

𝜕𝑇"
𝜕𝑃

 

(K/Pa) 

DB -3×100 -2×10 2×10-1 7×10-3 -2×10-2 2×10-2 2×10-2 7×10-1 1×102 -5×10-5 

DP -5×100 -2×10 3×10-1 5×10-5 -2×10-2 2×10-2 2×10-2 8×10-1 6×100 -8×10-5 

NB -3×100 0 -4×10-3 6×10-6 -7×10-2 6×10-2 7×10-2 6×10-1 3×10 1×10-5 

NP -1×10 0 -1×10-3 4×10-7 -1×10-1 1×10-1 1×10-1 2×10-1 4×100 1×10-5 
Note. DB = daytime Boston; DP = daytime Phoenix; NB = nighttime Boston; NP = nighttime Phoenix. The value is the median of the 1020 
results at the daily scale. 1021 
 1022 
 1023 
Table 4 Sensitivities of 2-m air temperature to changes in various factors 1024 
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𝜕𝑃

 

(K/Pa) 

DB -3×10-1 -2×100 -1×10-4 2×10-1 1×10-3 -2×10-3 2×10-3 2×10-3 1×100 2×10 -5×10-6 

DP -5×10-1 -2×100 -2×10-3 3×10-1 4×10-6 -2×10-3 1×10-3 2×10-3 1×100 5×10-1 -6×10-6 

NB -2×100 0 2×10-3 -7×10-3 5×10-6 -6×10-2 5×10-2 5×10-2 6×10-1 3×10 2×10-5 

NP -3×100 0 1×10-3 -6×10-3 1×10-7 -3×10-2 3×10-2 3×10-2 8×10-1 1×100 2×10-6 
Note. DB = daytime Boston; DP = daytime Phoenix; NB = nighttime Boston; NP = nighttime Phoenix. The value is the median of the 1025 
results at the daily scale. 1026 
 1027 
 1028 
 1029 
Table 5 Urban-rural differences in terms of various factors (∆: Urban minus rural values) 1030 

 ∆𝜀 
(−)	
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(−)	

∆𝑟#	
(𝑠/𝑚)	
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∆𝑇#	
(𝐾)	

∆𝑞#	
(𝑘𝑔/𝑘𝑔)	

∆𝑃	
(𝑃𝑎)	

DB 2×10-2 5×10-2 2×10 -3×100 6×102 8×10 6×10-1 4×100 4×10-1 -4×10-4 6×102 
DP 5×10-2 -1×10-1 -2×10 2×100 -1×103 -5×100 -3×100 2×10 -1×10-1 -4×10-5 3×103 
NB 2×10-2 5×10-2 -2×10 1×10 2×104 -4×10 0 5×100 5×10-1 2×10-5 5×102 
NP 5×10-2 -1×10-1 -2×103 -4×102 4×105 -6×100 0 9×100 -6×10-1 -2×10-4 2×103 

Note. DB = daytime Boston; DP = daytime Phoenix; NB = nighttime Boston; NP = nighttime Phoenix. The value is the median of the 1031 
results at the daily scale.  1032 
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 1033 

FIGURE 1 The WRF domain configuration (left), terrain height (left), and land use map (right) over Boston 1034 

(a, b) and Phoenix (c, d). The yellow triangles mark the locations of the two MADIS sites used in Figure 3. 1035 

The northern one is an urban site “KBED” at 42.47°N, 71.28°W, and the southern one is a rural site “KMQE” 1036 

at 42.21°N, 71.11°W. The blue circles mark the locations of the Boston and Phoenix airports.  1037 



 51 

 1038 

FIGURE 2 The evolution of air temperature profile in the lowest 4 km at the Boston Logan International 1039 

Airport from June 20 to July 3, 2007. June 25 to 28 is the heat wave period. The panels are (a) ACARS data 1040 

and WRF simulation results with the (b) ACM2, (c) YSU and (d) MYJ schemes. The height is above the 1041 

ground level. The blank areas are due to the lack of ACARS data, which typically occur from late night to 1042 

early morning.  1043 
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 1044 

FIGURE 3 Comparisons between WRF-simulated (black circle) and MADIS weather-station measured (red 1045 

circle) 2-m air temperature from June 20 to July 3, 2007 in Boston. June 25 to 28 is the heat wave period. 1046 

The left panels are comparisons at an urban site (KBED) for WRF simulations with (a) ACM2, (c) YSU and 1047 

(e) MYJ. The right panels are comparisons at a rural site (KMQE) for WRF simulations with (b) ACM2, (d) 1048 

YSU and (f) MYJ. Please see the yellow triangles in Figure 1 for the locations of KBED and KMQE. The 1049 

root-mean-square error (RMSE) and sample size (n) are denoted in the upper right corner of each panel. 1050 

  1051 

a) Urban, KBED, ACM2 b) Rural, KMQE, ACM2

c) Urban, KBED, YSU d) Rural, KMQE, YSU
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 1052 

FIGURE 4 Land surface temperatures from (a, b) MODIS and WRF simulations using (c, d) ACM2, (e, f) 1053 

YSU and (g, h) MYJ schemes at (a, c, e, g) 11 am and (b, d, f, h) 9 pm on June 27, 2007 in Boston.  1054 
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 1055 

FIGURE 5 Average diurnal cycles of (a) surface temperatures (Ts), and (c) 2-m air temperature (T2), and the 1056 

urban-rural (urban minus rural temperature) differences in (b) surface temperature and (d) 2-m air 1057 

temperature from WRF simulations. The shading denotes standard deviations. BOS = Boston; PHX = 1058 

Phoenix. Time represents the local standard time.  1059 
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 1060 

FIGURE 6 Average diurnal cycles of (a) incoming shortwave radiation (SWin), (b) incoming longwave 1061 

radiation (LWin), (c) outgoing shortwave radiation (SWout), and (d) outgoing longwave radiation (LWout) from 1062 

WRF simulations. The shading denotes standard deviations. BOS = Boston; PHX = Phoenix. Time represents 1063 

the local standard time. 1064 

  1065 
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 1066 

FIGURE 7 Average diurnal cycles of (a) sensible heat flux (H), (b) latent heat flux (LE), (c) potential 1067 

temperature (Ta) at the lowest level of the atmospheric model, and (d) specific humidity (qa) at the lowest 1068 

level of the atmospheric model from WRF simulations. The shading denotes standard deviations. BOS = 1069 

Boston; PHX = Phoenix. Time represents the local standard time. 1070 

  1071 
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 1072 

FIGURE 8 The inferred resistances from WRF simulations, including (a, b) aerodynamic resistance between 1073 

the surface and the lowest atmospheric model level (𝑟#), (c, d) aerodynamic resistance between the 2-m level 1074 

and the lowest atmospheric model level (𝑟#M), and (e, f) surface resistance (𝑟"). The shading denotes standard 1075 



 58 

deviations. BOS = Boston; PHX = Phoenix. Time represents the local standard time. Only the daytime (10am 1076 

to 4pm local standard time) results are shown.  1077 
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 1078 

FIGURE 9 Average diurnal cycles of ground heat flux (G) from WRF simulations in (a) Boston and (b) 1079 

Phoenix. The shading denotes standard deviations. BOS = Boston; PHX = Phoenix. Time represents the local 1080 

standard time. 1081 

  1082 
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 1083 

FIGURE 10 Attribution of surface urban heat islands (∆𝑇", urban minus rural surface temperature) using the 1084 

Two Resistance Mechanism (TRM) model during (a, c) daytime (10am-4pm) and (b, d) nighttime (10pm-1085 

4am) in (a, b) Boston and (c, d) Phoenix. The orange and red bars represent WRF-simulated and TRM-1086 

modelled ∆𝑇", respectively. The blue bars represent contributions from different factors, including emissivity 1087 

(𝜀), albedo (𝛼), aerodynamic resistance between the surface and the lowest atmospheric model level (𝑟#), 1088 

surface resistance (𝑟"), ground heat flux (𝐺), incoming shortwave radiation (𝑆𝑊./), incoming longwave 1089 

radiation (𝐿𝑊./), potential temperature (𝑇#) at the lowest atmospheric model level, specific humidity (𝑞#) at 1090 

the lowest atmospheric model level, and pressure (𝑃). The sample size is noted in the bracket on the left. HW 1091 

= heat wave. The column indicates the median of the attribution results at the daily scale. The error bars are 1092 

the 80th and 20th percentiles of the results, respectively, representing the day-to-day variability of the 1093 

attribution results. 1094 
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 1096 

FIGURE 11 Attribution of near-surface air urban heat islands (∆𝑇L, urban minus rural 2-m air potential 1097 

temperature) using the Two Resistance Mechanism (TRM) model during (a, c) daytime (10am-4pm) and (b, 1098 

d) nighttime (10pm-4am) in (a, b) Boston and (c, d) Phoenix. The orange and red bars represent WRF-1099 

simulated and TRM-modelled ∆𝑇L, respectively. The blue bars represent contributions from different factors, 1100 

including emissivity (𝜀), albedo (𝛼), aerodynamic resistance between the surface and the lowest atmospheric 1101 

model level (𝑟#), aerodynamic resistance between the 2-m level and the lowest atmospheric model level (𝑟#M), 1102 

surface resistance (𝑟"), ground heat flux (𝐺), incoming shortwave radiation (𝑆𝑊./), incoming longwave 1103 

radiation (𝐿𝑊./), potential temperature (𝑇#) at the lowest atmospheric model level, specific humidity (𝑞#) at 1104 

the lowest atmospheric model level, and pressure (𝑃). The sample size is noted in the bracket on the left. HW 1105 

= heat wave. The column indicates the median of the attribution results at the daily scale. The error bars are 1106 

the 80th and 20th percentiles of the results, respectively, representing the day-to-day variability of the 1107 

attribution results. 1108 
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