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Abstract—The approximate computing paradigm advocates
for relaxing accuracy goals in applications to improve energy-
efficiency and performance. Recently, this paradigm has been
explored to improve the energy-efficiency of silicon photonic
networks-on-chip (PNoCs). Silicon photonic interconnects suffer
from high power dissipation because of laser sources, which
generate carrier wavelengths, and tuning power required for
regulating photonic devices under different uncertainties. In this
article, we propose a framework called AppRoXimation frame-
work for On-chip photonic Networks (ARXON) to reduce such
power dissipation overhead by enabling intelligent and aggressive
approximation during communication over silicon photonic links
in PNoCs. Our framework reduces laser and tuning-power over-
head while intelligently approximating communication, such that
application output quality is not distorted beyond an acceptable
limit. Simulation results show that our framework can achieve up
to 56.4% lower laser power consumption and up to 23.8% better
energy-efficiency than the best-known prior work on approximate
communication with silicon photonic interconnects and for the
same application output quality.

Index Terms— Approximate computing, energy-efficiency, mul-
tilevel signaling, silicon photonic networks-on-chip (PNoCs).

I. INTRODUCTION

O MATCH the increasing demand in processing capabil-
ities of modern applications, the core count in emerging
manycore systems has been steadily increasing. For example,
Intel Xeon processors today have up to 56 cores [1], while
NVIDIA’s GPUs have reported over 8000 shader cores [2].
Emerging application-specific processors are pushing these
numbers to new highs, e.g., the Cerebras Al accelerator has
over 400000 lightweight cores [3]. The increasing number
of cores creates greater core-to-core and core-to-memory
communication.
Conventional metallic interconnects and electrical networks-
on-chip (ENoCs) already dissipate very high power to support
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the high bandwidths and low-latency requirements of data-
driven parallel applications today and are unlikely to scale
to meet the demands of future applications [4]. Fortunately,
chip-scale silicon photonics has emerged in recent years as a
promising development to enhance ENoCs with light speed
photonic links that can overcome the bottlenecks of slow
and noise-prone electrical links. Silicon photonics can enable
photonic networks-on-chip (PNoCs) with a promise of much
higher bandwidths and lower latencies than ENoCs [5].
Typical PNoC architectures employ several photonic
devices such as photonic waveguides, couplers, splitters, and
multiwavelength laser sources, along with microring res-
onators (MRs) as modulators, detectors, and switches [5].
A laser source (either off-chip or on-chip) generates light with
one or more wavelengths, which is coupled by an optical
coupler to an on-chip photonic waveguide. This waveguide
guides the input optical power of potentially multiple carrier
wavelengths (referred to as wavelength-division-multiplexed
(WDM) transmission), via a series of optical power splitters,
to the individual nodes (e.g., processing cores) on the chip.
Each wavelength serves as a carrier for a data signal. Typically,
multiple data signals are generated at a source node in the
electrical domain as sequences of logical 0 and 1 voltage
levels. These input electrical data signals are coupled with
(i.e., modulated onto) the wavelengths using a group (bank)
of modulator MRs (e.g., 64-bit data modulated on 64 wave-
lengths), typically using on—off Keying (OOK) modulation.
Subsequently, the carrier wavelengths are routed over the
PNoC till they reach their destination node, where the wave-
lengths are filtered and dropped into the waveguide by a bank
of filter MRs that maneuver the wavelengths to photodetectors
to recover the data in the electrical domain. Each node in a
PNoC can communicate to multiple other nodes through such
WDM-enabled photonic waveguides in PNoCs.
Unfortunately, optical signals accumulate losses and
crosstalk noise as they traverse PNoCs, necessitating high
signal power from the laser for signal-to-noise ratio (SNR)
compensation and to guarantee that the signal can be received
at the destination node with sufficient power to enable error-
free recovery of the transmitted data. Moreover, the sensi-
tivity of an MR to the wavelength it is intended to couple
with is related to its physical properties (e.g., radius, width,
thickness, refractive index of the device material) that can
vary with fabrication and thermal variations (TV). To rectify
these problems, MRs must be “tuned” to correct the impact of
variations either by free-carrier injection (electrooptic tuning)
or thermally tuning the device (thermo-optic tuning). Such
tuning entails energy and power overheads, which can become
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significant as the number of MRs in PNoCs increases. Novel
solutions are therefore urgently needed to reduce these power
overheads, so that PNoCs can serve as a viable replacement
to ENoCs in emerging and future manycore architectures.

One promising direction toward this goal is approximate
computing. As computational complexity and data volumes
increase for emerging applications, ensuring fault-free com-
puting for them is becoming increasingly difficult, for various
reasons including: 1) increasing resource demands for big-
data processing limit the resources available for traditional
redundancy-based fault tolerance and 2) the ongoing scaling
of semiconductor devices makes them increasingly sensitive
to variations, e.g., due to imperfect fabrication processes.
Approximate computing, which trades off “acceptable errors”
during execution to reduce energy and runtime, is a poten-
tial solution to both these challenges [6]. With diminishing
performance-per-watt gains from Dennard scaling, leveraging
such aggressive techniques to achieve higher energy-efficiency
is becoming increasingly important.

In this article, we explore how to leverage data approxima-
tion to benefit the energy and power consumption footprints
of PNoC architectures. To achieve this goal, we analyze how
data approximation impacts the output quality of various appli-
cations, and how that will impact energy and power require-
ments for laser operation, transmission, and MR tuning. Our
proposed framework, called AppRoXimation framework for
On-chip photonic Networks (ARXON), extends our previous
work (loss aware approximations for energy-efficient silicon
photonic networks-on-chip (LORAX) [17]) to implement an
aggressive loss-aware approximated-packet-transmission solu-
tion that reduces power overheads due to the laser, crosstalk
mitigation, and MR tuning.

The novel contributions of this work are as follows.

1) We develop an approach that relies on approximating
a subset of data transfers for applications, to reduce
energy consumption in PNoCs while still maintaining
acceptable output quality for applications.

2) We propose a strategy that adaptively switches between
two modes of approximate data transmission, based on
the photonic signal loss profile along the traversed path.

3) We evaluate the impact of utilizing multilevel signaling
(pulse-amplitude modulation) instead of conventional
OOK signaling during approximate transfers for achiev-
ing even greater energy-efficiency.

4) We explore how adapting existing approaches toward
MR tuning and crosstalk mitigation can help further
reduce power overheads in PNoCs.

5) We evaluate ARXON on multiple applications and show
its effectiveness over the best-known prior work on
approximating data transfers over PNoC architectures.

II. RELATED WORK

By carefully relaxing the requirement for computational
correctness, it has been shown that many applications can
execute with a much lower energy consumption and with-
out significantly impacting application output quality. Some
examples for approximation-tolerant applications that can save
energy through this approach include audio transcoding, image
processing, encoding/decoding during video streaming [7], [8],
and big-data applications [9], [10]. The fast-growing repos-
itory of machine-learning (ML) applications represents a
particularly promising target for approximation because of
the inherent resilience to errors in most ML applications.
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As an example, it is possible to approximate the weights
(e.g., from 32-bit floating-point to 8-bit fixed point) in convolu-
tional and deep neural networks and with negligible changes in
the output classification accuracy [8]. Many other approaches
have been proposed for ML algorithm-level approximations
[24]-[26]. With the introduction of ML applications into
resource-constrained environments such as mobile and Internet
of Things (IoT) platforms, there is growing interest in utilizing
approximated versions of ML applications for faster and
lower-energy inference [27].

In general, the approximate computing solutions proposed
to date can be broadly categorized into four types based
on their scope [11]: hardware, storage, software, and sys-
tems. The approximation of hardware components allows
for a reduction in their complexity, and consequently their
energy overheads [12]. For instance, an approximate full
adder can utilize simpler approximated components such as
XOR/XNOR-based adders and pass transistor-based multiplex-
ers [13], [14]. Additional reduction in circuit complexity
and power dissipation can be enabled by avoiding XOR
operations [15]. Techniques for storage approximation can
include reducing refresh rates in dynamic random-access
memory (DRAM) [18], [19], which results in a deterioration
of stored data, but at the advantage of increased energy-
efficiency. Approaches for software approximation include
algorithmic approximation that leverages domain-specific
knowledge [19]-[21]. They may also refer to approximating
annotated data, variables, and high-level programming con-
structs (e.g., loop iterations), via annotations in the software
code [22], [23]. At the system level, approximation involves
the modification of architectures to support imprecise opera-
tions. Attempts to design approximate NoC architectures fall
under this category.

Several efforts have attempted to approximate data trans-
fers over ENoC architectures by using strategies that reduce
the number of bits or packets being transmitted to reduce
NoC utilization, and thus reduce communication energy.
An approximate ENoC for GPUs was presented in [28],
where similar data packets were coalesced at the memory
controller, to reduce the packets that traverse over the network.
A hardware-data-approximation framework with an online
data error control mechanism, which facilitates the approx-
imate matching of data patterns within a controllable value
range, for ENoCs was presented in [29]. In [30], traffic data
were approximated by dropping values from a packet before
it is sent on to the ENoC, at a set interval. The data are then
recreated at the destination nodes using a linear interpolator-
based predictor. A dual voltage ENoC is proposed in [31],
where lower-priority bits in a packet are transferred at a
lower voltage level, which can save energy at the cost of
possible bit flips. In contrast, the higher priority bits of the
packet, including header bits, are transmitted with higher
voltage, ensuring a lower bit-error rate (BER) for them.
These approaches, e.g., [30], [31], focus on approximations
for ENoCs. PNoCs utilize photonic links with very different
mechanisms for data modulation, crosstalk, power dissipation,
and signal losses, compared to ENoCs. Even though there are
similarities in concepts used in photonic and electrical domains
(e.g., lowering voltage swing can be considered analogous
to lowering laser power) the design considerations, model-
ing, optimization strategies, and implementation in hardware
required for a PNoC are very different from an ENoC. The
design space of approximation techniques in PNoCs remains
largely unexplored.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on May 25,2021 at 16:56:34 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SUNNY et al.: ARXON: FRAMEWORK FOR APPROXIMATE COMMUNICATION OVER PNoCs 3

A recent work [16] explored the use of approximate data
communication in PNoCs for the first time. The authors
explored different levels of laser power for transmission of
bits across a photonic waveguide, with a lower level of
laser power used for bits that could be approximated, but
at the cost of higher BER for these bits. The work focused
specifically on the approximation of floating-point data, where
the least significant bits (LSBs) were transmitted at a lower
laser-power level. However, the specific number of these bits
to be approximated as well as the laser-power levels were
decided in an application-independent manner, which ignores
application-specific sensitivity to approximation. Moreover,
the laser-power level is set statically and without considering
the dynamic optical loss that photonic signals encounter as
they traverse the network. In [17], we proposed the LORAX
framework that improved upon the work in [16] by using
a loss-aware approach to adapt laser power at runtime for
approximate communication in PNoCs. We analyzed the
impact of adaptive approximation, varying laser-power levels,
and the use of four-level pulse amplitude modulation (PAM4)
on application output quality, to maximize application-specific
energy savings in an acceptable manner.

The ARXON framework presented in this article improves
upon LORAX in multiple ways through: 1) considering inte-
ger data for approximation in addition to floating-point data
(LORAX only considered floating-point data); 2) integrating
the impact of fabrication-process variations (PVs) and TVs on
MR tuning and leveraging it for energy savings; 3) approxi-
mating error correction techniques, which are commonly used
in PNoCs, to save more energy; and 4) analyzing the potential
for approximation for a much broader set of applications, and
across multiple PNoC architectures. Section V describes our
proposed ARXON framework in detail with evaluation results
presented in Section VI

III. DATA FORMATS AND APPROXIMATIONS
A. Floating-Point Data

In many applications, floating-point data can be safely con-
sidered for approximation and without impacting the overall
quality of the output from the approximation, as explored
and demonstrated in [17]. The IEEE-754 standard defines a
standardized floating-point data representation, which consists
of three parts: sign (S), exponent (E), and mantissa (M),
as shown in Fig. 1. The value of the data stored is

X = (—=1)5 x 25788 » (1 + M) (1)

where X is the floating-point value. The bias values are
127 and 1203, respectively, for single and double preci-
sion (DP) representation, and are used to ensure that the
exponent is always positive, thereby eliminating the need to
store the exponent sign bit. The single precision (SP) and DP
representations vary in the number of bits allocated to the
exponent and mantissa (see Fig. 1). E is 8 bits for SP and
11 bits for DP, while M is 23 bits for SP and 52 bits for
DP. Also, S is 1 bit for both cases. From (1), we can observe
that the S and E values notably affect the value of X. But X
is typically less sensitive to alterations in M in many cases.
M also takes up a significant portion of the floating-point data
representation. We consider S and E as MSBs that should
not be altered, whereas M makes up the LSBs that are more
suitable for the approximation to save energy during photonic
transmission.

8b for SP

11b for DP

23b for SP
52b for DP

S E M

Fig. 1. 1EEE 754 floating-point representation.

B. Integer Data

It is more challenging to approximate integer data as it
does not have a standard separation similar to the [EEE-754
standard for floating-point data. An integer data value is
usually represented as an N-bit chunk of data that can be
signed or unsigned. If unsigned, the N-bits of data can be used
to represent an integer value in the range from 0 to 2V — 1.
If signed, the most significant bit represents the sign bit, and
the remaining N— 1 bits represent an integer value in the range
from —(2¥~7 — 1) to +(2"¥~! — 1). The number of bits, N,
in an integer data word can change depending on the usage
or application. N is usually in the range from 8 to 64 bits
in today’s platforms. Therefore, a generalized approach to
approximate the integer data values is challenging. As a result,
we have opted for an application-specific approach, where we
identify possible integer variables that have larger than the
required size, depending on the values they handle. We deem
the size of an unsigned integer variable as larger than required,
if the most significant bits of the variable are not holding any
useful information. We approximate such unnecessarily large
unsigned-integer variables by truncating their MSBs. We also
consider LSB approximation for integer packets, when viable.
We found that integer data are generally not as tolerant to LSB
approximation as floating-point data, so this approach cannot
be as aggressive as LSB approximation in floating-point data
and is thus used sparsely in our proposed framework.

C. Applications Considered for Approximations

We evaluate the breakdown of integer and floating-point
data usage across multiple applications, to establish how
effective an approach that focuses on approximating floating-
point LSB data and integer MSB data can be. We selected
the ACCEPT benchmark suite [21], which consists of several
applications, including some from the well-known benchmark
suite PARSEC [32], that have been shown to have a relatively
strong potential for approximations. While the applications
in this suite may be executed on a single core, to adapt
these to a PNoC-based multicore platform with 64 cores,
we used a multiprogrammed simulation approach where the
applications were replicated across the 64 cores to emulate
parallel workloads on real multicore systems. Along with the
applications from [21], we also considered several neural-
network applications from the tinyDNN [33] benchmark suite
to see how our approximation framework would fare for ML
applications.

We used the gem5 [34] full system-level simulator and
the Intel PIN tool [35] in tandem to count the total number
of integer and floating-point packets in transit across the
memory hierarchy during the simulations. Fig. 2 shows the
breakdown of the floating-point and integer packets across
the applications for large input workloads. We considered all
floating-point data packets as candidates for approximation.
As for integer packets, we identified specific variables and a
subset of their bits (“approximable integer packets”) that can
be approximated safely. The goal while selecting floating-point
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and integer packets for approximation was to keep application-
specific error to below 10% of the original output. It can
be observed that while a majority of the applications have
integer packets that cannot be approximated without hurting
output quality significantly, most of these applications have
a nontrivial percentage of their packets that can be approx-
imated. This is a promising observation that motivates our
framework. But before we describe our proposed framework
in detail (Section V), we briefly cover challenges in PNoCs
related to crosstalk and signal loss (Section IV), which our
approximation approach can leverage for energy savings.

IV. CROSSTALK AND OPTICAL LOSS IN PNOCs

The overall data movement on the chip increases as the
number of on-chip processing elements increases, and appli-
cations utilize more data. This requires a larger number of
photonic waveguides, wavelengths, and MR devices to support
the increased communication. However, using a larger number
of photonic components makes it challenging to maintain
acceptable BER and achieve sufficient SNR in any PNoC
architecture due to signal optical loss and crosstalk noise
accumulation in photonic building blocks [36].

Light propagation in photonic interconnects relies signifi-
cantly on the precise geometry adjustment of photonic com-
ponents. Any distortion in waveguide geometries and shape
can notably impact the optical power and energy-efficiency in
waveguides. For instance, sidewall roughness due to inevitable
lithography and etching-process imperfections can result in
scattering, and hence, optical losses in waveguides [37].
In addition to such propagation loss, there is optical loss
whenever a waveguide bends (i.e., bending loss), or when
a wavelength passes (i.e., passing loss) or drops (i.e., drop
loss) into an MR device. High signal losses require increased
laser power to compensate for the loss and ensure appropriate
optical-power levels at destination nodes where the signals are
detected.

Crosstalk is another inherent phenomenon in photonic
interconnects that degrades energy-efficiency and reliability.
Crosstalk occurs due to variations in MR geometry or refrac-
tive index and imperfect spectral properties of MRs, which can
cause an MR to couple optical power from another optical
channel/wavelength (which acts as noise) in addition to its
own optical channel (i.e., resonant wavelength). Such crosstalk
noise is of concern in dense-WDM (DWDM) waveguides,
necessary to support a higher bandwidth for emerging many-
core platforms, where multiple optical channels exist with a
small (e.g., <1 nm) channel spacing. In such DWDM systems,
not only will optical signals in each channel suffer from
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optical loss, but interchannel and intrachannel crosstalk [39]
accumulating on optical signals can severely reduce SNR
and increase BER. Reducing crosstalk is challenging and
techniques to minimize crosstalk (e.g., [40]-[42]) introduce
further power and latency overheads.

It should be noted that the optical-power loss and crosstalk
noise from a single silicon photonic device (e.g., MR) can be
very small, and hence, negligible [38]. However, in PNoCs
integrating a large number of such devices (e.g., hundreds
of thousands of MRs), the small power loss and crosstalk
noise at the device-level accumulate to a point that they
can severely reduce the performance and energy-efficiency
in such architectures. In our proposed ARXON framework,
as we are considering approximated data packets, we can
intelligently relax crosstalk-mitigation mechanisms and optical
loss compensation for the approximated bits, to aggressively
reduce power and energy consumption overheads.

V. ARXON FRAMEWORK: OVERVIEW

This section discusses the components of our
ARXON framework. Section V-A provides an overview
of our loss-aware laser power optimization strategy.
Sections V-B and V-C discuss how crosstalk mitigation
and tuning can be relaxed to save power during approximate-
bit transfers. Lastly, Section V-D describes the integration
of multilevel signaling to further reduce power dissipation
during approximate communication in PNoCs.

A. Loss-Aware Laser Power Management for Approximation

Optical signals transmitted over a waveguide (photonic link)
undergo attrition due to various optical losses they encounter
along the path from a source to a destination, as discussed
in Section IV. To express how these optical losses tie in with
the initial laser power provisioned to the optical signals in the
waveguide, we can use the following model [50]:

)

Here, Ppser 1s the laser power in dBm, Sgetector 1S the receiver
sensitivity, and N, is the number of wavelength channels in
the link. Also, Pypot_ioss 15 the total optical loss accumulated
on the optical signal during its transmission, which includes
propagation, crossing, and bending losses in the waveguides,
through- and drop-port losses of MR modulators and filters,
and modulating loss in modulator MRs due to imperfect
modulation [40]. Paser thus depends on the link bandwidth in
terms of N, and the total 10Ss Pphot_loss €ncountered by each
optical signal traversing the network. The Pphor_loss €ncoun-
tered along the network reduces the optical signal power.
A signal can only be accurately recovered at the destination
node if the received signal power is higher than Sgetector- Ensur-
ing this requires a high-enough Pl to compensate for all
optical losses.

To approximate data transmission for floating-point data
transfers, [16] used lower Pjaser for transmitting LSBs while
keeping P,sr unchanged for MSBs. However, if the desti-
nation node is relatively farther along a waveguide from a
source node, the signals would encounter high losses and
the signal power at the detector MRs would be lower than
Sdetectors Which would result in detecting logic “0” for all the
approximated signals at the destination node (e.g., with OOK
modulation). In the scenario where the destination is closer

Sdetector = Pphot_loss + 10 x 10glo Ni-

Plaser -
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Fig. 3. Overview of the proposed ARXON framework.

to the source, it may be possible to detect the approximated
signals accurately, as long as the losses encountered are low
enough that the signal power at the detector MRs would
be higher than Sgeectors €ven with the reduced Plyg for the
approximated bits. For each data transfer on a waveguide,
if we are aware of the distance of the destination from the
source, it is possible to calculate the losses encountered for the
signals, which can allow us to determine whether the signals
can be recovered accurately, or if they will be detected as “0”’s.
In such a scenario, it is more efficient to simply truncate all the
approximated bits (i.e., reduce Pjaser to O for approximated sig-
nals) when the destination is farther along the waveguide and
there is no likelihood of the signal being recovered accurately.
Moreover, in the cases where the destination is closer to the
source, we can transmit the approximated signals with a lower
Praser- This intelligent distance-aware transmission model for
approximate data allows for some of the data to be detected
accurately at the destination, while approximating other data
depending on its content and distance to the destination.

Fig. 3 shows the operational details of the distance-
aware transmission model in our framework, on a single-
writer-multiple-reader (SWMR) waveguide that is part of
a PNoC architecture. Note that while we illustrate our
framework with an SWMR waveguide, our framework is
also applicable (with minimal changes) to multiple-writer—
multiple-reader (MWMR) and multiple-writer—single-reader
(MWSR) waveguides that are also used in many PNoCs.
In Fig. 3, only one sender node is active per data transmission
phase and there is one receiver node (out of three in the figure)
that is the destination for the transmission. In a pretransmission
phase (called receiver-selection phase), the sender notifies the
receivers about the destination for the upcoming data transmis-
sion, and only the destination node will activate its MR banks,
whereas the other nodes will power down their MR banks to
save power in the transmission phase. As shown in Fig. 3,
if the destination node is close to the sender node (e.g., D1),
we can transmit the approximated bit signals with a lower
Piaser- Otherwise, if the destination node is farther away from
the sender node (e.g., D3), we determine that it would not be
possible to detect the approximated signals at that destination
due to the greater losses the signals will encounter. Therefore,
we dynamically turn off P, essentially truncating the bits.

We consider both integer and floating-point data for approx-
imation. For floating-point data, we perform distance-aware
transmission of the LSBs of the data in such a way that it will
not impact the overall output quality of the application.

Not considered for Approximated
approximation bits.

signal
intensity

LT

Not considered for Approximated
approximation bits

@)

Signal
intensity

WL T vy

(b)

Fig. 4. Floating-point data transmission on a photonic waveguide
(a) truncation and (b) lower laser power.

Fig. 4 shows how transmission of data will conform to the
distance-aware transmission policy of our framework. In the
case where substantial losses are expected to be encountered
between a source and destination, we adopt the strategy shown
in Fig. 4(a), where the data are truncated, as the approximated
bits would have been lost during transmission anyway. When
the data can have enough power to be successfully received at
the destination node, we adopt the strategy shown in Fig. 4(b),
where the data are transmitted at a lowered-laser power than
its nonapproximated counterparts. The power at which the bits
can be transmitted, and the number of the approximated bits
will depend on the application, as discussed in Section VI.

For approximating integer variables, we take a different
approach. Based on our analysis, indiscriminate approximation
to integer data in an application can significantly reduce output
quality. Therefore, we instead profile applications and log the
range of values stored in each integer variable. If the range
of values is smaller than the bit size allotted to the variable
(e.g., the case where a 32-bit integer variable only stores
values up to 24 bits throughout the run of the application),
we consider it a candidate for approximation. We can remove
or truncate the MSBs that are unused in such variables that will
otherwise take up modulation/demodulation and tuning energy
necessary for transmission. We can also try and approximate
the LSBs of the integer packets, and this approach can work
in integer variables that store very large values where slight
errors in the LSBs have minimal impact. But integer variables
amenable to LSB approximation without significantly reducing
output quality are rare. Nonetheless, for any such approx-
imated LSB bits, the distance-aware transmission model is
applied as well. Fig. 5 summarizes our approximation strategy
for integer packets.
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To implement these strategies, we require: 1) a laser-control
mechanism that can dynamically control the laser power being
injected into the on-chip waveguides and 2) a mechanism
to annotate approximable variables in the application source
code, for runtime adaptation of transfers involving these
variables.

We utilize an on-chip laser array with vertical-cavity
surface-emitting lasers (VCSELSs) [44], which can be directly
controlled using on-chip laser drivers. With the laser drivers,
we can control the power fed into each individual VCSEL,
thus controlling the power of the laser output for a particular
wavelength corresponding to that VCSEL. The gateway inter-
face (GWI) that connects the electrical layer of the chip to
the PNoC (see Fig. 3) communicates the desired Py power
level (including O for truncation) to the drivers, via an optical
link manager, similar in structure to the one proposed in [45].

Identification of candidate packets to be approximated is
done at the processing-element level, via source-code annota-
tions [21], to generate necessary flags for data that is approx-
imable. The main considerations while generating the flags for
the packet, in our framework, are to allow for proper decoding
of approximated or truncated packets at the destination. For
this, two additional flags must be included in the packet header,
at the processing-element level. The first (1 bit) flag indicates
whether the approximable packet contains integer or float data
and the second (1 bit) flag indicates whether the approximation
is to be done for LSBs or MSBs. The number of bits that can
be safely approximated or truncated are determined offline for
each application and stored in lookup tables (LUTSs) at the
network interface (NI) which connects processing elements to
routers that are in turn connected to GWIs. The number of bits
approximated/truncated in a packet is also passed as part of
the header flit of the packet to the GWI. This information can
be used to gate (i.e., prevent) those bits from being passed
into encoding/decoding circuitry. Note that as the number
of bits truncated/approximated is necessary information for
decoding, we must convey this information to the destination
GWI as well. For this, we use six bits in the packet header.
These six bits represent the number of approximated/truncated
bits in the range from O to 32 bits, which is the range of
approximation/truncation in our work.

Usually, the header flit contains the routing information,
which can just be the destination address. We consider a flit
size of 64 bits, i.e., 64 bits are transmitted per transmission
cycle. The number of used bits in the header flit do not exceed
16 bits (for the destination and source addresses), thus making
it possible to incorporate the eight necessary bits containing
the two bits for the necessary flags and six bits for the
approximation/truncation size information without causing any
additional latency overheads. Once the header flit is received at
the destination GWI, the flags and the approximated/truncated
bits information are used to select the appropriate LSB/MSB
to not be considered for decoding. The packet ID from the flit
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TABLE 1
DATA WORD TO CODE WORD CONVERSION [42]
Code Words for PCTMSB Technique
Data Word Code Word Data Word Code Word
0000 00000 1000 01000
0001 00001 1001 01001
0010 00010 1010 01010
0011 10101 1011 10100
0100 00100 1100 01100
0101 00101 1101 10010
0110 00110 1110 10001
0111 10110 1111 10000
Code Words for PCTM6B Technique
Data Word Code Word Data Word Code Word
0000 000000 1000 001000
0001 000001 1001 001001
0010 000010 1010 001010
0011 100000 1011 010100
0100 000100 1100 100010
0101 000101 1101 010010
0110 010101 1110 010001
0111 100001 1111 010000

can then be used to track the remaining flits in the packet and
treat them accordingly, if they were approximated/truncated.

Once the approximable bits have been identified, we must
determine whether the approximation during their transfer is to
be accomplished via reduced power transmission or truncation.
This requires an LUT at each GWI (see Fig. 3) with the IDs
of all the destination GWIs. The table at a source is populated
with the destination IDs to which the loss values are suffi-
ciently large enough to warrant truncation. The values can be
easily calculated postfabrication at design time, as the location
of destination nodes as well as the cumulative loss to their
GWI from the source does not significantly change at runtime.
Once the decision to truncate or transmit at a lower laser
power is made, depending on the destination node, the required
power levels for the wavelengths are communicated to the
VCSEL drivers via the optical-link manager. We discuss the
overheads of the tables and the application specific Pjyser for
the approximated signals in Section VI.

B. Relaxed Crosstalk Mitigation Strategy

Due to the challenges with signal crosstalk outlined in
Section IV, PNoCs must utilize one or more crosstalk mitiga-
tion strategies to reduce and achieve high SNR. We consider
a state-of-the-art crosstalk mitigation strategy from [42] that
can be applied at the link level in PNoCs. Analyses from [42]
showed that a “1” carried by the wavelengths in the DWDM
wavelength group adjacent to the resonant wavelength of an
MR causes higher crosstalk in that MR. An encoding strat-
egy was proposed to reduce interchannel crosstalk noise by
replacing instances of “1” values in adjacent wavelengths with
“0” wvalues, which helped reduce the optical signal-strength
of immediate nonresonant wavelengths and improve SNR.
Two encoding techniques were proposed that encoded nibbles
(4-bits) of data. The PCTM5B technique encoded the nibble to
5-bit data, while the PCTM6B technique encoded the nibble
to 6-bit data. Table I shows the code words used in these
encoding techniques. Note that to implement PCTMS5B on a
photonic link with 64-bit word parallel transfers, 16 additional
bits are required, which increases the number of MRs by 25%.
Similarly, for PCTM6B, 32 additional bits are required for a
64-bit data word, and this increases the number of MRs by
50%. We assume that the lower-overhead PCTMSB technique
is integrated into PNoCs by default, to meet BER goals.
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In order to mitigate crosstalk, we assume the baseline con-
figuration of the PNoC to implement PCTM5B. This means
the encoder/decoder circuitry and the LUT, containing the data
word-code word pairs, are incorporated into the GWI. Using
these additions, the incoming packets from the processing
elements can be encoded before they are transmitted to their
destination, and at the destination, the packets are decoded
using the LUTs. In our framework, applying crosstalk mitiga-
tion via PCTMS5B technique to the truncated or approximated
bits is an unnecessary overhead as it does not provide any
benefits toward BER. By relaxing crosstalk mitigation for
the truncated or approximated bits, it is possible to reduce
the energy costs of the mitigation strategy. We do this by
leveraging the approximation information gathered using our
offline analysis of applications, where we consider that some
LSB/MSB of the data can be approximated/truncated. During
the encoding process, we do not consider these bits by gating
their access to the encoder. Similarly, at the destination, when
an approximated/truncated packet is received, the information
from our LUTs is used to gate the approximated/truncated bits
from being passed into the decoder circuitry.

C. Relaxed MR Tuning Strategy

Thermal or electrical tuning of MRs in a PNoC is crucial for
ensuring reliable communication, by counter-acting the effects
of PV and TV. We assume the use of thermo-optic tuning in
PNoCs, due to its better range of AAg correction. Electrooptic
tuning can provide a tuning range of at most 1.5 nm [46].
In contrast, thermo-optic tuning can provide a tuning range
of about 6.6 nm corresponding to the temperature range of
up to 60 K [43] at 0.11 nm/K sensitivity [47]. This comes at
the price of higher energy consumption (~mW/nm) and slower
operation (in units of us). In our framework, we aim to reduce
the overhead of tuning the MRs associated with truncated bits.
We do not consider approximated bits for relaxed MR tuning,
as the added noise this approach generates, due to thermal drift
of Ag, may render the approximated bits unreadable at the
destination GWI. We do, however, relax the requirement for
tuning MRs associated with the truncated bits, by temporarily
turning off the tuning mechanism for those MRs.

D. Integrating Multilevel Signaling

The discussion in Sections V-A—V-C assumes the use of
conventional OOK signal modulation, where each photonic
signal can have one of two power levels: high or on (when
transmitting a “1”), and low or off (when transmitting a “0”).
In contrast, multilevel signaling is a signal-modulation scheme
where more than two levels of voltage can be used to modulate
multiple bits of data simultaneously in each optical signal. The
obvious benefit with such multilevel signaling is an increase
in the bandwidth. Leveraging this technique in the photonic
domain has, however, traditionally been a cumbersome process
with high overheads, e.g., when using the signal superposi-
tion techniques from [48]. But with advances such as the
introduction of optical digital to analog converter (ODAC)
circuits [49] that are much more compact and faster than
Mach—Zehnder interferometers (MZIs) used in techniques
involving superimposition [48], multilevel signaling has been
shown to be more energy efficient than OOK [50], making it
a promising candidate for more aggressive energy savings in
silicon photonic networks.

PAM4 is a multilevel signal modulation scheme where two
extra levels of voltage (or optical signal power in case of

optical modulation) are added in between the “0” and “1”
levels of OOK. This allows PAM4 to transmit two bits per
modulation as opposed to one bit per modulation in OOK.
This in turn increases the bandwidth when compared to OOK.
We are interested in evaluating the impact of using PAM4 in
PNoCs and how its use will impact the effectiveness of our
approximation strategies in ARXON. While PAM4 promises
better energy-efficiency than OOK, it is prone to higher BER
due to having multiple levels of the signal close to each other
in the spectrum. Thus, we cannot reduce the laser power
level of the LSB bits to the level used in OOK, as it would
significantly reduce the likelihood of accurate data recovery
even when destination nodes are relatively close to the source.
Thus, when PAM4 is used, we need to increase the laser
power compared to OOK. We used an empirically determined
value of approximately 1.5x the laser power that was used
for OOK, to prevent the degradation of approximated signals
transmitted with PAM4. This may seem like a backward step
in conserving energy, but the reduced-operational cost per
modulation and the reduced-wavelength count for achieving
the same bandwidth as OOK can reduce the overall laser
power consumption. Also, while it is possible to add more
signaling levels (e.g., to use a PAMS8 modulation scheme [51]),
as the number of amplitude levels increases, the optical signal
becomes extremely susceptible to noise and causes an increase
in BER [52]. To ensure reliable communication when using
PAMS, the bandwidth and speed of operation must be sacri-
ficed [51]. Considering these constraints, we limit the extent
of multilevel signaling integration in our framework to PAM4.
The experimental results in Section VI quantify the impact and
tradeoff when using PAM4 signaling in our framework.

VI. ARXON EVALUATION AND SIMULATION RESULTS

A. Evaluation Setup

To evaluate our proposed ARXON framework, we implement
it in Clos [53] and SwiftNoC PNoC architectures [54] for a
64 core processor, with baseline OOK signaling, PCTM5B
crosstalk mitigation, and thermo-optic tuning in MRs.

The Clos PNoC, shown in Fig. 6(a), has an 8-ary 3-stage
topology for a 64-core system with eight clusters and eight
cores per cluster. It utilizes an optical crossbar topology with
point-to-point photonic links utilizing SWMR waveguides for
intercluster communication. Each cluster has two concentra-
tors and a group of four cores is connected to each concentra-
tor, where concentrators communicate with each other using
an electrical router.

For the SwiftNoC PNoC, as shown in Fig. 6(b), we have
again considered a 64-core system. Each node here has four
cores and communication within the node happens through a
5 x 5 router, with the fifth port of the router connected to a
GWI, which facilitates transfers between the CMOS-electrical
layer and the photonic layer. Each GWI connects four nodes.
The architecture utilizes eight waveguide groups with four
MWMR waveguides per group in a crossbar topology. In order
to support the MWMR communication, SwiftNoC utilizes
a concurrent token stream arbitration that provides multiple
simultaneous tokens and increases channel utilization.

The Clos PNoC has a waveguide length of 4.5 cm and the
SwiftNoC PNoC has a waveguide length of 8.3 cm over
the considered 400 mm? chip. In both PNoCs, the first MR
is encountered at ~1 cm and the last MR is encountered
at ~3.8 cm for Clos PNoC and ~7.8 cm for SwiftNoC.
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Fig. 7. Laser power consumption behavior over the length of the waveguide
in (a) Clos PNoC and (b) SwiftNoC.

These distances have a key relationship to the laser power
consumption, which we try to capture using the power model
in (2). This relationship is visualized in Fig. 7, where the
sudden jumps in power indicate a new GWI with the optical
devices being encountered along the waveguide.

The considered PNoC architectures were modeled and
simulated using an in-house SystemC-based cycle-accurate
simulator. A combination of gem5 full-system simulator [34]
and Intel PIN toolkit [35] was utilized to generate traffic traces
for the entire application. The traces were replayed on the
PNoC simulators to determine energy savings in the PNoC.
The PIN tool was used to obtain the addresses of the variables
we deemed suitable for approximation from our analysis of
applications and then to track accesses to them. Using this
information in gem5 simulation, we track the relevant data
flow at various levels of the simulated system (processor
level, memory controller level, DRAM level, and cache level).
The information generated while the simulation is running
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TABLE 11
64-CORE ARCHITECTURE CONFIGURATION

Simulated component Specification

No. of cores, processor type 64, x86
DRAM 8GB, DDR3
Memory controllers 8

L1 I/D cache, line size
L2 cache, line size, coherence

128KB each, direct mapped, 64B
2MB, 2-way set associative, 64B, MESI

was consolidated and custom Python scripts were created
to extract the necessary information about the data packets
(e.g., timestamp at origin, their source, destination, data values,
and control values from the packet header) and to generate the
traces necessary for our cycle-accurate simulator to simulate
the applications on these PNoC architectures. Then, details of
the approximate data communication (i.e., whether a packet
was truncated or transmitted at lower power) were used to
modify data in a subsequent gem5 simulation, to estimate
the impact of the approximation on output quality for the
application being considered. Table II shows gem5 architec-
tural parameters considered in our experiments. We have based
our simulations on x86 cores, but these simulations and our
approach are applicable to systems having other types of cores
as well, for example, ARM cores. Twelve applications from
the ACCEPT and tinyDNN benchmark suites were used in
our evaluations. The performance was evaluated at the 22-nm
CMOS node for 400 mm? chips, with cores and routers
operating at 5 GHz clock frequency. DSENT [55] was used
to calculate the energy consumption of routers and the GWI
at each node. Each GWI holds two LUTs for our framework;
these are: one which holds the information regarding which
destination addresses are preferred for truncation, and another
for the PCTMBS encoding scheme. The size of both the LUTs
at the GWI level is fixed and is application independent. The
PCTM5B LUT takes up only 144 bits for storing encoding
decoding information at each GWI. The destination ID LUT
can take up a maximum of 32 bits at each GWI for Clos PNoC
and 64 bits for SwiftNoC variants.

The table containing information regarding the number of
bits to be approximated/truncated for integer/float approx-
imable packets is stored at the NI of each processor. The
maximum number of bits required in these LUTs for the worst
case (application with the highest number of approximable
variables) is a few hundred bits for the applications we
considered. CACTI v6.5 [56] and scaling equations from [68]
were used to evaluate the power, area, and delay for the
LUTs in NIs and GWIs. These values were found to be
0.236 mm? for the area consumption for all the tables, with
a total power overhead, for reading from and writing into the
tables, of 0.135 mW for Clos and 0.472 mm? and 0.27 mW,
respectively, for SwiftNoC. The combined power and area
consumption of associated circuitry necessary for accessing
information in the LUTs, calculated using gate-level analysis,
is 0.0274 mm? and 4.224 mW for Clos, and 0.0548 mm? and
8.448 mW for SwiftNoC. LUTs in both Clos and SwiftNoC
have the same number of entries as both architectures have the
same number of processing elements. The encoding/decoding
scheme is the same and the approximations done depend on the
output error quality of the application and not the architecture,
while SwiftNoC has double the number of GWIs. The access
time for scratchpad RAMs designed with 22-nm technology
node was under 1 cycle from synthesis estimates.
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TABLE III
LoSs AND POWER PARAMETERS

Parameters considered Standard values | Aggressive values
Receiver sensitivity -20 dBm [57] -23.4dBm [61]
MR through loss 0.02 dB [58] 0.02 dB [58]
MR drop loss 0.7 dB [63] 0.5 dB [59]
Propagation loss 1 dB/em 0.25 dB/cm [65]
Bending loss 0.01 dB/90° [62] 0.005 dB/90° [60]
Thermo-optic tuning 6.67 mW/nm [64] 240 uW/nm [47]

VCSEL control in ARXON was modeled after the optical
link manager in [45], where the channel management for
their PNoC design was described. However, since we are
considering PNoCs from prior works with their own channel
management systems in place for our analysis, we only adapt
the approach for VCSEL control from [45]. The VCSEL
control described in [45] uses a combination of MRs and
photo detectors (PDs), but we only require the MR-based
switching mechanism for the VCSEL output. From the data
available in [45] we calculated the area overhead necessary
for implementing the VCSEL control, which was 0.093 mm?
for OOK variants and 0.047 mm? for PAM4 variants of both
the architectures.

Clos and SwiftNoC PNoC architectures with PCTMS5B are
used as baselines for our analyses in this work. We have also
considered a two-cycle overhead for PCTM5B encoding and
decoding of the signals, as calculated in [42]. We considered
N, = 64 for OOK, which would enable 64-bit transmission
across a waveguide per cycle. For PAM4, we only need
to consider N; = 32 to achieve the same bandwidth as
with OOK modulation. Table III shows the energy values for
losses and power dissipation in different photonic devices.
We use a “standard” set of values for these parameters from
existing prototyping efforts, and a more “aggressive” set of
values as per future projections from various research efforts.
Our approach sacrifices the reliability of approximated bits
in floating-point data and selected integer variable data, for
energy per bit (EPB) and laser power savings, as discussed in
Sections V-B, V-C, and V-D.

We use the standard values for most of our simulations
and use the aggressive values in Section VI-D. These values
are used to calculate laser power from (2) and total power
after considering tuning and LUT overheads. We consider
a laser efficiency of 10% for our on-chip VCSELs, which
is midway, the initial and worst case efficiencies mentioned
in [44]. We additionally consider a PAM4-induced-signaling
loss of 5.8 dB in Pypor_toss for laser power calculations for
PAM4 [50]. To compensate for the increased sensitivity of
PAM4 to bit errors, we also consider laser-power levels that
are 1.5x than those used for OOK signaling. For ensuring
reliable communication, we have considered a BER of 10~ in
our designs. Lastly, we calculated application output error for
the non-ML applications due to our approximation approach as

Percentage(Output)Error
|approximated value — exact value|

x 100. (3)
exact value

The “exact value” refers to the original output values, which
can be a set of values presented in the output files, like
in the case of Blackscholes, or it can be pixel values of
output images/frames, like in the case of JPEG, Sobel or
X264. The “approximated value” refers to the value of these

outputs once the approximation approach is applied to the
applications. For our analysis, we assume an error threshold
of 10% output error, which was seen experimentally to be the
limit at which the errors became apparent in the outputs of
the majority of the applications [17]. For example, artifacts
become noticeable in JPEG output as we cross the 10%
error threshold. Thus, we want to ensure that none of the
approximation strategies degrade output quality by more than
10%. For our ML applications, we have considered the drop
in accuracy to measure the impact of our framework and we
have set the threshold as 10% drop in the accuracy.

B. Impact of ARXON on Applications Considered

Our first set of experiments involve analyzing the sensitivity
of an application to varying degrees of approximation of
their floating-point data. We are interested in studying the
impact on output error from approximating a number of bits in
the packets carrying data deemed approximable. Additionally,
we are also interested in studying the impact on output error
of varying levels of lowered laser power for those approxi-
mated bits.

Fig. 8 shows the results of our comprehensive study for
the applications we considered (as depicted earlier in Fig. 2).
The z-axis shows the percentage error (PE) in application
output, or drop in accuracy for ML applications, as a function
of the reduction in P, level for the photonic signals that
carry the approximated bits (x-axis; varying from 0% to
100%, where 100% refers to truncation), and the number
of bits that were considered for approximation (y-axis; with
the number of approximated float and integer bits given in
[float, integer] format). The subset of combination of these
values was selected for enabling viable tradeoffs between
output quality and power consumption. It should be noted that
not all applications consider both floating-point and integer
data for approximation. For example, Fluidanimate only con-
siders integers for approximation while the ML applications
(CIFARI0 and MNIST) only consider floating-point data. This
selection of data types to be approximated was made after
profiling the application and determining the datatypes that
do not have an adequate impact on the traffic (e.g., floating-
point data in the case of Fluidanimate and X264) or the
functionality of the application (integers in the case of the
ML applications considered). This is a more comprehensive
version of the experiments in our earlier work, presented
in [17]. In those experiments in [17] we had determined how
much floating-point approximation can be tolerated by the
applications from ACCEPT benchmark. Here we not only
consider a larger number and variety of applications, but also
use more comprehensively determined thresholds than in [17]
to explore how approximating the integer bits along with
the float bits affects the output quality. It is clear from our
analyses that not all applications can tolerate the same level
of approximation. From the PE values, we can observe that fast
Fourier transform (FFT) with a large volume of floating-point
data traffic (see Fig. 2) reaches the error threshold of 10%
rather quickly as the number of approximated bits increases
and laser power-levels reduce, whereas Canneal with a lower
floating-point traffic-volume observed seems to have very low
PE values across the various experiments. The edge detection
algorithm Sobel performs well in approximated conditions,
possibly owing to the lowered data accuracy requirements to
construct the output. Streamcluster involves an approximation
strategy for data streams and is also observed to be quite
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Fig. 8. PE/drop in accuracy in application output as a function of the number of approximated bit signals (y-axis) and reduction in laser power (x-axis) for
the approximated signals, for blackscholes, Canneal, FFT, JPEG, Sobel, Streamcluster, Fluidanimate, and X264 benchmarks with large input workloads and

MNIST (training and testing) and CIFARIO (training and testing) models.

resilient to greater levels of approximation. Blackscholes,
which performs market options calculations, is particularly
sensitive to the approximated number of bits and the laser-
power levels. JPEG performs image compression, and the
output image quality is also more sensitive to approximation.
Fluidanimate generates a video of flowing liquid depending
on the input data provided. X264 is a video codec, which
generates compressed video from the input, which is raw video
data. Fluidanimate and X264 applications were subjected to
only integer MSB approximation, and the threshold is quickly
breached after the amount of MSBs approximated start taking
up bits which contain values, the quick rise in error can
be explained by the fact that we are approximating MSBs
which would cause a very large shift in values. Moreover,
we considered implementations of deep convolutional neural
networks for the classification of CIFARIO and MNIST data
sets, from tinyDNN. The ML applications used SP floats,
and we were able to approximate till the point where we
encroached on the exponent, but the decay of output accuracy
ramped up very quickly once we tried to approximate any
further. From Fig. 8 we can see that there is a sharp increase
in percentage output error (PE), as we approximated beyond a
certain number of bits, in the case of many of the applications
considered, e.g., the applications in the bottom two rows.
The erratic jumps in error rate for the six applications in
the top two rows of Fig. 8 are because we are considering
discrete combinations of approximated bits for floating point
and integer variables, along the “Approximated bits” axis.
Table IV summarizes the best combination of approximable
bits and the laser-power-transmission levels for these bits
and for each application while ensuring that the application
output error does not exceed 10% for our proposed framework
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(ARXON). Table IV also shows the number of bits that can be
truncated, selected to meet the <10% PE constraint. For the
approach in [16], we perform approximations on 16 LSBs
transmitted at 20% laser power (advocated as an optimal
choice in that work), which also satisfies the <10% PE
constraint.

Fig. 9 shows the EPB and laser power comparison results for
the various frameworks in the Clos PNoC architecture. These
analyses consider the benefits from distance-aware transmis-
sion and the relaxed encoding technique for approximated
packets for ARXON. Fig. 9(a) shows that using ARXON-OOK
results in lower EPB than the previous approaches, including
our previous framework LORAX-OOK. The better EPB for
LORAX and ARXON can be attributed to the fact that they
avoid wasteful transmission at lower laser power when it is
unlikely that the destination can recover the transmitted data
due to high optical losses. Also, [16] has noticeably higher
EPB values for which we are not considering the benefits
of relaxed encoding and distance-aware transmission for the
framework to be consistent with the framework presented
in that article. The ARXON-OOK framework improves upon
LORAX-OOK, [16] and truncation, by adaptively switching
between truncation and an application-specific laser-power-
intensity level for approximated bits of both floating-point and

integer packets. The ARXON-PAM4 variant of our framework
achieves the largest reduction in EPB, even though it uses 1.5x
higher laser-power levels for the approximated bits. The use of
fewer wavelengths in PAM4 allows for more energy savings,
despite greater losses and the use of more laser power per
wavelength than the OOK variant.

On average, ARXON-PAM4 shows 21%, 17.2%, 9.7%,

9.2%, and 1.2% lower EPB compared to the baseline
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TABLE IV

NUMBER OF BITS CONSIDERED FOR APPROXIMATION AND LASER-TRANSMISSION-POWER LEVEL FOR
THE CORRESPONDING SIGNALS ACROSS BENCHMARKS AND FRAMEWORKS CONSIDERED

Application Name Truncation [16] LORAX [17] ARXON (proposed)
Truncated Approximated % Power Approximated bits in Approximated % Power
Bits (float) Bits (float) reduction floating-point packets bits in integer reduction
packets
Blackscholes 12 32 90 32 24 90
Canneal 32 32 100 32 24 100
FFT 8 32 50 32 20 50
JPEG 20 24 80 22 4 80
Sobel 32 16 bits 32 100 32 20 100
Streamcluster 12 approximated, with 28 80 28 20 80
Fluidanimate - 20% power - - - 8 100
X264 - reduction - - - 12 100
MNIST _train 24 24 100 24 - 100
MNIST _test 24 24 100 24 - 100
CIFAR10_train 24 24 100 24 - 100
CIFAR10_test 24 24 100 24 - 100
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Fig. 9. (a) EPB and (b) laser power comparison across different frameworks )

for Clos PNoC architecture.

Clos, [16], truncation, LORAX-OOK, and LORAX-PAM4
approaches, respectively. ARXON-OOK exhibits lower EPB on
average while having a 6% higher EPB than the LORAX-PAM4
approach. In the best case scenarios for the Blackscholes and
Sobel applications, ARXON-PAM4 has 21.2% and 23.5% lower
EPB than the Clos baseline; and 17.4% and 15.6% lower EPB
than [16]; 9.8% and 11.5% lower EPB when compared to
truncation; 8.6% and 10.25% lower EPB than LORAX-OOK,
and 1.24% and 2.5% lower EPB than LORAX-PAM4 for these
two applications.

Fig. 9(b) shows the laser power reduction. On average,
ARXON-PAM4 uses 50.45%, 49.5%, 43.2%, 42.5%, and 7.7%
lower laser power compared to the baseline Clos, [16], trunca-
tion, LORAX-OOK, and LORAX-PAM4, respectively. ARXON-
OOK exhibits lower average laser-power consumption on
average while exhibiting 28% higher laser power consumption
than LORAX-PAMA4. For the best case Blackscholes and Sobel
applications, laser power for ARXON-PAM4 is 51.7% and

Fig. 10. (a) EPB and (b) laser power comparison across different frameworks
for SwiftNoC architecture.

59.2% lower than the Clos baseline and 50.8% and 57.9%
lower than [16], while against truncation it is 51% and 58.5%
lower, against LORAX-OOK we see 38% and 57% lowered
laser-power utilization and against LORAX-PAM4 we have
6.5% and 20% lower laser-power utilization.

Fig. 10 shows the same analyses but done for the frame-
works implemented on the SwiftNoC architecture. The larger
data rate and the larger number of GWIs in the architecture
have impacted the packets and their distance-aware transmis-
sion profile, creating more avenues to truncate the packets,
yielding better EPB results in this architecture. The general
trend in EPB and laser-power savings is similar to that for the
Clos architecture, with Blackscholes and Sobel applications
again exhibiting the best EPB and laser-power saving values.
From Fig. 10(a), ARXON-PAM4 %, 23.8%, 13.5%, 12.9%, and
1.8% lower EPB on average than baseline SwiftNoC, [16],
truncation, LORAX-OOK, and LORAX-PAM4, respectively.
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Fig. 11. EPB values for ARXON implemented on (a) Clos and (b) SwiftNoC

while considering thermal-tuning relaxation.

The results for SwiftNoC show the same trend as the
Clos architecture for normalized laser power [Fig. 10(b)],
albeit with lower laser power across applications with average
laser power consumption for ARXON-PAM4 at 57.2%, 56.4%,
50.8%, 49.3%, and 15.7% better than baseline SwiftNoC, [16],
truncation, LORAX-OOK, and LORAX-PAM4, respectively.

These results highlight the promise of our ARXON frame-
work, as it improves upon the ability LORAX exhibited
to tradeoff output correctness with energy-efficiency and
laser-power savings in PNoC architectures executing selected
applications.

C. MR Tuning Relaxation-Based Analyses

In addition to the distance-aware transmission for float
and integer packets and relaxing crosstalk-mitigation encoding
techniques, we also consider the potential for relaxed thermo-
optic tuning for truncated bits. We have considered thermal
MR tuning in our work for its larger range of operation over
other tuning methods such as electrooptic tuning. However,
thermal tuning strategies are much slower in operation when
compared to electrooptic tuning (microseconds for operation
as opposed to nano to picoseconds for electrooptic tuning).
But, this overhead cannot be avoided, as using just the
electrooptic tuning method will not offer sufficient coverage
for the thermal and PVs encountered by MRs, the effect of
which must be mitigated for correct operation.

But with the increasing maturity of silicon photonics,
we envision faster thermo-optic tuning strategies or a com-
bination of different tuning strategies to reduce this tuning
latency. Therefore, in this section, we explore the potential of
energy savings due to relaxed MR tuning, i.e., by turning off
the tuning mechanism for MRs associated with truncated bits.
For this experiment, we utilize thermal and process-variation
information. For TVs, we have referred to the study conducted
in [66] and have adopted the worst case TV-induced shift to
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Fig. 12.  Power dissipation breakdown for standard and aggressive values
(“aggr” in the plots) for (a) Clos and (b) SwiftNoC PNoCs.

be 6.5 nm. For analysis of PVs, we utilized the PV analysis
method as described in [66], where PV is considered as a
Gaussian random distribution. As the granularity of the method
is at 30 nm, we have opted for analyzing PV at the GWI level
rather than for individual MR devices. We have generated
PV maps for the architectures using the method from [67]
and have selected locations corresponding to the GWIs in the
layouts. We took the average of device variations (i.e., width
and thickness) in that location. This was repeated over
100 different PV maps.

Utilizing the PV and TV information obtained, we imple-
ment the tuning-relaxation approach, where we turn off
thermo-optic tuning for all truncated bits. In order to imple-
ment the control necessary for relaxing the tuning, which in
our case is to turn off tuning mechanisms to the MRs of trun-
cated bits, we use a gating mechanism similar to the one uti-
lized for the encoding strategy, as mentioned in Section V-B.
With this mechanism, we can power gate the tuning circuits to
the MR, as per the information from LUTSs, again similar to the
description in Section V-B. From our analysis, this had a sub-
stantial impact on the EPB values of our ARXON framework,
as shown in Fig. 11. Our observations in Fig. 11(a) for Clos
PNoC and Fig. 11(b) for SwiftNoC show that the ARXON
variants have substantial savings over the other frameworks
considered, a trend maintained even while using the aggressive
values as it was with standard values. This is because the
tuning-based approach is again dependent on the traffic profile
of the applications, with higher truncated packets meaning
better savings. So, we see Blackscholes and Sobel as the best
performing applications again. We do not consider laser-power
savings in this scenario, as the tuning relaxation approach
does not impact the laser power. On average, ARXON-
PAM4 has 38.1%, 36.1%, 26.8%, 26.4%, and 19.2% better
EPB values than baseline Clos, [16], truncation, LORAX-
OOK and LORAX-PAMA4. When implemented in SwiftNoC,
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ARXON-PAM4%, 39.3%, 29%, 28.5%, and 16.9% better EPB
than baseline, [16], truncation, LORAX-OOK, and LORAX-
PAMA4, respectively. This only adds to the significant reduction
in the overall laser power consumption achieved by ARXON,
showing how our framework achieves better laser power and
EPB values for all the applications considered in our analyses.

D. Power Dissipation Breakdown

We performed an experiment to determine how much more
power can be saved as silicon photonics technology matures
and devices with improved characteristics become available.
For this, we contrast the power dissipation with our framework
on the Clos and SwiftNoC architectures, for the standard and
aggressive values of parameters in Table III. As the EPB
and laser power once normalized follows the same trends,
we decided to use a detailed power-dissipation breakdown to
show how much ARXON improves the power consumption in
PNoC and in which areas.

Fig. 12 shows the detailed power breakdown for the frame-
works, averaged across the applications. From the figures we
can clearly observe how ARXON impacts both laser power and
tuning-power dissipation, having the lowest power dissipation
in both those categories and in total, be it while considering
standard loss and power utilization values or while considering
aggressive values.

VII. CONCLUSION

In this article, we proposed a new framework called ARXON
for a loss-aware approximation of data communicated over
PNoC architectures. We also studied how multilevel signal-
ing can assist with the proposed approximation framework.
We considered MR tuning and crosstalk mitigation strategies
as avenues to save energy while our distance-aware transmis-
sion technique is in effect. Our results indicate that using
multilevel signaling as part of our framework can reduce
laser-power consumption by up to 57.2% over a baseline
PNoC architecture. Our framework also shows up to 56.4%
lower laser power and up to 23.8% better energy-efficiency
compared to the best-known prior work on approximating
communication in PNoCs. These results highlight the potential
of approximation in PNoC architectures to reduce energy and
power consumption in emerging manycore platforms.
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