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Abstract — Domain-specific neural network accelerators have seen
growing interest in recent years due to their improved energy
efficiency and inference performance compared to CPUs and GPUs.
In this paper, we propose a novel cross-layer optimized neural
network accelerator called CrossLight that leverages silicon
photonics. CrossLight includes device-level engineering for resilience
to process variations and thermal crosstalk, circuit-level tuning
enhancements for inference latency reduction, and architecture-level
optimization to enable higher resolution, better energy-efficiency,
and improved throughput. On average, CrossLight offers 9.5x lower
energy-per-bit and 15.9x higher performance-per-watt at 16-bit
resolution than state-of-the-art photonic deep learning accelerators.

I. INTRODUCTION

Many emerging applications such as self-driving cars, autonomous
robotics, fake news detection, pandemic growth and trend prediction, and
real-time language translation are increasingly being powered by
sophisticated machine learning models. With researchers creating deeper
and more complex deep neural network (DNN) architectures, including
multi-layer perceptron (MLP) and convolution neural network (CNN)
architectures, the underlying hardware platform must consistently deliver
better performance while satisfying strict power dissipation limits. This
endeavor to achieve higher performance-per-watt has driven hardware
architects to design custom accelerators for deep learning, e.g., Google’s
TPU [1] and Intel’s Movidius [2], with much higher performance-per-
watt than conventional CPUs and GPUs.

Unfortunately, electronic accelerator architectures face fundamental
limits in the post Moore’s law era where processing capabilities are no
longer improving as they did over the past several decades [3]. In
particular, moving data electronically on metallic wires in these
accelerators creates a major bandwidth and energy bottleneck [4]. Silicon
photonics is a promising technology to enable ultra-high bandwidth, low-
latency, and energy-efficient communication solutions [5]. CMOS-
compatible photonic interconnects have already replaced metallic ones
for light-speed data transmission at almost every level of computing, and
are now actively being considered for chip-scale integration [6].

Remarkably, it is also possible to use optical components to perform
computation, e.g., matrix-vector multiplication [7]. Thus, it is now
possible to conceive of a new class of DNN accelerators that employ
photonic interconnects and photonic integrated circuits (PICs) built with
on-chip waveguides, electro-optic modulators, photodetectors, and lasers
for low-latency and energy-efficient optical domain data transport and
computation. Not only can such photonics-based accelerators address the
fan-in and fan-out problems with linear algebra processors, but their
operational bandwidth can approach the photodetection rate (typically in
the hundreds of GHz), which is orders of magnitude higher than
electronic systems today that operate at a clock rate of a few GHz [8].

Despite the above benefits, a number of obstacles must be overcome
before viable photonic DNN accelerators can be realized. Fabrication
process and thermal variations can adversely impact the robustness of
photonic accelerator designs by introducing undesirable crosstalk noise,
optical phase shifts, resonance drifts, tuning overheads, and photo-
detection current mismatches. For example, experimental studies have
shown that micro-ring resonator (MR) devices used in chip-scale
photonic interconnects can experience significant resonant drifts (e.g., ~9
nm reported in [9]) within a wafer due to process variations. This matters

because even a 0.25 nm drift can cause the bit-error-rate (BER) of
photonic data traversal to degrade from 1072 to 10°. Moreover, thermal
crosstalk in silicon photonic devices such as MRs can limit the achievable
precision (i.e., resolution) of weight and bias parameters to a few bits,
which can significantly reduce DNN model accuracy. Common tuning
circuits that rely on thermo-optic phase-change effects to control
photonic devices, e.g., when imprinting activations or weights on optical
signals, also place a limit on the achievable throughput and parallelism
in photonic accelerators. Lastly, at the architecture level, there is a need
for a scalable, adaptive, and low-cost computation and communication
fabric that can handle the demands of diverse MLP and CNN models.

In this paper, we introduce CrossLight, novel silicon photonic neural
network accelerator that addresses the challenges highlighted above
through a cross-layer design approach. By cross-layer, we refer to the
design paradigm that involves considering multiple layers in the
hardware-software design stack together, for a more holistic optimization
of the photonic accelerator. CrossLight involves device-level engineering
for resilience to fabrication-process variations and thermal crosstalk,
circuit-level tuning enhancements for inference latency reduction, and an
optimized architecture-level design that also integrates the device- and
circuit-level improvements to enable higher resolution, better energy-
efficiency, and improved throughput compared to prior efforts on
photonic accelerator design. Our novel contributions in this work include:

e Improved silicon photonic device designs that we fabricated to make
our architecture more resilient to fabrication-process variations;

e Anenhanced tuning circuit to simultaneously support large thermal-
induced resonance shifts and high-speed, low-loss device tuning;

e Consideration of thermal crosstalk mitigation methods to improve
the weight resolution achievable by our architecture;

e Improved wavelength reuse and use of matrix decomposition at the
architecture-level to increase throughput and energy-etficiency;

e A comprehensive comparison with state-of-the-art accelerators that
shows the efficacy of our cross-layer optimized solution.

II. BACKGROUND AND RELATED WORK

Silicon-photonics based DNN accelerator architectures represent an
emerging paradigm that can immensely benefit the landscape of deep
learning hardware design [10]-[14]. A photonic neuron in these
architectures is analogous to an artificial neuron and consists of three
components: a weighting, a summing, and a nonlinear unit. Noncoherent
photonic accelerators, such as [11]-[13], typically employ the Broadcast
and Weight (B&W) protocol [10] to manipulate optical signal power for
setting and updating weights and activations. The B&W protocol is an
analog networking protocol that uses wavelength-division multiplexing
(WDM), photonic multiplexors, and photodetectors to combine outputs
from photonic neurons in a layer. Coherent photonic accelerators, such
as [8], [14], manipulate the electrical field amplitude rather than signal
power and typically use only a single wavelength. Weighting occurs with
electrical field amplitude attenuation proportional to the weight value,
and phase modulation that is proportional to the sign of the weight. The
weighted signals are then coherently accumulated with cascaded Y-
junction combiners. For both types of accelerators, non-linearity can be
implemented with devices such as electro-absorption modulators [8].

Due to the scalability, phase encoding noise, and phase error
accumulation limitations of coherent accelerators [15], there is growing
interest in designing efficient noncoherent photonic accelerators. In
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particular, the authors of DEAP-CNN [11] have described a noncoherent
neural network accelerator that implements the entirety of the CNN
layers using connected convolution units. In these units, the tuned MRs
assume the kernel values by using phase tuning to manipulate the energy
in their resonant wavelengths. Holylight [12] is another noncoherent
architecture that uses microdisks (instead of MRs) for its lower area and
power consumption. It utilizes a “whispering gallery mode” resonance
for microdisk operation, which unfortunately is inherently lossy due to a
phenomenon called tunneling ray attenuation [16]. More generally, these
noncoherent architectures suffer from susceptibility to process variations
and thermal crosstalk, which are not addressed in these architectures.
Microsecond-granularity thermo-optic tuning latencies further reduce the
speed and efficiency of optical computing [17]. We address these
shortcomings as part of our proposed cross-layer optimized noncoherent
photonic accelerator architecture in this work.

III. NONCOHERENT PHOTONIC COMPUTATION OVERVIEW

As mentioned earlier, noncoherent photonic accelerators typically
utilize the Broadcast and Weight (B&W) photonic neuron configuration
with multiple wavelengths. Fig. 1 shows an example of this B&W
configuration with # neurons in a layer where the colored-dotted box
represents a single neuron. Each input to a neuron is imprinted onto a
unique wavelength (Ai) emitted by a laser diode (LD) using a Mach—
Zehnder modulator (MZM). The wavelengths are multiplexed (MUXed)
into a single waveguide using arrayed waveguide grating (AWG), and
split into »n branches that are each weighted with a micro-ring resonator
(MR) bank that alters optical signal power proportional to weight values.
A balanced photodetector (BPD) performs summation across positive
and negative weight arms at each branch. Optoelectronic devices such as
electro-absorption modulators (not shown for brevity) introduce non-
linearity after the multiplication and summation operations.
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MRs are the fundamental components that impact the efficiency of
this configuration. Weights (and biases) are altered by tuning MRs so that
the losses experienced by wavelengths—on which activations have been
imprinted—can be modified to realize matrix-vector multiplication. MR-
weight banks have groups of these tunable MRs, each of which can be
tuned to drain energy from a specific resonant wavelength so that the
intensity of the wavelength reflects a specific value (after it has passed
near the MR). As an example of performing computation in the optical
domain, consider the case where an activation value of 0.8 must be
weighted by a value of 0.5 as part of a matrix-vector multiplication in a
DNN model inference phase. Let us assume that the red wavelength (A1)
is imprinted with the activation value of 0.8 by using the MZM in Fig. 1
(alternatively, MRs can be used for the same goal, where an MR will be
tuned in such a way that 20% of the input optical signal intensity is
dropped as the wave traverses the MR). When A1 passes through an MR
bank, e.g., the one in the dotted-blue box in Fig. 1, the MR in resonance
with A1 can be tuned to drop 50% of the input signal intensity. Thus, as A1
passes this MR, we will obtain 50% of the input intensity at the through
port, which is 0.4 (=0.8x0.5). The BPD shown in Fig. 1 then converts the
optical signal intensity from that wavelength (and other wavelengths)
into an electrical signal that represents an accumulated single value.

An MR is essentially an on-chip resonator which is said to be in
resonance when an optical wavelength on the input port matches with the

resonant wavelength of the MR, generating a Lorentzian-shaped signal at
the through port. Fig. 2 shows an example of an all-pass MR and its
output optical spectrum. The extinction ratio (ER) and free-spectral range
(FSR) are two primary characteristics of an MR. These depend on several
physical properties in the MR, including its width, thickness, radius, and
the gap between the input and ring waveguide [18]. Changing any of
these properties changes the effective index (ne5) of the MR, which in
turn causes a change in the output optical spectrum. For reliable operation
of MRs, it is crucial to maintain the central wavelength at the output
optical spectrum. However, MRs are sensitive to fabrication-process
variations (FPVs) and variations in surrounding temperature. These cause
the central wavelength of the MR to deviate from its original position,
causing a drift in the MR resonant wavelength (AAmr) [19]. Such a drift
(due to FPV or thermal variations) can be compensated using thermo-
optic (TO) or electro-optic (EO) tuning mechanisms. Both of these have
their own advantages and disadvantages. EO tuning is faster (~ns range)
and consumes lower power (~4 pnW/nm) but with a smaller tuning range
[20]. In contrast, TO tuning has a larger tunability range, but consumes
higher power (~27 mW/FSR) and has higher (~ps range) latency [17].
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Fig. 2: An all-pass MR with output spectral characteristics at the through port with
extinction ratio (ER) and free spectral range (FSR) specified in the figure.

A large number of MRs must be used at the architecture-level to
support complex MLP and CNN model executions. As the number of
MRs increase, so does the length of the waveguide which hosts the banks.
Unfortunately, this leads to an increase in the total optical signal
propagation, modulation, and through losses experienced, which in turn
increases the laser power required to drive the optical signals through the
weight banks, so that they can be detected error-free at the photodetector.
An excessive number of parallel arms with MR weight banks (the dotted
box in Fig. 1 represents one arm working in parallel with other arms) also
increases optical splitter losses. Moreover, without considering crosstalk
mitigation strategies (as is the case with previously proposed photonic
accelerators), there is increased crosstalk noise in the optical signals,
which drives down the weight resolution of the architecture.

In summary, to design efficient photonic accelerators, there is a need
for (i) improved MR device design to better tolerate variations and
crosstalk; (ii) efficient MR tuning circuits to quickly and reliably imprint
activation and parameter values, and (iii) a scalable architecture design
that minimizes optical signal losses. Our novel Crosslight photonic
accelerator design addresses all of these concerns and is discussed next.

IV. CROSSLIGHT ARCHITECTURE

Fig. 3 shows a high-level overview of our CrossLight noncoherent
silicon photonic neural network accelerator. The photonic substrate
performs vector dot product (VDP) operations using silicon photonic MR
devices, and summation using optoelectronic photodetector (PD) devices
over multiple wavelengths. An electronic control unit is required for the
control of photonic devices, and for communication with a global
memory to obtain the parameter values, mapping of the vectors, and for
partial sum buffering. We use digital to analog converter (DAC) arrays
to convert buffered signals into analog tuning signals for MRs. Analog to
digital converter (ADC) atrays are used to map the output analog signals
generated by PDs to digital values that are sent back for post-processing
and buffering. We break down the discussion of this accelerator into three
parts (subsections A-C), corresponding to the contributions at the device,
tuning circuit, and architecture levels, as discussed next.

A. MR device engineering and fabrication
Process variations are inevitable in CMOS-compatible silicon
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Fig. 3: An overview of CrossLight, showing dedicated vector dot product (VDP)
units for CONV and FC layer acceleration, and the internal architecture.

photonic fabrications, causing undesirable changes in resonant
wavelength of MR devices (AAmr). We fabricated a 1.5%0.6 mm? chip
with high-resolution Electron Beam (EBeam) lithography and performed
a comprehensive design-space exploration of MRs to compensate for
FPVs while improving MR device insertion loss and Q-factor. In this
exploration, we varied the input and ring waveguide widths to find an
MR device design that was tolerant to FPVs. We found that in an MR
design of any radii and gap, when the input waveguide is 400 nm wide
and the ring waveguide is 800 nm wide at room temperature (300 K), the
undesired AAmr due to FPVs can be reduced from 7.1 to 2.1 nm (70%
reduction). This is a significant result, as these engineered MRs require
less compensation for FPV-induced resonant wavelength shifts, which
can reduce the power consumption of architectures using such MRs.
Unfortunately, even with such optimized MR designs, the impact of
FPVs is not completely eliminated, and there is still a need to compensate
for FPVs. Thermal variations are another major factor to cause changes
in MR nq# which also leads to undesirable AAmr. Thermo-optic (TO)
tuners are used to compensate for such deviations in AAmr. These TO
tuners use microheaters to change the temperature in the proximity of an
MR device, which then alters the nes of the MR, changing the device
resonant wavelength, and correcting the AAmr. Unfortunately, high
temperatures from such heaters can cause thermal energy dissipation,
creating thermal crosstalk across MR devices placed close to each other.
One can avoid such thermal crosstalk by placing devices at an appropriate
distance from each other, typically 120 pm to 200 um (depending on the
number of MR devices in proximity within an MR bank). But such a large
spacing hurts area efficiency and also increases waveguide length, which
increases propagation losses and its associated laser power overhead. We
propose to address this challenge at the circuit level, as discussed next.

B.  Tuning circuit design

To reduce thermal crosstalk, we must reduce the reliance on TO
tuning, an approach that is used in all prior photonic neural network
accelerators, but one that entails high overheads. We propose to use a
hybrid tuning circuit where both thermo-optic (TO) and electro-optic
(EO) tuning are used to compensate for AAmr. Such a tuning approach
has previously been proposed in [22] for silicon photonic Mach—Zehnder
Interferometers with low insertion loss. Such an approach can be easily
transferred to an optimized MR for hybrid tuning in our architecture. The
hybrid tuning approach supports faster operation of MRs with fast EO
tuning to compensate for small AAmr shifts and, when necessary, using
TO tuning when large AAmr shifts need to be compensated.

To further reduce the power overhead of TO tuning in this hybrid
approach, we adapt a method called Thermal Eigen Decomposition
(TED), which was first proposed in [23]. Using TED, we can collectively
tune all the MRs in an MR bank to compensate for large AAmr shifts. By
doing so, we can cancel the effect of thermal crosstalk (i.e., an undesired
phase change) in MRs with much lower power consumption. The TO
tuning power can be calculated by the amount of phase shift necessary to
apply to the MRs in order for them to be at their desired resonant
wavelength. The extent of phase crosstalk ratio (due to thermal crosstalk)
as a function of the distance between an MR pair is shown in Fig. 4, for
our fabricated MR devices. The results are based on detailed analysis
with a commercial 3D heat transport simulation EDA tool for silicon
photonic devices (Lumerical HEAT [21]). It can be seen from the orange
line that as the distance between an MR pair increases, the amount of
phase crosstalk reduces exponentially. Such a trend has also been
observed in [24]. To find a balance between tuning power savings while
having reduced crosstalk, we perform a sensitivity analysis based on the
distance between two adjacent MRs in our architecture. We placed the
optimized MRs (described in the previous section) in such a manner that
maximum tuning power is saved when they are close to each other while
compensating for thermal crosstalk. Results from our analysis (the solid-
blue line in Fig. 4) indicate that placing each MR pair at a distance of 5
um is optimal, as increasing or decreasing such a distance causes an
increase in power consumption of individual TO heaters in the MRs. Fig.
4 also shows the tuning power required without using the TED approach
(blue dotted line), which can be seen to be notably higher.
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Fig. 4: Phase crosstalk ratio and tuning power consumption in a block of 10
fabricated MRs with variable distance between adjacent pair of MRs.

The workflow of our circuit-level hybrid tuning approach can be
summarized as follows. When the accelerator is first booted at runtime, a
one-time compensation for design-time FPVs is applied using TO tuning.
The extent of compensation for crosstalk is calculated offline during the
test phase, where the required phase shift in each of the MRs is calculated,
and once the system is online, the respective phase shift values are
applied to cancel the impact of thermal crosstalk. Subsequently, we apply
EO tuning due to its extremely low latency to represent vector elements
in each vector operation with MRs (discussed in more detail in the next
section). If large shifts in temperature are observed at runtime, we can
perform a one-time calibration with TO tuning to compensate for it. In
our analysis, runtime TO tuning would be required rarely beyond its first
use after the initial bootup of the photonic accelerator platform.

C. Architecture design

The optimized MR devices, layouts, and tuning circuits are utilized
within optical vector dot product (VDP) units, which are shown in Fig.
3. We use banks (groups) of MRs to imprint both activations and weights
onto the optical signal. At the architecture level, we compose multiples
of VDP units into two architectural sub-components: one to support
convolution (CONV) layer acceleration and the other to support fully
connected (FC) layer acceleration. We focus on these two types of layers
as they are the most widely used and consume the most significant
amount of latency and power in computational platforms that execute
DNN . In contrast, other layer types (e.g., pooling, batch normalization)
can be implemented very efficiently in the electronic domain. Note also



that we focus on inference acceleration, as done in all photonic DNN
accelerators, and almost all electronic DNN accelerators.

C.1 Decomposing vector operations in CONV/FC layers

To map CONV and FC layers from DNN models to our accelerator,
we first need to decompose large vector sizes into smaller ones. In CONV
layers, a filter performs convolution on a patch (e.g., 2x2 elements) of
the activation matrix in a channel to generate an element of the output
matrix. The operation can be represented as follows:

K®A=Y (1)

For a 2x2 filter kernel and weight matrices, (1) can be expressed as:
ki k a; a
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Rewriting (2) as a vector dot product, we have:
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In FC layers, typically much larger dimension vector multiplication
operations are performed between input activations and weight matrices:
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In (5), a, to a, represent a column vector of activations (A) and w;
to w,, represent a row vector of weights (W). The resulting vector is a
summation of dot products of vector elements (6). Much like with CONV
layers, these can be decomposed into lower dimensional dot products.

C.2 Vector dot product (VDP) unit design

We separated the implementation of CONV and FC layers in
CrossLight due to the vastly different orders of vector dot product
computations required to implement each layer. For instance, typical
CONYV layer kernel sizes vary from 2x2 to 5x5, whereas in FC layers it
is not uncommon to have 100 or more neurons (requiring 100x100 or
higher order multiplication). State-of-the-art photonic DNN accelerators,
e.g., [11], only consider the scales involved at the CONV layer, and either
only support CONV layer acceleration in the optical domain, or use the
same CONYV layer implementation to accelerate FC layers. This will lead
to increased latencies and reduced throughput as the larger vectors
involved with FC layer calculation must be divided up into much smaller
chunks, in the order of the filter kernel size of the CONV layer.

For improved efficiency, we separately support the unique scale and
requirements of vector dot products involved in CONV layers and FC
layers. For CONV layer acceleration, we consider # VDP units, with each
unit supporting an NXN dot product. For FC layer acceleration, we
consider m units, with each unit supporting a KxK dot product. Here n>m
and K>N, as per the requirements of each of the distinct layers. In each
of the VDP units, the original vector dimensions are decomposed into N
or K dimensional vectors, as discussed above. We performed an
exploration to determine the optimal values for N, K, n, and m. The results
of this exploration study are presented in Section V.

C.3 Optical wavelength reuse in VDP units

Prior work on photonic DNN accelerator design typically considers a
separate wavelength to represent each individual element of a vector.
This approach leads to an increase in the total number of lasers needed in
the laser bank (as the size of the vectors increases) which in turn increases
power consumption. Beyond employing the decomposition approach

discussed above, we also consider wavelength reuse per VDP unit to
minimize laser power. In this approach, within VDP units, the N or K
dimensional vectors are further decomposed into smaller sized vectors
for which dot products can be performed using MRs in parallel, in each
arm of the VDP unit. The same wavelengths can then be reused across
arms within a VDP to reduce the number of unique wavelengths required
from the laser. PDs perform summation of the element-wise products to
generate partial sums from decomposed vector dot products. The partial
sums from the decomposed operations are then converted back to the
photonic domain by VCSELs (bottom right of Fig. 3), multiplexed into a
single waveguide, and accumulated using another PD, before being sent
for buffering. Thus, our approach leads to an increase in the number of
PDs compared to other accelerators but significantly reduces both the
number of MRs per waveguide and the overall laser power consumption.

In each arm within a VDP unit, we used a maximum of 15 MRs per
bank for a total of 30 MRs per arm, to support up to a 15x15 vector dot
product. The choice of MRs per arm considers not only the thermal
crosstalk and layout spacing issues (discussed earlier), and the benefits
of wavelength reuse (discussed in previous para), but also the fact that
optical splitter losses become non-negligible as the number of MRs per
arm increases, which in turn increases laser power requirements. Thus,
the selection of MRs per arm within a VDP unit was carefully adjusted
to balance parallelism within/across arms, and laser power overheads.

V. EVALUATION AND SIMULATION RESULTS
A. Simulation setup

To evaluate the effectiveness of our CrossLight accelerator, we
conducted several simulation studies. These studies were complemented
by our MR-device fabrication and optimization efforts on real chips, as
discussed in Section IV. We considered the four DNN models shown in
Table I for execution on the accelerator. Model 1 is Lenet5 [25] and
models 2 and 3 are custom CNNs with both FC and CONV layers. Model
4 is a Siamese CNN utilizing one-shot learning. The datasets used to train
these models are also shown in the table. We designed a custom
CrossLight accelerator simulator in Python to estimate its performance
and power/energy. We used Tensorflow 2.3 along with Qkeras [26], for
analyzing DNN model accuracy across different parameter resolutions.

Table I: Models and datasets considered for evaluation

Model no. CONV layers | FC layers | Parameters Datasets
1 2 2 60,074 Sign MNIST
2 4 2 890,410 CIFARI10
3 7 2 3,204,080 STL10
4 8 4 38,951,745 Omniglot
Table I1: Parameters considered for analyses of photonic accelerators
Devices Latency Power
EO Tuning [20] 20 ns 4 uW/nm
TO Tuning [17] 4 us 27.5 mW/FSR
VCSEL [32] 10 ns 0.66 mW
TIA [33] 0.15 ns 7.2 mW
Photodetector [34] 5.8 ps 2.8 mW

We compared CrossLight with the DEAP-CNN [11] and Holylight
[12] photonic DNN accelerators from prior work. Table II shows the
optoelectronic parameters considered for this simulation-based analysis.
We considered photonic signal losses due to various factors: signal
propagation (1 dB/cm [6]), splitter loss (0.13 dB [27]), combiner loss (0.9
dB [28]), MR through loss (0.02 dB [29]), MR modulation loss (0.72 dB
[30]), microdisk loss (1.22 dB [31]), EO tuning loss (6 dB/cm [20]), and
TO tuning loss (1 dB/cm [17]). We also considered the 1-to-56-Gb/s
ADC/DAC-based transceivers from recent work [37]. To calculate laser
power consumption, we use the following laser power model:

Plaser - Sdetectar = Pphata_lass + 10 x lOglo N/l (7)
where P, 1s laser power in dBm, Sgetector 1S the PD sensitivity in
dBm, and Py, 1055 18 the total photonic loss encountered by the optical
signal, due to all of the factors discussed above.



B. Results: CrossLight resolution analysis

We first present an analysis of the resolution that can be achieved
with CrossLight. We consider how the optical signals from MRs impact
each other due to their spectral proximity, also known as inter-channel
crosstalk. For this, we use the equations from [35]:

2

o)) = ®)

In (8), ¢ (i,j) describes the noise content from the j MR present in
the signal from the /" MR. As the noise content increases, the resolution
achievable with CrossLight will decrease. Also, (4; —4;) is the
difference between the resonant wavelengths of i MR and /" MR, while
6 (= Ai/2Q) denotes the 3dB bandwidth of the MRs, with Q being the
quality factor (Q-factor) of the MR being considered. The noise power
component can thus be calculated as:
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For unit input power intensity, resolution can then be computed as:
Resolution = ———— (10)
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From this analysis, we found that with the FSR value of 18 nm and
the Q value of ~8000 in our optimized MR designs, and the wavelength
reuse strategy in CrossLight, which allows us to have large (Ai— ;) values
(>1 nm), our MR banks will be able to achieve a resolution of 16 bits for
up to 15 MRs per bank (Section IV.C.2). This is much higher than the
resolution achievable by many photonic accelerators. For instance,
DEAP-CNN can only achieve a resolution of 4 bits, whereas Holylight
can only achieve a 2-bit resolution per microdisk (they however combine
8 microdisks to achieve an overall 16-bit resolution). Higher resolution
ensures better accuracy in inference, which can be critical in some
applications. Fig. 5 shows the impact of varying the resolution across the
weights and activations from 1 bit to 16 bits (we used quantization-aware
training to maximize accuracy), for the four DNN models considered
(Table I). It can be observed that model inference accuracy is sensitive to
the resolution of weight and activation parameters. Models such as the
one for STL10 are particularly sensitive to the resolution. Thus, the high
resolution afforded by CrossLight can allow achieving higher accuracies
than other photonic DNN accelerators, such as DEAP-CNN.
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Fig. 5: Inference accuracy of the four DNN models considered, across quantization
(resolution) range from 1 bit to 16 bits (for both weights and activations).

C. Results: CrossLight sensitivity analysis

We performed a sensitivity analysis by varying the number of VDP
units in the CONV layer accelerator (n) and FC layer accelerator (m),
along with the complexity of the VDP units (N and K, respectively).
Fig. 6 shows the frames per second (FPS; a measure of inference
performance) vs. energy per bit (EPB) vs. area of various configurations
of CrossLight. We selected the best configuration as the one that had the
highest value of FPS/EPB. In terms of (N, K, n, m), the values of the four
parameters for this configuration are (20, 150, 100, 60). This
configuration also ended up being the one with the highest FPS value, but
had a higher area overhead than other configurations. Nonetheless, this
area is comparable to that of other photonic accelerators. We used this
configuration for comparisons with prior work, as discussed next.
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Fig. 6: Scatterplot of average FPS vs. average EPB vs. area of various CrossLight
configurations. The configuration with highest FPS/EPB (and FPS) is highlighted.
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D. Results: Comparison with state-of-the-art accelerators

We compared our CrossLight accelerator against two well-known
photonic accelerators: DEAP-CNN and Holylight, within a reasonable
area constraint for all accelerators (~16-25 mm?). We present results for
four variants of the CrossLight architecture: 1) Cross_base utilizes
conventional MR designs (without FPV resilience) and traditional TO
tuning; 2) Cross_opt utilizes the optimized MR designs from Section
IV.A, and traditional TO tuning; 3) Cross_base TED utilizes the
conventional MR designs with the hybrid TED-based tuning approach
from Section IV.B; and 4) Cross_opt TED utilizes the optimized MR
designs and the hybrid TED-based tuning approach.

EEP100 ENAMD-TR [EJEdge TPU EEDEAP_CNN EMCross_base
EEIXP9282 [MDaDianNao ElNull Hop [JHolylight
= T T

ECross_opt
Bl Cross_base TED ElCross_opt TED
T T T

4

z
5200
:
o

£

0

Fig. 7: Power consumption comparison among variants of CrossLight vs. photonic
accelerators (DEAP-CNN, Holylight), and electronic accelerator platforms (P100,
Xeon Platinum 9282, Threadripper 3970x, DaDianNao, EdgeTPU, Null Hop)

Fig. 7 shows the power consumption comparison across the four
CrossLight variants and the two photonic accelerators from prior work.
We also include comparison numbers for electronic platforms: three deep
learning accelerators (DaDianNao, Null Hop, and EdgeTPU), a GPU
(Nvidia Tesla P100), and CPUs (Intel Xeon Platinum 9282 denoted as
IXP9282, and AMD Threadripper 3970x denoted as AMD-TR) [36]. The
difference in power values between the CrossLight variants arises due to
the optimization approaches adopted in each of the variant. The variants
which considered conventional MR design instead of the optimized
designs have larger power consumption for compensating for FPV. This
value becomes non-trivial as the number of MRs increase, and thus
having reduced tuning power requirement per MR (in Cross_opt and
Cross_opt_TED) becomes a significant advantage. Using the TED based
hybrid tuning approach provides further significant power benefits for
Cross_opt_TED over Cross_opt, which uses conventional TO tuning.
Cross_opt_TED can be seen to have lower power consumption than both
photonic accelerators, as well as the CPU and GPU platforms, although
this power is higher than that of the edge/mobile electronic accelerators.
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Fig. 8: Comparison of EPB values of the photonic DNN accelerators
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Fig. 8 shows a comparison of energy-per-bit (EPB) across all of the
photonic accelerators, for the four DNN models. On average, our best
CrossLight configuration (Cross_opt_TED) has 1544x and 9.5x lower



EPB compared to DEAP-CNN and Holylight, respectively. The reason
for CrossLight’s lower EPB is because we comprehensively took into
consideration various losses and crosstalk that a photonic DNN
accelerator would experience, and put in place novel approaches at the
device, circuit, and architecture layers to counteract their impact in
CrossLight. The utilization of TED-based thermal crosstalk management
allows us to have MRs placed much closer together, which in turn reduces
propagation losses. In addition, CrossLight considers a combination of
TO and EO tuning which enables the reduction of power and EPB as well.
The use of EO tuning in our hybrid tuning approach also provides the
advantage of lower latencies, which is apparent in the EPB values.
Table III summarizes the average values of EPB (in pJ/bit) and
performance-per-watt (in kiloFPS/Watt) of the photonic accelerators as
well as the electronic accelerators considered in this work. It can be
observed that the best CrossLight configuration (Cross_opt TED)
achieves significantly lower EPB and higher performance-per-watt
values than all of the accelerators considered. Specifically, against
Holylight, which is the best out of the two photonic DNN accelerators
considered, CrossLight achieves 9.5 lower energy-per-bit and 15.9x
higher performance-per-watt. Our work demonstrates the effectiveness
of cross-layer design of deep learning accelerators with the emerging
silicon photonics technology. With the growing maturity of silicon
photonic device fabrication in CMOS-compatible processes, it is
expected that the energy costs of device tuning, losses, and laser power
overheads will go further down, making an even stronger case for
considering optical-domain accelerators for deep learning inference.

Table III: Average EPB and kiloFPS/Watt values across accelerators

Accelerator Avg. EPB (pJ/bit) |Avg. kiloFPS/watt
P100 971.31 24.9
IXP 9282 5099.68 2.39
AMD-TR 5831.18 2.09
DaDianNao 58.33 0.65
Edge TPU 697.37 17.53
Null Hop 2727.43 4.48
DEAP CNN 44453.88 0.07

Holylight 274.13 3.3

Cross_base 142.35 10.78
Cross_base_TED 92.64 16.54
Cross_opt 75.58 20.25
Cross_opt TED 28.78 52.59

VI. CONCLUSION

In this paper, we presented a novel cross-layer optimized photonic
neural network accelerator called CrossLight. Utilizing silicon photonic
device-level fabrication-driven optimizations along with circuit-level and
architecture-level optimizations, we demonstrated 9.5x lower energy-
per-bit and 15.9% higher performance-per-watt compared to state-of-the-
art photonic DNN accelerators. CrossLight also shows improvements in
these metrics over several CPU, GPU, and custom electronic accelerator
platforms considered in our analysis. CrossLight shows the promise of
cross-layer optimization strategies in countering various challenges such
as crosstalk, fabrication-process variations, high laser power, and
excessive tuning power. The results presented in this paper demonstrate
the promise of photonic DNN accelerators in addressing the need for
energy-efficient and high performance-per-watt DNN acceleration.
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