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Deep leaming has led to unprecedented successes in solving some very difficult problems in domains such as computer
vision, natural language processing, and general pattern recognition. These achievements are the culmination of decades-
long research into better training techniques and deeper neural network models, as well as improvements in hardware
platforms that are used to train and execute the deep neural network models. Many application-specific integrated circuit
(ASIC) hardware accelerators for deep learning have gamered interest in recent years due to their improved performance
and energy-efficiency over conventional CPU and GPU architectures. However, these accelerators are constrained by
fundamental bottlenecks due to 1) the slowdown in CMOS scaling, which has limited computational and performance-per-
watt capabilities of emerging electronic processors, and 2) the use of metallic interconnects for data movement, which do not
scale well and are a major cause of bandwidth, latency, and energy inefficiencies in almost every contemporary processor.
Silicon photonics has emerged as a promising CMOS-compatible alternative to realize a new generation of deep leaming
accelerators that can use light for both communication and computation. This article surveys the landscape of silicon
photonics to accelerate deep learning, with a coverage of developments across design abstractions in a bottom-up manner,
to convey both the capabilities and limitations of the silicon photonics paradigm in the context of deep learning acceleration.
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1 INTRODUCTION

Deep Learning, which is a sub-field of Artificial Intelligence (Al), has been at the heart of many
unprecedented successes in recent years for solving very difficult problems in the domains of computer vision,
natural language processing, time series predictions, and understanding big data. This development is
remarkable considering how most researchers had abandoned the idea of using deep learning in the 1990s,
due to the difficulties in training such models. But seminal work by Hinton et al. in 2006 showed how it was
possible to train a deep neural network to recognize handwritten digits with state-of-the-art precision (>98%)
[1]- They called their technique “Deep Learning.” It did not take long for the scientific community to take notice,
and in the following years many researchers showed that deep learning was not only possible, but capable of
achieving remarkable performance for solving many problems that no other machine learning techniques could
match. Indeed, today deep learning models are at the heart of smart technological solutions that we all use
regularly, such as web search engines, music and video recommendation engines, speech recognition in virtual
assistants, and object detection in Internet-of-Things (loT) cameras. Many emerging applications such as self-
driving cars [2], autonomous robotics [3], fake news detection [4], pandemic growth and trend prediction [5],
network anomaly detection [6], and real-time language translation [7] are being powered by increasingly
sophisticated deep learning models.
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The magic behind deep learning owes much to our brain's architecture. As far back as 1943, the
neurophysiologist Warren McCulloch and mathematician Walter Pitts presented a simplified model of how
biological neurons work together in animal brains to perform complex computations [8]. This was the first
artificial neural network (ANN) architecture and it inspired a race to build intelligent machines that could rival
and eventually surpass the capabilities of the human brain. The introduction of the perceptron in 1957 by Frank
Rosenblatt was another landmark, showing how the simple ANN could be trained to solve classification
problems [9]. However, the limited capabilites of hardware to run even moderately complex ANNs led
researchers to abandon the study of ANNs in the late 1960s. Even though new architectures and better training
techniques emerged in the 1980s and early 1990s, progress was limited due to several factors, a crucial one of
which was the lack of powerful machines to train and run these models. Fortunately, over the past decade, ever
improving capabilities of Complementary Metal Oxide Semiconductor (CMOS) fabrication technology have
enabled extremely powerful TFLOPs-class Graphics Processing Unit (GPU) and CPU processing chips with
billions of transistors in small form factors that have made it possible to train and use deep ANN (i.e., multi-layer
perceptron (MLP)) architectures in a timely and cost-effective manner. Coupled with the availability of large
datasets in the loT and Big Data era, theoretical advances in training algorithms, and the emergence of new
deep ANN architectures such as convolutional neural networks (CNNs), deep learning has now established its
dominance over other machine learning models for many problems of interest in the domains of computer vision,
natural language processing, and general pattern recognition.

With researchers creating deeper and more complex MLP and CNN architectures to push deep learning
performance levels to new heights, the underlying hardware platform must consistently deliver better
performance levels while also satisfying strict power dissipation limits. This endeavor to achieve higher
performance-per-watt has driven hardware architects to design application-specific integrated circuit (ASIC)
accelerators for deep learning that have much higher performance-per-watt than conventional general-purpose
CPUs and GPUs. IBM's 4096 core TrueNorth chip that was released in 2014 was one of the earliest high-profile
ASIC deep learning accelerators [10]. Since then, many other accelerators have become available, including
Intel's Loihi [11] and Google's Tensor Processing Units (TPU) [12]. Several academic efforts have also led to
the design of new types of ASIC and FPGA-based deep learning accelerators [13]-{17]. Even conventional
GPUs and CPUs have evolved to speed up deep learning model execution, e.g., Nvidia GPUs now include
tensor cores [18], and CPUs support increasingly advanced vector instructions [19], both of which are designed
to accelerate common matrix and vector operations in deep learning processing. Beyond digital domain
solutions, accelerators have also been proposed that work in the analog domain [20]-{22] or the analog-digital
mixed signal domain [23]-{25].

Unfortunately, these electronic accelerator architectures are beginning to face fundamental limits in the
post Moore’s law era where processing capabilities are no longer improving as they did over the past several
decades [26]. In particular, moving data electronically on metallic wires in these accelerators is a major
bandwidth and energy bottleneck [27]. Photonic interconnects offer one of the most promising solutions to
overcome these data movement challenges. Photonic links have already replaced metallic ones for light-speed
information transmission at almost every hierarchy level of computing, and are now being considered for
integration at the chip-scale [28]. The advent of silicon photonics, which allowed for cost-effective integration of
optical components based on CMOS electronics manufacturing, has been one of the major catalysts for chip-
scale photonic interconnects [29]. Even more remarkable is the fact that various computations required in deep
learning, such as matrix-vector multiplications, can be performed entirely in the optical domain [30]. Thus, we
are close to a point where it will become possible to realize deep learning accelerators that utilize silicon
photonics for both communication and computation. Such silicon photonics based deep learning accelerators
can provide unprecedented levels of energy efficiency and parallelism. For instance, with multiply and
accumulate (MAC) operations that dominate deep learning computations, photonics-based accelerators can
achieve energy footprint efficiency (defined as (MAC/s/mm?) / (joules/MAC)) that is almost 1000x better
compared to the most energy efficient electronic accelerators today [31]. Moreover, the operational bandwidth
of photonic MACs can approach the photodetection rate, typically in the range of hundreds of GHz. This is far
superior to electronic systems today that operate at a clock rate of a few GHz [32].

In this article, we survey the landscape of silicon photonics for accelerating deep learning model training
and inference. Prior surveys on a related theme have either focused on surveying performance and energy
aspects of a specific type of photonic neural network architecture (e.g., reservoir computing architectures [33]-
[35] and Broadcast-and-Weight (B&W) architectures [31], [36]-[38]), or created a simplified classification based
on implemented neural-network models (e.g., MLPs, CNNs) [39]. In contrast, in this article we provide a different
and more comprehensive tutorial of developments in silicon photonics based deep learning acceleration, with
a bottom-up classification across design-layer abstractions: from lower-level fabrication alternatives and
devices, to the spectrum of neuron microarchitectures, and covering a variety of integrated neural network



architectures at the system level. Our aim is to provide an overview of the plethora of design choices available
with silicon photonics towards the realization of photonic deep learning accelerators, along with a discussion of
their advantages and limitations. The ability to utilize CMOS-compatible materials, such as germanium (Ge)
and silicon nitride (SiN), has enabled new variants of photodiodes, modulators, couplers, and lasers with very
interesting performance-energy-reliability tradeoffs. These tradeoffs also exist for different fundamental device
types, such as Mach—Zehnder Interferometers (MZIs) and Microring Resonators (MRs), which can be used as
the building blocks of photonic artificial neurons. Many different types of photonics-based artificial neuron
microarchitectures have been proposed, such as the noncoherent B&W architecture [40] and the coherent
artificial linear neuron (COLN) [36]. Such neurons can be cascaded together while respecting photonic signal
loss profiles and Signal-to-Noise Ratio (SNR) goals, to construct larger photonics-based neural network fabrics.
We believe that such a classification across the design abstractions in a bottom-up manner provides an intuitive
and useful way to understand the capabilities and limitations of the silicon photonics paradigm in the context of
deep learning acceleration.

The rest of this article is organized as follows. Section 2 starts out with a brief discussion of deep learning
models. Section 3 presents an overview of fundamental silicon photonic devices that are widely used in photonic
neural networks and relevant for accelerating deep learning models. Section 4 describes various types of
artificial neuron architectures designed with silicon photonic components. These neuron architectures form the
building blocks of photonic neural network architectures which are discussed in Section 5. Lastly. Section 6
wraps up with a discussion of outstanding challenges and opportunities with silicon photonics for deep learning
acceleration.

2 AN OVERVIEW OF DEEP LEARNING

Deep learning is a subset of Machine Learning (ML), which itself is a subset of the broader field of Al. Deep
learning aims to emulate the deep architecture of a human brain, which has billions of interconnected neurons
acting as computational units. Human brains also work hierarchically, starting from simpler concepts and then
combining them to learn more abstract ideas. This mode of learning is reflected in deep learning models which
break down input data into features and then recombine them to perform the task at hand (e.g., detection,
classification). Once relevant features have been learned by a deep learning model in the training phase, the
model can be applied to tasks of a similar nature, with no human intervention.

As mentioned earlier, deep learning has gained a lot of attention in recent years. But the concept is not
new. The idea to make machines as intelligent as humans is the very basis of the analytical engine conceived
by Charles Babbage in 1837. The field of Al and the research into making machines capable of thinking like
humans started as far back as the mid-20" century, with the computational model for neural networks and
neuron operation developed by Warren McCulloch and Walter Pitts in 1943 [8]. The perceptron algorithm was
invented by psychologist Frank Rosenblatt in his seminal 1957 paper [9]. Leveraging this algorithm, Rosenblatt
created the first single-layer perceptron (see figure 1 (a)) that is an electronic computational device adhering to
the biological principles behind how the human brain functions.
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Figure 1: (a) Frank Rosenblatt with his Mark-1 single-layer perceptron; (b) A depiction of the neuron and the synaptic connection to
another neuron. This 1s a simplistic depiction of a neuron, showing only the most basic components.



21 Neuron Models

The human brain is comprised of around 86 billion neurons [41], each interconnected using dendrites and
axon connections (see figure 1(b)). The biological neuron, which is the main processing component in the brain,
consists of a soma, dendrite, axon, and synapse. The soma or cell body of a neuron contains the nucleus and
other structures common to living cells. These structures support the chemical processing within the neuron.
The dendrites are extensions from the neuron soma and act as receivers or inputs into the neuron. The axons
form the “tails” of the neuron and carry signals away from the soma. The axon can further split into branches to
achieve incredible interconnectivity. Depending on the type of neuron, this interconnectivity can reach up to
100,000 fan-out connections, a number that is inconceivable to achieve today with CMOS logic gates. The
connection between neurons via their extremities occurs at contact points called synapses (figure 1 (b)). Neural
signals are transmitted in the form of electrical impulses along these interconnections made of dendrites, axons,
and synapses. These connections between the neurons along synapses can strengthen or weaken over time
depending on the activity in the synapses. This is referred to as synaptic plasticity. Synaptic plasticity is also
hypothesised to be a key component in encoding memories in the brain [42].

The McCulloch-Pitts model represents a very simplified model of this biological neuron [8]. It is comprised
of a summation unit and then a threshold gate, as shown in figure 2. The summation unit can have N inputs,
with each input assigned a weight value. The products of the inputs and their corresponding weights are
summed at the summation unit (Z), and this sum is passed onto the threshold gate. If the summed signal
exceeds the threshold, the gate generates a signal and the neuron generates (or fires) an output signal. The
McCulloch-Pitts model adapted a linear threshold for their threshold gate, so the neuron either fires or not
depending on the output from the summation unit, making it a binary output neuron. In more modern terms, this
linear threshold in the model is called the model’s activation function.
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Figure 2: The McCulloch-Pitts computational model of the biological neuron [8]. A linear activation function 1s used in the model The
neuron fires only when the sum value crosses a threshold, T, making the McCulloch-Pitts model a binary output nenron.

This binary model is a powerful tool and can be used to reach solutions for simple binary classification
problems. But for more complex tasks, more complex activation functions and neuron models are necessary.
There are other neuron models that mimic the biophysical characteristics of the neuron such as the Hodgkin-
Huxley Model [43] and many others [44]-[46]. Using such models requires complex calculations of their
biological interactions, which can be computationally taxing. To circumvent this, computationally efficient
Integrate-and-Fire (IF) neurons are preferred. IF neurons are, incidentally, one of the oldest neuron models to
appear in literature [47]. The Leaky Integrate-and-Fire (LIF) neuron [48] is another extremely popular neuron
model, due to its simplicity while being able to achieve complex functionalities in deep neural networks. Another
neuron model, which emulates biophysical characteristics of the neuron, much like the Hodgkin-Huxley model,
but with lower computational complexity, is the Izhikevich spiking neuron model [49].

All of these neuron models follow the same basic principle: neurons accept input signals from multiple
synapses, sum them, and fire a corresponding output if a threshold is exceeded. The differences between them
arise in how the threshold and the bio-physical interactions are modeled. The neuron models discussed here
help in mimicking the biological operation of the brain and hence are an integral part of a neural-network model
called Spiking Neural Networks (SNNs), which we discuss next. This inter-disciplinary concept of mimicking the
brain using advanced neuron models and implementing neural systems is often referred to as neuromorphic
engineering or neuromorphic computing.



2.2  Spiking Neural Networks (SNNs)

The idea behind Spiking Neural Networks (SNNs) is to emulate the human brain as closely as possible.
The brain exhibits low power consumption, fast inference, event-driven processing, continuous learning, and
massive parallelism. It is also based on event-based computation, where information is encoded in spikes [50].
Indeed, SNNs were introduced in 1997 to emulate this spike-based method of computation [48]. SNNs utilize
asynchronous, event-driven processing to implement neural networks. The inputs to an SNN neuron are
referred to as action potentials or spikes (see figure 3), which the neuron receives from its pre-synaptic neuron.
These binary spikes can carry information through the network either via rate coding or temporal encoding.
Rate coding—also referred to as frequency coding—is the model of neuronal firing which assumes that the
information about the stimulus that triggered the neuron to fire can be encoded in the rate at which the neuron
fires. Thus, this method of information encoding requires precise calculation of firing rates. Temporal encoding
utilizes the temporal resolution or the time between consequent spikes to carry information. For both encoding
types, the connection between the neurons is represented by synaptic weights, which influence the input spikes,
to create a weighted spike train at each neuron’s input. The weighted input spikes affect the membrane potential
of the neuron, which refers to the intensity of activation of the neuron. Once the membrane potential exceeds a
threshold, the neuron generates a spike (i.e., fires an action potential) to its post-synaptic neuron. This activity
is illustrated in figure 3.
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Figure 3: A simple representation of how a spiking neuron, the fundamental unmit of an SNN, functions. The spiking neuron shown here
can be any of the models mentioned in Section 2.1 in order to implement an SNN.

There has been increased interest in implementing brain-like computation in the last decade [51] to
overcome limitations set by conventional Von-Neumann architectures. Supercomputers today can achieve
hundreds of peta FLOPS (floating point operations per second) in processing data but at the cost of tens of
millions of Watts [52], whereas the human brain achieves this feat at the cost of just 20 Watts [53]. SNN
implementations hope to achieve this remarkable level of energy efficiency exhibited by the human brain. To
realize this goal, many technologies are actively being explored, including CMOS [54]-[56], new types of
transistors [57]-[59], and non-volatile memory [60]-[63]. Employing such technological advances, there have
been various SNN accelerator implementations. As an example, SpiNNaker [64], from the University of
Manchester, was built using ARM processors and implements the Izhikevich neuron model for computational
efficiency. It utilizes a Globally Asynchronous, Locally Synchronous (GALS) communication system between
the processing cores and Synchronous Dynamic Random Access Memories (SDRAMSs) to store the synaptic
weight values. TrueNorth [65] from IBM contained 5.4 billion transistors while using only 70 m\W to operate. The
processor is comprised of arrays of low power neurosynaptic processing units, each containing memory,



processor, and communication subsystems to mimic neural functions. TrueNorth implements the LIF neuron
model in its SNN. Loihi [66] from Intel with 128 neuromorphic cores and 130,000 neurons, is another such
implementation that exhibited 1000x speed and 10,000x energy efficiency compared to a CPU [67]. Loihi
implements a variant of the LIF neuron called “current based synapse (CUBA) LIF neuron.”

2.3  Artificial Neural Networks (ANNs)

The emergence of the computational model for representing neural activities paved the way for Artificial
Neural Networks (ANNs). When compared to SNNs, ANNs are markedly abstract in their approach to
implementing brain functions. The weights, which represent the synaptic plasticity, are simple scalars. The
neurons utilized are also much simpler, and tasked with accumulation of input-weight products followed by
passing the resulting output through a non-linear function. ANNs emulate brain activity by simulating a collection
of interconnected neurons, arranged in layers. The simplest representation will have three layers: an input layer,
an output layer, and a hidden layer in between these two layers (figure 4(a)). The input layer accepts data from
outside the ANN; the hidden layer is where the computation happens; and the output layer is where we can get
the results from the neural network. The activation functions also play an important part in simulating
intelligence. Mathematically, without appropriate activation functions, the neuron model is a simple linear model,
which multiplies and accumulates input-weight products. To introduce non-linearity into the network and make
it possible for the model to approximate more complex functions, we need to use appropriate non-linear
activation functions, such as sigmoid, Rectified Linear Unit (ReLu), and tanh to list a few. Utilizing these
functions, ANNs are able to learn very complex non-linear relationships between input features.
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Figure 4: (a) Layered architecture of an ANN; this figure shows a shallow ANN with one hidden layer. (b) As the number of hidden layers
in the ANN increase, we achieve DNNs. Note that the layers of an ANN are populated by neurons, with associated weights and biases.
(c) A fully connected RNN, which shows the feedback connections in its hidden layer, and simulates memory or saved states in this
architecture. (d) Representation of various layers and operations in a CNN.

An important distinction to be made here is between ANNs and traditional ML algorithms such as Support
-Vector Machines (SVMs), K-Nearest Neighbours (KNN), Random Forests (RF), etc. What makes ANNs distinct
is their ability to handle large quantities of data, with minimal human intervention. Traditional ML algorithms
usually require a human expert to provide the necessary rule set on which they operate. Often, assistance for
feature extraction from the data is also needed, e.g., for kernel selection in SVMs.

Deep Neural Networks (DNNs) are ANNs with multiple hidden layers (see figure 4(b)) which can utilize the
complex interconnectivity among the neurons to compute and efficiently represent very complex non-linear
relationships after being trained. During the training phase, input activations traverse a forward path from the
input to the hidden layers and finally to the output layer. The error (often called the loss) between the DNN



output and the expected output is backpropagated through the model to update the neuron weights and biases,
in a manner that reduces the loss. This process is iteratively repeated until the model output (e.g., image class
prediction) is as close as possible to the expected outputs, i.e., the loss is minimized. After training, the model
can make predictions given an input, in what is referred to as the inference phase. The training phase for DNNs
is a time and resource intensive process, compared to the inference phase. The notable learning architectures
which utilize DNNs include Multi-Layer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), Deep
Boltzmann Machines (DBMs), Stacked Auto-Encoders (SAEs), and Convolutional Neural Networks (CNNs).

MLPs only include feedforward fully connected (FC) layers as shown in figure 4(b), where each neuron in
a layer is connected to each neuron in the preceding and following layers. Some model architectures can exhibit
temporal dynamic behaviour and possess an internal state or memory because of their network structure. These
can be broadly referred to as Recurrent Neural Networks (RNNs). The inherent memory in their structure makes
them ideal for recognition tasks such as pattern recognition, handwriting and speech recognition, natural
language processing, etc. Research on RNNs began with David Rumehalt in 1986 [68]. As of today, many RNN
variants are popular, including Long Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRUs),
Continuous Time RNNs (CTRNNSs), etc. A simplified RNN is shown in figure 4(c).

CNNs target the processing of 2D or higher dimensional features instead of the 1D ones in MLPs. They
are widely used for classification problems in image and video processing. The structure of a CNN is depicted
in figure 4(d). A typical CNN contains three types of layers: convolutional (Conv), pooling (Pool), and fully
connected (FC). In Conv and Pool layers, there are multiple channels (called feature maps) that extract different
local features from the input data. These layers combine the lower-level features from multiple channels of the
previous layer, into higher-level features that are passed to the next layer, till the final classification layer where
an output prediction is generated. Conv layers have much fewer parameters than FC layers, but involve a high
computational footprint due to the many convolution operations that are required between filter weights and the
input activations, across all their channels. Pooling layers generate output activations based only on the local
receptive field in the corresponding input feature map (e.g., a single “pooled” output from a group of 2x2 inputs).
The two widely used variants of pooling layers are max and average pooling, and they produce the maximum
or average value of each receptive field, respectively. Lastly, FC layers follow Conv and Pool layers, and act to
work as a classifier with the extracted features, similar to how these layers are used in MLPs.

DNNSs are beginning to be widely used in real-world applications such as autonomous driving, robotics, and
loT processing. The resource intensity needed for training DNN models was met by the emergence of GPUs
that are used for significantly reducing the training time of DNNs, due to the greater data and thread level
parallelism supported in GPUs than CPUs. Much like for SNNs, there is growing interest in designing energy-
efficient ASIC accelerators for DNNs. Such DNN accelerators, e.g., the Neural Processing Unit (NPU) [69] are
designed to accelerate the inference phase, although a few accelerators are also aimed at improving training
performance. An example of a DNN accelerator that has been very successful for accelerating both training
and inference with DNNs is the TPU [12] from Google. The TPU has dedicated matrix-multiplication units and
distributed memory management that makes it ideal for handling the heavy lifting needed to train DNN models
and also for inference tasks. TPUs are deployed widely in Google’s data centers. Newer GPU architectures
have also adopted similar Tensor cores for DNN acceleration [70]. Researchers have also suggested utilizing
non-volatile memory technology and Processing-In-Memory (PIM) for DNN accelerators. PRIME [71] and
ISAAC [20] are examples of such accelerators that utilize Resistive Random-Access Memories (ReRAMs) and
PIM to accelerate DNN execution.

2.4  Reservoir Computing (RC)

RC is a less popular neural-network model than ANNs and SNNs but is covered here briefly because of its
amenability to photonics-based implementations and consideration in prior photonics-based designs. RC can
be thought of as a type of RNN where only the parameters of the last, non-recurrent output layer (called readout
layer) are trained, while all the other parameters are randomly initialized, subject to some condition that
essentially prevents chaotic behavior, and then they are left untrained. RC thus represents a type of partially
adaptive RNN, which is in contrast with the fully adaptive approach of conventional ANNs and SNNs. The
reservoir is comprised of connected non-linear nodes and is a fixed recurrent network as shown in figure 5. This
reservoir performs many non-linear operations and the outputs from these are combined into linear
combinations to complete a task. The user has little direct access to the reservoir and the output manipulation
is restricted to the readout layer. To reach the desired behavior, trained linear classifiers at the readout layer
are utilized in a supervised learning framework. The advantage of having such a fixed random network becomes
apparent with certain (particularly photonics-based) hardware platforms where the possibility of setting all the
internal parameters is not possible.
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Figure 5: Standard layout of a reservoir computing (RC) architecture with the input layer in red, the reservoir in green (with randomzed
but fixed connections), and the readout layer in blue where the outputs from the reservoir are consolidated into the desired output.

RC can be utilized to emulate the behavior of conventional ANNs due to its intrinsically parallel nature. Like
a neural network, a reservoir often consists of a large number of interconnected non-linear nodes. Therefore,
existing hardware implementations of neural networks can be and have been used as reservoirs, as in [72].
However, unlike traditional neural networks, the interconnection weights need not be adaptable or even exactly
controllable. In fact, only a global gain scaling is required for weight manipulation in RC. This makes the
requirements for reservoir implementations more relaxed and allows for the exploration of technologies that
might be less suitable for implementing traditional, fully trainable neural networks. Thus, RC was a popular
target for early implementation of all-optical computing and there have been many bench-top models which
demonstrated how all-optical reservoir computing can be achieved [73]-[81]. These implementations were often
built using telecom equipment (e.g., fiber optical loops, MZIs, lasers, photodetectors and Arrayed Waveguide
Gratings (AWGs)) and provided proof of concept validations of the effectiveness of optical reservoir computing.

To implement RC and the other DNN models on a computing chip, silicon photonics is a promising
emerging technology candidate. We will now provide an overview of silicon photonics technology (Section 3),
followed by in-depth discussions on neuron microarchitectures implemented using this technology (Section 4),
and various deep learning architectures built using photonic neurons (Section 5).

3 AN OVERIEW OF SILICON PHOTONICS

Optical communication has been widely employed in communication networks wherever low-cost and high-
bandwidth communication at low power consumption and over large distances is required, e.g., in long-haul
telecommunication networks. In recent years, silicon photonics has enabled CMOS-compatible integrated
photonics and gained widespread adoption in commercial offerings for low-cost optical interconnects in data
centers. Optical interconnects are now being aggressively considered at much smaller scales, to connect
multiple processing chips at the board level, and even to connect cores within a single computing chip. As the
name suggests, silicon photonics employs light, which is guided through the silicon (Si) medium on a CMOS
chip, for communication. In a silicon-on-insulator (SOI) fabrication platform, the high refractive index contrast
between the waveguide core (silicon) and the waveguide's cladding and substrate (e.g., silicon dioxide) results
in guided optical signal propagation through total internal reflection. A single waveguide can be used to carry
multiple wavelengths of light simultaneously, each capable of carrying data at high speed and high frequency,
and without any interference. This is possible using a technique called Wavelength-Division Multiplexing
(WDM). The number of wavelengths in a waveguide is referred to as the WDM degree of the waveguide. The
WDM degree can be increased to 64 or beyond, at which point the multiplexing is often referred to as Dense
Wavelength-Division Multiplexing (DWDM). For chip-scale communication with silicon photonics, digital data
from electronic components (e.g., processor, memory) can be encoded into an optical signal using electronic
to optical (E/O) conversion with devices such as microring resonator (MR) modulators, subsequently transmitted
over a waveguide with multiple carrier wavelengths, and then detected at a receiver, where optical to electronic
(O/E) conversion is performed with devices such as photodetectors (PDs).

There has been growing interest in using silicon photonics for more than just communication. In particular,
silicon photonic devices can also be used to perform computation in the optical domain. Together, such light
speed communication and computation can significantly accelerate the execution of deep-learning workloads.



While silicon photonic devices face several challenges for robust computation and communication at the chip-
scale (e.g., they are sensitive to thermal and fabrication-process variations [82]), they also offer several
advantages (e.g., high speed, high bandwidth, and low power) to support inter-neuron communications and
implement different neural functions required in photonic neural networks. Such neural functions and their
implementations are discussed in the next section. In this section, we review some of the fundamental silicon
photonic devices that are employed to implement photonics-based ANNs and SNNs.
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Figure 6: Lasers used in photonic neural networks [83], [84]: (a) Directly modulated laser; (b) Laser connected to a modulator [83],
[85]: (c) Coherent laser where the wavelength in the input and output 1s the same; and (d) Incoherent laser with different wavelengths
at 1ts input and output. Note that the signal waveform i black 1s an electrical signal and the other colored signal waveforms are optical
ones. Different colors represent different wavelengths.

31 Lasers

A laser is a key requirement in optical circuits and neural networks, serving as the light source to support
optical communication and computation. Lasers can be either off-chip or on-chip. Although off-chip lasers offer
a better light emission efficiency, they necessitate the use of couplers to couple the off-chip optical signal to the
chip where such couplers impose high optical power losses. On the other hand, on-chip lasers provide a better
integration density and lower optical loss, as there is no need to couple light from an off-chip source. However,
on-chip lasers suffer from low emission efficiency and instability against thermal variations [86].

Lasers are used in photonic neural networks to implement different neural functions and requirements in
such systems. In directly modulated lasers (see figure 6(a) [87]), the laser itself modulates the data onto an
optical signal, while in another arrangement, as shown in figure 6(b), the laser output can be modulated by a
modulator which is responsible to modulate the data onto the optical signal. Indeed, employing a laser in
conjunction with modulators is common in optical interconnection networks [88], [89]. In photonic neural
networks, this laser configuration can be used to design a scalable neural network [83], [85], where an off-chip
laser source in combination with modulators can support multiple on-chip inter-neuron communications. In
addition to the modulation, lasers can be also used to implement neural activation functions [90], as discussed
in section 4, because lasers have shown potential to mimic neural activation functions [91]-[94] where an optical
stimulus in the input of the laser can result in an optical output based on an activation function (see figures 6(c)
and 6(d)). Thus lasers are used in all photonic neural networks to not only support inter-neuron communication
but also, in some cases, to implement different neural functions in the optical domain.

A laser can be implemented in different ways. A Vertical Cavity Surface Emitting Laser (VCSEL) is a
semiconductor laser diode with laser beam emission perpendicular to the chip surface, as shown in figure 7(a).
Such a feature allows for several VCSELs to be placed in an array to power a large number of optical neurons
and hence design scalable neural networks [91], [92], [97]. In addition to the scalability advantage, VCSEL-
based neural networks can be realized using both off-chip and on-chip VCSELs [98]. Moreover, VCSELs have
shown excitability behaviours of neurons [99], in which the laser emits light when the combination of inputs
reaches a threshold. As a result, VCSELs offer scalability, efficiency, and several functionalities required for
photonic neural network designs. Microdisk lasers, shown in figure 7(b), are another type of lasers in which a
ring resonator is formed by successive total internal reflections inside a circularly shaped waveguide [101].
Compared to VCSELs, microdisk lasers are more area efficient (a laser apparatus radius—radius of
microcavity—of a few micron) and deliver a lower threshold current and maximum on-chip optical power [102].



Moreover, microdisk lasers offer a low optical loss [100], and similar to VCSEL arrays, they can be placed in an
array of lasers [101] to enable scalable photonic neural network implementations. In addition, microdisk lasers
have shown excitability dynamics [103] to support spiking neuron implementations.
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Figure 7: (a) A VCSEL array [95]. (b) A microdisk laser [96].

3.2 Waveguides

A silicon photonic waveguide is analogous to a metallic wire, enabling optical signal transmission and
routing in photonic neural networks. As shown in figure 8, waveguides can be classified into ridge and strip
waveguides. Ridge waveguides are often employed in active devices and networks as they allow for electrical
connections to be made to the waveguide (e.g., through PN junctions) where the characteristics of the optical
signal can be actively controlled and altered using electro-optic or thermo-optic effects in silicon [28]. On the
other hand, strip waveguides are usually employed in passive devices and networks to passively route optical
signals [28]. As discussed earlier, a single waveguide can support simultaneous transmission of multiple optical
wavelengths with no interference (using WDM). This allows for ultra-high bandwidth communication, which is
of great interest in neural-network designs to support demanding inter-neuron communication.

When an optical signal traverses a waveguide, it experiences some optical loss (i.e., the propagation loss,
often characterized in dB/cm) imposed due to, for example, some imperfections in the waveguide structure
(e.g., waveguide sidewall roughness). Minimizing such optical loss in silicon photonic waveguides is essential
as it limitsthe scalability of photonic neural networks and substantially degrades the power and energy efficiency
in such networks. There have been a lot of efforts to minimize the propagation loss in silicon photonic
waveguides and SOl waveguides with propagation losses as low as 0.026 dB/cm have been proposed [104].
In general, this propagation loss in waveguides depends on precise geometry adjustment in these devices, and
hence any shape distortion in a waveguide (e.g., angular sidewalls) reduces its transmission efficiency (i.e.,
increasing the propagation loss). In addition to propagation loss, waveguide bends create optical bending loss
where an optical signal will be attenuated due to the mode-mismatch and radiation loss in waveguide bends.
This bending loss is proportional to the radius of the waveguide bend.

Radge Strip

Figure 8: Silicon photonic waveguides [28]: a ndge waveguide and a strip waveguide.

3.3 Couplers

Silicon photonic couplers, as shown in figure 9, are used to couple an optical signal from an optical fiber
(e.g., connected to an off-chip laser source) to an on-chip waveguide due to the significant mismatch between
the cross-section of optical fibers (tens of micron) and that of silicon photonic waveguides (hundreds of
nanometers). Such mismatch usually imposes some optical loss (i.e., coupling loss) which is considered as a
significant portion of optical loss in optical networks employing off-chip lasers. Two major coupling solutions are
surface grating coupling and edge coupling. Surface-grating couplers, shown in figure 9(a), are advantageous
in terms of a simpler and low cost fabrication process but at the cost of a low coupling efficiency, while edge
couplers, shown in figure 9(b), provide a better coupling efficiency but requires a more complex fabrication and
packaging process [28]. In edge couplers, as shown in figure 9(a), a tapered waveguide is used to couple light
from the fiber to the chip. Surface-grating couplers couple the input light from a fiber to a waveguide using
diffractive gratings where a periodic structure splits and diffracts light and eventually couples the light into the
waveguide. Diffractive coupling is a common means of optical coupling between VCSELs because of its simple
implementation [106], and is also useful to implement photonic reservoir computing [107].
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Figure 9: Couplers [105]: (a) a surface-grating coupler and (b) an edge coupler.

3.4 Modulators, Filters, and Switches

Microring Resonators (MRs) are widely employed to design modulators, switches, and optical filters in
optical interconnection networks [108], [109]. In addition to such applications in interconnection networks, they
are promising devices to implement artificial neural synapses [90], [110], [111] and excitation function of neurons
[112], [113], which are further discussed in section 4.

MRs, as shown in figure 10(a), are made with a ring-shaped waveguide in proximity with an input
waveguide and a drop waveguide (a.k.a. add-drop filter). When the drop waveguide is missing (e.g., in
modulators and some filters), the MR is an all-pass filter (see figure 10(b)). An MR can be in two different states
of on- or off-resonance, based on which the optical signal can be switched to different ports. As shown in figure
10(a), when the MR is in the off-state, the input signal is routed to the through port, because the ring is not in
resonance with the input optical signal. On the other hand, when the MR is in the on-state, the ring couples the
input optical signal and drops it on the drop port. The resonant wavelength of an MR can be tuned to realize
various functionalities needed to design optical modulators, switches, and filters. Here, tuning refers to sweeping
the resonant wavelength of an MR by leveraging electro-optic or thermo-optic effects of silicon that can alter
the optical signal characteristics, and hence the resonant wavelength in the case of an MR. Compared to tuning
mechanisms based on electro-optic effects, those based on thermo-optic effects are slower (a few
microseconds versus tens of nanoseconds in tuning techniques based on electro-optic effects) but are more
power efficient. Figure 10(c) shows an example of an MR-based modulator that is responsible for modulating
electronic data onto an optical signal. The modulator can modulate electronic data onto a specific optical
wavelength and this modulated optical signal can be filtered with a wavelength-selective MR-based filter at the
receiver (see figure 10(b)), and then detected and converted to electronic data through a photodetector.

data
in through clk
@ Modulator driver
drop add Grating Phase shifter
coupler Modulated Input Output
Laser A optical signal Directional (...
q[]lb couplers
MR Modulator
(a) (©) ©
I in through
drop ! add
—
(®) (d

Figure 10: Silicon photonic switching devices [28]: (a) MR add-drop filter/switch; (b) MR all-pass filter; (c) MR modulator; (d)
Microdisk resonator; (&) MZI; and (f) Photodetector.

Compared to an MR, a microdisk resonator (see figure 10(d)), which employs a disk instead of the ring
structure, offers a better optical confinement to provide a smaller disk size and potentially lower power
consumption [114]. MZls, as shown in figure 10(e), are made of two waveguides with directional couplers and



phase shifters. The phase shifters implemented using electro-optic or thermo-optic tuning change the optical
phase in one or both arms of the MZI, introducing constructive or destructive interferences at the output to
switch an optical signal between the output ports. Similar to MRs, MZIs have been applied to the design of
optical modulators, switches, and filters. In comparison to MZIs, MRs have smaller footprint and lower power
consumption. On the other hand, MZIs provide high bandwidth and better tolerance to thermal variations.

In summary, MRs, microdisks, and MZls are widely employed to design modulators, switches, and filters.
In photonic neural networks, a set of optical filters, in each of which the optical transmission can be adjusted,
can be grouped into a weight bank to support weighting of activation signals as part of a photonic neuron [40].

3.5 Photodetectors

Photodetectors (PDs), as shown in figure 10(f), can be used to detect an optical signal and convert it to an
electrical one. A small photodetector offers high bandwidth at the cost of low power efficiency. An efficient
photodetector provides the desired electrical output with a small optical signal at its input. However, this small
optical signal at the input of a photodetector may result in a low bandwidth performance in the photodetector.
An optical signal power at the input of a photodetector should be larger than the responsivity of the
photodetector, which is defined as the electrical output per optical input. This means that the power of a laser
source in an optical link should be large enough to correctly drive a photodetector while considering the sum of
different optical losses on the link. In photonic neural network designs, photodetectors not only convert optical
signals to electrical ones but also combine (i.e., sum the magnitudes of) several optical signals over different
wavelengths [40], [85], [111], which is a useful function in designing a silicon photonic neuron.

3.6 Devices based on Phase-change Materials

Devices that utilize phase-change materials (PCM) for tuning are of great interest in silicon photonic circuits
to design modulators [115], MZI-based switches [1186], and low-loss phase shifters [117]. The main principle in
these PCM-based photonic devices is to employ a PCM (e.g., GST: Ge;Sb,Tes used in [115]) to efficiently
induce high refractive-index changes for efficient phase tuning. Unlike electro- and thermo-optic tuning, PCM-
based tuning is non-volatile: it only requires power for transition between the amorphous and crystalline states
in the PCM [117]. This can allow for low overhead tuning of silicon photonic devices, e.g., from on-resonance
to off-resonance in a PCM-based MR. In some photonic neural networks, PCM-based devices [118]-[120] are
proposed as part of the design of neurons. For example, in the synapse design proposed in [118], several PCMs
are placed on a waveguide to control optical transmission in the waveguide and implement the function of a
synapse. Moreover, PCMs are useful to implement summation [119] and weighting functions [118], [119], [121].

3.7 Other Devices

A Semiconductor Optical Amplifier (SOA) is a device in which a semiconductor is used to add a gain to an
optical signal without electro-optical or opto-electrical conversions. SOAs are mainly used to compensate for
optical losses in optical communication systems. In photonic neural networks, SOAs can be employed to
implement learning functions [122], [123]. However, SOAs suffer from poor coupling efficiency to optical fibers
and are sensitive to polarization because of their planar shape [124]. Vertical Cavity Semiconductor Optical
Amplifiers (VCSOAs) provide a better coupling efficiency and a lower sensitivity to polarization, and they can
also be integrated into 2D arrays [113]. Moreover, based on the proposed learning function implementation in
[125], VCSOAs can offer low-power consumption to implement learning functions in neural networks.

A spatial light modulator (SLM) is a device that can be used to change the amplitude, polarization, and
phase over the spatial extent of a light beam [128]. Integrated spatial light modulation in silicon photonics can
enable all-optical reconfigurable devices with possible applications in testing of optical circuits and
reconfigurable multi-port optical filters, splitters, and modulators for data communication [127]. SLMs can be
employed in reservoir computing architectures, as described in Section 5.3.

A pillar scatterer is a type of device that can be employed for implementing reservoir computing [34]. These
devices can help speed up the classification of biological cells [128], [129]. For example, [129] provided a proof
of concept, based on Finite-Difference Time-Domain (FDTD) simulations, of an integrated photonic application
of Extreme-Learning Machine (ELM) for fast and label-free classification of biological cells. In this application,
a passive optical stage comprising a collection of pillar scatterers embedded in a silicon nitride cladding is used
to process the light forward-scattered by a cell when illuminated via a green monochromatic source.

An optical comparator is a common device in the design of analog-to-digital convertors [130]. Optical
comparators can be made using MRs, SOAs, and lasers [131]. All-optical comparators are preferred over
optoelectronic ones as they can provide higher speed and lower power consumption by avoiding electro-optical
conversions [131]. An optical comparator is also useful to implement the max pooling layers in CNNs [132].
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Lastly, silicon photonic Arrayed-Waveguide Gratings (AW G)are commonly used as optical (de)multiplexers
in WDM systems. These devices are capable of multiplexing many wavelengths into a single optical fiber,
thereby considerably increasing the transmission capacity of optical networks. AWGs have been used to
implement matrix multiplication [133] and CNNs [134].

4 SILICON PHOTONIC NEURON MICROARCHITECTURES

In this section, we review different implementations of silicon photonic neurons that form the building blocks
of photonic neural networks. Subsection 4.1 discusses how various functionalities within an individual neuron
are implemented using silicon photonic devices. Subsection 4.2 describes two approaches for classifying the
implementation of photonic neuron microarchitectures.

41 Intra-Neuron Functionality Implementation with Silicon Photonic Devices

Avrtificial neurons are designed to mimic different functions of biological neurons, and can be combined to
create a scalable, energy-aware, and high-performance neural network. A high-performance photonic neuron
is expected to provide adequate reliability [40], [85], scalability [90], and cascadability [111], [135], [136].
Reliability of a neuron can be improved by either reducing the noise at the output of the neuron or increasing
the power of the desired optical signal (i.e., the signal carrying the data being exchanged through inter-neuron
communication) to ensure that a neuron is not excited by unwanted noise and only excited by the desired signal.
A scalable neuron supports sufficient number of fan-in inputs to enable large-scale networks. Indeed, one of
the main factors contributing to the neural network computation power efficiency, in comparison with traditional
Von Neumann computing, is the high connectivity inspired by mammalian brains. Cascadability, which directly
affects the neural network reliability, is another important factor affecting the performance of a neuron.
Cascadability of a neuron design is defined based on the optical signal power of a neuron to drive other neurons.
Together, reliability, scalability, and cascadability are important metrics when evaluating the performance of a
photonic neuron.

Two types of neurons are widely used in photonic neural networks: conventional (non-spiking) and spiking,
as discussed in Section 2. In general, a photonic neuron includes four main functions: weighting, summation,
activation, and learning. There are significant differences between the two neuron types when it comes to the
learning functionality. In spiking neuron models, the leamning function is implemented at the neuron-
microarchitecture level: e.g., unsupervised learning (e.g., Spiking Time Dependent Plasticity (STDP)) is often
implemented as a part of the spiking neuron to closely mimic the functionality of a biological neuron. For
conventional neurons, the learning function is not part of the neuron model and is instead implemented at the
neural network architecture level (e.g., with backpropagation learning) rather than at the neuron-
microarchitecture level. We discuss the four main neuron functions in the following subsections.

4.1.1 Weighting function

In biological neural networks, synapses are of great importance because a synapse is a memory for a
learning process. Synapses provide weighted connections among neurons where changing the weights is the
main function of the learning process (discussed in Subsection 4.1.4). Because of the adaptive weighting in
synapses, the weight of a synapse is manipulated (through the learning process) to change the effect of each
input. To mimic such dynamic weighting of connections, silicon photonic devices such as MRs can be used to
control optical transmission between two neurons. As a result, such devices can implement weighting functions
where the transmission can be controlled by a learning feedback over the input and output.
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Figure 11: The neuron model employed in [40]. Here, several wavelengths share a waveguide to offer a igh bandwidth. Inputs over
different wavelengths enter the MR weight bank. Then weighted inputs are summed using a balanced photodetector and a laser at the
final stage converts the electrical summation signal to optical spikes (E/O converter can be a modulator [83] instead of a laser).

An MR is one the key devices used in the design of a weighting function. MRs can be placed in arrays to
offer a bank of dynamic filters (see MR weight bank in figure 11) on the input connections of a post-synaptic
neuron [90], [110], [111]. Each MR in an MR weight bank has an assigned weight value. When an optical signal
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passes an MR in an MR weight bank, the MR can alter the optical signal power proportional to its weight value.
The weighted optical signals are then sent to a photodetector to perform the summation function, which is
discussed in Subsection 4.1.2. Multiple wavelengths can be used in an MR weight bank with the WDM
paradigm, to support high bandwidth communication and provide great scalability [110], [111]. However, the
number of wavelengths that can be used in an MR weight bank is limited by cross-weight penalty [40] where
the channel spacing—the frequency space between two consecutive optical channels/wavelengths—should
guaranty the desired tuned weight for each synapse. Reducing the channel spacing (by increasing WDM
degree) in an MR weight bank increases undesired effects (e.g., inter-channel crosstalk) on the spike-to-noise
ratio, which can result in an undesired weight tuning. Such cross-weight effects can be improved at the cost of
increasing the optical signal power to improve spike-to-noise ratio and, therefore, neuron reliability. In [40], the
authors proposed an analytical model to design an MR weight bank while considering the channel spacing and
power efficiency.
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Figure 12: A PCM-based synapse proposed in [118]. The synapse 1s based on placing several PCM islands (yellow) on a tapered
waveguide (blue) to control the optical transmission between the pre-synaptic and post-synaptic neurons. Weighting pulses to change
the weight of synapse, optically, 1s applied via port 1.

Devices that utilize Phase-Change Materials (PCMs) for tuning can also be used to implement weighting
functionality. In [118], Ge,Sb;Tes (GST), which is a PCM, is used to efficiently change optical transmission of a
waveguide to implement a photonic synapse (weighting function) in a spiking neuron. In this design, shown in
figure 12, multiple PCM pieces/dopants, which are called a PCM island, are placed on the waveguide. In
comparison with using a single PCM island, this design is improved by using several PCM islands on the
waveguide for each synapse that helps realize a more efficient optical-transmission change in the waveguide.
The results also show that using a tapered waveguide structure in combination with PCM islands is more
efficient than using a standard, non-tapered waveguide. The experiments in [118] confirm that each weight of
the PCM-based synapse can be obtained using a predefined number of input optical pulses. Therefore, an
accurate and all-optical weight tuning can be achieved by employing several PCM islands with a tapered
waveguide. However, such an all-optical synapse suffers from low operation speed due to the photo-structural
transformation process, which influences movement of atoms or ions because the speed of atoms and ions is
much lower than that of a photon [137].

Excitatory and inhibitory functions: In addition to synapse weight, the type of neurotransmitters plays a
significant role in a biological neuron. A neurotransmitter is a chemical to transmit information over a synapse
to the receptors of a post-synaptic neuron [138]. Based on the type of neurotransmitters, weighted inputs can
increase or decrease the membrane potential of a post-synaptic neuron. If a weighted input increases the
membrane potential, the weighted input is excitatory (i.e., it encourages neuron to excite). On the other hand,
an inhibitory weighted input decreases the membrane potential (i.e., discouraging the neuron to excite). In an
artificial neuron, this corresponds to considering a positive or negative weight for each synapse. Therefore, a
weighted input can increase or decrease membrane potential of the post-synaptic neuron to support excitatory
and inhibitory functions, respectively. Several silicon photonic devices have been investigated to implement
excitatory and inhibitory functions which are necessary in neural network designs. Excitatory function of
distributed-feedback (DFB) lasers [93], MRs [112], and VCSELs [97] have been studied. Moreover, [133]
analyzed the inhibitory functionality of VSCELs. To enable an efficient photonic neural network, both excitatory
and inhibitory functions are required in the neuron design. For example, [91] proposed a neuron model in which
a VCSEL is used to realize both excitatory and inhibitory functions of a neuron by injecting orthogonally
polarized and parallelly-polarized fields at the same time. In addition to excitatory and inhibitory functions,
injecting the two fields makes the neuron more reliable in the presence of noise and provides a faster response
of the VCSEL. The proposed neuron design in [90], which is an opto-electronic neuron to support WDM, also
provides both excitatory and inhibitory functions. The neuron uses two MR-based filters to represent positive
and negative weights for excitatory and inhibitory functions, respectively. Furthermore, [140] proposes the
experimental implementation and analysis of summation with excitatory and inhibitory functions in the opto-
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electronic neuron proposed in [90]. However, in this opto-electronic neuron, two wavelengths are required to
enable both excitatory and inhibitory functions in the summation. The proposed neuron in [141] employs a
modulation technique, which is based on using two push-pull MZIs and a phase shifter, to realize both positive
and negative weights over a single wavelength. However, in the laser-based excitatory and inhibitory functions
described above, active devices are used. Photonic neurons employing active devices, in which the light is
generated by the device itself, suffer from integration challenges as it is costly to fabricate them with a standard
CMOS process. To this end, the proposed neuron in [113] provides both inhibitory and excitatory functions by
using MRs, which are passive devices.

4.1.2 Summation function

As described in Section 2, in a biological neuron, the soma or body of the neuron is responsible to combine
(i.e., sum) inputs of a neuron so that the post-synaptic neuron can be excited with the aggregated input spikes.
Similarly, in a conventional (non-spiking) artificial neuron model, a summation function integrates all the neuron
inputs and forwards the result to an activation function. Summation over inputs is quite important because it
directly affects the neuron scalability. A scalable neuron can effectively integrate a large number of inputs to
enable a large fan-in and hence a large-scale photonic neural network. To design such a scalable neuron,
neurons proposed in [90] and [111] combine inputs on different wavelengths to provide a compatible design
with WDM. In such implementations, the neuron employs a photodetector to combine inputs transmitted on
multiple wavelengths (see the photodetector in figure 11). As a result, there is a need for signal conversion (i.e.,
optical-to-electrical and electrical-to-optical) in such opto-electronic neurons where such conversion imposes
some power losses, hence degrading the neuron performance. Alternatively, the summation function can be
implemented in a photonic neuron using an all-optical approach. For instance, the summation functionality in
micropillar-semiconductor lasers based on an integrated saturable absorber is investigated in [142]. Results
show that the micropillar laser is able to combine spiking stimuli and excite an activation function. Moreover,
DFB lasers [93] and VCSELs [91], [97] are also used to implement the summation function in photonic neurons.
The proposed neuron in [112] employs MRs to implement the summation function. Nevertheless, all-optical
approaches do not support WDM, hence cannot provide high interconnectivity to realize scalable photonic
neural networks.

4.1.3 Activation functions

The activation function of a neuron can be linear or non-linear. In [141], a linear neuron model is presented
to support linear additions and subtractions with both positive and negative weights to realize excitatory and
inhibitory functionalities. The proposed linear neuron in [141] can support non-linear sigmoid and RelLU
activation functions to be added to the base linear neuron. In [113], to implement a non-linear activation function,
non-linearity effects in MRs are leveraged to realize a low-power neuron.

There are differences in the activation functions in spiking and conventional neuron models. In spiking
neurons, an activation function defines the spiking time of the neuron based on the aggregated input spikes.
Therefore, the optical signal propagation time depends on the activation function in this event-driven approach.
Alternatively, in conventional neurons used in ANNs, an optical signal is propagated from the input to the output
in predefined times. In [143], SOAs are used to emulate a sigmoid activation function for conventional neurons.
An activation function can also be implemented by a photonic laser with electrical control signals in opto-
electronic neurons (see figure 11). In the neuron used in [90], which is called Broadcast-and-Weight (B&W), an
excitable laser and a photodetector are used to mimic the excitation function of artificial neurons. In particular,
the activation function is implemented using an excitable laser and can fire when the summation signal, provided
by the photodetector, reaches a threshold. The decision of firing a spike, realized by the activation function,
triggers a spiking optical signal in the laser. The B&W approach has also been used in conventional neurons.
For example, in [144] an MZI-based neuron is used in which the activation function is a binary function of +1 or
-1 (symbolic decision function)

VSCELs have also shown great potential to implement an activation function, due to their relatively small
footprint [145], low-power consumption [135], capability for 2D or 3D integration in arrays [99], low
manufacturing costs [135], [145], and efficiency in coupling to optical fibers [135], [147]. In [97], the spiking
behavior of VCSEL-based neurons, which is electrically controlled, is investigated. In [146], the spiking behavior
of VCSELSs with both parallel and orthogonal polarized optical stimuli is explored, and results show that VCSELs
are able to produce controllable spikes required to enable ultra-fast optical neural networks. In [135], the
excitation behavior of a VCSEL is studied. To investigate cascadability of VCSELs while considering their
excitation behavior, two VCSELs—a transmitter VSCEL and a receiver VCSEL—are considered in [135].
Results show that controllable spikes (using an external control signal) are propagated from the first VCSEL to

15



the second one, confirming cascadability of VCSELs and that they can be used as an excitation device in
photonic neural networks. However, after firing a spike using a VCSEL, an inherent relaxation oscillation can
occur which deteriorates reliability and speed of photonic neurons [91], [148]. The majority of VCSEL-based
photonic neurons [99], [139], [146], [149] do not support excitatory and inhibitory activations at the same time.
However, in [91] and [148], both excitatory and inhibitory functions are realized in VCSELs by employing double
polarized injections, i.e., orthogonally and parallelly polarized injections. Silicon photonic devices are often
designed for a single-polarization operation, hence employing double-polarized VCSELs is a challenge.

PCMs can also be used in the design of photonic devices to realize activation functions. The all-optical
neuron proposed in [120], shown in figure 13, employs PCMs in an MR structure to realize excitation behavior
of spiking neurons. Figure 13(a) shows the schematic of the proposed neuron, figure 13(b) shows its main
components, and figure 13 (c) shows the circuit design of the proposed neuron. As shown in the figures, PCM
is not only used to implement the weighting function but it is also placed on the MR to mimic an activation
function. The transmission response of the PCM on the MR (shown in figure 13(b)-1V) was used to emulate the

RelLU activation function.
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Figure 13: PCM-based neuron proposed in [120]: (a) schematic of the neuron model, (b) main components of the neuron, and (c)
photonic circuit of the neuron.

4.1.4 STDP learning function

In spiking neurons, Spiking Time Dependent Plasticity (STDP) learning is usually employed to closely mimic
a biological neuron, while in conventional artificial neurons, the learning function is implemented at the neural-
network-architecture level and usually in the electronic domain. In spiking neurons, the STDP learning function
updates weights based on pre-synaptic and post-synaptic spikes to help gradually decrease the neural network
error, which corresponds to the difference between the desired and the actual output. In the STDP learning
process, the strength of connections (i.e., synapses) is adjusted based on the spiking time of pre-synaptic and
post-synaptic neurons. Changes in weight synapse are based on the output and input spiking time. According
to the spiking time of pre-synaptic neuron and post-synaptic neuron, the weight can be increased or decreased
to implement a learning function for a photonic neuron. A synapse's weight increases, which is called
“potentiation,” if the pre-synaptic spike occurs right before the post-synaptic spike. On the other hand, a
synapse’s weight decreases when the pre-synaptic spike misses the excitation of the post-synaptic neuron, i.e.,
the post-synaptic neuron fires as a result of the spikes received from the other pre-synaptic neurons.

In [122], STDP is implemented using an SOA and an Electro-Absorption Modulator (EAM), which can be
deployed in high-speed (picosecond timescale) neural network computation. Also, [123] discusses photonic
implementation of STDP and its application in both supervised and unsupervised learning. Employing a single
SOA device to implement STDP learning improves the neuron scalability to realize supervised and
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unsupervised learning algorithms in large-scale neural networks. However, employing SOAs to implement
STDP imposes high-power consumption (e.g., in comparison with using passive devices). In [150], STDP
learning algorithm is implemented based on using passive MRs, which is suitable to design large-scale photonic
neural networks with low-power consumption. In [125], a VCSOA is employed to improve the high-power
consumption in STDP learning implementations based on SOAs.

4.1.5 Summary

The state-of-the-art neural functions and their implementation using silicon photonic devices discussed in
this section are summarized in Table.1.

Table 1: A summary of neural functions and their implementation using silicon photonic devices

Implementation Advantages Disadvantages References
Weighting MR filters Compatible with WDM Not all-optical (require [401, [110]
function signal conversions)
Several PCM islands All optical weight update Low operation speed [118]
on a tapered
waveguide
Summation Photodiode Compatible with WDM Low scalability [90]
function Micropillar laser Both summation and excitation | Does not support WDM | [142]
in laser and inhibitory function
Activation VCSEL by double Support both excitatory and Require double [91], [148]
function Fa polarized injection inhibitory functions; VCSEL polarized injection
2 advantages (low power, small
P ,9_. a footprint, implementation in
E g . arrays for large-scale designs)
+ £ E MR Use passive devices Sensitive to [112], [113]
g ° compatible with standard temperature and
g- s CMOS technology; support fabrication-process
(7] both excitatory and inhibitory variations; has a limited
functions cascadability
VCSEL Low power, small footprint, Uses active laser [971, [99],
implementation in arrays for devices that consume [146], [135],
large-scale designs high power compared [147]
to passive ones [112],
[113]
PCM and MR Power efficient due to the use low cascadability [120]
passive devices
STDP Learning Semiconductor optical | Scalable Power inefficient [122], [123]
function amplifier (SOA)
Vertical-cavity Power efficient in comparison Employing active [125]
semiconductor optical | with SOA-based STDP devices, which are
amplifier (VCSOA) learning power hungry
MR Power efficient because of Only support [150]
implementation with passive unsupervised STDP
device — does not require learning
neurons to spike at different
wavelengths

4.2 Classifications of Silicon-Photonic Neuron Microarchitecture Implementations

Neuron implementations with silicon photonics can be classified in two ways: 1) all-optical versus opto-
electronic neurons, and 2) coherent versus noncoherent neurons. In the following subsections, we discuss
these two neuron implementation classification approaches in detail.

4.2.1 All-optical versus opto-electronic neurons

In opto-electronic neuron designs, there is a need for electrical-to-optical and optical-to-electrical
conversions. In such neurons, weighted inputs are typically summed/combined using a photodetector to control
a laser [90]. Therefore, optical inputs should be converted to electrical signals and the electrical output of the
photodetector should then be converted to an optical signal using a laser (see figure 11). Because of such
conversions from optical to electrical and electrical to optical domains, the neuron is also called an O/E/O
neuron. Compared with all-optical neurons, O/E/O neurons are power inefficient due to the power losses
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enforced in the required conversions. Moreover, due to the analog nature of intra-neuron communication [85]
in both electrical and optical domains, the photodetector and the modulator laser are susceptible to noise. A
noise analysis for opto-electronic neurons is presented in [85]. To compensate for the noise, the power of the
modulator or electric transimpedance gain should be increased by adding a transimpedance amplifier (TIA)
[85]. However, increasing the modulator power and adding a TIA both result in power consumption overhead.
Conventional O/E/O neurons [40], [85], [111] often employ a directly modulated laser for excitation and spiking
which in turn necessitates the placement of the photonic devices and the laser on the same chip. Consequently,
such neurons suffer from thermal issues and variations caused by the on-chip laser. To this end, Modulator
Neuron [83], [85] employs a modulator instead of a directly modulated laser. Therefore, the neurons can use
an off-chip laser as the light source to compensate for the thermal issues.

In all-optical neurons, there is no need for electro-optical conversion during intra-neuron communication,
i.e., all the devices within the artificial neuron support optical signal communication [113], [120]. For example,
[120] proposed an all-optical spiking neuron, shown in figure 13, including an STDP learning implementation.
Moreover, [113] proposed an all-optical neuron based on passive devices (in which the light is not generated
by the device itself). The models presented in [113] suggest that MRs provide fast and power efficient excitatory
and inhibitory functions in photonic neurons. Besides inhibitory and excitatory functions, the proposed model
shows refractory behavior, which is an important functionality in a neural network implementation. Moreover,
because the proposed neuron employs passive MR devices, it can be easily implemented with standard CMOS
technology. However, such all-optical neurons lack high cascadability to support a large neural network. In
addition, as we discussed in Section 4.1.1, all optical synapses (as a part of all-optical neurons) suffer from low-
speed operation to implement weighting functions.

4.2.2 Coherent and noncoherent neurons

Based on the wavelength of operation in neurons, neuron implementations can be classified as coherent
or noncoherent [151]. Coherent neurons manipulate the electrical field phase and amplitude with a single
wavelength. Noncoherent neurons, such as those that employ the B&W photonic neuron configuration
discussed earlier, manipulate optical signal power and rely on multiple wavelengths. The coherent neurons
proposed in [32] and [141] employ MZIs and are power efficient as they require a single wavelength. However,
MZIs impose a high area overhead and thus the design cannot be extended to support large-scale neural
networks. Moreover, MZls in coherent neurons require phase shifters in which the tuning error is inevitable.
This tuning error can be propagated and magnified in the neural network, reducing the network reliability. The
use of microdisk lasers was investigated in [113] to design a coherent neuron in which excitatory and inhibitory
functions are realized by controlling optical phases. However, adjusting optical phases, which can be done
using a microheater [113], adds a new challenge. In addition to phase-control challenges, coherent neurons
operate at a single wavelength and are unable to distinguish between different wavelengths. Consequently, a
neural network based on coherent neurons does not support reconfigurability [84] and WDM, resulting in a low-
bandwidth performance. On the other hand, noncoherent neurons can operate with multiple wavelengths and
support WDM in which several wavelengths share a waveguide to offer a high connectivity with lower number
of waveguides. However, the dependency between the input and output wavelengths in photonic ANNs using
noncoherent neurons necessitates wavelength conversions [84]. Such conversions can require high-power
consumption overheads [152]. Moreover, noncoherent neurons also suffer from inter-channel crosstalk, which
can reduce reliability [40].

4.2.3 Summary

Table 2 summarizes the state-of-the-art all-optical, opto-electronic, coherent, and noncoherent neuron
microarchitecture implementation approaches.
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Table 2: A summary of some proposed neuron microarchitectures using silicon photonic devices

Implementation Advantages Disadvantages References
Use weight bank for Use WDM to offer high Not all optical — consumes power [90]
c « | synapse, photodetector bandwidth in electro-optical and opto-
§ @ | for summation, and electrical conversions; requires
g 2 | laser for spiking wavelength conversions
o 8 Use modulator instead Use WDM to offer high Not all optical; high power [83], [85]
@ § | of direct modulation by bandwidth; support on-chip | consumption because of
O | 2 | laser neurons with off-chip employing couplers
lasers

+ | Use MR weight banks Supports both Cross-weight penalty [40] for [120]

E for synapse and PCM unsupervised and weight tuning; low cascadability

o | for excitation function supervised learning; no

'5 need for electro-optical or

3 opto-electrical conversion

2
c MR (require an all- Use passive devices; no Optical learning is not included; [113]
g optical synapse: need for electro-optical or low cascadability
e synapse [118] is opto-electrical conversion
= suggested by the paper)
% Splitters and MZIs Higher reliability and low Low bandwidth because of using [141]
_‘? E power overhead in one wavelength; area inefficient;
< 2 comparison with using exact splitting ratios are hard to

=] several wavelengths achieve after fabrication due to

o variations; susceptible to noise in

phase and splitting ratios [153]

MZls Higher reliability and low Low bandwidth because of using [32]
power overhead in one wavelength; area inefficient
comparison with using and hence not scalable;
several wavelengths susceptible to phase noise

5 SILICON PHOTONIC NEURAL NETWORK ARCHITECTURES

At the architecture level, prior work focuses on implementing different types of neural network models
(discussed in Section 2): ANNs (MLPs, CNNs, RNNs), SNNs, and RC. The overarching innovation of a
particular work is governed by the basic optical devices used in the architecture and the fundamental principles,
such as optical resonance and optical interference, that govern those devices. These principles ultimately have
the biggest impact on the performance, power, and reliability centric design decisions, and also the inherent
limitations of the architecture built using them. Thus, devices and the driving principles behind them drive the
innovations required to realize the architectures with silicon photonics technology. Hence, our classification in
this section will be based on the primary photonic principles used to construct the neural network architectures.

5.1 Optical Resonance based Network Architectures

Optical resonance based neural network implementations usually rely on the wavelength specificity of MRs
or microdisks, which leads to the utilization of WDM-based implementations where multiple wavelengths are
utilized in a waveguide. These architectures are noncoherent architectures and utilize the noncoherent neuron
microarchitectures discussed in Section 4.2. Most of these architectures utilize or build on the B&W protocal,
illustrated in figure 14, for setting and updating the weights as it was demonstrated in [154] to have isomorphism
to Continuous Time Recurrent Neural Networks (CTRNNs). The feedback loops, which are characteristic of
RNNs, can be emulated by MRs when they reach optical bistability. Under favourable conditions pertaining to
the resonant material and incident transmission intensity, the output transmission of the resonator can enter a
hysteresis cycle, with two stable transmission levels. This is referred to as optical bistability of resonators. The
work in [154] also suggested using Mach—-Zehnder Modulators (MZMs) to generate the sigmoid activation
function. This specific work provided the proof-of-concept that B&W-based MR architectures can be used to
implement neural networks and that they can yield better performance over traditional CPU-based CTRNNSs.
For benchmarking, they considered a Lorenz Attractor [155] simulation application and reported a 294x
acceleration with their photonic architecture compared to CPU-based simulations.
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The B&W protocol is a multi-wavelength analog networking protocol in which multiple all-photonic neuron
outputs are multiplexed and distributed to all-neuron inputs. These architectures tend to make use of the
parallelism that is inherent in photonic architectures, employing multiple wavelengths to transfer data in parallel
using WDM. Different wavelengths in a waveguide represent the input signals to the neuron. Weights are
reconfigured by tuning the MRs, so that the characteristics of a specific wavelength are modified. MR weight
banks comprise of tuneable MRs which can be tuned to drain energy from their resonant wavelength so that
intensity of the wavelengths reflect the weights or the kernel values. The change in intensity is read using
photodetectors (PDs) and summed to obtain the output values from the weight bank. This process was
described in detail in Subsections 4.1.1 and 4.1.2. The obvious advantage of this approach is the utilization of
the well-studied and mature MR technology to implement photonic neural networks, which makes the hardware
implementation and integration easier. However, an issue this protocol can face is the number of MRs needed
to implement it for real-world applications and depending on the feature map and the kernel size for CNNs this
can become exorbitant. The research utilizing this protocol tries to work around this issue.
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Figure 14: The Broadcast-and-Weight (B&W) protocol as illustrated 1n [37].

The authors in [156] utilize the B&W protocol with an MZM to implement the sigmoid non-linearity as in
[154] to propose a CNN accelerator, dubbed Photonic CNN Accelerator (PCNNA). PCNNA implements one
CNN layer and reuses that layer sequentially, with varying kernel sizes to implement the whole CNN. The input
feature map and the required kernels are loaded from an off-chip DRAM. The results from the execution of
individual layers are fed back into the memory. This is a sequential execution of kernels using an optical core,
which runs at a higher clock frequency than its electrical components. The optical core mentioned here is
comprised of the weighting MR banks and Digital to Analog Converters (DACs) that feed data into the MR banks
and the laser diodes (LDs). The authors argue that because CNNs use kernels with the same dimensions per
layer, they share the same receptive fields, and hence convolution computations for different kernels can be
performed in parallel. They demonstrated the effectiveness of this work by implementing AlexNet, which is a
deep CNN architecture with eight layers, five convolution layers and three fully connected layers. The authors
showed how their filter-based approach to implementing AlexNet had substantially fewer number of MRs than
an approach which does not consider any optimizations for implementing AlexNet (they claimed a reduction in
the number of MRs from one-billion range to 100,000 range).

Another architecture which utilizes photonic weight banks for implementing CNNs is described in [157].
The authors have described an architecture which implements the entirety of the CNN layers using connected
convolution units which are comprised of weight banks, where the tuned MRs assume the kernel values by
using phase tuning to manipulate the energy in their resonant wavelengths. The architecture was tested using
the MNIST dataset [158] and was shown to have better execution time than GPU-based classification, with the
AMD Vega FE, AMD M125, NVIDIA Tesla P100 and NVIDIA GTX 1080 Ti GPUs. However, they do not consider
any optimization methods on the model to reduce the MR count required to represent it, and they report a very
high 100W power utilization for a 1024 MR modulator array in their proposed architecture.

A CNN accelerator implemented using MRs and memristors, is described in [132]. In this work, weights are
fed into the MR-weight bank through memristors, which in tumn gets their weight values from off-chip memories
via SRAM buffers. The architecture includes individual layers needed for CNN implementation. The convolution
layer is comprised of the memristor-based photonic weight bank. The activation layer (ReLU layer) is built using
SOAs. The work also uses an all-optical analog comparator, proposed in [130], to implement maxpooling layer.
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These three layers form a single feature-extraction layer. Two feature-extraction layers are interconnected using
an interface layer, which demodulates the output from the previous maxpool layer, generates the corresponding
electronic voltage values, and then feeds them into the memirristors of the next feature extraction layer. This
work focused on recognition of handwritten digits, using the MNIST dataset and shows better execution time
against the FPGA-based Caffeine accelerator [159] and the memristor based ISAAC accelerator [20] on various
benchmarks. The architecture was further extended by the authors in [208].
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Figure 15: The hitless weight and aggregate architecture for optical matrix-vector multiphiers (OMMs), from [37]. The architecture aims
to avoid the thermal crosstalk-based weight corruption that can occur in the B&W protocol-based architectures.

A variation of the B&W protocol for MLP implementations was explored in [37] where the authors described
the “Hitless weight-and-aggregate” architecture. This method to accumulate weight values from the weight
banks was devised to overcome the possible corruption of weight values from thermal variations and thermal
crosstalk. The proposed “Hitless weight-and-aggregate” architecture for MR-weight banks separates the
wavelengths and weighs them in a parallel manner instead of the cascaded approach proposed in [154]. The
process of updating the input matrix is simplified to counteract the delay induced by updating the weights in the
weight bank. This is done by encoding the kernel directly into the input matrix of the Optical Matrix Multiply
(OMM) unit, which is illustrated in figure 15. The control of the Hitless MR bank architecture is given to an FPGA,
which use PDs and ADCs to obtain the summed signals from the OMM. The OMMs were implemented using
MRs but the vector storage was implemented using MZIs. Given that the main issue with B&W is the large MR
count, it is unclear if the modified architecture can address that issue, as the work does not elaborate on the
MR count, even with the input matrix minimization approach discussed in the paper.

MRs are prominently used to implement the B&W protocol, but an architecture which considered microdisks
over MRs for its lower area and power consumption is described in [160]. This work explores designing and
implementing photonic Matrix-Vector Multipliers (MVMs), adders, and shifters, which are the fundamental
computing components for CNN inference, using microdisks (figure 16). The MVM (figure 16(a)) uses the
transmissivity of the microdisk array to represent the elements of one matrix and the input power into the
microdisk array from the LD array to represent the other matrix. The output power from the microdisk array is
product of the two matrices. The electro-optic full adder (figure 16(b)) utilizes CMOS logic gates to calculate the
propagate bit (Pn) and the generate bit (Gn) needed for the full adder, and microdisks to calculate the sum and
carry. The P, and G, values are used to modulate the microdisks. By modulating the light intensity, one of the
optical combiners at the output implements an XOR gate while the other generates an OR gate, thereby
implementing all the necessary operations for the sum and carry operations. The authors also propose a binary
shifter using microdisks as shown in figure 16(c). The shifting operation is performed by configuring the on/off
states of the microdisk crossing switches. The authors also describe simplified CNN models called power of
two quantized CNN (P2Q-CNN) models to avoid reliance on ADCs and boost CNN inference accuracy with
negligible drop in accuracy (below 1%). This alternative architecture uses a photonic adder and shifter
combination instead of the MVM. For testing the architecture, the authors used benchmarks based on MNIST
and ImageNet datasets. They compared this architecture to a ReRAM-based PIM accelerator
ISAAC [20], and showed 13x better performance-per-watt.
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Figure 16: (a) Microdisk-based on-chip matrix-vector multiplier (MVM), (b) electro-optic full adder:; (c) photonic bit shifter, from [160].

A recent work [161] combined MRs and MZIs to design the basic Optical Multiply and Accumulate (OMAC)
unit, which is used in an accelerator for CNNs, called PIXEL. The work describes two versions of the accelerator:
a hybrid version that multiplies optically and accumulates electrically, and a fully optical version that multiples
and accumulates optically. The hybrid version uses MRs to implement an AND function with the MRs controlled
using a synapse-lane, with shift-accumulation being done electrically. The bitwise AND operation along with
shift-accumulate is used as an alternative to the opto-electrical MAC operation. The all-optical shift and ADD
design uses MZIs to perform low-latency, low-power shift-accumulate operation optically and by cascading MZIs
together. Synchronization of the signals from AND output is achieved with the help of propagation delay in MZI
arms. Large dimensional MZIs and 8mm waveguide arms between these MZ|s are used, to induce propagation
delay in optical signals. The output signal from these interconnected MZIs effectively bit shifts the input. The
proposed architecture has register files for filter weight storage in each OMAC. The OMACs are arranged in a
grid, and neuron outputs are passed through photonic interconnects in both x- and y-dimensions. The synapses
are pre-loaded into the OMAC and the proposed design assumes timed firing of the neurons to implement the
MAC functionality. The hybrid and all-optical approaches were compared against an all-electrical architecture
via simulations for the ResNet, GoogleNet, and ZFNet models. The all-optical approach shows better energy
efficiency than the all-electrical approach and is comparable to the hybrid approach in this regard. The hybrid
approach which relies only on MRs occupies significantly smaller area than the all-optical version of the
architecture which uses both MRs and MZIs.

The B&W protocol has also been used for SNNs as discussed in [90]. The suggested architecture utilizes
laser neurons in conjunction with two different MR weight banks to interact with the WDM signals. The weight
banks are used to represent excitatory and inhibitory weights. The weights are accumulated using a balanced
PD pair before being used to excite a laser neuron. One of the PDs in the pair accepts the signal power from
the excitatory weight bank and the other accepts power from the inhibitory weight bank. A short wire is
incorporated to perform a subtraction operation, thereby considering the values from the inhibitory bank as
negative values. The combination of the weight banks, the PDs, and the LD acting as the firing mechanism,
simulates a basic spiking neuron and is called a processing network node (PNN) in this work. The WDM signals
are transmitted between these PNNs using a broadcast loop (BL). Multiple broadcast loops can be connected
together in hierarchical manner via interfacing PNNs. Interfacing PNNs are PNNs which are tasked with the
purpose of accepting output values from one BL and passing it to another, essentially acting as an optical router
for the signals. The authors of [161] explored this strategy to allow for spectrum reuse and improve parallel
processing. The work does not provide an experiment section to demonstrate the capabilities of the proposed
architecture. Rather this work explored the feasibility of the B&W protocol based spiking neural networks. The
key observation in the work involves how utilizing the hierarchical broadcast loop architecture would allow for
better spatial layout freedom than other conventional hardware neuromorphic systems.
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There are other instances where MRs are used to implement SNNs other than through the B&W protocol.
For example, in [162] MRs are employed to implement STDP on a chip. The authors of [162] incorporated
GezSbsTes (GST), a popular and well-studied PCM material [163]-{166] on top of the ring waveguide in the ring
resonator. This allowed the control of light propagation through the ports by merely changing the state of the
GST. In this case, the PCM and its different phases act as the memory in the synapse. The authors of [162]
also discussed potential integration of the integrate-and-fire neuron using MRs and GST in an SNN framework
consisting of bipolar weights (weights with positive and negative values). The positive and negative weighted
sums are computed using two separate dot-product engines and input to two different MRs. The bidirectional
integrating action of the two ports of the MR is leveraged to calculate the effective membrane potential under
the action of the bipolar weighted sums. Output spikes are generated when the effective membrane potential
of the neuron crosses a threshold. Upon receiving the dot product stimulus, the neurons integrate their
membrane potential at that time-step. The work tested this architecture using the MNIST data set and assumed
that the dot product engine has perfect operation. The work highlights the viability of PCM-based STDP in
neuromorphic architectures and showcased this by demonstrating faster read/write operations and low energy
consumption for the photonic architecture when compared to an electronic counterpart. In their simulations, a
testing accuracy of 98.3% was achieved using this architecture. A related work [167] discussed how MRs can
be used to incorporate spike delays into a photonic SNN.

A few works have also proposed MR-based photonic reservoir computing (RC) architectures, such as the
5x5 MR reservoir for high-bit-rate digital pattern classification in [168]. In this work, the reservoir was formed by
randomly interconnected MRs. The simulated architecture was able to achieve a classification error of only
0.5% while offering bit rates up to 160 Gbps for eight-bit-length digital words for bit-pattern recognition on a
custom dataset. The authors in [169] explored a 4x4 swirl topology-based reservoir design which utilizes MRs.
The work also demonstrated basic Boolean operations. In such architectures the nodes are comprised of non-
linear elements (MRs) and are part of the recurrence of the network, which is a departure from the original swirl
topology introduced in [170]. This architecture has been widely used in photonic RC research. The swirl in the
data paths allows for sufficient mixing of the input signals/weight matrix. Traditionally, reservoir architectures
set their nodes at near instability for proper operation of the reservoir to ensure that they have sufficient memory
of past inputs and respond well to new inputs. The MRs in [169] are set to this operating point after detailed
analysis of MR stability in operation and resonance at various input power values, as well as temperature
induced optical detuning from resonance.

In summary, noncoherent neuron microarchitectures that use MRs are one of the most prolifically used
components to implement photonic neural network architectures. These noncoherent architectures that use
MRs span SNNs, ANNs (MLPs, CNNs), and RCs. The majority of the SNN, MLP, and CNN architectures utilize
the B&W protocol for propagating weights through the network. Some efforts have identified several issues with
this protocol, such as heterodyne crosstalk corrupting the weight values and the increasing large number of
MRs needed for the implementation of larger networks, especially when larger WDM degrees are utilized [37].
Other works have suggested reusing implemented layers as in [156], and also methods to reduce energy
consumption and increase speed of operation by reducing the involvement of electronic components [160].
Moreover, there have been suggestions to use microdisks instead of MRs to further increase the integration
density in chips as in [160]. MRs have also been used for weight propagation in SNNs using the B&W protocol
as in [90] and for implementing STDP in photonic SNNs [162], [171]. They also appear in RC to create the
nodes in reservoirs that are comprised of randomly interconnected nodes [169].

5.2  Optical Interferometry based Network Architectures

Optical interferometry based neural network implementations usually rely on the manipulation of the
electrical field phase and amplitude of a single optical wavelength. These are coherent architectures and utilize
the coherent neuron microarchitectures discussed in Section 4.2. Coherent architectures rely extensively on
MZIs and have been widely employed in MLP implementations. MZIs have less commonly been used to play
the part of intensity modulators in some SNN implementations. The large number of nodes needed in the
reservoir and the large area requirement of MZls make them not very popular in RC implementations. MZI-
based coherent architectures utilize universal linear meshes of MZIs to implement the required matrix
multiplications needed by neural networks. The weights are controlled by controlling the phase and amplitude
of optical signals which is done by implanting attenuators and phase shifters on the MZl arms. This was
demonstrated in [172] where 2x2 beam splitters and phase shifters in the form of an MZ| was programmed to
enable independent control of amplitude and phase of light for a set of optical channels.

The work in [173] fabricates and demonstrates an MZl-based 4x4 optical matrix multiplier. Here, the
architecture is constructed based on the premise that an ideal NxN multiport reconfigurable MZI-based
interferometer represents a special unitary (SU) group of degree N, SU(N), which is comprised of n MZIs with
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N optical channels forming a unitary transformation matrix. In [173], the structure is made of an SU(N=4) section
followed by a diagonal matrix multiplication (DMM) section (figure 17(a)). The DMM can be extended depending
on the application and can form a complete SVD through cascading. This 4x4 optical matrix multiplier was used
for implementing a single-layered neural network. The performance of the neural network was evaluated by
tasking it to classify 50 data samples of a synthetic linearly separable multivariate Gaussian dataset, for which
it was able to achieve a 72% accuracy. The work in [174] describes another matrix SVD-based mesh
implementation, which can implement arbitrary non-unitary matrices using MZIs. The Singular Value
Decomposition (SVD) based methodology is used to perform decomposition of matrices to unitary matrices,
and these simplified matrices are implemented on-chip. More specifically, SVD is the process by which a matrix
can be decomposed into three matrices, two unitary matrices V and U, and a diagonal matrix comprised of non-
zero singular values z. The SVD process can be implemented in an MZI mesh by using a diagonal matrix which
implements the amplitude and phase while the universal unitary matrices follow the designs as proposed by
[172] and [175]. The final architecture of this approach is shown in figure 17(b).
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Figure 17: (a) The 4 = 4 MZI-based reconfigurable linear optical processor from [173]; SU 1s special unitary group and DMM is the
Diagonal matrix multiplication unit; (b) The umversal linear mesh for MZI based Singular Value Decomposition (SVD) as described in
[174]. The matrices involved in SVD implemented: V in green, diagonal matrix ¥ in blue and U” in red.

The authors in [32] proposed an architecture that utilizes an SVD-based approach for implementing the
necessary matrix calculations (figure 18), where vectors were encoded in the intensity and phase of light and
then fed into each layer of the network. SVD is used to decompose the matrices to be multiplied into unitary
matrices which can be encoded into the MZI mesh. The SVD operation and encoding signals for the MZIs were
generated using a digital computer. Once the matrices are encoded into the MZl mesh, matrix multiplication
between them can be performed by allowing the optical signal to pass passively through the mesh. The key
advantages of SVD is the reduced complexity of operation and reduction in dimensionality which helps with
reduced cost of operation of the DNN model at hand. Each layer of this proposed model is comprised of an
Optical Interference Unit (OlU) and an Optical Non-linearity Unit (ONU). In this work, ONU functionality was
implemented with digital electronics while the OIU was implemented in a photonic integrated circuit, which
performed optical matrix multiplications using the SVD approach as described in [174]. The work in [32]
discussed how to use such an architecture for vowel recognition. They also utilized forward propagation with
finite difference method instead of backpropagation to train the architecture. The architecture was able to
achieve 76.7% accuracy in classifying vowels, which is lower than the 91.7% achieved by the same architecture
implemented on a conventional 64-bit digital computer. The authors attribute the lower accuracy to the limited
computational resolution (24 bits as opposed to the 64 bits of the conventional computer) of the optical neural
network.
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Figure 18: The architecture from [32] that utilizes SVD to implement the matrix multiphcations for vowel recognition using a Photonmic
Integrated Circuit (PIC).

MZIs have been noted to have much larger footprint (which can be up to a few millimeters [161] or tens to
hundreds of micrometers) than their counterparts (e.g., MRs) and as [132] noted, this large footprint in
combination with accumulation of phase errors throughout an MZI-based mesh can limit the scalability of neural
networks built with MZIs. There has been research, such as in [176], focusing on reducing the overall area
consumption by these architectures, whether it be by utilizing methods to prune the weight matrices represented
by MZI meshes or by utilizing other devices in tandem.
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Figure 19: FFT-IFFT based photonic Structured Neural Network architecture described m [144]. The FFT based analyses of the model
aims to simplify the model and thereby reduce energy and area consumption of the MZI meshes.

The work in [176] demonstrated a Fast Fourier Transform (FFT) based methodology to reduce area and
energy footprint of MZI meshes used to implement MLPs. This is achieved by sparsifying the network through
reducing the overall number of weights used, thereby compressing the neural network. The proposed
architecture is based on structured neural networks with circulant matrix representation. Structured neural
networks are a class of neural networks that are specially designed for computational complexity reduction,
whose weight matrices are regularized using the composition of structured sub-matrices [177]. Structured
neural networks utilize circulant weight matrices, which can be efficiently calculated using FFT and Inverse FFT
(IFFT). The weight matrices are further pruned using Group Lasso regularization [178], and these operations
can be implemented in MZI meshes using cascaded attenuator/amplifiers and phase shifters (figure 19). The
authors of [176] adapted this methodology because of the difficulty in pruning SVD-based architectures. The
architecture was tested using the MNIST data set against SVD-based architectures to show how effective their
method is in reducing the overall area consumption of MZI meshes. The results indicate the architecture was
able to achieve close to 98.5% testing accuracy while substantially reducing the overall area consumption.

The authors of [144] proposed a coherent MZI-based binary neural network implementation with weights
restricted to +1 or -1. The activation function is a symbolic decision function which binarizes any real number
mapped to it to +1 or -1. The weights of binarization are encoded onto the MZI by shifting voltages on the
internal and external phase shifters on MZI arms. The real and imaginary parts of the two-way polarized In-
phase and Quadrature component (IQ) modulated optical signal are used for training the model in simulation.
The input to the model is the real and imaginary part of the signal, while the output is the prediction of the input
position by the neural network. This work tested the architecture, comprised of seven hidden layers, for
classifying to nearest neighbours the constellation formed by real and imaginary parts of a 100 GHz DP-QPSK
signal. Close to 100% accuracy in classification was achieved for high Signal-to-Noise Ratio (SNR) input
signals, while an accuracy close to 90% was achieved for low SNR signals.

As mentioned earlier, MZI-based architectures are typically coherent and utilize only a single wavelength.
But MZIs have been used to implement WDM-based or noncoherent architectures as well. For instance, the
work in [133] that demonstrated a photonic matrix multiplication accelerator using MZIs and Arrayed Waveguide
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Grating (AWG)-Multimode Interferences (MMIs). A single unit of AWG-MMI coupler balanced detector can
successfully perform matrix multiplication by using WDM and coherent homodyne detection scheme. MZIs are
utilized as intensity modulators, which feed into the multiplier (figure 20). The work in [143] demonstrated an
all-optical WDM RNN utilizing an SOA-MZI| as an activation unit incorporated into the feedback delay loop. In
order to emulate a fully functional Gated-Recurrent-Unit (GRU), the authors integrated a gating mechanism (the
SOA-MZI) to allow for agile reconfiguration of forget functions within a GRU. The SOA are embedded into the
arms of the MZI, and act as cross gain modulation wavelength converters. An RNN was constructed using this
unit and tested using a four-input WDM. The utility of the RNN was tested by running a finance forecasting
benchmark application using the FI-2010 dataset. The gated optical RNN was able to achieve a higher F1 score
(41.85%) than the optical and regular RNNs.
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Figure 20: Cascadable analog feed-forward artificial neural network structure with photonic matrix-vector multiphier circmt and Mach—
Zehnder modulator non-linearity, as depicted 1n [133].

In summary, coherent neuron microarchitectures that make use of interferometer devices such as MZls
have been widely used in photonic neural network architectures because of their ability to effectively represent
matrices for neural network operations, but at the cost of a larger area overhead than MRs and susceptibility to
phase-noise corruption. The basic principle of MZIs for neural network operations relies on phase and amplitude
tuning of a passing optical wavelength, which can be easily achieved by integrating phase and amplitude tuners
in MZI arms. MZIs are typically arranged in a mesh configuration in the works that use them, with SVD also
being used to efficiently represent matrices. A reduction in MZI area footprint and phase-noise corruption is
attempted via regularization approaches (e.g., [32], [144]) or by utilizing niche neural network models to reduce
the overall MZI count ([176]). Usually, architectures which make use of MZIs use coherent principles to function,
but MZls have also been used in noncoherent approaches which make use of WDM, e.g., the RNN
implementation in [133] which utilizes SOAs and MZIs in combination. They are not found to be used in any RC
based architectures, probably because of the large area requirement an MZ| based implementation would
require to realize the large number of non-linear nodes in an RC implementation.

5.3  Diffractive Optics based Network Architectures

On-chip diffractive optics have also also used for implementing photonic neural network architectures. The
obvious advantage of using these techniques is implementing the necessary functionalities passively, by
leveraging the physics of diffractive optics. This is different from the MRs and MZls as they are used as active
devices which need active tuning (as in the case of MRs) or control mechanisms for phase control (as in the
case of MZIs).

Various architectures discuss MLP implementations by integrating on-chip diffractive optics. These usually
utilize AWG/Star couplers along with polarization controllers and SOAs to achieve the various functionalities
needed to implement the neural network. The architecture described in [179] describes one such
implementation where the AWGs are utilized to reduce noise and increase resolution of the accumulated weight
values, demonstrating neuromorphic weighted addition operations in an 8x8 InP cross-connect. The weights
are multiplied onto the optical signals by tuning the gain of SOAs. The output signals are then combined to
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accumulate the results and the weighted addition operation is executed by using PDs to obtain the resultant
opto-current. A highly precise 4-bit precision multiplication and accumulation operation is achieved with an error
of less than 0.2 in this system. The authors claim that this system can be scaled to form viable photonic DNNs.

The work in [134] explored a combination of AWGs (figure 21(a)) and MZIs to implement a CNN
(figure 21(b)). The free-space propagation in the AWG was utilized to mimic an approximate Discrete Fourier
Transform operation (DFT). Cascading two DFT operations with a phase and amplitude mask in between them
was used to represent a convolution operation. The pooling layer was implemented as a low pass filter which
only passes low frequency components of the DFT. The filter was implemented with three AWGs with a phase
and amplitude mask between the first two. Lastly, the fully connected layer was implemented as an MZ| mesh
with tuneable attenuators/amplifiers in its arms. The MZ| mesh implements SVD to represent the unitary matrix
obtained from the DFT operations. The authors used the Cooley-Tukey FFT Algorithm [180] to reduce the
number of MZIls used and thus reduce the implementation footprint. The Cooley-Tukey FFT algorithm utilizes a
composite of DFTs to generate an approximation of the continuous FFT, and is extremely popular in FFT based
applications. This work also explored how noise in the masks applied to the AWG outputs will affect the accuracy
of the architecture for the MNIST dataset classification problem. The work explored how different noise sources
would impact the test accuracy of the architecture, by considering Gaussian amplitude, phase, and complex
noise addition to the AWG matrix. The architecture was shown to be resilient to noise, once it was trained with
noisy input signals. By retraining the output layer with noise, the architecture was claimed to have substantial
recovery in accuracy even with severely noisy inputs.
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Figure 21: (a) Schematic of an NxM star coupler or an AWG. R 1s the radius of the confocal circles that make up the free-space propagation
region. &y 1s the angle of the n™ input waveguide, 8 is the angle of the m™ output waveguide. w is the waveguide mode width parameter.
(b) An AWG based CNN implementation, which utilizes the fact that optical signals passing throngh the free propagation region of a star
coupler undergoes Discrete Founer Transform (DFT). 4 and G are filter masks [134].

The work in [34] discussed a reservoir based on the 4x4 swirl topology, with its readout layer comprised
of non-linear optical modulators (figure 22). The reservoir utilized is of passive elements as in [169]. The notable
approaches adapted here include a demonstration of using 4-Pulse-Amplitude Modulation (4-PAM) in a
reservoir computing setting, where Boolean operations like XOR are the benchmark. In addition, the authors
presented an RC architecture which uses pillar silica scatterers with cavity as the passive element in the
reservoir. For experiments and simulations, the authors scaled their reservoir up to 20x20 nodes. They
simulated this architecture, shown in figure 23, using FDTD simulations. The architecture also demonstrated
classification capabilities by being trained to identify cancer cells from normal cells. The performance of this
label-less classification was compared to previous work [129] that used pillar scatterers without cavity, which
caused the work in [129] to use lower wavelength waves (UV) for the reservoir. The approach of using UV for
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this task was found to be impractical due to the high cost of UV lasers and the possible damage to the cells that
UVs can cause. The new architecture in [34] based on pillar scatterers with cavity was reported to have achieved
comparable accuracy to the approach in [129].

The on-chip diffractive mechanism of utilizing VCSELs to form a diffractively couple VCSEL array was used
to form a reservoir in [181]. This work proposed to set weights using a spatial modulator. The architecture was
tasked with header recognition and was able to recognize up to 5-bit headers. The work in [182] describes a
large-scale system which employs diffractive mechanics in its readout layer, which is all-optical and is made of
digital micromirrors. But the non-linearity is implemented in the electrical domain which severely limits the
update rate to 5Hz. This work showcased an architecture with 2025 non-linear nodes, realized as a pixel in a
Spatial Light Modulator (SLM). The SLM would display the current state of the reservoir as a speckle pattern
which can be read using a camera and the next state needed for the reservoir is calculated and is encoded into
the SLM. The architecture was tasked to predict the next step in the non-linear Mackey-Glass chaotic time
series [183], with normalized mean-square error (NMSE) as the criteria to evaluate the performance of the
architecture. The architecture was shown to achieve an NMSE value of 0.013 for the prediction task. Another
reservoir architecture which utilized SLM is described in [184]. This architecture also utilized an SLM-based
reservoir and was operated at 640 Hz, which the authors atiribute to the superior SLM equipment. This
architecture was also benchmarked using a Mackey-Glass chaotic time series prediction. The architecture has
up to 16385 nodes, again as pixels in the SLM, and was reported to have an NMSE value below 0.3.
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Figure 22: Detailed diagram from [34] depicting the FDTD simulation of their pillar scatterer based architecture showing the vanous
components simulated.

In summary, diffractive optics have been used to implement MLP, CNN, RNN, and RC architectures. These
implementations use a diverse set of devices, such as on-chip AWGs, passive elements like pillar scatterers,
diffractively coupled VCSELs, and SLMs. These architectures tend to utilize the passive properties of optical
devices to achieve the necessary functionalities, like the passive DFT transformation of light waves as they
pass through AWGs or using SLMs to form huge reservoirs. Often, architectures which use diffractive optics
also utilize other devices such as MZls, SOAs, and VCSELs. However, the requirement of specifically designed
devices (SLMs, micromirrors, scatterers) prevents programmability and implementation of compact and
scalable implementations. As a result, diffractive optics based implementations are not as popular for chip-scale
neural network acceleration.

5.4  Optical Amplification and Lasing based Architectures

Here we discuss photonic neural network architectures that utiize SOAs and VCSELs. These are
prominently SNN implementations to realize STDP in the network. STDP is believed to be a fundamental
plasticity mechanism in the synapses of the human brain [185]{187]. This is how weights are assigned to
synapses in the brain, depending on temporal relationships between pre-synaptic and post-synaptic spikes.
The weight associated with the synapse is increased if the pre-synaptic spike appears before the post-synaptic
spike and is decreased otherwise. This technique is usually implemented in photonic neuromorphic
architectures by utilizing in-plane Semiconductor Optical Amplifiers (SOAs).
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In [188], a DNN is implemented and experimentally verified with SOAs. The bias and the activation
functions are implemented via digital electronics. The value of the bias is added to the data after detection. The
work used a tanh activation function. This architecture implements one neuron operation by biasing up to six
SOAs: one SOA as pre-amplifier, one SOA to select the input vector, and four SOAs acting as intensity
modulators to represent weights. To represent the operation of a layer requires a total of four weighted additions,
which are performed by biasing 21 SOAs: one pre-amplifier SOA, four SOAs for selecting the input vectors, and
16 SOAs acting as weights. AWGs were also used in the architecture, for multiplexing/demultiplexing
wavelengths. The resulting neural network that was proposed had three layers of neurons. Fisher’s Iris flower
classification was used to test the accuracy of the architecture, on which a prediction accuracy of 85.8% was
achieved in simulations when compared to 95% accuracy with digital electronics.

The work in [189] demonstrates optical STDP driven supervised learning utilizing an SOA and electro-
absorption modulator (EAM). The linear combination of the gain depletion effects in SOA and absorption
saturation in EAM is used to implement the effects of STDP. A teacher spike sample, which represents the
expected spike train output, was used to train a pulse processing device, with the photonic STDP automatically
tuning its gain so that the pulse processor matches the teacher spike sample. Following this model, the authors
of [190] implemented reward-based reinforcement learning enabled by a photonic STDP unit constructed with
two SOAs. This was an emulation of the biological behavior of STDP synapses and how the brain learns via
principles of reinforcement learning. Here, a new modulatory element was introduced by varying the current
injection into the SOA and used to emulate the reward function necessary for reinforcement learning. The work
experimentally demonstrated how a reward function is tuned by the photonic STDP, depending on the
reinforcement. The work in [123] demonstrated a photonic STDP module towards supervised learning and
unsupervised pattern recognition based on a single SOA. The proposed setup demonstrated for the first time a
generalized Hebbian algorithm [191] for synaptic modification, called Activity-Dependent Synaptic Plasticity
(ADSP) in neuroscience. The SNN is photonic but the computation of correlation between post-synaptic and
pre-synaptic signals were calculated using a CPU, along with calculating the update rule and controlling the
SOA-based weight bank.

In [192], vertical-cavity SOAs (VCSOAs) [193]-[195] along with VCSELs were used to form photonic SNNs.
VCSOAs are considered as they are VCSELs operating below their lasing threshold, thus providing ease of
integration with the VCSELSs, due to their structural similarities, and low power utilization. The authors based
this implementation of VCSOA-based STDP on their previous work in [125], which introduced a theoretical and
mathematical model to achieve photonic STDP using VCSOAs. The SNN was tested by tasking it to recognize
arbitrary spike patterns. The results show the post-synaptic spike timing converging to the spike timing of the
input spike train through supervised learning.

The authors of [196] discussed a fully connected photonic SNN consisting of excitable VCSELs with an
embedded saturable absorber to implement spike sequence learning via supervised training. The authors
incorporated photonic STDP into a classical remote supervised method (ReSuMe) algorithm to implement
supervised training of the SNN. The work in [145] introduced fast VCSEL-neuron systems for neuromorphic
photonic applications in two different architectures, namely a single VCSEL-neuron subject to delayed optical
feedback, and two mutually coupled VCSEL-neurons. This emulated the operation of biological retinal neuronal
circuits. The mutually coupled VCSEL-neurons were used to emulate the connection between bipolar cells and
retinal ganglion cells in the eye, with a VCSEL-neuron representing the photoreceptors. By using these VCSEL-
neurons, the study successfully emulated ON and OFF type neuronal circuitry in the eye.

In [197], coupled SOAs were used to form a reservoir. But employing active elements such as SOAs would
make the reservoir architecture power inefficient, even though using the active elements greatly reduces the
architecture footprint. They circumvented these issues by utilizing passive elements in an RC architecture in
[169]. The work in [169] demonstrated a reservoir using only passive elements: waveguides, splitters, and
combiners were the only components used in the reservoir. The reservois was realized as a 16-node square-
mesh network with multiple feedback loops. In the architecture in [169], the required non-linearity is no longer
within the reservoir and is implemented at the readout layer using PDs. The output from each node itself is a
linear superposition of the complex amplitudes of the input waveguides of that node. At the readout layer, the
complex amplitudes of the reservoir nodes are converted into real-valued power levels, which are then used as
inputs for a linear classifier. The architecture from [169] was fabricated to perform basic Boolean tasks and
header recognition for up to 5-bit headers using the proposed architecture. The authors also demonstrated the
architecture’s ability to recognize spoken digits and reported a minimum Word Error Rate (WER) of 4.5% for
their coherent SOA based reservoir.

In [198], electrically modulated silicon-nano lasers (SNLs) are used as the reservoir layer of their RC
architecture. The SNL's delay loop is used to generate the virtual nodes and time multiplexing is utilized to form
the reservoir. The weights are set using a random weight matrix introduced via the input layer, while the
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weighting and linear summation takes place at the output layer. Weight optimization is done by minimizing the
least-square error between the current and target weights. The task set to test the architecture was to predict
the next step in the Santa-Fe chaotic time series [199]. The performance of the architecture was evaluated by
calculating the normalized mean-square error (NMSE) between the predicted and target values. The feedback
rate of the SNL was fine tuned to test the architecture and its performance. An NMSE of 0.0359 was reported
for the feedback rate of 10 ns™.

In summary, the discussions in this section pertain mostly to the implementation of SNNs using SOAs and
lasers. Different works listed in this section focused on STDP implementations for SNNs, for the most part,
utilizing SOAs and VCSELSs to achieve on-chip synaptic plasticity. There are also some RC architectures geared
for machine-learning applications, which also use SOAs and lasers. We discussed a reservoir constructed from
SOAs implementing the non-linear nodes and an all-passive photonic element reservoir. The passive element-
based implementation was explored to circumvent the power and speed constraints of active elements such as
SOAs on the reservoir. We also discussed a recent work where on-chip nano lasers called SNLs were used to
form an RC architecture, where the delay loops of the laser were used to form virtual nodes which operated
using time multiplexing.

5.5 Summary

The literature concerning photonic neural network architectures is vast, and so are the techniques and
devices used to realize these architectures. In this section, we reviewed different architectures and divided the
literature into resonator-based implementations, interferometer-based implementations, diffractive-optics-
based implementations, and optical amplification/lasing based implementations. We have provided a summary
of the literature on architectures covered as part of Section 5 in Table 3. The table has the references to the
works (first column); the devices prominently used in the architecture (second column); a brief summary of the
application(s) considered as part of experiments (third column); whether the work featured fabricated results or
simulations or both, or none (fourth column); and the significant results provided in the paper (fifth column). A

—" in the table represents information that is not provided.

Table 3: Summary of prior work on photonic neural network architectures

Reference Devices utilized Application Fabricated (F) Results achieved
or Simulated

(S)

[154] MRs Lorenz Attractor simulation to Reports 294x acceleration in
benchmark against a traditional CPU F simulation over traditional
based CTRNN. CPU based CTRNN.

[156] MRs and MZMs AlexNet CNN model Claims 5 orders of magnitude

S faster speeds than fully
electrical implementations.

[157] MRs MNIST classification using CNNs. Faster when compared to

GPU based implementations
S (2.8 to 1.4 times faster) and

0.75 times the power
consumption.

[132] MRs and SOAs. Various benchmarks including MNIST Reduction in operation cost
Weight fed into tested on photonic CNNs. when compared to GPU
MR banks using S based implementations, with
memristor arrays. up to 25x better
computational efficiency.
[37] MRs and MZls MNIST classification using MLPs. Higher than 95% accuracy

achieved at 14 bit resolution
and custom MLP with 2048
S neurons in hidden layer, for
both types of weights. Non-
negative weights give lower
accuracy.

[160] Microdisks Image classification with CNNs. 13x better performance per

Watt than ISAAC.

[161] MRs and MZls Image classification with CNNs. All optical design consumes
only 5.1% the energy needed
by all electrical accelerator,
while being 31.9% faster.
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[90]

MRs

This was an exercise to prove the

feasibility of B&W based SNNs. No
application-based experiment was

conducted in this work.

[162] GST embedded MNIST classification with MLPs. S 98.06% accuracy.
MRs

[168] MRs High-bit-rate digital pattern Classification error of 0.5% at
classification using RC. S 160 Gbps for 8-bit-length

digital words.

[169] MRs Demonstration of Boolean operations Demonstrated XOR
using RC. Detailed analysis of XOR operations at an error rate of
operations. 0.1. Also explored the

S relationship between error
rate and input power
modulation and optical
detuning.

[172] MZls Mathematical discussion of phase
and amplitude control for unitary _ _
operator representation, using MZIs.

[173] MZls Single layer neural network using the Demonstrated an accuracy of
4x4 optical processor described in the F+5S 72% in classification of data
work, set to classifying data samples samples.

[174] MZls Mathematical and theoretical
discussion of MZI based unitary
matrix representation, and _
consequently, how a universal linear -
device may be fashioned. No
application-based testing done.

[175] MZls Mathematical and theoretical
discussion of MZI based unitary _
matrix representation, with added
discussion into error and loss -
tolerance of such a device.

[144] MZls Binary neural network set to nearest Close to 100% accuracy in
neighbor classification of a classification achieved for
constellation formed from 100 GHz S high SNR signal, while
DP-QPSK signal. accuracy close to 90% was

achieved for low SNR signal.

[32] MZls Photonic DNN for vowel recognition Achieved 76.7% accuracy in

Fis vowel recognition. Lower
accuracy attributed to limited
resolution (24 bits).

[176] MZls MNIST dataset classification using S 98.5% accuracy.

Structured Neural Network.

[133] MZMs and MMIs Analog feed-forward ANN with
photonic MVYM and MZM non-linearity
demonstrated using a 2-by-1 vector S _
dot-product experiment. Energy
efficient binary multiplication
demonstrated in simulation.

[143] SOA-MZIs RNN benchmarked using a finance Gated optical RNN achieved
forecasting application utilizing FI- S an F1 score of 41.85%

2010 dataset

[179] AWGs and SOAs Demonstration of precise 4-bit Error less than 0.2
multiplication and accumulation F+5S
operation

[134] AWG and MZIs MNIST classification with CNN Various noise sources
architecture. CNN implemented using (amplitude, phase and linear
Cooley-Tukey FFT algorithm, with S noises) and their
AW Gs used to implement DFT combinations introduced to
photonically. the CNN; 99 6% accuracy for

14280 parameter CNN.

[34] Pillar silica XOR computation and label-less 20x20 node reservoir

scatteres classification of cancer cell images S achieves symbol error rate

from healthy cells

below 5%.
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[129] Laser diodes Label-less classification of cancer cell S _
images from healthy cells
[181] Diffractively Demonstrated header recognition up S _
coupled VCSELs to 5-bit headers.
[182] SLM Mackey-Glass chaotic time series Achieves an error of 0.013 for
S S -
prediction the prediction task.
[184] SLM Mackey-glass chaotic time series S Reports NMSE below 0.3 for
prediction time series prediction task.
[188] SOAs and AW Gs DNN implementation. Tested on F+5S Prediction accuracy of 85.8%
Fisher’s Iris classification. achieved.
[189] SOA and EAM Experimental demonstration of _
photonic STDP and its utilization for S
supervised learning.
[190] SOAs Theoretical discussion and
experimental demonstration of _
photonic STDP implementation using S
feedback signals. Demonstrated
STDP used for reward based
reinforcement-learning demonstration.
[123] SOAs Supervised and unsupervised pattern
recognition. Demonstrated Hebbian S _
algorithm for synaptic modification
[192] VCSOA and SNN for learning and recognizing S _
VCSELs arbitrary spike patterns
[196] VCSEL-SAs SNN for learning and recognizing S _
arbitrary spike patterns
[145] VCSELs SNN to simulate biological retinal _
neuronal circuitry. Simulated the ON S
and OFF stages of the retinal neuron
circuitry.
[197] SOA Spoken digit recognition using RC. The work reports a minimum
S Word Error Rate (WER) of
4.5% for their coherent SOA
based reservoir
[170] Passive photonic Successful recognition of up to 5-bit Reports error rate “very close
elements headers and spoken digit recognition S to” 0%
using RC.
[198] SNLs Santa-Fe chaotic time series NMSE of 0.0359 obtained
prediction S while the SNL is tuned to a
feedback rate of 10ns™

6 CHALLENGES AND OPPORTUNITIES

State-of-the-art silicon photonic devices have shown great promise to implement artificial neurons. Deep
learning architectures built with photonic neurons support high parallelism in transmitting and processing
weights by utilizing WDM, fast execution time, and low energy expenditure. However, there are several
outstanding challenges to efficiently implement different neuron functions with silicon photonic devices, as well
as to achieve high reliability, scalability, and cascadability in architecture implementations. Here we summarize
challenges and opportunities for future research needed to overcome these challenges.

Coherency Challenges: On-chip interferometers (e.g., MZIs) have been used extensively in photonic
neural network architectures due to their ability to effectively represent matrices for neural network
operations. The main issues with MZls are the large area requirement and phase-noise corruption in
MZ| meshes. Due to thermal and fabrication-process variations in MZIs, the phase values can deviate
from their target values, which can impact the inference accuracy of the neural network employing
them. Recent efforts [200], [201] explore how to avoid these issues by factoring in these issues at the
training phase and tuning the photonic neural network while considering variations. Further research
is required to more efficiently overcome the area and noise limitations of these coherent architectures.
Noncoherency Challenges: The broadcast-and-weight (B&W) protocol is widely employed for
implementing photonic neural network architectures. Some efforts have recognized the possible issues
with this protocol, such as heterodyne crosstalk corrupting the weight values and the very large number
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of MRs needed for implementing larger networks, especially when DWDM is utilized. Some recent
efforts have attempted to address these limitations. The authors in [37] suggested a new architecture
which utilizes parallel arrangements of MRs as opposed to cascading them, though they utilize the
area inefficient MZIs for vector storage. The parallel “hitless” arrangement of MRs was used to reduce
thermal crosstalk between adjoining MRs and to achieve better weight resolution. Other works have
suggested reusing implemented layers, e.g., [156], and also methods to reduce energy consumption
and increase speed of operation by reducing the involvement of electronic components [160]. There
have also been suggestions to use microdisks instead of MRs to further increase integration density
on chips [161]. But as noted in [202], all variants of noncoherent architectures can suffer from low
throughput as the electronic components, such as the memory, may not be running at as high a
frequency as their photonic components. Further research is needed to overcome these limitations of
noncoherent architectures.

Variations and Reliability: Many silicon photonic devices (e.g., MRs, MZls) are susceptible to design
time and runtime variations. Fabrication-process [203] and thermal crosstalk [89] as well as device
aging [204] can considerably impact the reliability and performance in photonic neural networks by
introducing undesirable crosstalk noise, optical phase shifts, resonance drifts (e.g., in MRs), tuning
overheads, and photodetection current mismatches. For example, experimental studies have shown
that the resonant wavelength in MRs can shift by 4.79 nm within a wafer due to inevitable fabrication-
process variations [205], and deviate as large as 0.1 nm/K [206] due to runtime thermal variations.
Moreover, silicon photonic devices intrinsically suffer from optical loss that degrade the energy
efficiency, reliability, and scalability of photonic neural networks [207]. Also, the finite-encoding
precision on phase settings (e.g., in coherent networks) adds extra uncertainty to the weight values
obtained during network training, when mapped onto phase shifters as phase angles. A recent study
[153] on the impact of uncertainties—due to fabrication-process and thermal variations—in photonic
neural networks shows a significant 70% reduction in a photonic neural network inferencing accuracy.
Therefore, further research is needed to improve the reliability in silicon photonic devices.

Power and Energy: O/E/O neurons are power hungry because electro-optical and opto-electrical
conversions consume considerable power. Moreover, O/E/O requires wavelength conversions to
implement a large-scale neural network, which also consume extra power. Therefore, O/E/O might not
be a good choice to achieve high power efficiency. All-optical neurons can achieve better power
efficiency but at the cost of lower-speed operation (which can increase energy consumption) and
reduced cascadability (which makes it difficult to implement complex functionalities). Off-chip lasers
consume a significant portion of overall power in photonic neural networks. While such lasers are less
susceptible to thermal variations than on-chip lasers, they incur extra optical-power loss due to the
need to couple the off-chip light source to on-chip devices through coupling structure (e.g., grating
couplers). Moreover, coping with variations (as discussed in the previous bullet) requires power and
energy overheads to achieve reliability via spatial, temporal, or information redundancy. As power is
such a significant design constraint in today’s computing chips, there is thus an urgent need for new
research to achieve power and energy efficient implementations of photonic neural networks.
Electronic Controllers: The design of a photonic neural network would be unrealistic without
considering its electronic controller challenges. Photonic neural networks require an electronic
controller to manage (i.e., tune and control) and orchestrate photonic devices in the network (e.g., MR
tuning and supervised learning control). Moreover, the controller should detect and mitigate runtime
bias (e.g., due to thermal crosstalk) and maintain correct operation of optical neurons. However,
electronic controllers impose high latencies, and there is a frequency mismatch between the electronic
controller and the optical network. Therefore, more research is needed towards the implementation of
high speed electronic controllers for photonic neural networks.

Backpropagation Training: Aimost all photonic neural network architectures in prior work focus on
inference acceleration. There is a need to explore photonic architectures that can efficiently support
neural network training. This is particularly challenging because training (e.g., via backpropagation)
requires a backward flow of information from the output layers towards the input layers which would
require additional waveguides, signals, and processing components to calculate gradients and update
weight values. Some recent efforts have begun to explore such architectures, e.g., [208] which
proposed a hybrid memristor+photonics based accelerator that also supports backpropagation. More
research is needed towards the design of low overhead backpropagation support with photonics.
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Resolution: Weight resolution plays a crucial role in deep learning accelerator architectures. For
inference acceleration, it is desirable to have higher resolution for better accuracy. Most prior works
on photonic neural networks achieve very low resolution, such as the work in [157], which achieves 6—
7 bits of resolution, and that in [37], which achieves 14 bits of weight resolution. Some proposed
architectures tackle lower resolution by dividing weight representation among multiple devices, such
as [160], or by utilizing bitwise parallelization of weight matrix operations as in [161], to achieve 16 bits
of weight resolution. The work in [32] manages to achieve 24 bits of weight resolution using MZI
meshes, but scalability of such an architecture is questionable because of large area consumption of
MZls. The work in [32] could not achieve higher resolution than 24 bits due to phase encoding noise
in MZI phase shifters. The main challenges in achieving good resolution in photonic architectures stem
from crosstalk noise, photodetector sensitivity, and photodetector noise (shot noise). While the work
in [37] presented a detailed analysis on how thermal crosstalk impacts photonic sensitivity to weight
values, even inter- and intra-channel crosstalk can affect the achievable resolution. Research is thus
needed to achieve effective photonic crosstalk mitigation, phase noise correction, and noise resilient
photodetection, to achieve better resolution in photonic deep learning accelerators.

Scalability: Many of the works discussed in this survey have focused on implementing small neural
networks [32], [37], [90], [162] to highlight the effectiveness of silicon photonic acceleration. Other
works focus on accelerating matrix vector multiplication and reusing it over multiple layers of the deep
learning model, such as in[157], [160], and [161]. A major issue that plagues implementations of large-
scale networks using silicon photonic devices is area consumption, given that the basic components
in a photonic neural network architecture can span micrometers in dimension. Also, the losses related
to propagation and crosstalk accumulates over larger architectures involving very large device counts,
and the power consumption can reach very high values [156]. MZI meshes, such as those presented
in [32], [174], and [179], face severe issues related to area consumption (MZIls being much larger than
MRs or microdisks) and phase noise, limiting their scalability. To reduce scalability concerns, some
works consider a simplified version of the neural network model in hardware by utilizing regression
techniques [176] and efficient matrix convolution calculation using FFT techniques [134], [177]. In order
to realize scalable photonic accelerator designs, research is needed into 1) new model compression
approaches for reducing silicon photonic hardware complexity, and 2) noise resilient, low loss, and
compact silicon photonic devices that can support high cascadability to realize large neural networks.
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