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Deep learning  has  led to  unprecedented successes  in solving some  very  difficult  problems in  domains such  as computer 
vision, natural language processing, and general pattern recognition. These achievements are the culmination of decades-
long  research  into  better  training  techniques  and deeper  neural  network models,  as  well  as improvements  in hardware 
platforms that  are used to train  and  execute the deep neural network models. Many  application-specific integrated circuit 
(ASIC) hardware accelerators for deep learning have garnered interest in recent years due to their improved performance 
and  energy-efficiency  over  conventional  CPU  and  GPU  architectures.  However,  these  accelerators  are  constrained  by 
fundamental bottlenecks due to 1) the slowdown in CMOS scaling, which has limited computational and performance-per-
watt capabilities of emerging electronic processors, and 2) the use of metallic interconnects for data movement, which do not 
scale well and are a major cause of bandwidth, latency, and energy inefficiencies in almost every contemporary processor. 
Silicon  photonics has  emerged  as  a  promising CMOS-compatible  alternative to  realize  a  new  generation  of deep  learning 
accelerators  that  can  use light for both communication  and  computation.  This  article  surveys  the  landscape  of  silicon 
photonics to accelerate deep learning, with a coverage of developments across design abstractions in a bottom-up manner, 
to convey both the capabilities and limitations of the silicon photonics paradigm in the context of deep learning acceleration. 
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1 INTRODUCTION 

Deep  Learning,  which  is  a  sub-field  of  Artificial  Intelligence  (AI),  has  been  at  the  heart  of many 
unprecedented successes in recent years for solving very difficult problems in the domains of computer vision, 
natural  language  processing,  time  series  predictions,  and  understanding  big  data.  This  development  is 
remarkable considering how most researchers had abandoned the idea of using deep learning in the 1990s, 
due to the difficulties in training such models. But seminal work by Hinton et al. in 2006 showed how it was 
possible to train a deep neural network to recognize handwritten digits with state-of-the-art precision (>98%) 
[1]. They called their technique “Deep Learning.” It did not take long for the scientific community to take notice, 
and in the following years many researchers showed that deep learning was not only possible, but capable of 
achieving remarkable performance for solving many problems that no other machine learning techniques could 
match. Indeed, today deep learning models are at the  heart  of  smart  technological  solutions that  we  all  use 
regularly, such as web search engines, music and video recommendation engines, speech recognition in virtual 
assistants, and object detection in Internet-of-Things (IoT) cameras. Many emerging applications such as self-
driving cars [2], autonomous robotics [3], fake news detection [4], pandemic growth and trend prediction [5], 
network  anomaly  detection  [6],  and  real-time  language  translation  [7]  are  being  powered  by  increasingly 
sophisticated deep learning models.  
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The  magic  behind  deep  learning  owes  much  to  our  brain’s  architecture.  As  far  back  as  1943,  the 
neurophysiologist  Warren  McCulloch  and  mathematician  Walter  Pitts  presented  a  simplified  model  of  how 
biological  neurons  work  together  in  animal  brains  to  perform  complex  computations  [8].  This  was  the  first 
artificial neural network (ANN) architecture and it inspired a race to build intelligent machines that could rival 
and eventually surpass the capabilities of the human brain. The introduction of the perceptron in 1957 by Frank 
Rosenblatt  was  another  landmark,  showing  how  the simple  ANN  could  be  trained  to  solve  classification 
problems  [9].  However,  the  limited  capabilities  of  hardware  to  run  even  moderately  complex  ANNs  led 
researchers to abandon the study of ANNs in the late 1960s. Even though new architectures and better training 
techniques emerged in the 1980s and early 1990s, progress was limited due to several factors, a crucial one of 
which was the lack of powerful machines to train and run these models. Fortunately, over the past decade, ever 
improving  capabilities  of Complementary Metal Oxide Semiconductor  (CMOS) fabrication  technology  have 
enabled  extremely  powerful  TFLOPs-class Graphics Processing Unit (GPU) and CPU processing chips with 
billions of transistors in small form factors that have made it possible to train and use deep ANN (i.e., multi-layer 
perceptron (MLP)) architectures in  a  timely and cost-effective  manner.  Coupled  with  the  availability  of  large 
datasets in the IoT and Big Data era, theoretical advances in training algorithms, and the emergence of new 
deep ANN architectures such as convolutional neural networks (CNNs), deep learning has now established its 
dominance over other machine learning models for many problems of interest in the domains of computer vision, 
natural language processing, and general pattern recognition.   
With researchers creating deeper and more complex MLP and CNN architectures to push deep learning 

performance  levels  to  new  heights,  the  underlying  hardware  platform must  consistently  deliver  better 
performance  levels  while  also  satisfying  strict  power  dissipation  limits.  This  endeavor  to  achieve  higher 
performance-per-watt  has  driven  hardware  architects  to  design  application-specific  integrated  circuit  (ASIC) 
accelerators for deep learning that have much higher performance-per-watt than conventional general-purpose 
CPUs and GPUs. IBM’s 4096 core TrueNorth chip that was released in 2014 was one of the earliest high-profile 
ASIC deep learning accelerators [10]. Since then, many other accelerators have become available, including 
Intel’s Loihi [11] and Google’s Tensor Processing Units (TPU) [12]. Several academic efforts have also led to 
the  design  of  new  types  of  ASIC and  FPGA-based  deep  learning accelerators  [13]–[17].  Even conventional 
GPUs  and  CPUs  have  evolved to  speed  up  deep  learning model  execution,  e.g.,  Nvidia GPUs  now include 
tensor cores [18], and CPUs support increasingly advanced vector instructions [19], both of which are designed 
to  accelerate  common  matrix and  vector  operations  in  deep  learning  processing. Beyond digital  domain 
solutions, accelerators have also been proposed that work in the analog domain [20]–[22] or the analog-digital 
mixed signal domain [23]–[25]. 
Unfortunately, these  electronic accelerator  architectures  are  beginning  to  face  fundamental  limits  in  the 

post Moore’s law era where processing capabilities are no longer improving as they did over the past several 
decades  [26].  In  particular,  moving  data  electronically  on  metallic  wires  in  these accelerators  is  a  major 
bandwidth  and  energy  bottleneck  [27].  Photonic  interconnects  offer  one  of  the  most  promising  solutions  to 
overcome these data movement challenges. Photonic links have already replaced metallic ones for light-speed 
information  transmission  at  almost  every  hierarchy  level  of  computing,  and  are  now  being considered  for 
integration at the chip-scale [28]. The advent of silicon photonics, which allowed for cost-effective integration of 
optical components based on CMOS electronics manufacturing, has been one of the major catalysts for chip-
scale photonic interconnects [29]. Even more remarkable is the fact that various computations required in deep 
learning, such as matrix-vector multiplications, can be performed entirely in the optical domain [30]. Thus, we 
are  close  to  a  point  where  it  will  become  possible  to  realize  deep  learning  accelerators  that  utilize  silicon 
photonics for both communication and computation. Such silicon photonics based deep learning accelerators 
can  provide unprecedented  levels  of  energy  efficiency  and  parallelism.  For  instance,  with  multiply  and 
accumulate (MAC) operations that  dominate  deep  learning computations,  photonics-based  accelerators can 
achieve  energy  footprint  efficiency  (defined  as  (MAC/s/mm2)  / (joules/MAC))  that is  almost  1000×  better 
compared to the most energy efficient electronic accelerators today [31]. Moreover, the operational bandwidth 
of photonic MACs can approach the photodetection rate, typically in the range of hundreds of GHz. This is far 
superior to electronic systems today that operate at a clock rate of a few GHz [32]. 
In this article, we survey the landscape of silicon photonics for accelerating deep learning model training 

and  inference.  Prior  surveys  on  a  related  theme  have  either  focused  on  surveying  performance  and  energy 
aspects of a specific type of photonic neural network architecture (e.g., reservoir computing architectures [33]–
[35] and Broadcast-and-Weight (B&W) architectures [31], [36]–[38]), or created a simplified classification based 
on implemented neural-network models (e.g., MLPs, CNNs) [39]. In contrast, in this article we provide a different 
and more comprehensive tutorial of developments in silicon photonics based deep learning acceleration, with 
a  bottom-up  classification  across  design-layer  abstractions:  from  lower-level  fabrication  alternatives  and 
devices,  to  the spectrum  of  neuron  microarchitectures,  and  covering  a  variety  of  integrated  neural  network 
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architectures at the system level. Our aim is to provide an overview of the plethora of design choices available 
with silicon photonics towards the realization of photonic deep learning accelerators, along with a discussion of 
their advantages and limitations. The ability to utilize CMOS-compatible materials,  such  as  germanium  (Ge) 
and silicon nitride (SiN), has enabled new variants of photodiodes, modulators, couplers, and lasers with very 
interesting performance-energy-reliability tradeoffs. These tradeoffs also exist for different fundamental device 
types, such as Mach–Zehnder Interferometers (MZIs) and Microring Resonators (MRs), which can be used as 
the  building  blocks  of  photonic  artificial  neurons.  Many  different  types  of  photonics-based  artificial  neuron 
microarchitectures  have been  proposed,  such  as  the  noncoherent B&W architecture  [40]  and  the  coherent 
artificial linear neuron (COLN) [36]. Such neurons can be cascaded together while respecting photonic signal 
loss profiles and Signal-to-Noise Ratio (SNR) goals, to construct larger photonics-based neural network fabrics. 
We believe that such a classification across the design abstractions in a bottom-up manner provides an intuitive 
and useful way to understand the capabilities and limitations of the silicon photonics paradigm in the context of 
deep learning acceleration. 
The rest of this article is organized as follows. Section 2 starts out with a brief discussion of deep learning 

models. Section 3 presents an overview of fundamental silicon photonic devices that are widely used in photonic 
neural  networks  and relevant  for  accelerating  deep  learning  models.  Section  4  describes  various  types  of 
artificial neuron architectures designed with silicon photonic components. These neuron architectures form the 
building  blocks  of  photonic  neural network  architectures  which are  discussed  in  Section 5. Lastly.  Section  6 
wraps up with a discussion of outstanding challenges and opportunities with silicon photonics for deep learning 
acceleration.  

2  AN OVERVIEW OF DEEP LEARNING 

Deep learning is a subset of Machine Learning (ML), which itself is a subset of the broader field of AI. Deep 
learning aims to emulate the deep architecture of a human brain, which has billions of interconnected neurons 
acting as computational units. Human brains also work hierarchically, starting from simpler concepts and then 
combining them to learn more abstract ideas. This mode of learning is reflected in deep learning models which 
break  down  input  data  into features  and  then  recombine  them to  perform  the  task  at  hand (e.g., detection, 
classification). Once relevant features have been learned by a deep learning model in the training phase, the 
model can be applied to tasks of a similar nature, with no human intervention.  
As mentioned earlier, deep learning has gained a lot of attention in recent years. But the concept is not 

new. The idea to make machines as intelligent as humans is the very basis of the analytical engine conceived 
by Charles Babbage in 1837. The field of AI and the research into making machines capable of thinking like 
humans  started  as  far  back  as the mid-20th century,  with the  computational  model  for  neural  networks and 
neuron operation developed by Warren McCulloch and Walter Pitts in 1943 [8]. The perceptron algorithm was 
invented by psychologist Frank Rosenblatt in his seminal 1957 paper [9]. Leveraging this algorithm, Rosenblatt 
created the first single-layer perceptron (see figure 1 (a)) that is an electronic computational device adhering to 
the biological principles behind how the human brain functions.  

 

 
Figure 1: (a) Frank Rosenblatt with his Mark-1 single-layer  perceptron; (b)  A  depiction  of  the  neuron and the  synaptic  connection to 
another neuron. This is a simplistic depiction of a neuron, showing only the most basic components.  

  (a)                                                             (b) 
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2.1 Neuron Models 

The human brain is comprised of around 86 billion neurons [41], each interconnected using dendrites and 
axon connections (see figure 1(b)). The biological neuron, which is the main processing component in the brain, 
consists of a soma, dendrite, axon, and synapse. The soma or cell body of a neuron contains the nucleus and 
other structures common to living cells. These structures support the chemical processing within the neuron. 
The dendrites are extensions from the neuron soma and act as receivers or inputs into the neuron. The axons 
form the “tails” of the neuron and carry signals away from the soma. The axon can further split into branches to 
achieve  incredible interconnectivity.  Depending on  the type of  neuron, this interconnectivity  can  reach  up to 
100,000  fan-out  connections,  a  number that is inconceivable  to  achieve  today  with  CMOS logic  gates.  The 
connection between neurons via their extremities occurs at contact points called synapses (figure 1 (b)). Neural 
signals are transmitted in the form of electrical impulses along these interconnections made of dendrites, axons, 
and synapses. These connections between the neurons along synapses can strengthen or weaken over time 
depending on the activity in the synapses. This is referred to as synaptic plasticity. Synaptic plasticity is also 
hypothesised to be a key component in encoding memories in the brain [42].  
The McCulloch-Pitts model represents a very simplified model of this biological neuron [8]. It is comprised 

of a summation unit and then a threshold gate, as shown in figure 2. The summation unit can have N inputs, 
with  each  input  assigned  a  weight  value.  The  products  of  the  inputs  and  their  corresponding  weights  are 
summed  at  the  summation  unit  (Ʃ),  and  this  sum  is  passed  onto  the  threshold  gate.  If  the  summed  signal 
exceeds the threshold, the gate generates a signal and the neuron generates (or fires) an output signal. The 
McCulloch-Pitts  model  adapted  a  linear  threshold  for  their  threshold  gate, so  the  neuron  either  fires  or  not 
depending on the output from the summation unit, making it a binary output neuron. In more modern terms, this 
linear threshold in the model is called the model’s activation function. 
 

 
 
Figure 2: The McCulloch-Pitts computational model of the biological neuron [8]. A linear activation function is used in the model. The 
neuron fires only when the sum value crosses a threshold, T, making the McCulloch-Pitts model a binary output neuron. 

 
This  binary  model  is  a  powerful  tool  and  can be  used  to reach  solutions  for  simple  binary  classification 

problems. But for more complex tasks, more complex activation functions and neuron models are necessary. 
There are other neuron models that mimic the biophysical characteristics of the neuron such as the Hodgkin-
Huxley  Model  [43]  and  many  others  [44]–[46].  Using  such  models  requires complex  calculations  of  their 
biological  interactions,  which  can  be  computationally  taxing.  To  circumvent  this,  computationally  efficient 
Integrate-and-Fire (IF) neurons are preferred. IF neurons are, incidentally, one of the oldest neuron models to 
appear in literature [47]. The Leaky Integrate-and-Fire (LIF) neuron [48] is another extremely popular neuron 
model, due to its simplicity while being able to achieve complex functionalities in deep neural networks. Another 
neuron model, which emulates biophysical characteristics of the neuron, much like the Hodgkin-Huxley model, 
but with lower computational complexity, is the Izhikevich spiking neuron model [49].  
All of these neuron models  follow the same basic  principle: neurons  accept  input  signals  from  multiple 

synapses, sum them, and fire a corresponding output if a threshold is exceeded. The differences between them 
arise in how the threshold and the bio-physical interactions are modeled. The neuron models discussed here 
help in mimicking the biological operation of the brain and hence are an integral part of a neural-network model 
called Spiking Neural Networks (SNNs), which we discuss next. This inter-disciplinary concept of mimicking the 
brain using advanced neuron models and implementing neural systems is often referred to as  neuromorphic 
engineering or neuromorphic computing. 
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2.2 Spiking Neural Networks (SNNs) 

The idea behind Spiking Neural Networks (SNNs) is to emulate the human brain as closely as possible. 
The brain exhibits low power consumption, fast inference,  event-driven processing, continuous learning, and 
massive parallelism. It is also based on event-based computation, where information is encoded in spikes [50]. 
Indeed, SNNs were introduced in 1997 to emulate this spike-based method of computation [48]. SNNs utilize 
asynchronous,  event-driven  processing  to  implement  neural  networks. The  inputs  to  an  SNN  neuron  are 
referred to as action potentials or spikes (see figure 3), which the neuron receives from its pre-synaptic neuron. 
These binary  spikes can  carry information  through the  network either  via  rate  coding  or  temporal  encoding. 
Rate  coding—also  referred  to  as  frequency  coding—is the model  of  neuronal firing  which  assumes that the 
information about the stimulus that triggered the neuron to fire can be encoded in the rate at which the neuron 
fires. Thus, this method of information encoding requires precise calculation of firing rates. Temporal encoding 
utilizes the temporal resolution or the time between consequent spikes to carry information. For both encoding 
types, the connection between the neurons is represented by synaptic weights, which influence the input spikes, 
to create a weighted spike train at each neuron’s input. The weighted input spikes affect the membrane potential 
of the neuron, which refers to the intensity of activation of the neuron. Once the membrane potential exceeds a 
threshold, the neuron generates a spike (i.e., fires an action potential) to its post-synaptic neuron. This activity 
is illustrated in figure 3. 
 

 
 

Figure 3: A simple representation of how a spiking neuron, the fundamental unit of an SNN, functions. The spiking neuron shown here 
can be any of the models mentioned in Section 2.1 in order to implement an SNN. 

 
There  has  been  increased  interest  in  implementing brain-like  computation  in  the  last  decade  [51]  to 

overcome  limitations  set  by  conventional  Von-Neumann  architectures.  Supercomputers  today  can  achieve 
hundreds of peta FLOPS (floating point operations per second) in processing data but at the cost of tens of 
millions  of Watts  [52],  whereas  the  human  brain  achieves  this  feat  at the  cost  of  just 20  Watts  [53]. SNN 
implementations hope to achieve this remarkable level of energy efficiency exhibited by the human brain. To 
realize  this goal, many technologies are  actively  being  explored,  including  CMOS  [54]–[56], new  types  of 
transistors [57]–[59], and non-volatile memory [60]–[63]. Employing such technological advances, there have 
been  various  SNN accelerator  implementations. As  an  example, SpiNNaker [64],  from the University  of 
Manchester, was built using ARM processors and implements the Izhikevich neuron model for computational 
efficiency. It utilizes a Globally Asynchronous, Locally Synchronous (GALS) communication system between 
the processing cores and Synchronous Dynamic Random Access Memories (SDRAMs) to store the synaptic 
weight values. TrueNorth [65] from IBM contained 5.4 billion transistors while using only 70 mW to operate. The 
processor  is  comprised  of  arrays  of  low  power  neurosynaptic  processing  units,  each  containing  memory, 
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processor, and communication subsystems to mimic neural functions. TrueNorth implements the LIF neuron 
model in its  SNN. Loihi [66] from Intel  with 128 neuromorphic cores  and  130,000  neurons,  is  another  such 
implementation  that  exhibited  1000× speed  and  10,000× energy  efficiency compared  to a  CPU  [67].  Loihi 
implements a variant of the LIF neuron called “current based synapse (CUBA) LIF neuron.” 

2.3 Artificial Neural Networks (ANNs) 

The emergence of the computational model for representing neural activities paved the way for Artificial 
Neural  Networks  (ANNs).  When  compared  to  SNNs,  ANNs  are  markedly  abstract  in  their  approach  to 
implementing  brain  functions.  The  weights,  which  represent  the  synaptic plasticity,  are  simple  scalars.  The 
neurons  utilized  are also much  simpler, and  tasked with accumulation  of  input-weight  products  followed  by 
passing the resulting output through a non-linear function. ANNs emulate brain activity by simulating a collection 
of interconnected neurons, arranged in layers. The simplest representation will have three layers: an input layer, 
an output layer, and a hidden layer in between these two layers (figure 4(a)). The input layer accepts data from 
outside the ANN; the hidden layer is where the computation happens; and the output layer is where we can get 
the  results  from  the  neural  network.  The  activation  functions  also  play  an  important  part  in  simulating 
intelligence. Mathematically, without appropriate activation functions, the neuron model is a simple linear model, 
which multiplies and accumulates input-weight products. To introduce non-linearity into the network and make 
it  possible for the  model  to approximate more  complex  functions,  we  need  to  use  appropriate  non-linear 
activation  functions,  such  as sigmoid, Rectified  Linear  Unit  (ReLu), and tanh to  list  a  few. Utilizing  these 
functions, ANNs are able to learn very complex non-linear relationships between input features.  
 

 
Figure 4: (a) Layered architecture of an ANN; this figure shows a shallow ANN with one hidden layer. (b) As the number of hidden layers 
in the ANN increase, we achieve DNNs. Note that the layers of an ANN are populated by neurons, with associated weights and biases. 
(c) A fully connected RNN, which shows the feedback connections in its hidden layer, and simulates  memory  or  saved  states in this 
architecture. (d) Representation of various layers and operations in a CNN. 
 
An important distinction to be made here is between ANNs and traditional ML algorithms such as Support 

-Vector Machines (SVMs), K-Nearest Neighbours (KNN), Random Forests (RF), etc. What makes ANNs distinct 
is  their  ability  to handle  large  quantities  of  data,  with minimal  human  intervention.  Traditional  ML  algorithms 
usually require a human expert to provide the necessary rule set on which they operate. Often, assistance for 
feature extraction from the data is also needed, e.g., for kernel selection in SVMs.   
Deep Neural Networks (DNNs) are ANNs with multiple hidden layers (see figure 4(b)) which can utilize the 

complex  interconnectivity  among  the  neurons  to  compute  and  efficiently  represent  very  complex  non-linear 
relationships after being trained. During the training phase, input activations traverse a forward path from the 
input  to the hidden  layers  and finally to the  output  layer.  The  error (often  called the loss)  between  the  DNN 
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output and the expected output is backpropagated through the model to update the neuron weights and biases, 
in a manner that reduces the loss. This process is iteratively repeated until the model output (e.g., image class 
prediction) is as close as possible to the expected outputs, i.e., the loss is minimized. After training, the model 
can make predictions given an input, in what is referred to as the inference phase. The training phase for DNNs 
is a time and resource intensive process, compared to the inference phase. The notable learning architectures 
which  utilize  DNNs  include  Multi-Layer  Perceptrons  (MLPs), Recurrent  Neural  Networks  (RNNs), Deep 
Boltzmann Machines (DBMs), Stacked Auto-Encoders (SAEs), and Convolutional Neural Networks (CNNs). 
MLPs only include feedforward fully connected (FC) layers as shown in figure 4(b), where each neuron in 

a layer is connected to each neuron in the preceding and following layers. Some model architectures can exhibit 
temporal dynamic behaviour and possess an internal state or memory because of their network structure. These 
can be broadly referred to as Recurrent Neural Networks (RNNs). The inherent memory in their structure makes 
them  ideal  for  recognition  tasks  such  as  pattern  recognition,  handwriting  and  speech  recognition,  natural 
language processing, etc. Research on RNNs began with David Rumehalt in 1986 [68]. As of today, many RNN 
variants are  popular, including  Long  Short-Term  Memory  (LSTM)  networks,  Gated  Recurrent  Units  (GRUs), 
Continuous Time RNNs (CTRNNs), etc. A simplified RNN is shown in figure 4(c). 
CNNs target the processing of 2D or higher dimensional features instead of the 1D ones in MLPs. They 

are widely used for classification problems in image and video processing. The structure of a CNN is depicted 
in  figure  4(d).  A  typical  CNN  contains  three  types  of  layers:  convolutional  (Conv),  pooling  (Pool),  and fully 
connected (FC). In Conv and Pool layers, there are multiple channels (called feature maps) that extract different 
local features from the input data. These layers combine the lower-level features from multiple channels of the 
previous layer, into higher-level features that are passed to the next layer, till the final classification layer where 
an output prediction is generated. Conv layers have much fewer parameters than FC layers, but involve a high 
computational footprint due to the many convolution operations that are required between filter weights and the 
input activations, across all their channels. Pooling layers generate output activations based only on the local 
receptive field in the corresponding input feature map (e.g., a single “pooled” output from a group of 2x2 inputs). 
The two widely used variants of pooling layers are max and average pooling, and they produce the maximum 
or average value of each receptive field, respectively. Lastly, FC layers follow Conv and Pool layers, and act to 
work as a classifier with the extracted features, similar to how these layers are used in MLPs. 
DNNs are beginning to be widely used in real-world applications such as autonomous driving, robotics, and 

IoT processing. The resource intensity needed for training DNN models was met by the emergence of GPUs 
that are used  for  significantly  reducing  the  training  time  of  DNNs, due  to  the  greater  data  and  thread  level 
parallelism supported in GPUs than CPUs. Much like for SNNs, there is growing interest in designing energy-
efficient ASIC accelerators for DNNs. Such DNN accelerators, e.g., the Neural Processing Unit (NPU) [69] are 
designed to accelerate the inference phase, although a few accelerators are also aimed at improving training 
performance. An example  of  a  DNN accelerator that has been very successful for accelerating  both training 
and inference with DNNs is the TPU [12] from Google. The TPU has dedicated matrix-multiplication units and 
distributed memory management that makes it ideal for handling the heavy lifting needed to train DNN models 
and also for inference tasks. TPUs are deployed widely in Google’s data centers. Newer  GPU  architectures 
have also adopted similar Tensor cores for DNN acceleration [70]. Researchers have also suggested utilizing 
non-volatile memory  technology  and Processing-In-Memory  (PIM)  for  DNN  accelerators.  PRIME  [71]  and 
ISAAC [20] are examples of such accelerators that utilize Resistive Random-Access Memories (ReRAMs) and 
PIM to accelerate DNN execution. 

2.4 Reservoir Computing (RC) 

RC is a less popular neural-network model than ANNs and SNNs but is covered here briefly because of its 
amenability to photonics-based implementations and consideration in prior photonics-based designs. RC can 
be thought of as a type of RNN where only the parameters of the last, non-recurrent output layer (called readout 
layer)  are  trained,  while  all  the  other  parameters  are  randomly  initialized,  subject  to  some  condition  that 
essentially prevents chaotic behavior, and then they are left untrained. RC thus represents a type of partially 
adaptive RNN,  which  is  in  contrast  with  the  fully adaptive approach  of  conventional  ANNs  and  SNNs.  The 
reservoir is comprised of connected non-linear nodes and is a fixed recurrent network as shown in figure 5. This 
reservoir  performs  many non-linear operations  and  the  outputs  from  these  are  combined  into  linear 
combinations to complete a task. The user has little direct access to the reservoir and the output manipulation 
is restricted to the readout layer. To reach the desired behavior, trained linear classifiers at the readout layer 
are utilized in a supervised learning framework. The advantage of having such a fixed random network becomes 
apparent with certain (particularly photonics-based) hardware platforms where the possibility of setting all the 
internal parameters is not possible. 
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Figure 5: Standard layout of a reservoir computing (RC) architecture with the input layer in red, the reservoir in green (with randomized 
but fixed connections), and the readout layer in blue where the outputs from the reservoir are consolidated into the desired output. 

 
RC can be utilized to emulate the behavior of conventional ANNs due to its intrinsically parallel nature. Like 

a neural network, a reservoir often consists of a large number of interconnected non-linear nodes. Therefore, 
existing hardware implementations of neural networks can be and have been used as reservoirs, as  in  [72]. 
However, unlike traditional neural networks, the interconnection weights need not be adaptable or even exactly 
controllable.  In  fact,  only  a  global  gain  scaling  is  required  for  weight  manipulation  in  RC.  This  makes  the 
requirements for reservoir implementations more relaxed  and  allows  for  the  exploration  of technologies that 
might  be  less  suitable  for  implementing traditional, fully trainable  neural  networks.  Thus,  RC  was  a popular 
target  for  early implementation of  all-optical  computing  and there  have  been many  bench-top  models  which 
demonstrated how all-optical reservoir computing can be achieved [73]–[81]. These implementations were often 
built using telecom equipment (e.g., fiber optical loops, MZIs, lasers, photodetectors and Arrayed Waveguide 
Gratings (AWGs)) and provided proof of concept validations of the effectiveness of optical reservoir computing.  
To  implement  RC  and  the  other  DNN  models  on  a  computing chip,  silicon  photonics  is  a promising 

emerging technology candidate. We will now provide an overview of silicon photonics technology (Section 3), 
followed by in-depth discussions on neuron microarchitectures implemented using this technology (Section 4), 
and various deep learning architectures built using photonic neurons (Section 5). 

3 AN OVERIEW OF SILICON PHOTONICS  

Optical communication has been widely employed in communication networks wherever low-cost and high-
bandwidth communication at low power consumption and over large distances is required, e.g., in long-haul 
telecommunication  networks. In  recent  years, silicon  photonics has  enabled CMOS-compatible  integrated 
photonics and gained widespread adoption in commercial offerings for low-cost optical interconnects in data 
centers.  Optical interconnects  are  now  being  aggressively  considered  at  much  smaller  scales,  to  connect 
multiple processing chips at the board level, and even to connect cores within a single computing chip. As the 
name suggests, silicon photonics employs light, which is guided through the silicon (Si) medium on a CMOS 
chip, for communication. In a silicon-on-insulator (SOI) fabrication platform, the high refractive index contrast 
between the waveguide core (silicon) and the waveguide’s cladding and substrate (e.g., silicon dioxide) results 
in guided optical signal propagation through total internal reflection. A single waveguide can be used to carry 
multiple wavelengths of light simultaneously, each capable of carrying data at high speed and high frequency, 
and  without  any  interference. This  is  possible  using  a  technique  called Wavelength-Division  Multiplexing 
(WDM). The number of wavelengths in a waveguide is referred to as the WDM degree of the waveguide. The 
WDM degree can be increased to 64 or beyond, at which point the multiplexing is often referred to as Dense 
Wavelength-Division Multiplexing (DWDM). For chip-scale communication with silicon photonics, digital data 
from electronic components (e.g., processor, memory) can be encoded into an optical signal using electronic 
to optical (E/O) conversion with devices such as microring resonator (MR) modulators, subsequently transmitted 
over a waveguide with multiple carrier wavelengths, and then detected at a receiver, where optical to electronic 
(O/E) conversion is performed with devices such as photodetectors (PDs). 
There has been growing interest in using silicon photonics for more than just communication. In particular, 

silicon photonic devices can also be used to perform computation in the optical domain. Together, such light 
speed communication and computation can significantly accelerate the execution of deep-learning workloads. 
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While silicon photonic devices face several challenges for robust computation and communication at the chip-
scale  (e.g.,  they are  sensitive  to  thermal  and  fabrication-process  variations [82]),  they also offer  several 
advantages (e.g., high speed, high bandwidth, and low power) to support inter-neuron communications and 
implement different  neural  functions required in photonic neural  networks.  Such  neural  functions and  their 
implementations are discussed in the next section. In this section, we review some of the fundamental silicon 
photonic devices that are employed to implement photonics-based ANNs and SNNs.  
 

 

 
 

Figure 6: Lasers used in photonic neural networks [83], [84]: (a) Directly modulated laser; (b) Laser connected to a modulator [83], 
[85]; (c) Coherent laser where the wavelength in the input and output is the same; and (d) Incoherent laser with different wavelengths 
at its input and output. Note that the signal waveform in black is an electrical signal and the other colored signal waveforms are optical 
ones. Different colors represent different wavelengths.   

3.1 Lasers 

A laser is a key requirement in optical circuits and neural networks, serving as the light source to support 
optical communication and computation. Lasers can be either off-chip or on-chip. Although off-chip lasers offer 
a better light emission efficiency, they necessitate the use of couplers to couple the off-chip optical signal to the 
chip where such couplers impose high optical power losses. On the other hand, on-chip lasers provide a better 
integration density and lower optical loss, as there is no need to couple light from an off-chip source. However, 
on-chip lasers suffer from low emission efficiency and instability against thermal variations [86].  
Lasers are used in photonic neural networks to implement different neural functions and requirements in 

such systems. In directly modulated lasers (see figure 6(a) [87]), the laser itself modulates the data onto an 
optical signal, while in another arrangement, as shown in figure 6(b), the laser output can be modulated by a 
modulator which  is  responsible  to  modulate  the  data  onto the  optical signal. Indeed, employing a  laser  in 
conjunction  with  modulators  is  common  in  optical  interconnection  networks [88], [89].  In  photonic  neural 
networks, this laser configuration can be used to design a scalable neural network [83], [85], where an off-chip 
laser source  in  combination with  modulators can  support multiple on-chip  inter-neuron communications.  In 
addition to the modulation, lasers can be also used to implement neural activation functions [90], as discussed 
in section 4, because lasers have shown potential to mimic neural activation functions [91]–[94] where an optical 
stimulus in the input of the laser can result in an optical output based on an activation function (see figures 6(c) 
and 6(d)). Thus lasers are used in all photonic neural networks to not only support inter-neuron communication 
but also, in some cases, to implement different neural functions in the optical domain. 
A  laser  can  be  implemented in  different ways.  A Vertical Cavity Surface  Emitting Laser  (VCSEL) is  a 

semiconductor laser diode with laser beam emission perpendicular to the chip surface, as shown in figure 7(a). 
Such a feature allows for several VCSELs to be placed in an array to power a large number of optical neurons 
and hence design scalable neural networks [91], [92], [97]. In addition to the scalability advantage, VCSEL-
based neural networks can be realized using both off-chip and on-chip VCSELs [98]. Moreover, VCSELs have 
shown excitability behaviours of neurons [99], in which the laser emits light when  the combination of inputs 
reaches a threshold. As a result, VCSELs offer scalability, efficiency, and several functionalities required for 
photonic neural network designs. Microdisk lasers, shown in figure 7(b), are another type of lasers in which a 
ring resonator is formed by successive total internal reflections inside a  circularly shaped  waveguide [101]. 
Compared  to  VCSELs,  microdisk  lasers  are  more  area  efficient  (a  laser  apparatus  radius—radius  of 
microcavity—of a few micron) and deliver a lower threshold current and maximum on-chip optical power [102]. 
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Moreover, microdisk lasers offer a low optical loss [100], and similar to VCSEL arrays, they can be placed in an 
array of lasers [101] to enable scalable photonic neural network implementations. In addition, microdisk lasers 
have shown excitability dynamics [103] to support spiking neuron implementations.  
 

(a) (b)
 

Figure 7: (a) A VCSEL array [95]. (b) A microdisk laser [96]. 

3.2 Waveguides 

A  silicon photonic waveguide is  analogous to  a metallic wire,  enabling optical signal transmission and 
routing in photonic neural networks. As shown in figure 8, waveguides can be  classified into ridge and strip 
waveguides. Ridge waveguides are often employed in active devices and networks as they allow for electrical 
connections to be made to the waveguide (e.g., through PN junctions) where the characteristics of the optical 
signal can be actively controlled and altered using electro-optic or thermo-optic effects in silicon [28]. On the 
other hand, strip waveguides are usually employed in passive devices and networks to passively route optical 
signals [28]. As discussed earlier, a single waveguide can support simultaneous transmission of multiple optical 
wavelengths with no interference (using WDM). This allows for ultra-high bandwidth communication, which is 
of great interest in neural-network designs to support demanding inter-neuron communication.  
When an optical signal traverses a waveguide, it experiences some optical loss (i.e., the propagation loss, 

often characterized in dB/cm) imposed due  to, for example, some imperfections in the  waveguide  structure 
(e.g., waveguide sidewall roughness). Minimizing such optical loss in silicon photonic waveguides is essential 
as it limits the scalability of photonic neural networks and substantially degrades the power and energy efficiency 
in  such  networks. There  have  been  a  lot  of  efforts  to  minimize  the  propagation  loss  in  silicon  photonic 
waveguides and SOI waveguides with propagation losses as low as 0.026 dB/cm have been proposed [104]. 
In general, this propagation loss in waveguides depends on precise geometry adjustment in these devices, and 
hence any shape distortion in a waveguide (e.g., angular sidewalls) reduces its transmission efficiency (i.e., 
increasing the propagation loss). In addition to propagation loss, waveguide bends create optical bending loss 
where an optical signal will be attenuated due to the mode-mismatch and radiation loss in waveguide bends. 
This bending loss is proportional to the radius of the waveguide bend.  

 

 
Ridge Strip 

  
Figure 8: Silicon photonic waveguides [28]: a ridge waveguide and a strip waveguide. 

3.3 Couplers 

Silicon photonic couplers, as shown in figure 9, are used to couple an optical signal from an optical fiber 
(e.g., connected to an off-chip laser source) to an on-chip waveguide due to the significant mismatch between 
the  cross-section  of  optical  fibers  (tens of  micron)  and  that  of  silicon  photonic  waveguides  (hundreds of 
nanometers). Such mismatch usually imposes some optical loss (i.e., coupling loss) which is considered as a 
significant portion of optical loss in optical networks employing off-chip lasers. Two major coupling solutions are 
surface grating coupling and edge coupling. Surface-grating couplers, shown in figure 9(a), are advantageous 
in terms of a simpler and low cost fabrication process but at the cost of a low coupling efficiency, while edge 
couplers, shown in figure 9(b), provide a better coupling efficiency but requires a more complex fabrication and 
packaging process [28]. In edge couplers, as shown in figure 9(a), a tapered waveguide is used to couple light 
from the fiber to the  chip. Surface-grating couplers couple the  input light from a fiber to a  waveguide using 
diffractive gratings where a periodic structure splits and diffracts light and eventually couples the light into the 
waveguide. Diffractive coupling is a common means of optical coupling between VCSELs because of its simple 
implementation [106], and is also useful to implement photonic reservoir computing [107]. 



11 

   
a 

(a) 
a 

(b) 
 

Figure 9: Couplers [105]: (a) a surface-grating coupler and (b) an edge coupler. 

3.4 Modulators, Filters, and Switches 

Microring Resonators  (MRs) are widely employed to design  modulators, switches, and  optical filters in 
optical interconnection networks [108], [109]. In addition to such applications in interconnection networks, they 
are promising devices to implement artificial neural synapses [90], [110], [111] and excitation function of neurons 
[112], [113], which are further discussed in section 4.  
MRs,  as  shown  in figure  10(a),  are  made  with  a  ring-shaped  waveguide  in  proximity  with  an  input 

waveguide  and  a  drop  waveguide (a.k.a.  add-drop filter).  When  the  drop  waveguide  is  missing  (e.g., in 
modulators and some filters), the MR is an all-pass filter (see figure 10(b)). An MR can be in two different states 
of on- or off-resonance, based on which the optical signal can be switched to different ports. As shown in figure 
10(a), when the MR is in the off-state, the input signal is routed to the through port, because the ring is not in 
resonance with the input optical signal. On the other hand, when the MR is in the on-state, the ring couples the 
input optical signal and drops it on the drop port. The resonant wavelength of an MR can be tuned to realize 
various functionalities needed to design optical modulators, switches, and filters. Here, tuning refers to sweeping 
the resonant wavelength of an MR by leveraging electro-optic or thermo-optic effects of silicon that can alter 
the optical signal characteristics, and hence the resonant wavelength in the case of an MR. Compared to tuning 
mechanisms  based  on electro-optic effects, those  based  on thermo-optic effects  are slower (a  few 
microseconds versus tens of nanoseconds in tuning techniques based on electro-optic effects) but are  more 
power efficient. Figure 10(c) shows an example of an MR-based modulator that is responsible for modulating 
electronic  data  onto  an  optical signal.  The modulator can modulate  electronic  data  onto a  specific optical 
wavelength and this modulated optical signal can be filtered with a wavelength-selective MR-based filter at the 
receiver (see figure 10(b)), and then detected and converted to electronic data through a photodetector. 
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Figure 10: Silicon photonic switching devices [28]: (a) MR add-drop filter/switch; (b) MR all-pass filter; (c) MR modulator; (d) 

Microdisk resonator; (e) MZI; and (f) Photodetector. 

 
Compared to an MR, a microdisk resonator (see  figure 10(d)), which employs a disk instead of the ring 

structure,  offers  a  better  optical  confinement  to  provide  a  smaller  disk  size  and  potentially  lower  power 
consumption [114]. MZIs, as shown in figure 10(e), are made of two waveguides with directional couplers and 
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phase shifters. The phase shifters implemented using electro-optic or thermo-optic tuning change the optical 
phase  in one  or both arms of the MZI, introducing constructive or destructive interferences at the  output to 
switch an optical signal between  the  output ports. Similar to MRs, MZIs have been  applied to the design of 
optical modulators, switches, and filters. In comparison to MZIs, MRs have smaller footprint and lower power 
consumption. On the other hand, MZIs provide high bandwidth and better tolerance to thermal variations.  
In summary, MRs, microdisks, and MZIs are widely employed to design modulators, switches, and filters. 

In photonic neural networks, a set of optical filters, in each of which the optical transmission can be adjusted, 
can be grouped into a weight bank to support weighting of activation signals as part of a photonic neuron [40]. 

3.5 Photodetectors 

Photodetectors (PDs), as shown in figure 10(f), can be used to detect an optical signal and convert it to an 
electrical one. A  small photodetector offers high bandwidth at the  cost of low power  efficiency. An  efficient 
photodetector provides the desired electrical output with a small optical signal at its input. However, this small 
optical signal at the input of a photodetector may result in a low bandwidth performance in the photodetector. 
An optical  signal  power  at  the input  of  a  photodetector  should  be larger than  the responsivity of  the 
photodetector, which is defined as the electrical output per optical input. This means that the power of a laser 
source in an optical link should be large enough to correctly drive a photodetector while considering the sum of 
different optical losses on the link. In photonic neural network designs, photodetectors not only convert optical 
signals to electrical ones but also combine (i.e., sum the magnitudes of) several optical signals over different 
wavelengths [40], [85], [111], which is a useful function in designing a silicon photonic neuron. 

3.6  Devices based on Phase-change Materials 

Devices that utilize phase-change materials (PCM) for tuning are of great interest in silicon photonic circuits 
to design modulators [115], MZI-based switches [116], and low-loss phase shifters [117]. The main principle in 
these  PCM-based  photonic  devices  is to  employ  a  PCM (e.g., GST: Ge2Sb2Te5 used  in [115]) to  efficiently 
induce high refractive-index changes for efficient phase tuning. Unlike electro- and thermo-optic tuning, PCM-
based tuning is non-volatile: it only requires power for transition between the amorphous and crystalline states 
in the PCM [117]. This can allow for low overhead tuning of silicon photonic devices, e.g., from on-resonance 
to off-resonance in a PCM-based MR. In some photonic neural networks, PCM-based devices [118]–[120] are 
proposed as part of the design of neurons. For example, in the synapse design proposed in [118], several PCMs 
are placed on a waveguide to control optical transmission in the waveguide and implement the function of a 
synapse. Moreover, PCMs are useful to implement summation [119] and weighting functions [118], [119], [121]. 

3.7 Other Devices 

A Semiconductor Optical Amplifier (SOA) is a device in which a semiconductor is used to add a gain to an 
optical signal without electro-optical or opto-electrical conversions. SOAs are mainly used to compensate for 
optical  losses in  optical  communication systems. In  photonic  neural  networks, SOAs can  be employed  to 
implement learning functions [122], [123]. However, SOAs suffer from poor coupling efficiency to optical fibers 
and are sensitive to polarization because  of their planar shape [124]. Vertical Cavity Semiconductor Optical 
Amplifiers (VCSOAs) provide a better coupling efficiency and a lower sensitivity to polarization, and they can 
also be integrated into 2D arrays [113]. Moreover, based on the proposed learning function implementation in 
[125], VCSOAs can offer low-power consumption to implement learning functions in neural networks.  
A spatial light modulator (SLM) is a device that can be used to change the amplitude, polarization, and 

phase over the spatial extent of a light beam [126]. Integrated spatial light modulation in silicon photonics can 
enable  all-optical  reconfigurable  devices  with  possible  applications  in  testing  of  optical  circuits  and 
reconfigurable multi-port optical filters, splitters, and modulators for data communication [127]. SLMs can be 
employed in reservoir computing architectures, as described in Section 5.3.   
A pillar scatterer is a type of device that can be employed for implementing reservoir computing [34]. These 

devices can help speed up the classification of biological cells [128], [129]. For example, [129] provided a proof 
of concept, based on Finite-Difference Time-Domain (FDTD) simulations, of an integrated photonic application 
of Extreme-Learning Machine (ELM) for fast and label-free classification of biological cells. In this application, 
a passive optical stage comprising a collection of pillar scatterers embedded in a silicon nitride cladding is used 
to process the light forward-scattered by a cell when illuminated via a green monochromatic source.  
An  optical comparator is  a  common device  in  the  design  of  analog-to-digital convertors [130]. Optical 

comparators can  be  made  using  MRs,  SOAs,  and  lasers [131]. All-optical comparators are  preferred  over 
optoelectronic ones as they can provide higher speed and lower power consumption by avoiding electro-optical 
conversions [131]. An optical comparator is also useful to implement the max pooling layers in CNNs [132]. 
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Lastly, silicon photonic Arrayed-Waveguide Gratings (AWG) are commonly used as optical (de)multiplexers 
in  WDM systems. These  devices  are  capable  of  multiplexing many wavelengths  into a  single optical fiber, 
thereby  considerably  increasing  the  transmission capacity  of  optical  networks. AWGs  have  been  used  to 
implement matrix multiplication [133] and CNNs [134].  

4 SILICON PHOTONIC NEURON MICROARCHITECTURES 

In this section, we review different implementations of silicon photonic neurons that form the building blocks 
of photonic neural networks. Subsection 4.1 discusses how various functionalities within an individual neuron 
are implemented using silicon photonic devices. Subsection 4.2 describes two approaches for classifying the 
implementation of photonic neuron microarchitectures.  

4.1 Intra-Neuron Functionality Implementation with Silicon Photonic Devices 

Artificial neurons are designed to mimic different functions of biological neurons, and can be combined to 
create a scalable, energy-aware, and high-performance neural network. A high-performance photonic neuron 
is  expected  to  provide adequate reliability  [40], [85],  scalability [90], and  cascadability [111], [135], [136]. 
Reliability of a neuron can be improved by either reducing the noise at the output of the neuron or increasing 
the power of the desired optical signal (i.e., the signal carrying the data being exchanged through inter-neuron 
communication) to ensure that a neuron is not excited by unwanted noise and only excited by the desired signal. 
A  scalable neuron  supports  sufficient  number  of  fan-in inputs to  enable large-scale  networks.  Indeed,  one  of 
the main factors contributing to the neural network computation power efficiency, in comparison with traditional 
Von Neumann computing, is the high connectivity inspired by mammalian brains. Cascadability, which directly 
affects  the  neural  network  reliability,  is  another  important  factor  affecting  the  performance of  a  neuron. 
Cascadability of a neuron design is defined based on the optical signal power of a neuron to drive other neurons. 
Together, reliability, scalability, and cascadability are important metrics when evaluating the performance of a 
photonic neuron.  
Two types of neurons are widely used in photonic neural networks: conventional (non-spiking) and spiking, 

as discussed in Section 2. In general, a photonic neuron includes four main functions: weighting, summation, 
activation, and learning. There are significant differences between the two neuron types when it comes to the 
learning  functionality.  In  spiking  neuron  models,  the  learning  function is implemented  at  the  neuron-
microarchitecture level: e.g., unsupervised learning (e.g., Spiking Time Dependent Plasticity (STDP)) is often 
implemented  as  a  part  of  the spiking neuron  to  closely  mimic  the  functionality  of  a  biological  neuron. For 
conventional neurons, the learning function is not part of the neuron model and is instead implemented at the 
neural  network  architecture  level  (e.g., with backpropagation  learning)  rather  than  at  the  neuron-
microarchitecture level. We discuss the four main neuron functions in the following subsections.  

4.1.1 Weighting function 

In  biological  neural  networks,  synapses  are  of  great  importance  because  a  synapse  is  a  memory  for  a 
learning process. Synapses provide weighted connections among neurons where changing the weights is the 
main function of the  learning  process (discussed  in Subsection 4.1.4). Because of the adaptive weighting in 
synapses, the weight of a synapse is manipulated (through the learning process) to change the effect of each 
input. To mimic such dynamic weighting of connections, silicon photonic devices such as MRs can be used to 
control optical transmission between two neurons. As a result, such devices can implement weighting functions 
where the transmission can be controlled by a learning feedback over the input and output. 

 
 

Figure 11: The neuron model employed in [40]. Here, several wavelengths share a waveguide to offer a high bandwidth. Inputs over 
different wavelengths enter the MR weight bank. Then, weighted inputs are summed using a balanced photodetector and a laser at the 
final stage converts the electrical summation signal to optical spikes (E/O converter can be a modulator [83] instead of a laser). 

 
An MR is one the key devices used in the design of a weighting function. MRs can be placed in arrays to 

offer a bank of dynamic filters (see MR weight bank in figure 11) on the input connections of a post-synaptic 
neuron [90], [110], [111]. Each MR in an MR weight bank has an assigned weight value. When an optical signal 
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passes an MR in an MR weight bank, the MR can alter the optical signal power proportional to its weight value. 
The  weighted  optical  signals  are  then sent to  a  photodetector  to  perform  the  summation  function,  which  is 
discussed  in Subsection  4.1.2.  Multiple  wavelengths  can  be  used  in  an  MR weight  bank  with the WDM 
paradigm, to support high bandwidth communication and provide great scalability [110], [111]. However, the 
number of wavelengths that can be used in an MR weight bank is limited by cross-weight penalty [40] where 
the channel  spacing—the  frequency  space  between  two  consecutive  optical  channels/wavelengths—should 
guaranty  the  desired  tuned  weight  for  each  synapse.  Reducing  the  channel  spacing (by  increasing  WDM 
degree) in an MR weight bank increases undesired effects (e.g., inter-channel crosstalk) on the spike-to-noise 
ratio, which can result in an undesired weight tuning. Such cross-weight effects can be improved at the cost of 
increasing the optical signal power to improve spike-to-noise ratio and, therefore, neuron reliability. In [40], the 
authors proposed an analytical model to design an MR weight bank while considering the channel spacing and 
power efficiency. 

 

 
 
Figure 12: A PCM-based  synapse  proposed in [118]. The  synapse is  based  on  placing  several PCM islands (yellow)  on a tapered 
waveguide (blue) to control the optical transmission between the pre-synaptic and post-synaptic neurons. Weighting pulses to change 
the weight of synapse, optically, is applied via port 1.   
   
Devices that utilize Phase-Change Materials (PCMs) for tuning can also be used to implement weighting 

functionality. In [118], Ge2Sb2Te5 (GST), which is a PCM, is used to efficiently change optical transmission of a 
waveguide to implement a photonic synapse (weighting function) in a spiking neuron. In this design, shown in 
figure  12,  multiple  PCM  pieces/dopants,  which  are  called  a  PCM  island,  are  placed  on  the  waveguide.  In 
comparison  with  using  a  single  PCM  island,  this  design  is  improved  by  using  several  PCM  islands  on  the 
waveguide for each synapse that helps realize a more efficient optical-transmission change in the waveguide. 
The  results  also  show  that  using  a  tapered  waveguide  structure  in  combination  with  PCM  islands  is more 
efficient than using a standard, non-tapered waveguide. The experiments in [118] confirm that each weight of 
the  PCM-based  synapse  can  be  obtained  using  a  predefined  number  of  input  optical  pulses.  Therefore,  an 
accurate  and  all-optical  weight  tuning can  be  achieved by employing  several  PCM  islands  with  a  tapered 
waveguide. However, such an all-optical synapse suffers from low operation speed due to the photo-structural 
transformation process, which influences movement of atoms or ions because the speed of atoms and ions is 
much lower than that of a photon [137]. 
Excitatory  and  inhibitory functions: In addition  to  synapse  weight, the  type  of neurotransmitters plays  a 

significant role in a biological neuron. A neurotransmitter is a chemical to transmit information over a synapse 
to the receptors of a post-synaptic neuron [138]. Based on the type of neurotransmitters, weighted inputs can 
increase  or  decrease  the  membrane  potential  of  a  post-synaptic  neuron.  If  a  weighted  input  increases the 
membrane potential, the weighted input is excitatory (i.e., it encourages neuron to excite). On the other hand, 
an inhibitory weighted input decreases the membrane potential (i.e., discouraging the neuron to excite). In an 
artificial neuron, this corresponds to considering a positive or negative weight for each synapse. Therefore, a 
weighted input can increase or decrease membrane potential of the post-synaptic neuron to support excitatory 
and inhibitory functions, respectively. Several  silicon photonic  devices have  been investigated  to implement 
excitatory  and  inhibitory  functions which  are necessary in  neural  network  designs. Excitatory function  of 
distributed-feedback (DFB)  lasers [93],  MRs [112],  and  VCSELs [97] have  been studied.  Moreover, [133] 
analyzed the inhibitory functionality of VSCELs. To enable an efficient photonic neural network, both excitatory 
and inhibitory functions are required in the neuron design. For example, [91] proposed a neuron model in which 
a  VCSEL  is  used  to realize both  excitatory  and  inhibitory functions of  a  neuron  by  injecting  orthogonally 
polarized  and  parallelly-polarized  fields  at  the  same  time.  In  addition  to  excitatory  and  inhibitory  functions, 
injecting the two fields makes the neuron more reliable in the presence of noise and provides a faster response 
of the VCSEL. The proposed neuron design in [90], which is an opto-electronic neuron to support WDM, also 
provides both excitatory and inhibitory functions. The neuron uses two MR-based filters to represent positive 
and  negative weights for  excitatory  and  inhibitory  functions,  respectively.  Furthermore,  [140] proposes  the 
experimental implementation and analysis of summation  with  excitatory  and inhibitory functions in  the opto-
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electronic neuron proposed in [90]. However, in this opto-electronic neuron, two wavelengths are required to 
enable both  excitatory  and  inhibitory functions  in  the summation.  The  proposed  neuron in [141] employs  a 
modulation technique, which is based on using two push-pull MZIs and a phase shifter, to realize both positive 
and negative weights over a single wavelength. However, in the laser-based excitatory and inhibitory functions 
described  above,  active  devices are  used. Photonic  neurons  employing  active  devices,  in  which  the light  is 
generated by the device itself, suffer from integration challenges as it is costly to fabricate them with a standard 
CMOS process. To this end, the proposed neuron in [113] provides both inhibitory and excitatory functions by 
using MRs, which are passive devices.  

4.1.2 Summation function 

As described in Section 2, in a biological neuron, the soma or body of the neuron is responsible to combine 
(i.e., sum) inputs of a neuron so that the post-synaptic neuron can be excited with the aggregated input spikes. 
Similarly, in a conventional (non-spiking) artificial neuron model, a summation function integrates all the neuron 
inputs and  forwards  the result to an activation function. Summation over inputs is quite important because it 
directly  affects  the  neuron  scalability.  A  scalable  neuron  can  effectively integrate  a  large number  of inputs to 
enable  a  large  fan-in  and  hence  a  large-scale photonic  neural network.  To  design  such  a  scalable  neuron, 
neurons proposed in [90] and [111] combine inputs on different wavelengths to provide a compatible design 
with WDM.  In  such  implementations,  the  neuron  employs  a  photodetector  to  combine inputs  transmitted  on 
multiple wavelengths (see the photodetector in figure 11). As a result, there is a need for signal conversion (i.e., 
optical-to-electrical  and  electrical-to-optical) in  such  opto-electronic  neurons  where  such  conversion imposes 
some power losses, hence degrading the neuron performance. Alternatively,  the summation function can  be 
implemented in a photonic neuron using an all-optical approach. For instance, the summation functionality in 
micropillar-semiconductor  lasers  based  on  an  integrated  saturable  absorber  is investigated  in [142].  Results 
show that the micropillar laser is able to combine spiking stimuli and excite an activation function. Moreover, 
DFB lasers [93] and VCSELs [91], [97] are also used to implement the summation function in photonic neurons. 
The proposed  neuron in [112] employs  MRs  to  implement the summation  function. Nevertheless, all-optical 
approaches do not  support  WDM,  hence  cannot  provide  high  interconnectivity  to  realize  scalable  photonic 
neural networks.  

4.1.3 Activation functions 

The activation function of a neuron can be linear or non-linear. In [141], a linear neuron model is presented 
to support linear additions and subtractions with both positive and negative weights to realize excitatory and 
inhibitory  functionalities.  The  proposed  linear  neuron in  [141] can  support  non-linear sigmoid and ReLU 
activation functions to be added to the base linear neuron. In [113], to implement a non-linear activation function, 
non-linearity effects in MRs are leveraged to realize a low-power neuron. 
There  are  differences  in  the activation  functions in  spiking and  conventional neuron  models. In  spiking 

neurons, an activation function defines the spiking time of the neuron based on the aggregated input spikes. 
Therefore, the optical signal propagation time depends on the activation function in this event-driven approach. 
Alternatively, in conventional neurons used in ANNs, an optical signal is propagated from the input to the output 
in predefined times. In [143], SOAs are used to emulate a sigmoid activation function for conventional neurons. 
An  activation function  can also be  implemented  by  a  photonic  laser  with  electrical  control  signals  in opto-
electronic neurons (see figure 11). In the neuron used in [90], which is called Broadcast-and-Weight (B&W), an 
excitable laser and a photodetector are used to mimic the excitation function of artificial neurons. In particular, 
the activation function is implemented using an excitable laser and can fire when the summation signal, provided 
by the photodetector,  reaches a threshold. The decision  of  firing  a  spike,  realized  by the activation function, 
triggers a spiking optical signal in the laser. The B&W approach has also been used in conventional neurons. 
For example, in [144] an MZI-based neuron is used in which the activation function is a binary function of +1 or 
-1 (symbolic decision function)  
VSCELs have also shown great potential to implement an activation function, due to their relatively small 

footprint  [145],  low-power  consumption [135],  capability for 2D  or  3D  integration  in  arrays [99],  low 
manufacturing  costs [135], [145],  and  efficiency in  coupling to  optical fibers [135], [147]. In [97],  the  spiking 
behavior of VCSEL-based neurons, which is electrically controlled, is investigated. In [146], the spiking behavior 
of VCSELs with both parallel and orthogonal polarized optical stimuli is explored, and results show that VCSELs 
are  able  to  produce  controllable  spikes required  to  enable ultra-fast optical  neural  networks.  In [135], the 
excitation  behavior  of  a  VCSEL  is studied.  To  investigate  cascadability of  VCSELs  while  considering  their 
excitation  behavior,  two  VCSELs—a  transmitter  VSCEL  and  a  receiver  VCSEL—are  considered in [135]. 
Results show that controllable spikes (using an external control signal) are propagated from the first VCSEL to 
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the  second  one, confirming cascadability  of  VCSELs and  that  they  can be  used  as  an  excitation  device  in 
photonic neural networks. However, after firing a spike using a VCSEL, an inherent relaxation oscillation can 
occur which deteriorates reliability and speed of photonic neurons [91], [148].  The majority  of  VCSEL-based 
photonic neurons [99], [139], [146], [149] do not support excitatory and inhibitory activations at the same time. 
However, in [91] and [148], both excitatory and inhibitory functions are realized in VCSELs by employing double 
polarized  injections,  i.e.,  orthogonally  and  parallelly  polarized  injections.  Silicon  photonic  devices  are  often 
designed for a single-polarization operation, hence employing double-polarized VCSELs is a challenge. 
PCMs can also be used in the design of photonic devices to realize activation functions. The all-optical 

neuron proposed in [120], shown in figure 13, employs PCMs in an MR structure to realize excitation behavior 
of  spiking neurons. Figure  13(a) shows the  schematic  of the proposed  neuron, figure  13(b) shows its main 
components, and figure 13 (c) shows the circuit design of the proposed neuron. As shown in the figures, PCM 
is not  only used  to  implement the weighting  function but  it  is also placed  on the MR to  mimic an activation 
function. The transmission response of the PCM on the MR (shown in figure 13(b)-IV) was used to emulate the 
ReLU activation function.  

(a)

(b) (c)
  

Figure  13:  PCM-based neuron  proposed in [120]: (a)  schematic  of the neuron model, (b) main components of the neuron, and (c) 
photonic circuit of the neuron. 

4.1.4 STDP learning function 

In spiking neurons, Spiking Time Dependent Plasticity (STDP) learning is usually employed to closely mimic 
a biological neuron, while in conventional artificial neurons, the learning function is implemented at the neural-
network-architecture level and usually in the electronic domain. In spiking neurons, the STDP learning function 
updates weights based on pre-synaptic and post-synaptic spikes to help gradually decrease the neural network 
error, which corresponds to the difference between the desired and the actual output. In the STDP learning 
process, the strength of connections (i.e., synapses) is adjusted based on the spiking time of pre-synaptic and 
post-synaptic neurons. Changes in weight synapse are based on the output and input spiking time. According 
to the spiking time of pre-synaptic neuron and post-synaptic neuron, the weight can be increased or decreased 
to  implement  a  learning  function  for  a  photonic  neuron.  A synapse’s weight  increases, which  is  called 
“potentiation,”  if  the  pre-synaptic  spike  occurs  right  before  the  post-synaptic  spike.  On  the  other  hand, a 
synapse’s weight decreases when the pre-synaptic spike misses the excitation of the post-synaptic neuron, i.e., 
the post-synaptic neuron fires as a result of the spikes received from the other pre-synaptic neurons.  
In [122], STDP is implemented using an SOA and an Electro-Absorption Modulator (EAM), which can be 

deployed  in  high-speed (picosecond timescale) neural  network computation.  Also, [123] discusses  photonic 
implementation of STDP and its application in both supervised and unsupervised learning. Employing a single 
SOA  device  to  implement  STDP  learning  improves  the neuron scalability  to realize supervised  and 
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unsupervised  learning  algorithms  in  large-scale  neural  networks.  However, employing SOAs to  implement 
STDP imposes  high-power  consumption  (e.g., in  comparison  with using passive  devices).  In [150],  STDP 
learning algorithm is implemented based on using passive MRs, which is suitable to design large-scale photonic 
neural  networks with  low-power  consumption.  In [125], a VCSOA  is  employed  to  improve  the high-power 
consumption in STDP learning implementations based on SOAs.  

4.1.5  Summary 

The state-of-the-art neural functions and their implementation using silicon photonic devices discussed in 
this section are summarized in Table.1. 

4.2 Classifications of Silicon-Photonic Neuron Microarchitecture Implementations 

Neuron  implementations  with  silicon  photonics  can  be classified in  two  ways: 1)  all-optical versus opto-
electronic  neurons,  and  2)  coherent versus noncoherent  neurons.  In  the  following subsections,  we  discuss 
these two neuron implementation classification approaches in detail.  

4.2.1 All-optical versus opto-electronic neurons 

In  opto-electronic  neuron  designs,  there  is  a  need  for electrical-to-optical and optical-to-electrical 
conversions. In such neurons, weighted inputs are typically summed/combined using a photodetector to control 
a laser [90]. Therefore, optical inputs should be converted to electrical signals and the electrical output of the 
photodetector should then  be converted  to an  optical signal  using  a laser (see  figure  11).  Because  of such 
conversions  from  optical  to  electrical  and  electrical to  optical  domains,  the  neuron  is  also  called an O/E/O 
neuron. Compared  with  all-optical  neurons,  O/E/O  neurons  are  power  inefficient  due  to  the power losses 

Table 1: A summary of neural functions and their implementation using silicon photonic devices 
 

 Implementation Advantages Disadvantages References 

Weighting 
function 

MR filters Compatible with WDM Not all-optical (require 
signal conversions) 

[40], [110] 

Several PCM islands 
on a tapered 
waveguide 

All optical weight update Low operation speed [118] 

Summation 
function  

Photodiode Compatible with WDM Low scalability [90] 
Micropillar laser Both summation and excitation 

in laser 
Does not support WDM 
and inhibitory function 

[142] 

Activation 
function 
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VCSEL by double 
polarized injection 

Support both excitatory and 
inhibitory functions; VCSEL 
advantages (low power, small 
footprint, implementation in 
arrays for large-scale designs) 

Require double 
polarized injection 

[91], [148] 

MR Use passive devices 
compatible with standard 
CMOS technology; support 
both excitatory and inhibitory 
functions 

Sensitive to 
temperature and 
fabrication-process 
variations; has a limited 
cascadability 

[112], [113] 

 VCSEL Low power, small footprint, 
implementation in arrays for 
large-scale designs 

Uses active laser 
devices that consume 
high power compared 
to passive ones [112], 
[113] 

[97], [99], 
[146], [135], 
[147]  

PCM and MR Power efficient due to the use 
passive devices 

low cascadability [120] 

STDP Learning 
function 

Semiconductor optical 
amplifier (SOA) 

Scalable Power inefficient [122], [123] 

Vertical-cavity 
semiconductor optical 
amplifier (VCSOA) 

Power efficient in comparison 
with SOA-based STDP 
learning 

Employing active 
devices, which are 
power hungry  

[125] 

MR Power efficient because of 
implementation with passive 
device – does not require 
neurons to spike at different 
wavelengths  

Only support 
unsupervised STDP 
learning 

[150] 
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enforced in the required conversions. Moreover, due to the analog nature of intra-neuron communication [85] 
in  both  electrical  and  optical domains, the  photodetector  and the modulator laser  are susceptible  to  noise. A 
noise analysis for opto-electronic neurons is presented in [85]. To compensate for the noise, the power of the 
modulator  or  electric  transimpedance  gain  should  be  increased  by  adding  a transimpedance  amplifier  (TIA) 
[85]. However, increasing the modulator power and adding a TIA both result in power consumption overhead. 
Conventional O/E/O neurons [40], [85], [111] often employ a directly modulated laser for excitation and spiking 
which in turn necessitates the placement of the photonic devices and the laser on the same chip. Consequently, 
such neurons suffer  from thermal issues and variations caused by the on-chip laser. To  this  end,  Modulator 
Neuron [83], [85] employs a modulator instead of a directly modulated laser. Therefore, the neurons can use 
an off-chip laser as the light source to compensate for the thermal issues. 
In all-optical neurons, there is no need for electro-optical conversion during intra-neuron communication, 

i.e., all the devices within the artificial neuron support optical signal communication [113], [120]. For example, 
[120] proposed an all-optical spiking neuron, shown in figure 13, including an STDP learning implementation. 
Moreover, [113] proposed an all-optical neuron based on passive devices (in which the light is not generated 
by the device itself). The models presented in [113] suggest that MRs provide fast and power efficient excitatory 
and inhibitory functions in photonic neurons. Besides inhibitory and excitatory functions, the proposed model 
shows refractory behavior, which is an important functionality in a neural network implementation.  Moreover, 
because the proposed neuron employs passive MR devices, it can be easily implemented with standard CMOS 
technology.  However,  such  all-optical  neurons lack  high cascadability to  support  a  large  neural  network.  In 
addition, as we discussed in Section 4.1.1, all optical synapses (as a part of all-optical neurons) suffer from low-
speed operation to implement weighting functions. 

4.2.2 Coherent and noncoherent neurons 

Based on the wavelength of operation in neurons, neuron implementations can be classified as coherent 
or noncoherent  [151]. Coherent  neurons manipulate  the  electrical  field phase  and  amplitude  with  a  single 
wavelength. Noncoherent  neurons,  such  as  those  that  employ  the  B&W  photonic  neuron  configuration 
discussed  earlier, manipulate  optical  signal  power  and rely  on  multiple wavelengths.  The  coherent  neurons 
proposed in [32] and [141] employ MZIs and are power efficient as they require a single wavelength. However, 
MZIs  impose a  high area  overhead  and  thus  the  design  cannot be  extended to  support  large-scale  neural 
networks. Moreover, MZIs in coherent neurons require phase shifters in which the tuning error is inevitable. 
This tuning error can be propagated and magnified in the neural network, reducing the network reliability. The 
use of microdisk lasers was investigated in [113] to design a coherent neuron in which excitatory and inhibitory 
functions  are realized by  controlling  optical  phases.  However,  adjusting  optical  phases,  which  can  be  done 
using a microheater [113], adds a new challenge. In addition to phase-control challenges, coherent neurons 
operate at a single wavelength and are unable to distinguish between different wavelengths. Consequently, a 
neural network based on coherent neurons does not support reconfigurability [84] and WDM, resulting in a low-
bandwidth performance. On the other hand, noncoherent neurons can operate with multiple wavelengths and 
support WDM in which several wavelengths share a waveguide to offer a high connectivity with lower number 
of waveguides. However, the dependency between the input and output wavelengths in photonic ANNs using 
noncoherent  neurons necessitates wavelength  conversions [84]. Such conversions  can require high-power 
consumption overheads [152]. Moreover, noncoherent neurons also suffer from inter-channel crosstalk, which 
can reduce reliability [40]. 

4.2.3  Summary 

Table  2  summarizes  the  state-of-the-art  all-optical,  opto-electronic,  coherent,  and  noncoherent  neuron 
microarchitecture implementation approaches. 
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Table 2: A summary of some proposed neuron microarchitectures using silicon photonic devices 
 

 Implementation Advantages Disadvantages References 
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Use weight bank for 
synapse, photodetector 
for summation, and 
laser for spiking  

Use WDM to offer high 
bandwidth 

Not all optical – consumes power 
in electro-optical and opto-
electrical conversions; requires 
wavelength conversions 

[90] 

Use modulator instead 
of direct modulation by 
laser 

Use WDM to offer high 
bandwidth; support on-chip 
neurons with off-chip 
lasers  

Not all optical; high power 
consumption because of 
employing couplers 

[83], [85] 
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nt
 Use MR weight banks 

for synapse and PCM 
for excitation function 

Supports both 
unsupervised and 
supervised learning; no 
need for electro-optical or 
opto-electrical conversion  

Cross-weight penalty [40] for 
weight tuning; low cascadability 

[120] 

C
o
h
er
e
nt
 

MR (require an all-
optical synapse: 
synapse [118] is 
suggested by the paper) 

Use passive devices; no 
need for electro-optical or 
opto-electrical conversion  

Optical learning is not included; 
low cascadability 

[113] 

Splitters and MZIs Higher reliability and low 
power overhead in 
comparison with using 
several wavelengths 

Low bandwidth because of using 
one wavelength; area inefficient; 
exact splitting ratios are hard to 
achieve after fabrication due to 
variations; susceptible to noise in 
phase and splitting ratios [153] 

[141] 

MZIs Higher reliability and low 
power overhead in 
comparison with using 
several wavelengths 

Low bandwidth because of using 
one wavelength; area inefficient 
and hence not scalable; 
susceptible to phase noise  

[32] 

5 SILICON PHOTONIC NEURAL NETWORK ARCHITECTURES 

At  the  architecture  level, prior  work focuses  on  implementing  different  types  of  neural  network  models 
(discussed  in  Section  2): ANNs  (MLPs,  CNNs, RNNs), SNNs,  and  RC. The  overarching  innovation  of  a 
particular work is governed by the basic optical devices used in the architecture and the fundamental principles, 
such as optical resonance and optical interference, that govern those devices. These principles ultimately have 
the biggest impact on the performance, power, and reliability centric design decisions, and also the inherent 
limitations of the architecture built using them. Thus, devices and the driving principles behind them drive the 
innovations required to realize the architectures with silicon photonics technology. Hence, our classification in 
this section will be based on the primary photonic principles used to construct the neural network architectures.  

5.1 Optical Resonance based Network Architectures 

Optical resonance based neural network implementations usually rely on the wavelength specificity of MRs 
or microdisks, which  leads  to the  utilization  of WDM-based implementations where multiple wavelengths are 
utilized in a waveguide. These architectures are noncoherent architectures and utilize the noncoherent neuron 
microarchitectures discussed in Section 4.2. Most of these architectures utilize or build on the  B&W protocol, 
illustrated in figure 14, for setting and updating the weights as it was demonstrated in [154] to have isomorphism 
to  Continuous  Time  Recurrent  Neural  Networks (CTRNNs). The  feedback  loops, which  are  characteristic  of 
RNNs, can be emulated by MRs when they reach optical bistability. Under favourable conditions pertaining to 
the resonant material and incident transmission intensity, the output transmission of the resonator can enter a 
hysteresis cycle, with two stable transmission levels. This is referred to as optical bistability of resonators. The 
work  in  [154] also  suggested using Mach–Zehnder  Modulators  (MZMs)  to  generate  the sigmoid activation 
function. This specific work provided the proof-of-concept  that  B&W-based  MR  architectures  can  be  used  to 
implement neural networks and that they can  yield  better  performance  over traditional  CPU-based  CTRNNs. 
For  benchmarking,  they considered a Lorenz  Attractor [155] simulation  application and reported  a  294× 
acceleration with their photonic architecture compared to CPU-based simulations.  
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The B&W protocol is a multi-wavelength analog networking protocol in which multiple all-photonic neuron 
outputs  are  multiplexed  and  distributed  to  all-neuron inputs.  These  architectures  tend  to  make  use  of  the 
parallelism that is inherent in photonic architectures, employing multiple wavelengths to transfer data in parallel 
using  WDM.  Different  wavelengths  in  a  waveguide represent  the  input  signals  to  the  neuron.  Weights  are 
reconfigured by tuning the MRs, so that the characteristics of a specific wavelength are modified. MR weight 
banks comprise of tuneable MRs which can be tuned to drain energy from their resonant wavelength so that 
intensity  of  the  wavelengths reflect the  weights or  the  kernel  values. The change  in  intensity  is  read  using 
photodetectors  (PDs)  and  summed  to  obtain  the  output  values  from  the  weight  bank. This process  was 
described in detail in Subsections 4.1.1 and 4.1.2. The obvious advantage of this approach is the utilization of 
the well-studied and mature MR technology to implement photonic neural networks, which makes the hardware 
implementation and integration easier. However, an issue this protocol can face is the number of MRs needed 
to implement it for real-world applications and depending on the feature map and the kernel size for CNNs this 
can become exorbitant. The research utilizing this protocol tries to work around this issue.  
 

  
 

Figure 14:  The Broadcast-and-Weight (B&W) protocol as illustrated in [37]. 
 

The authors in [156] utilize  the B&W protocol with an MZM to implement the sigmoid non-linearity as in 
[154] to  propose  a  CNN  accelerator,  dubbed Photonic  CNN  Accelerator  (PCNNA).  PCNNA  implements  one 
CNN layer and reuses that layer sequentially, with varying kernel sizes to implement the whole CNN. The input 
feature map  and the required kernels are  loaded from  an  off-chip  DRAM.  The results  from  the execution  of 
individual layers are fed back into the memory. This is a sequential execution of kernels using an optical core, 
which runs  at  a  higher  clock  frequency  than  its  electrical  components.  The  optical  core  mentioned  here  is 
comprised of the weighting MR banks and Digital to Analog Converters (DACs) that feed data into the MR banks 
and the laser diodes (LDs). The authors argue that because CNNs use kernels with the same dimensions per 
layer, they share  the  same  receptive  fields,  and  hence  convolution  computations  for  different kernels can  be 
performed in parallel. They demonstrated the effectiveness of this work by implementing AlexNet, which is a 
deep CNN architecture with eight layers, five convolution layers and three fully connected layers. The authors 
showed how their filter-based approach to implementing AlexNet had substantially fewer number of MRs than 
an approach which does not consider any optimizations for implementing AlexNet (they claimed a reduction in 
the number of MRs from one-billion range to 100,000 range).  
Another  architecture  which  utilizes  photonic  weight  banks for  implementing  CNNs  is  described  in [157]. 

The authors have described an architecture which implements the entirety of the CNN layers using connected 
convolution  units  which  are  comprised  of weight banks,  where  the  tuned  MRs  assume  the  kernel  values  by 
using phase tuning to manipulate the energy in their resonant wavelengths. The architecture was tested using 
the MNIST dataset [158] and was shown to have better execution time than GPU-based classification, with the 
AMD Vega FE, AMD M125, NVIDIA Tesla P100 and NVIDIA GTX 1080 Ti GPUs. However, they do not consider 
any optimization methods on the model to reduce the MR count required to represent it, and they report a very 
high 100W power utilization for a 1024 MR modulator array in their proposed architecture.  
A CNN accelerator implemented using MRs and memristors, is described in [132]. In this work, weights are 

fed into the MR-weight bank through memristors, which in turn gets their weight values from off-chip memories 
via SRAM buffers. The architecture includes individual layers needed for CNN implementation. The convolution 
layer is comprised of the memristor-based photonic weight bank. The activation layer (ReLU layer) is built using 
SOAs. The work also uses an all-optical analog comparator, proposed in [130], to implement maxpooling layer. 



21 

These three layers form a single feature-extraction layer. Two feature-extraction layers are interconnected using 
an interface layer, which demodulates the output from the previous maxpool layer, generates the corresponding 
electronic voltage values, and then feeds them into the memristors of the next feature extraction layer. This 
work focused on recognition of handwritten digits, using the MNIST dataset and shows better execution time 
against the FPGA-based Caffeine accelerator [159] and the memristor based ISAAC accelerator [20] on various 
benchmarks. The architecture was further extended by the authors in [208]. 
 

 
Figure 15: The hitless weight and aggregate architecture for optical matrix-vector multipliers (OMMs), from [37]. The architecture aims 
to avoid the thermal crosstalk-based weight corruption that can occur in the B&W protocol-based architectures. 

 
A variation of the B&W protocol for MLP implementations was explored in [37] where the authors described 

the  “Hitless  weight-and-aggregate”  architecture.  This  method  to  accumulate  weight  values  from  the  weight 
banks was devised to overcome the possible corruption of weight values from thermal variations and thermal 
crosstalk.  The  proposed  “Hitless  weight-and-aggregate”  architecture  for  MR-weight  banks  separates  the 
wavelengths and weighs them in a parallel manner instead of the cascaded approach proposed in [154]. The 
process of updating the input matrix is simplified to counteract the delay induced by updating the weights in the 
weight  bank.  This is  done  by  encoding the  kernel  directly into  the input matrix of  the Optical Matrix Multiply 
(OMM) unit, which is illustrated in figure 15. The control of the Hitless MR bank architecture is given to an FPGA, 
which use PDs and ADCs to obtain the summed signals from the OMM. The OMMs were implemented using 
MRs but the vector storage was implemented using MZIs. Given that the main issue with B&W is the large MR 
count, it is unclear if the modified architecture can address that issue, as the work does not elaborate on the 
MR count, even with the input matrix minimization approach discussed in the paper. 
MRs are prominently used to implement the B&W protocol, but an architecture which considered microdisks 

over  MRs  for  its lower  area  and  power  consumption is  described in [160].  This  work  explores  designing  and 
implementing  photonic Matrix-Vector Multipliers  (MVMs),  adders, and  shifters, which  are  the  fundamental 
computing  components  for  CNN  inference,  using  microdisks  (figure  16).  The  MVM  (figure 16(a))  uses  the 
transmissivity  of  the  microdisk  array  to  represent  the  elements  of  one  matrix  and  the  input power  into  the 
microdisk array from the LD array to represent the other matrix. The output power from the microdisk array is 
product of the two matrices. The electro-optic full adder (figure 16(b)) utilizes CMOS logic gates to calculate the 
propagate bit (Pn) and the generate bit (Gn) needed for the full adder, and microdisks to calculate the sum and 
carry. The Pn and Gn values are used to modulate the microdisks. By modulating the light intensity, one of the 
optical  combiners  at  the  output  implements  an  XOR  gate  while the  other  generates  an  OR  gate,  thereby 
implementing all the necessary operations for the sum and carry operations. The authors also propose a binary 
shifter using microdisks as shown in figure 16(c). The shifting operation is performed by configuring the on/off 
states of the microdisk crossing switches. The authors also describe simplified CNN models called power of 
two  quantized  CNN  (P2Q-CNN)  models to avoid reliance  on  ADCs and boost  CNN  inference  accuracy  with 
negligible  drop  in  accuracy  (below  1%). This  alternative  architecture  uses  a  photonic  adder  and  shifter 
combination instead of the MVM. For testing the architecture, the authors used benchmarks based on MNIST 
and ImageNet datasets.  They  compared  this  architecture  to  a  ReRAM-based  PIM  accelerator  
ISAAC [20], and showed 13× better performance-per-watt.  
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Figure 16: (a) Microdisk-based on-chip matrix-vector multiplier (MVM), (b) electro-optic full adder; (c) photonic bit shifter, from [160].  

 
A recent work [161] combined MRs and MZIs to design the basic Optical Multiply and Accumulate (OMAC) 

unit, which is used in an accelerator for CNNs, called PIXEL. The work describes two versions of the accelerator: 
a hybrid version that multiplies optically and accumulates electrically, and a fully optical version that multiples 
and accumulates optically. The hybrid version uses MRs to implement an AND function with the MRs controlled 
using a synapse-lane,  with  shift-accumulation  being done electrically. The bitwise AND operation along with 
shift-accumulate is used as an alternative to the opto-electrical MAC operation. The all-optical shift and ADD 
design uses MZIs to perform low-latency, low-power shift-accumulate operation optically and by cascading MZIs 
together. Synchronization of the signals from AND output is achieved with the help of propagation delay in MZI 
arms. Large dimensional MZIs and 6mm waveguide arms between these MZIs are used, to induce propagation 
delay in optical signals. The output signal from these interconnected MZIs effectively bit shifts the input. The 
proposed architecture has register files for filter weight storage in each OMAC. The OMACs are arranged in a 
grid, and neuron outputs are passed through photonic interconnects in both x- and y-dimensions. The synapses 
are pre-loaded into the OMAC and the proposed design assumes timed firing of the neurons to implement the 
MAC functionality. The hybrid and all-optical approaches were compared against an all-electrical architecture 
via simulations for the ResNet, GoogleNet, and ZFNet models. The all-optical approach shows better energy 
efficiency than the all-electrical approach and is comparable to the hybrid approach in this regard. The hybrid 
approach  which  relies  only  on  MRs occupies significantly smaller area  than  the  all-optical  version  of  the 
architecture which uses both MRs and MZIs. 
The B&W protocol has also been used for SNNs as discussed in [90]. The suggested architecture utilizes 

laser neurons in conjunction with two different MR weight banks to interact with the WDM signals. The weight 
banks are used to represent excitatory and inhibitory weights. The weights are accumulated using a balanced 
PD pair before being used to excite a laser neuron. One of the PDs in the pair accepts the signal power from 
the  excitatory  weight  bank  and  the  other  accepts  power  from  the  inhibitory  weight  bank.  A short  wire  is 
incorporated  to  perform  a  subtraction  operation,  thereby  considering  the  values  from  the  inhibitory  bank  as 
negative values. The combination of the weight banks, the PDs, and the LD acting as the firing mechanism, 
simulates a basic spiking neuron and is called a processing network node (PNN) in this work. The WDM signals 
are transmitted between these PNNs using a broadcast loop (BL). Multiple broadcast loops can be connected 
together  in  hierarchical manner via interfacing PNNs. Interfacing PNNs are PNNs which are tasked with the 
purpose of accepting output values from one BL and passing it to another, essentially acting as an optical router 
for the signals. The  authors of [161] explored  this strategy to allow for  spectrum  reuse  and  improve parallel 
processing. The work does not provide an experiment section to demonstrate the capabilities of the proposed 
architecture. Rather this work explored the feasibility of the B&W protocol based spiking neural networks. The 
key observation in the work involves how utilizing the hierarchical broadcast loop architecture would allow for 
better spatial layout freedom than other conventional hardware neuromorphic systems. 
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There are other instances where MRs are used to implement SNNs other than through the B&W protocol. 
For  example,  in [162] MRs  are  employed  to  implement  STDP  on  a  chip. The  authors  of [162] incorporated 
Ge2Sb5Te5 (GST), a popular and well-studied PCM material [163]–[166] on top of the ring waveguide in the ring 
resonator. This allowed the control of light propagation through the ports by merely changing the state of the 
GST. In this case, the PCM and its different phases act as the memory in the synapse. The authors of [162] 
also discussed potential integration of the integrate-and-fire neuron using MRs and GST in an SNN framework 
consisting of bipolar weights (weights with positive and negative values). The positive and negative weighted 
sums are computed using two separate dot-product engines and input to two different MRs. The bidirectional 
integrating action of the two ports of the MR is leveraged to calculate the effective membrane potential under 
the action of the bipolar weighted sums. Output spikes are generated when the effective membrane potential 
of  the  neuron  crosses  a  threshold.  Upon  receiving  the  dot  product  stimulus,  the  neurons  integrate their 
membrane potential at that time-step. The work tested this architecture using the MNIST data set and assumed 
that  the  dot  product  engine  has perfect  operation.  The  work  highlights  the  viability  of PCM-based  STDP  in 
neuromorphic architectures and showcased this by demonstrating faster read/write operations and low energy 
consumption for the photonic architecture when compared to an electronic counterpart. In their simulations, a 
testing accuracy of 98.3% was achieved using this architecture. A related work [167] discussed how MRs can 
be used to incorporate spike delays into a photonic SNN. 
A few works have also proposed MR-based photonic reservoir computing (RC) architectures, such as the 

5x5 MR reservoir for high-bit-rate digital pattern classification in [168]. In this work, the reservoir was formed by 
randomly interconnected  MRs.  The  simulated  architecture  was  able  to  achieve  a  classification  error  of  only 
0.5% while offering bit rates up to 160 Gbps for eight-bit-length digital words for bit-pattern recognition on a 
custom dataset. The authors in [169] explored a 4x4 swirl topology-based reservoir design which utilizes MRs. 
The work also demonstrated basic Boolean operations. In such architectures the nodes are comprised of non-
linear elements (MRs) and are part of the recurrence of the network, which is a departure from the original swirl 
topology introduced in [170]. This architecture has been widely used in photonic RC research. The swirl in the 
data paths allows for sufficient mixing of the input signals/weight matrix. Traditionally, reservoir architectures 
set their nodes at near instability for proper operation of the reservoir to ensure that they have sufficient memory 
of past inputs and respond well to new inputs. The MRs in [169] are set to this operating point after detailed 
analysis  of  MR  stability  in  operation  and  resonance  at  various  input  power values, as  well  as temperature 
induced optical detuning from resonance.  
In  summary, noncoherent  neuron microarchitectures that use MRs are  one  of  the  most  prolifically  used 

components to  implement  photonic neural  network architectures.  These  noncoherent architectures that use 
MRs span SNNs, ANNs (MLPs, CNNs), and RCs. The majority of the SNN, MLP, and CNN architectures utilize 
the B&W protocol for propagating weights through the network. Some efforts have identified several issues with 
this protocol, such as heterodyne crosstalk corrupting the weight values and the increasing large  number of 
MRs needed for the implementation of larger networks, especially when larger WDM degrees are utilized [37]. 
Other  works  have  suggested  reusing  implemented  layers  as  in [156],  and  also  methods  to  reduce  energy 
consumption  and increase  speed  of  operation by reducing the  involvement  of  electronic  components [160]. 
Moreover, there have been suggestions to use microdisks instead of MRs to further increase the  integration 
density in chips as in [160]. MRs have also been used for weight propagation in SNNs using the B&W protocol 
as  in [90] and  for  implementing  STDP  in photonic  SNNs [162], [171].  They  also  appear  in  RC  to  create  the 
nodes in reservoirs that are comprised of randomly interconnected nodes [169].  

5.2 Optical Interferometry based Network Architectures 

Optical interferometry based  neural  network  implementations  usually  rely  on  the manipulation  of the 
electrical field phase and amplitude of a single optical wavelength. These are coherent architectures and utilize 
the coherent neuron microarchitectures discussed in Section 4.2. Coherent  architectures rely  extensively  on 
MZIs and have been widely employed in MLP implementations. MZIs have less commonly been used to play 
the  part  of  intensity  modulators  in  some  SNN implementations.  The  large  number  of  nodes  needed  in  the 
reservoir  and  the  large  area  requirement  of  MZIs  make  them  not very popular  in  RC implementations.  MZI-
based  coherent architectures  utilize  universal  linear  meshes  of  MZIs  to  implement  the  required  matrix 
multiplications needed by neural networks. The weights are controlled by controlling the phase and amplitude 
of optical  signals which  is  done  by  implanting  attenuators  and  phase  shifters on the  MZI  arms.  This  was 
demonstrated in [172] where 2×2 beam splitters and phase shifters in the form of an MZI was programmed to 
enable independent control of amplitude and phase of light for a set of optical channels. 
The  work  in [173] fabricates  and  demonstrates  an  MZI-based  4x4  optical  matrix  multiplier.  Here, the 

architecture  is  constructed  based  on  the  premise  that  an  ideal  NxN  multiport  reconfigurable  MZI-based 
interferometer represents a special unitary (SU) group of degree N, SU(N), which is comprised of n MZIs with 
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N optical channels forming a unitary transformation matrix. In [173], the structure is made of an SU(N=4) section 
followed by a diagonal matrix multiplication (DMM) section (figure 17(a)). The DMM can be extended depending 
on the application and can form a complete SVD through cascading. This 4x4 optical matrix multiplier was used 
for implementing  a  single-layered  neural  network.  The  performance  of  the  neural  network was evaluated  by 
tasking it to classify 50 data samples of a synthetic linearly separable multivariate Gaussian dataset, for which 
it  was  able  to  achieve  a 72%  accuracy. The  work  in [174] describes  another matrix  SVD-based  mesh 
implementation, which  can  implement  arbitrary  non-unitary  matrices  using  MZIs. The Singular Value 
Decomposition (SVD) based methodology is used to perform decomposition of matrices to unitary matrices, 
and these simplified matrices are implemented on-chip. More specifically, SVD is the process by which a matrix 
can be decomposed into three matrices, two unitary matrices V and U, and a diagonal matrix comprised of non-
zero singular values Σ. The SVD process can be implemented in an MZI mesh by using a diagonal matrix which 
implements the amplitude and phase while the universal unitary matrices follow the designs as proposed by 
[172] and [175]. The final architecture of this approach is shown in figure 17(b). 
 

 

(a) 

 

 
(b) 

Figure 17: (a) The 4 × 4 MZI-based reconfigurable linear optical processor from [173]; SU  is  special unitary  group and DMM  is the 
Diagonal matrix multiplication unit; (b) The universal linear mesh for MZI based Singular Value Decomposition (SVD) as described in 
[174]. The matrices involved in SVD implemented: V in green, diagonal matrix Σ in blue and UT in red. 

 
The authors in [32] proposed an architecture that utilizes  an  SVD-based approach for implementing the 

necessary matrix calculations (figure 18), where vectors were encoded in the intensity and phase of light and 
then fed into each layer of the network. SVD is used to decompose the matrices to be multiplied into unitary 
matrices which can be encoded into the MZI mesh. The SVD operation and encoding signals for the MZIs were 
generated  using  a digital  computer. Once  the matrices  are  encoded  into  the  MZI mesh, matrix multiplication 
between them can be performed by allowing the  optical  signal to pass  passively through the mesh.  The  key 
advantages of SVD is the reduced complexity of operation and reduction in dimensionality which helps with 
reduced cost of operation of the DNN model at hand. Each layer of this proposed model is comprised of an 
Optical Interference Unit (OIU) and an Optical Non-linearity Unit (ONU). In this work, ONU functionality was 
implemented  with  digital  electronics while  the OIU  was  implemented  in  a  photonic  integrated  circuit,  which 
performed  optical  matrix  multiplications  using  the  SVD  approach  as  described  in [174].  The  work  in [32] 
discussed how to use such an architecture for vowel recognition. They also utilized forward propagation with 
finite  difference  method  instead  of  backpropagation  to  train  the  architecture.  The  architecture  was  able  to 
achieve 76.7% accuracy in classifying vowels, which is lower than the 91.7% achieved by the same architecture 
implemented on a conventional 64-bit digital computer. The authors attribute the lower accuracy to the limited 
computational resolution (24 bits as opposed to the 64 bits of the conventional computer) of the optical neural 
network. 
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Figure 18: The architecture from [32] that utilizes SVD to implement the matrix multiplications for vowel recognition using a Photonic 
Integrated Circuit (PIC). 

  
MZIs have been noted to have much larger footprint (which can be up to a few millimeters [161] or tens to 

hundreds of  micrometers)  than  their  counterparts (e.g.,  MRs) and  as [132] noted,  this large  footprint in 
combination with accumulation of phase errors throughout an MZI-based mesh can limit the scalability of neural 
networks built  with MZIs.  There  has  been  research,  such  as  in [176], focusing on reducing the  overall  area 
consumption by these architectures, whether it be by utilizing methods to prune the weight matrices represented 
by MZI meshes or by utilizing other devices in tandem.  

 
Figure 19: FFT-IFFT based photonic Structured Neural Network architecture described in [144]. The FFT based analyses of the model 
aims to simplify the model and thereby reduce energy and area consumption of the MZI meshes. 
 

The work in [176] demonstrated a Fast Fourier Transform (FFT) based methodology to reduce area and 
energy footprint of MZI meshes used to implement MLPs. This is achieved by sparsifying the network through 
reducing  the  overall  number  of  weights  used,  thereby  compressing  the  neural  network.  The  proposed 
architecture  is  based  on  structured  neural  networks  with  circulant  matrix  representation.  Structured  neural 
networks  are  a  class  of  neural  networks  that  are  specially  designed  for  computational  complexity  reduction, 
whose  weight  matrices  are  regularized  using  the  composition  of  structured  sub-matrices [177].  Structured 
neural networks utilize circulant weight matrices, which can be efficiently calculated using FFT and Inverse FFT 
(IFFT). The weight matrices are further pruned using Group Lasso regularization [178], and these operations 
can be implemented in MZI meshes using cascaded attenuator/amplifiers and phase shifters (figure 19). The 
authors of [176] adapted this methodology because of the difficulty in pruning SVD-based architectures. The 
architecture was tested using the MNIST data set against SVD-based architectures to show how effective their 
method is in reducing the overall area consumption of MZI meshes. The results indicate the architecture was 
able to achieve close to 98.5% testing accuracy while substantially reducing the overall area consumption. 
The authors of [144] proposed a coherent MZI-based binary neural network implementation with weights 

restricted to +1 or -1. The activation function is a symbolic decision function which binarizes any real number 
mapped  to it to +1  or -1.  The  weights of binarization  are  encoded  onto  the  MZI  by shifting  voltages  on the 
internal and external phase shifters on MZI arms. The real and imaginary parts of the two-way  polarized  In-
phase and Quadrature component (IQ) modulated optical signal are used for training the model in simulation. 
The input to the model is the real and imaginary part of the signal, while the output is the prediction of the input 
position  by  the  neural  network.  This  work  tested  the  architecture,  comprised  of  seven  hidden  layers,  for 
classifying to nearest neighbours the constellation formed by real and imaginary parts of a 100 GHz DP-QPSK 
signal.  Close  to  100%  accuracy  in  classification  was  achieved  for  high Signal-to-Noise Ratio  (SNR)  input 
signals, while an accuracy close to 90% was achieved for low SNR signals.  
As mentioned earlier, MZI-based architectures are typically coherent and utilize only a single wavelength. 

But MZIs have been used  to implement WDM-based or noncoherent  architectures  as  well.  For instance,  the 
work in [133] that demonstrated a photonic matrix multiplication accelerator using MZIs and Arrayed Waveguide 
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Grating  (AWG)-Multimode  Interferences  (MMIs).  A  single  unit  of  AWG-MMI  coupler  balanced  detector  can 
successfully perform matrix multiplication by using WDM and coherent homodyne detection scheme. MZIs are 
utilized as intensity modulators, which feed into the multiplier (figure 20). The work in [143] demonstrated an 
all-optical WDM RNN utilizing an SOA-MZI as an activation unit incorporated into the feedback delay loop. In 
order to emulate a fully functional Gated-Recurrent-Unit (GRU), the authors integrated a gating mechanism (the 
SOA-MZI) to allow for agile reconfiguration of forget functions within a GRU. The SOA are embedded into the 
arms of the MZI, and act as cross gain modulation wavelength converters. An RNN was constructed using this 
unit and  tested  using  a four-input WDM.  The  utility  of  the  RNN  was tested  by running  a finance forecasting 
benchmark application using the FI-2010 dataset. The gated optical RNN was able to achieve a higher F1 score 
(41.85%) than the optical and regular RNNs.  
 

 
 

Figure 20: Cascadable analog feed-forward artificial neural network structure with photonic matrix-vector multiplier circuit and Mach–
Zehnder modulator non-linearity, as depicted in [133]. 

 
In summary, coherent  neuron microarchitectures  that make use  of interferometer  devices such  as  MZIs 

have been widely used in photonic neural network architectures because of their ability to effectively represent 
matrices for neural network operations, but at the cost of a larger area overhead than MRs and susceptibility to 
phase-noise corruption. The basic principle of MZIs for neural network operations relies on phase and amplitude 
tuning of a passing optical wavelength, which can be easily achieved by integrating phase and amplitude tuners 
in  MZI  arms.  MZIs are  typically  arranged in a  mesh configuration in the works that use them, with SVD also 
being  used to  efficiently  represent  matrices. A reduction in MZI area footprint  and phase-noise  corruption  is 
attempted via regularization approaches (e.g., [32], [144]) or by utilizing niche neural network models to reduce 
the overall MZI count ([176]). Usually, architectures which make use of MZIs use coherent principles to function, 
but MZIs have  also  been  used  in  noncoherent  approaches  which  make  use  of  WDM,  e.g.,  the RNN 
implementation in [133] which utilizes SOAs and MZIs in combination. They are not found to be used in any RC 
based  architectures,  probably  because  of  the  large  area  requirement  an  MZI  based  implementation  would 
require to realize the large number of non-linear nodes in an RC implementation.  

5.3 Diffractive Optics based Network Architectures 

On-chip diffractive optics have also also used for implementing photonic neural network architectures. The 
obvious  advantage  of  using  these  techniques  is  implementing  the  necessary  functionalities  passively, by 
leveraging the physics of diffractive optics. This is different from the MRs and MZIs as they are used as active 
devices which need active tuning (as in the case of MRs) or control mechanisms for phase control (as in the 
case of MZIs).  
Various architectures discuss MLP implementations by integrating on-chip diffractive optics. These usually 

utilize AWG/Star couplers along with polarization controllers and SOAs to  achieve  the  various  functionalities 
needed  to  implement  the  neural  network.  The  architecture  described  in [179] describes  one  such 
implementation where the AWGs are utilized to reduce noise and increase resolution of the accumulated weight 
values, demonstrating neuromorphic weighted addition operations in  an  8x8 InP cross-connect. The  weights 
are multiplied  onto  the  optical  signals  by tuning the  gain  of SOAs.  The  output  signals  are then combined  to 
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accumulate the  results and  the  weighted addition  operation  is  executed  by  using  PDs  to  obtain the  resultant 
opto-current. A highly precise 4-bit precision multiplication and accumulation operation is achieved with an error 
of less than 0.2 in this system. The authors claim that this system can be scaled to form viable photonic DNNs. 
The work  in [134] explored  a  combination  of  AWGs (figure 21(a)) and  MZIs  to implement  a CNN  

(figure 21(b)). The free-space propagation in the AWG was utilized to mimic an approximate Discrete Fourier 
Transform operation (DFT). Cascading two DFT operations with a phase and amplitude mask in between them 
was used to represent a convolution operation. The pooling layer was implemented as a low pass filter which 
only passes low frequency components of the DFT. The filter was implemented with three AWGs with a phase 
and amplitude mask between the first two. Lastly, the fully connected layer was implemented as an MZI mesh 
with tuneable attenuators/amplifiers in its arms. The MZI mesh implements SVD to represent the unitary matrix 
obtained  from  the  DFT  operations. The  authors  used the Cooley-Tukey  FFT  Algorithm [180]  to  reduce the 
number of MZIs used and thus reduce the implementation footprint. The Cooley-Tukey FFT algorithm utilizes a 
composite of DFTs to generate an approximation of the continuous FFT, and is extremely popular in FFT based 
applications. This work also explored how noise in the masks applied to the AWG outputs will affect the accuracy 
of the architecture for the MNIST dataset classification problem. The work explored how different noise sources 
would impact the test accuracy of the architecture, by considering Gaussian amplitude, phase, and  complex 
noise addition to the AWG matrix. The architecture was shown to be resilient to noise, once it was trained with 
noisy input signals. By retraining the output layer with noise, the architecture was claimed to have substantial 
recovery in accuracy even with severely noisy inputs. 
 

 
(a) 

 
(b) 

Figure 21: (a) Schematic of an N×M star coupler or an AWG. R is the radius of the confocal circles that make up the free-space propagation 
region. θn is the angle of the nth input waveguide, θm is the angle of the mth output waveguide. w is the waveguide mode width parameter. 
(b) An AWG based CNN implementation, which utilizes the fact that optical signals passing through the free propagation region of a star 
coupler undergoes Discrete Fourier Transform (DFT). A and G are filter masks [134]. 

 

 The work in [34] discussed a reservoir based on the 4x4 swirl topology, with its readout layer comprised 
of non-linear optical modulators (figure 22). The reservoir utilized is of passive elements as in [169]. The notable 
approaches  adapted  here  include a demonstration  of  using  4-Pulse-Amplitude  Modulation  (4-PAM)  in  a 
reservoir computing setting, where Boolean operations like XOR are the benchmark. In addition, the authors 
presented an  RC  architecture  which  uses  pillar  silica  scatterers  with  cavity  as  the  passive  element  in  the 
reservoir.  For  experiments  and  simulations,  the  authors  scaled  their  reservoir  up  to  20x20  nodes.  They 
simulated this  architecture,  shown in figure  23, using FDTD simulations. The architecture also demonstrated 
classification capabilities by being trained to identify  cancer cells from  normal  cells.  The  performance  of  this 
label-less classification was compared to previous work [129] that used pillar scatterers without cavity, which 
caused the work in [129] to use lower wavelength waves (UV) for the reservoir. The approach of using UV for 
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this task was found to be impractical due to the high cost of UV lasers and the possible damage to the cells that 
UVs can cause. The new architecture in [34] based on pillar scatterers with cavity was reported to have achieved 
comparable accuracy to the approach in [129]. 
The on-chip diffractive mechanism of utilizing VCSELs to form a diffractively couple VCSEL array was used 

to form a reservoir in [181]. This work proposed to set weights using a spatial modulator. The architecture was 
tasked with header recognition and was able to recognize up to 5-bit headers. The work in [182] describes a 
large-scale system which employs diffractive mechanics in its readout layer, which is all-optical and is made of 
digital  micromirrors.  But  the  non-linearity  is  implemented  in  the  electrical  domain  which  severely  limits  the 
update rate to 5Hz. This work showcased an architecture with 2025 non-linear nodes, realized as a pixel in a 
Spatial Light Modulator (SLM). The SLM would display the current state of the reservoir as a speckle pattern 
which can be read using a camera and the next state needed for the reservoir is calculated and is encoded into 
the  SLM.  The  architecture  was  tasked  to  predict  the  next  step  in  the  non-linear  Mackey-Glass chaotic time 
series [183],  with  normalized  mean-square  error (NMSE) as  the  criteria  to  evaluate  the  performance  of  the 
architecture. The architecture was shown to achieve an NMSE value of 0.013 for the prediction task. Another 
reservoir  architecture  which  utilized  SLM is  described in [184].  This  architecture  also  utilized an SLM-based 
reservoir  and  was operated at  640  Hz,  which  the  authors  attribute  to  the  superior  SLM  equipment.  This 
architecture was also benchmarked using a Mackey-Glass chaotic time series prediction. The architecture has 
up to 16385 nodes, again as pixels in the SLM, and was reported to have an NMSE value below 0.3. 

 
Figure 22: Detailed  diagram  from [34] depicting the  FDTD simulation  of  their  pillar  scatterer  based architecture  showing the  various 
components simulated. 
 
In summary, diffractive optics have been used to implement MLP, CNN, RNN, and RC architectures. These 

implementations use a diverse set of devices, such as on-chip AWGs, passive elements like pillar scatterers, 
diffractively coupled VCSELs, and SLMs. These architectures tend to utilize the passive properties of optical 
devices  to  achieve  the  necessary  functionalities,  like  the  passive  DFT  transformation  of  light  waves  as they 
pass through AWGs or using SLMs to form huge reservoirs. Often, architectures which use diffractive optics 
also utilize other devices such as MZIs, SOAs, and VCSELs. However, the requirement of specifically designed 
devices  (SLMs,  micromirrors,  scatterers) prevents  programmability  and  implementation  of  compact  and 
scalable implementations. As a result, diffractive optics based implementations are not as popular for chip-scale 
neural network acceleration. 

5.4 Optical Amplification and Lasing based Architectures 

Here  we  discuss  photonic neural  network architectures that  utilize SOAs and VCSELs.    These  are 
prominently  SNN  implementations  to  realize  STDP  in  the  network.  STDP  is  believed  to  be  a  fundamental 
plasticity  mechanism  in  the  synapses  of  the  human brain [185]–[187]. This  is  how  weights  are  assigned  to 
synapses in  the  brain,  depending  on  temporal  relationships between  pre-synaptic and post-synaptic spikes. 
The weight associated with the synapse is increased if the pre-synaptic spike appears before the post-synaptic 
spike  and  is  decreased  otherwise.  This  technique  is  usually  implemented  in  photonic neuromorphic 
architectures by utilizing in-plane Semiconductor Optical Amplifiers (SOAs). 
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In [188], a  DNN  is  implemented  and  experimentally  verified with  SOAs.  The  bias  and  the  activation 
functions are implemented via digital electronics. The value of the bias is added to the data after detection. The 
work used a tanh activation function. This architecture implements one neuron operation by biasing up to six 
SOAs:  one  SOA  as  pre-amplifier,  one  SOA  to  select  the  input  vector,  and  four  SOAs  acting  as  intensity 
modulators to represent weights. To represent the operation of a layer requires a total of four weighted additions, 
which are performed by biasing 21 SOAs: one pre-amplifier SOA, four SOAs for selecting the input vectors, and 
16  SOAs  acting  as  weights.  AWGs  were  also  used  in  the  architecture,  for  multiplexing/demultiplexing 
wavelengths. The resulting neural network that was proposed had three layers of neurons. Fisher’s Iris flower 
classification was used to test the accuracy of the architecture, on which a prediction accuracy of 85.8% was 
achieved in simulations when compared to 95% accuracy with digital electronics.   
The  work  in [189] demonstrates optical  STDP driven supervised  learning utilizing  an SOA  and  electro-

absorption  modulator  (EAM).  The  linear  combination of  the gain  depletion  effects  in  SOA  and absorption 
saturation  in EAM  is used  to  implement  the  effects  of  STDP.  A  teacher  spike  sample,  which  represents the 
expected spike train output, was used to train a pulse processing device, with the photonic STDP automatically 
tuning its gain so that the pulse processor matches the teacher spike sample. Following this model, the authors 
of [190] implemented reward-based reinforcement learning enabled by a photonic STDP unit constructed with 
two SOAs. This was an emulation of the biological behavior of STDP synapses and how the brain learns via 
principles  of reinforcement learning.  Here, a new modulatory element was introduced by varying the current 
injection into the SOA and used to emulate the reward function necessary for reinforcement learning. The work 
experimentally  demonstrated  how a reward  function  is  tuned  by  the  photonic  STDP,  depending  on  the 
reinforcement. The  work  in [123] demonstrated  a  photonic  STDP  module  towards  supervised  learning  and 
unsupervised pattern recognition based on a single SOA. The proposed setup demonstrated for the first time a 
generalized  Hebbian  algorithm [191] for  synaptic  modification,  called Activity-Dependent Synaptic Plasticity 
(ADSP) in neuroscience. The SNN is photonic but the computation of correlation between post-synaptic and 
pre-synaptic signals were calculated using a CPU, along with calculating the update rule and controlling the 
SOA-based weight bank.  
In [192], vertical-cavity SOAs (VCSOAs) [193]–[195] along with VCSELs were used to form photonic SNNs. 

VCSOAs are considered as they are VCSELs operating below their lasing threshold, thus providing ease of 
integration with the VCSELs, due to their structural similarities, and low power utilization. The authors based 
this implementation of VCSOA-based STDP on their previous work in [125], which introduced a theoretical and 
mathematical model to achieve photonic STDP using VCSOAs. The SNN was tested by tasking it to recognize 
arbitrary spike patterns. The results show the post-synaptic spike timing converging to the spike timing of the 
input spike train through supervised learning. 
The  authors of [196] discussed a fully connected photonic SNN consisting of excitable VCSELs with an 

embedded  saturable  absorber  to  implement  spike  sequence  learning  via supervised  training.  The  authors 
incorporated  photonic  STDP  into  a  classical  remote  supervised  method  (ReSuMe)  algorithm  to  implement 
supervised  training  of the  SNN.  The  work  in [145] introduced fast VCSEL-neuron systems for neuromorphic 
photonic applications in two different architectures, namely a single VCSEL-neuron subject to delayed optical 
feedback, and two mutually coupled VCSEL-neurons. This emulated the operation of biological retinal neuronal 
circuits. The mutually coupled VCSEL-neurons were used to emulate the connection between bipolar cells and 
retinal ganglion cells in the eye, with a VCSEL-neuron representing the photoreceptors. By using these VCSEL-
neurons, the study successfully emulated ON and OFF type neuronal circuitry in the eye. 
In [197], coupled SOAs were used to form a reservoir. But employing active elements such as SOAs would 

make the reservoir  architecture power inefficient,  even though  using the  active  elements  greatly  reduces the 
architecture footprint.  They circumvented these  issues  by  utilizing passive  elements  in an  RC  architecture in 
[169]. The  work  in [169] demonstrated  a  reservoir  using  only passive elements:  waveguides,  splitters,  and 
combiners were the only components used in the reservoir. The reservois was realized as a 16-node square-
mesh network with multiple feedback loops. In the architecture in [169], the required non-linearity is no longer 
within the reservoir and is implemented at the readout layer using PDs. The output from each node itself is a 
linear superposition of the complex amplitudes of the input waveguides of that node. At the readout layer, the 
complex amplitudes of the reservoir nodes are converted into real-valued power levels, which are then used as 
inputs  for  a linear  classifier. The  architecture  from [169] was  fabricated to  perform basic  Boolean tasks  and 
header recognition for up to 5-bit headers using the proposed architecture. The authors also demonstrated the 
architecture’s ability to recognize spoken digits and reported a minimum Word Error Rate (WER) of 4.5% for 
their coherent SOA based reservoir. 
In [198], electrically  modulated  silicon-nano  lasers  (SNLs) are  used  as  the  reservoir  layer  of  their  RC 

architecture. The SNL’s delay loop is used to generate the virtual nodes and time multiplexing is utilized to form 
the  reservoir.  The  weights  are  set  using  a  random  weight  matrix  introduced  via the input  layer, while the 
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weighting and linear summation takes place at the output layer. Weight optimization is done by minimizing the 
least-square error between the current and target weights. The task set to test the architecture was to predict 
the next step in the Santa-Fe chaotic time series [199]. The performance of the architecture was evaluated by 
calculating the normalized mean-square error (NMSE) between the predicted and target values. The feedback 
rate of the SNL was fine tuned to test the architecture and its performance. An NMSE of 0.0359 was reported 
for the feedback rate of 10 ns-1. 
In summary, the discussions in this section pertain mostly to the implementation of SNNs using SOAs and 

lasers.  Different  works listed  in  this  section  focused  on  STDP  implementations  for  SNNs,  for  the  most  part, 
utilizing SOAs and VCSELs to achieve on-chip synaptic plasticity. There are also some RC architectures geared 
for machine-learning applications, which also use SOAs and lasers. We discussed a reservoir constructed from 
SOAs implementing the non-linear nodes and an all-passive photonic element reservoir. The passive element-
based implementation was explored to circumvent the power and speed constraints of active elements such as 
SOAs on the reservoir. We also discussed a recent work where on-chip nano lasers called SNLs were used to 
form an RC  architecture,  where  the delay  loops  of  the  laser were  used  to form virtual  nodes  which  operated 
using time multiplexing.  

5.5 Summary 

The  literature  concerning  photonic neural  network  architectures is  vast,  and so  are  the  techniques  and 
devices used to realize these architectures. In this section, we reviewed different architectures and divided the 
literature  into  resonator-based  implementations,  interferometer-based  implementations,  diffractive-optics-
based implementations, and optical amplification/lasing based implementations. We have provided a summary 
of the literature on architectures covered as part of Section 5 in Table 3. The table has the references to the 
works (first column); the devices prominently used in the architecture (second column); a brief summary of the 
application(s) considered as part of experiments (third column); whether the work featured fabricated results or 
simulations or both, or none (fourth column); and the significant results provided in the paper (fifth column). A 
“—” in the table represents information that is not provided. 
 

Table 3: Summary of prior work on photonic neural network architectures 
 

Reference Devices utilized Application Fabricated (F) 
or Simulated 

(S) 

Results achieved 

[154] MRs Lorenz Attractor simulation to 
benchmark against a traditional CPU 
based CTRNN. 

F 
Reports 294× acceleration in 
simulation over traditional 
CPU based CTRNN. 

 [156] MRs and MZMs AlexNet CNN model 
S 

Claims 5 orders of magnitude 
faster speeds than fully 
electrical implementations. 

 [157] MRs MNIST classification using CNNs. 

S 

Faster when compared to 
GPU based implementations 
(2.8 to 1.4 times faster) and 
0.75 times the power 
consumption. 

[132] MRs and SOAs. 
Weight fed into 
MR banks using 
memristor arrays. 

Various benchmarks including MNIST 
tested on photonic CNNs. 

S 

Reduction in operation cost 
when compared to GPU 
based implementations, with 
up to 25× better 
computational efficiency. 

[37] MRs and MZIs MNIST classification using MLPs. 

S 

Higher than 95% accuracy 
achieved at 14 bit resolution 
and custom MLP with 2048 
neurons in hidden layer, for 
both types of weights. Non-
negative weights give lower 
accuracy.  

[160] Microdisks Image classification with CNNs. 
S 

13× better performance per 
Watt than ISAAC. 

[161] MRs and MZIs Image classification with CNNs. 

S 

All optical design consumes 
only 5.1% the energy needed 
by all electrical accelerator, 
while being 31.9% faster. 
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[90] MRs This was an exercise to prove the 
feasibility of B&W  based SNNs. No 
application-based experiment was 
conducted in this work. 

_ 

 
_ 
 

[162] GST embedded 
MRs 

MNIST classification with MLPs. 
S 

98.06% accuracy. 
 

[168] MRs High-bit-rate digital pattern 
classification using RC. S 

Classification error of 0.5% at 
160 Gbps for 8-bit-length 
digital words. 

[169] MRs Demonstration of Boolean operations 
using RC. Detailed analysis of XOR 
operations. 

S 

Demonstrated XOR 
operations at an error rate of 
0.1. Also explored the 
relationship between error 
rate and input power 
modulation and optical 
detuning. 

[172] MZIs Mathematical discussion of phase 
and amplitude control for unitary 
operator representation, using MZIs. 

_ 
 
_ 

[173] MZIs Single layer neural network using the 
4x4 optical processor described in the 
work, set to classifying data samples 

F + S 
Demonstrated an accuracy of 
72% in classification of data 
samples.  

[174] MZIs Mathematical and theoretical 
discussion of MZI based unitary 
matrix representation, and 
consequently, how a universal linear 
device may be fashioned. No 
application-based testing done. 

_ 

 
 
_ 
 

[175] MZIs Mathematical and theoretical 
discussion of MZI based unitary 
matrix representation, with added 
discussion into error and loss 
tolerance of such a device. 

 
_ 

 
_ 

[144] MZIs Binary neural network set to nearest 
neighbor classification of a 
constellation formed from 100 GHz 
DP-QPSK signal. 

S 

Close to 100% accuracy in 
classification achieved for 
high SNR signal, while 
accuracy close to 90% was 
achieved for low SNR signal. 

[32] MZIs Photonic DNN for vowel recognition 

F + S 

Achieved 76.7% accuracy in 
vowel recognition. Lower 
accuracy attributed to limited 
resolution (24 bits). 

[176] MZIs MNIST dataset classification using 
Structured Neural Network. 

S 
 

98.5% accuracy. 

[133] MZMs and MMIs Analog feed-forward ANN with 
photonic MVM and MZM non-linearity 
demonstrated using a 2-by-1 vector 
dot-product experiment. Energy 
efficient binary multiplication 
demonstrated in simulation. 

S 

 
 
_ 

[143] SOA-MZIs RNN benchmarked using a finance 
forecasting application utilizing FI-
2010 dataset 

S 
Gated optical RNN achieved 
an F1 score of 41.85% 

[179] AWGs and SOAs Demonstration of precise 4-bit 
multiplication and accumulation 
operation 

F + S 
Error less than 0.2 

[134] AWG and MZIs MNIST classification with CNN 
architecture. CNN implemented using 
Cooley-Tukey FFT algorithm, with 
AWGs used to implement DFT 
photonically. 

S 

Various noise sources 
(amplitude, phase and linear 
noises) and their 
combinations introduced to 
the CNN; 99.6% accuracy for 
14280 parameter CNN.  

[34] Pillar silica 
scatteres 

XOR computation and label-less 
classification of cancer cell images 
from healthy cells 

S 
20×20 node reservoir 
achieves symbol error rate 
below 5%. 
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[129] Laser diodes Label-less classification of cancer cell 
images from healthy cells 

S 
_ 

[181] Diffractively 
coupled VCSELs 

Demonstrated header recognition up 
to 5-bit headers. 

S 
_ 

[182] SLM Mackey-Glass chaotic time series 
prediction 

S 
Achieves an error of 0.013 for 
the prediction task. 

[184] SLM Mackey-glass chaotic time series 
prediction 

S 
Reports NMSE below 0.3 for 
time series prediction task. 

[188] SOAs and AW Gs DNN implementation. Tested on 
Fisher’s Iris classification. 

F + S 
 

Prediction accuracy of 85.8% 
achieved. 

[189] SOA and EAM Experimental demonstration of 
photonic STDP and its utilization for 
supervised learning. 

S 
_ 

[190] SOAs Theoretical discussion and 
experimental demonstration of 
photonic STDP implementation using 
feedback signals. Demonstrated 
STDP used for reward based 
reinforcement-learning demonstration. 

S 

 
_ 

[123] SOAs Supervised and unsupervised pattern 
recognition. Demonstrated Hebbian 
algorithm for synaptic modification 

S 
 
_ 

[192] VCSOA and 
VCSELs 

SNN for learning and recognizing 
arbitrary spike patterns 

S 
_ 

[196] VCSEL-SAs SNN for learning and recognizing 
arbitrary spike patterns 

S 
_ 

[145] VCSELs SNN to simulate biological retinal 
neuronal circuitry. Simulated the ON 
and OFF stages of the retinal neuron 
circuitry. 

S 
 

_ 

[197] SOA Spoken digit recognition using RC. 

S 

The work reports a minimum 
Word Error Rate (WER) of 
4.5% for their coherent SOA 
based reservoir 

 [170] Passive photonic 
elements 

Successful recognition of up to 5-bit 
headers and spoken digit recognition 
using RC. 

S 
Reports error rate “very close 
to” 0% 

[198] SNLs Santa-Fe chaotic time series 
prediction S 

NMSE of 0.0359 obtained 
while the SNL is tuned to a 
feedback rate of 10ns-1 

6 CHALLENGES AND OPPORTUNITIES 

State-of-the-art silicon photonic devices have shown great promise to implement artificial neurons. Deep 
learning architectures  built  with  photonic  neurons support  high parallelism  in  transmitting  and  processing 
weights  by  utilizing  WDM,  fast execution  time, and low energy  expenditure. However,  there  are  several 
outstanding challenges to efficiently implement different neuron functions with silicon photonic devices, as well 
as to achieve high reliability, scalability, and cascadability in architecture implementations. Here we summarize 
challenges and opportunities for future research needed to overcome these challenges. 
 

• Coherency Challenges: On-chip interferometers (e.g., MZIs) have been used extensively in photonic 
neural  network architectures  due  to  their  ability  to  effectively  represent  matrices  for  neural  network 
operations. The main issues with MZIs are the large area requirement and phase-noise corruption in 
MZI meshes. Due to thermal and fabrication-process variations in MZIs, the phase values can deviate 
from their  target  values,  which can  impact the  inference  accuracy  of  the  neural  network  employing 
them. Recent efforts [200], [201] explore how to avoid these issues by factoring in these issues at the 
training phase and tuning the photonic neural network while considering variations. Further research 
is required to more efficiently overcome the area and noise limitations of these coherent architectures. 

• Noncoherency Challenges: The  broadcast-and-weight  (B&W)  protocol  is  widely  employed  for 
implementing photonic neural network architectures. Some efforts have recognized the possible issues 
with this protocol, such as heterodyne crosstalk corrupting the weight values and the very large number 
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of  MRs  needed  for implementing larger  networks,  especially  when  DWDM is  utilized. Some  recent 
efforts have attempted to address these limitations. The authors in [37] suggested a new architecture 
which utilizes parallel arrangements of MRs as opposed to cascading them, though they utilize the 
area inefficient MZIs for vector storage. The parallel “hitless” arrangement of MRs was used to reduce 
thermal crosstalk between adjoining MRs and to achieve better weight resolution. Other works have 
suggested reusing implemented layers, e.g., [156], and also methods to reduce energy consumption 
and increase speed of operation by reducing the involvement of electronic components [160]. There 
have also been suggestions to use microdisks instead of MRs to further increase integration density 
on  chips [161]. But  as noted in [202], all  variants of  noncoherent architectures  can suffer from low 
throughput  as  the  electronic  components,  such  as  the  memory,  may  not  be  running at as  high  a 
frequency as their photonic components. Further research is needed to overcome these limitations of 
noncoherent architectures. 

• Variations and Reliability: Many silicon photonic devices (e.g., MRs, MZIs) are susceptible to design 
time  and  runtime variations.  Fabrication-process [203] and  thermal  crosstalk [89] as  well  as  device 
aging [204] can  considerably  impact  the  reliability  and  performance  in  photonic  neural  networks  by 
introducing  undesirable  crosstalk  noise,  optical phase  shifts, resonance  drifts  (e.g., in  MRs),  tuning 
overheads, and photodetection current mismatches. For example, experimental studies have shown 
that the resonant wavelength in MRs can shift by 4.79 nm within a wafer due to inevitable fabrication-
process variations [205], and deviate as large  as  0.1  nm/K [206] due  to runtime thermal  variations. 
Moreover,  silicon  photonic  devices  intrinsically  suffer  from  optical  loss  that  degrade  the  energy 
efficiency,  reliability,  and  scalability  of  photonic  neural  networks [207].  Also,  the  finite-encoding 
precision on phase settings (e.g., in coherent networks) adds extra uncertainty to the weight values 
obtained during network training, when mapped onto phase shifters as phase angles. A recent study 
[153] on the impact of uncertainties—due to fabrication-process and thermal variations—in photonic 
neural networks shows a significant 70% reduction in a photonic neural network inferencing accuracy. 
Therefore, further research is needed to improve the reliability in silicon photonic devices.  

• Power  and Energy: O/E/O  neurons  are  power  hungry  because  electro-optical  and  opto-electrical 
conversions  consume  considerable  power.  Moreover,  O/E/O  requires  wavelength  conversions  to 
implement a large-scale neural network, which also consume extra power. Therefore, O/E/O might not 
be  a  good  choice to  achieve  high power  efficiency. All-optical  neurons  can  achieve  better  power 
efficiency  but  at  the  cost  of  lower-speed  operation  (which  can  increase  energy  consumption)  and 
reduced  cascadability (which makes it  difficult to implement complex  functionalities). Off-chip lasers 
consume a significant portion of overall power in photonic neural networks. While such lasers are less 
susceptible to thermal variations than on-chip lasers,  they  incur extra  optical-power loss due to the 
need  to  couple  the  off-chip  light  source  to  on-chip  devices  through  coupling  structure (e.g., grating 
couplers). Moreover, coping with variations (as discussed in the previous bullet) requires power and 
energy overheads to achieve reliability via spatial, temporal, or information redundancy. As power is 
such a significant design constraint in today’s computing chips, there is thus an urgent need for new 
research to achieve power and energy efficient implementations of photonic neural networks. 

• Electronic  Controllers: The  design  of  a  photonic  neural  network would  be  unrealistic  without 
considering  its  electronic  controller  challenges. Photonic  neural  networks require  an  electronic 
controller to manage (i.e., tune and control) and orchestrate photonic devices in the network (e.g., MR 
tuning and supervised learning control). Moreover, the controller should detect and mitigate runtime 
bias  (e.g.,  due  to  thermal  crosstalk)  and  maintain  correct  operation  of  optical  neurons.  However, 
electronic controllers impose high latencies, and there is a frequency mismatch between the electronic 
controller and the optical network. Therefore, more research is needed towards the implementation of 
high speed electronic controllers for photonic neural networks. 

• Backpropagation Training: Almost all photonic neural network architectures in prior work focus on 
inference acceleration. There is a need to explore photonic architectures that can efficiently support 
neural network training. This is particularly challenging because training (e.g., via backpropagation) 
requires a backward flow of information from the output layers towards the input layers which would 
require additional waveguides, signals, and processing components to calculate gradients and update 
weight  values.  Some  recent  efforts  have  begun  to  explore  such  architectures,  e.g.,  [208] which 
proposed a hybrid memristor+photonics based accelerator that also supports backpropagation. More 
research is needed towards the design of low overhead backpropagation support with photonics. 
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• Resolution: Weight  resolution  plays  a  crucial  role  in  deep  learning  accelerator  architectures.  For 
inference acceleration, it is desirable to have higher resolution for better accuracy. Most prior works 
on photonic neural networks achieve very low resolution, such as the work in [157], which achieves 6–
7  bits of  resolution, and that  in [37],  which achieves 14 bits  of  weight  resolution.  Some  proposed 
architectures tackle lower resolution by dividing weight representation among multiple devices, such 
as [160], or by utilizing bitwise parallelization of weight matrix operations as in [161], to achieve 16 bits 
of  weight  resolution. The  work  in  [32]  manages  to  achieve  24  bits  of  weight  resolution  using  MZI 
meshes, but scalability of such an architecture is questionable because of large area consumption of 
MZIs. The work in [32] could not achieve higher resolution than 24 bits due to phase encoding noise 
in MZI phase shifters. The main challenges in achieving good resolution in photonic architectures stem 
from crosstalk noise, photodetector sensitivity, and photodetector noise (shot noise). While the work 
in [37] presented a detailed analysis on how thermal crosstalk impacts photonic sensitivity to weight 
values, even inter- and intra-channel crosstalk can affect the achievable resolution. Research is thus 
needed to achieve effective photonic crosstalk mitigation, phase noise correction, and noise resilient 
photodetection, to achieve better resolution in photonic deep learning accelerators. 

• Scalability: Many of the works discussed in this survey have focused on implementing small neural 
networks [32],  [37], [90], [162] to highlight the  effectiveness  of  silicon  photonic  acceleration. Other 
works focus on accelerating matrix vector multiplication and reusing it over multiple layers of the deep 
learning model, such as in [157], [160], and [161]. A major issue that plagues implementations of large-
scale networks using silicon photonic devices is area consumption, given that the basic components 
in a photonic neural network architecture can span micrometers in dimension. Also, the losses related 
to propagation and crosstalk accumulates over larger architectures involving very large device counts, 
and the power consumption can reach very high values [156]. MZI meshes, such as those presented 
in [32], [174], and [179], face severe issues related to area consumption (MZIs being much larger than 
MRs or microdisks) and phase noise,  limiting  their  scalability. To reduce  scalability  concerns, some 
works consider a  simplified version  of the neural network model in hardware by utilizing regression 
techniques [176] and efficient matrix convolution calculation using FFT techniques [134], [177]. In order 
to realize scalable photonic accelerator designs, research is needed into 1) new model compression 
approaches for reducing silicon photonic hardware complexity, and 2) noise resilient, low loss, and 
compact silicon photonic devices that can support high cascadability to realize large neural networks. 
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