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Abstract 
Motivation: Linking microbial community members to their ecological functions is a central goal of 

environmental microbiology. When assigned taxonomy, amplicon sequences of metabolic marker 

genes can suggest such links, thereby offering an overview of the phylogenetic structure underpin-

ning particular ecosystem functions. However, inferring microbial taxonomy from metabolic marker 

gene sequences remains a challenge, particularly for the frequently sequenced nitrogen fixation 

marker gene, nitrogenase reductase (nifH). Horizontal gene transfer in recent nifH evolutionary histo-
ry can confound taxonomic inferences drawn from the pairwise identity methods used in existing 

software. Other methods for inferring taxonomy are not standardized and require manual inspection 

that is difficult to scale. 

Results: We present Phylogenetic Placement for Inferring Taxonomy (PPIT), an R package that in-

fers microbial taxonomy from nifH amplicons using both phylogenetic and sequence identity ap-

proaches. After users place query sequences on a reference nifH gene tree provided by PPIT (n = 
6317 full-length nifH sequences), PPIT searches the phylogenetic neighborhood of each query se-

quence and attempts to infer microbial taxonomy. An inference is drawn only if references in the phy-

logenetic neighborhood are: (1) taxonomically consistent and (2) share sufficient pairwise identity with 

the query, thereby avoiding erroneous inferences due to known horizontal gene transfer events. We 

find that PPIT returns a higher proportion of correct taxonomic inferences than BLAST-based ap-

proaches at the cost of fewer total inferences. We demonstrate PPIT on deep-sea sediment and find 
that Deltaproteobacteria are the most abundant potential diazotrophs. Using this dataset we show 

that emending PPIT inferences based on visual inspection of query sequence placement can achieve 

taxonomic inferences for nearly all sequences in a query set. We additionally discuss how users can 

apply PPIT to the analysis of other marker genes. 

Availability: PPIT is freely available to non-commercial users at https://github.com/bkapili/ppit. Instal-

lation includes a vignette that demonstrates package use and reproduces the nifH amplicon analysis 
discussed here. The raw nifH amplicon sequence data have been deposited in the GenBank, EMBL, 

and DDBJ databases under BioProject number PRJEB37167. 

Contact: kapili@stanford.edu and dekas@stanford.edu 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

Nucleotide sequencing is a fundamental technique for studying microbial 

communities. While metagenomic approaches provide simultaneous 

insight into the taxonomic identity and metabolic potential of organisms, 

PCR amplicon sequencing maintains utility in offering greater sequenc-

ing depth for targeted genetic loci and as a cost-effective strategy for 

studies containing many samples. In addition to targeting the 16S rRNA 

gene for snapshots of community structures (Pace et al., 1986; Ward et 

al., 1990), amplicon sequencing projects can target metabolic marker 

genes to survey community metabolic potential (Kirshtein et al., 1991; 
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Ohkuma et al., 1995; Rotthauwe et al., 1997; Braker et al., 1998; Cottrell 

and Cary, 1999). When marker genes are linked to their source organ-

isms, amplicon sequencing can further suggest connections between 

ecological functions and taxonomic identities. However, accurately 

linking marker gene amplicons to their source organisms remains a sig-

nificant challenge. 

 Linking sequence to source organism is both particularly desirable and 

challenging for nitrogenase reductase (nifH), which is targeted to study 

nitrogen fixation (i.e., the reduction of N2 to bioavailable NH3). nifH is 

one of the most frequently sequenced marker genes (n = 81 889 sequenc-

es in GenBank as of October 2019) and can be remarkably diverse in 

environmental samples (Izquierdo and Nüsslein, 2006; Fernández-

Méndez et al., 2016; Kapili et al., 2020).  Recent software packages have 

addressed the need to link nifH sequences to source organism taxonomy 

using pairwise sequence identity methods, particularly using query se-

quences’ top BLAST hits (i.e., lowest E-value match) to infer identity 

(Gaby et al., 2018; Angel et al., 2018). However, the occurrence of 

horizontal gene transfer in nifH evolutionary history (Raymond et al., 

2004) can confound taxonomic assignments for recently transferred 

sequences. Existing programs cannot address inference errors from hori-

zontal inheritance because their current implementations base taxonomic 

inferences on only one reference sequence.  

 Another common approach for inferring nifH source organism taxon-

omy – observing the position of novel sequences on a reference gene tree 

(Farnelid et al., 2011; Bertics et al., 2013; Collavino et al., 2014; Igai et 

al., 2016; Wang et al., 2016) – can allow investigators to evaluate evi-

dence of horizontal inheritance for query sequences. Although this tech-

nique addresses the shortcomings inherent to pairwise identity approach-

es, it currently lacks standardization, uses ad hoc reference trees not 

optimized for detecting horizontal gene transfer events, and requires 

manual inspection that is difficult to scale. With advancements to se-

quencing technologies (Singer et al., 2019) and bioinformatics programs 

(Callahan et al., 2016; Amir et al., 2017) enabling greater recovery of 

environmental sequence diversity, the need for accurate, high-throughput 

taxonomic inferencing for nifH sequences continues to grow. 

 To address these issues, we present Phylogenetic Placement for Infer-

ring Taxonomy (PPIT), an R software package that combines phyloge-

netic and sequence identity approaches to infer the source organism 

taxonomy of nifH sequences. PPIT reads the output from SEPP (Mirarab 

et al., 2012), a phylogenetic placement program that resolves the phy-

logeny of short nucleotide sequences more accurately than the construc-

tion of de novo trees (Janssen et al., 2018), and progressively searches 

each query sequence’s local phylogenetic neighborhood after placement 

on a reference nifH tree. The taxonomic identity of the nifH source or-

ganism is then only inferred if nearby reference sequences have con-

sistent taxonomic classifications and share sufficient pairwise identity 

with the query sequence. PPIT standardizes and automates the process of 

interpreting nifH phylogenetic placement to draw taxonomic inferences, 

which supports analytical reproducibility and reduces the demand for 

manual inspection. 

 We include in the package a reference nifH tree that contains nearly all 

the full-length nifH sequences currently available in GenBank (n = 

6317), as well as the necessary supporting files for users to place query 

sequences on the reference tree using SEPP. The output from PPIT is a 

data frame of taxonomic inferences that can be easily supplied to a phy-

loseq object as the accompanying taxonomy table to query sequences. 

Thus, PPIT leverages cumulative sequencing efforts to infer taxonomic 

identity and is built around existing software to support reproducible 

bioinformatic workflows. Here, we detail PPIT’s concept, compare the 

accuracy of PPIT to pairwise identity methods, use PPIT to analyze nifH 

amplicons generated from deep-sea sediment, and discuss the applicabil-

ity of PPIT to other environmental samples and metabolic marker genes. 

2 Concept and methods 

2.1 PPIT concept and implementation 

 PPIT is based on the analysis of nifH amplicons presented in Kapili et 

al., 2020 with some modifications. We provide a schematic of the PPIT 

workflow in Figure 1. Prior to analysis, users must run SEPP to insert 

their query sequences into the curated reference alignment and tree that 

are included in the package. PPIT requires seven inputs, four of which 

are user-supplied for nifH analyses: (1) the reference nifH tree and (2) 

alignment containing inserted query sequences, (3) the list of query 

sequence names, and (4) the type of sequences supplied (i.e., partial- or 

full-length). The other inputs, which include (5) references’ taxonomic 

and gene location information (i.e., if the nifH sequence was located on a 

chromosome, plasmid, or undetermined), (6) empirically-determined 

taxonomic rank cutoffs, and (7) operational phylogenetic neighborhood 

are either included with installation or calculated. 

 The algorithm is composed of three steps: (1) defining each query 

sequence’s operational phylogenetic neighborhood, (2) evaluating both 

the taxonomic consistency in its neighborhood and pairwise identity to 

the nearest reference sequence, and (3) optimizing the phylogenetic 

neighborhood. 

 In Step 1, the operational phylogenetic neighborhood is set, which is 

defined here as the maximum summed branch length (i.e., patristic dis-

tance) allowed between a query sequence and a reference sequence for 

the reference to be used during inferencing. Setting an upper bound to 

this distance is necessary to avoid overexploring tree topology during 

Step 2, which otherwise could result in mischaracterizing vertical inher-

itance as horizontal inheritance (see Results and discussion).This param-

eter is initially set to a value less than that expected to be used, and is 

later optimized (Step 3). 

 In Step 2, the taxonomic and gene location information for the refer-

ences within each query sequence’s operational phylogenetic neighbor-

hood are collected. If the nearest reference is a suspected nifH homolog, 

the query is marked as a suspected homolog and no taxonomic inference 

is drawn (see Section 2.3 for discussion of suspected homologs). Other-

wise, the gathered references for each query are placed into taxonomic 

rank subsets based on their patristic distances to the query. PPIT uses 

empirically-defined patristic distance rank cutoffs below which refer-

ences are expected to be from the same genus, family, order, class, or 

phylum. The algorithm begins with evaluating the genus reference sub-

set. If all collected references share the same genus and if the pairwise 

sequence identity with the nearest reference is greater than the genus 

percent identity threshold, then the query sequence’s identity is inferred 

as the references’ taxonomy (domain through genus). If no references are 

within the genus patristic distance cutoff, the collected references are 

taxonomically inconsistent, or the query is insufficiently similar to the 

nearest reference, then the family reference subset is analyzed at the 

family rank and similarity evaluated using the family percent identity 

cutoff. The process repeats until the phylum rank, at which point if an 

inference remains unmade, then no inference for the query sequence is 

drawn. Inferencing proceeds from genus to phylum because otherwise 

we would implicitly require no horizontal gene transfer to have occurred 

in a phylum on average, including ancestral events that preceded the rise 

of a class, order, etc. Query sequences are flagged for potential horizon-
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tal gene transfer when taxonomic inconsistencies remain at the phylum 

rank for the phylum reference subset. 

 PPIT’s approach for inferring taxonomic identity also helps prevent 

the propagation of erroneous taxonomic assignments from sequences in 

the reference database (Bagheri et al., 2020) to query sequences. Since 

PPIT draws taxonomic inferences based on a collection of references 

rather than a single reference – and requires these references to have 

consistent taxonomies – if a reference sequence contains an incorrect 

taxonomic assignment that conflicts with the taxonomy of the other 

collected references, then no inference for the query will be drawn. 

 In Step 3, the operational phylogenetic neighborhood is optimized for 

the set of query sequences. The optimal value is defined here as the value 

that maximizes the number of query sequences for which inferences are 

drawn at the phylum rank. The optimal value of the operational phyloge-

netic neighborhood depends on the query set and can be lower than the 

family, order, class, and phylum patristic distance cutoffs, but cannot be 

lower than the genus cutoff. This requires that, at minimum, PPIT uses 

all reference sequences within the genus patristic distance cutoff during 

inferencing. It is important to note that, while the inferred identity for a 

given query will not change based on the other sequences in the query 

set, the taxonomic depth to which the source organism is inferred may 

change. 

 PPIT output consists of an n × 14 data frame (n = number of query 

sequences) where each row contains a query’s taxonomic inferences for 

domain through genus (blank if not made), as well as the minimum pa-

tristic distance to a reference and the pairwise percent identity with re-

spect to that reference. The output also contains the number of references 

from different species used to infer identity for each query and indicates 

if one of the reference sequences was located on a plasmid. If the taxo-

nomic identity for a given query was not inferred, the reason for failure 

is provided (i.e., suspected homolog, potential horizontal gene transfer, 

no references within phylogenetic neighborhood, or insufficient percent 

identity). The data frame PPIT provides can be easily reformatted and 

supplied to a phyloseq object as the accompanying taxonomy table to the 

query sequences (McMurdie and Holmes, 2013). 

2.2 Database curation 

We curated a reference nifH database using ARBitrator, which identifies 

putative NifH sequences in GenBank’s non-redundant (nr) sequence 

database using a refined sequence similarity-based approach (Heller et 

al., 2014). We supplemented the default query NifH sequences with 

sequences from each phylum in the Genome Taxonomy Database (r86) 

containing at least one representative with NifH adjacent to NifDKENB. 

We collected these sequences via blastp search using a NifH sequence 

from Azotobacter vinelandii CA6 (accession no. WP_012698831.1) to 

search bacterial phyla and Methanococcus maripaludis (accession no. 

WP_011170797.1) to search archaeal phyla. In total, we used thirty-eight 
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Figure 1 Conceptual diagram of Phylogenetic Placement for Inferring Taxonomy (PPIT) workflow, including program inputs and outputs. Bolded 

inputs denote those that are user-supplied and non-bolded inputs denote those that are included with installation for nifH analyses. Boxed numbers 

represent steps described in Section 2.1. Step 1, set operational phylogenetic neighborhood. Step 2, infer identity if the nearest reference is not a sus-

pected homolog and the gathered references are taxonomically consistent and share sufficient pairwise identity with the query sequence. Step 3, search 

for phylogenetic neighborhood value that returns the maximum number of inferences at the phylum rank. Dashed line indicates iterations during phy-

logenetic neighborhood optimization. 
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reference NifH sequences (n = 27 bacterial phyla, n = 1 archaeal phy-

lum) and one CfbC sequence – formerly Group-IV NifH (Raymond et 

al., 2004) – for the ARBitrator search (October 2019). 

 We obtained 43 357 protein sequences, for which the corresponding 

nucleotide sequences were downloaded using eutils. We then filtered the 

sequences to remove duplicate nucleotide records and those containing 

ambiguous bases. For each of the remaining sequences, we obtained the 

source organism, full taxonomy (as listed on NCBI), and genetic location 

(i.e., chromosome, plasmid, or undetermined) using eutils. We identified 

those flanked by start and stop codons (Genetic Code 11), adjusting for 

sequence direction, to create a subset of full-length sequences. We addi-

tionally filtered these full-length records to remove those >1400 bp in 

length (shortest length of nifEH gene fusion) or <553 bp (2 standard 

deviations below average sequence length after removal of nifEH fu-

sions). We aligned the translated sequences using MAFFT (FFT-NS-1, 

v.7.427) (Katoh and Standley, 2013) and manually removed poorly 

aligned sequences (n = 8876 remaining). 

2.3 Reference tree construction 

We aligned all filtered full-length sequences using MAFFT (FFT-NS-1) 

and inferred an initial phylogenetic tree using FastTree (WAG, Gam-

ma20; v.2.1.11) (Price et al., 2010). Upon tree visualization, we identi-

fied an initial set of suspected NifH homologs based on the placements 

of the reference NifH sequences and homolog used for ARBitrator que-

ry. Excluding the set of suspected homologs, we determined the rank 

order of remaining NifH sequences that maximized the total length of the 

tree after addition to the ARBitrator query set (Supplementary Figure 1). 

Determining this rank order identifies which sequences cover the great-

est sequence diversity. We aligned the top 736 NifH sequences and 14 

suspected homologs that represented the major divergent homolog clades 

on the initial tree using MAFFT-DASH (G-INS-I, v.7.427), which incor-

porates protein structural information to increase alignment accuracy 

(Rozewicki et al., 2019). We then aligned the remaining amino acid 

sequences to this seed alignment using MAFFT (G-INS-I) and converted 

the alignment to a nucleotide alignment using PAL2NAL (v.14; Suyama 

et al., 2006) and the corresponding nifH nucleotide sequences. On the 

CIPRES Science Gateway (Miller et al., 2010), we ran ModelTestNG 

(v.0.1.5) to determine the optimal evolutionary model given the nucleo-

tide alignment, and then executed RAxML (v.8.2.12; Stamatakis, 2014) 

and IQ-TREE (v.1.6.10; Nguyen et al., 2015) ten times each using the 

GTR+G+I (4 rate categories) model with 100 bootstrap replicates. We 

selected the gene tree estimate with the highest log-likelihood score as 

the nifH reference tree (RAxML). 

 To identify suspected nifH homologs in the final reference tree, we 

visualized the tree using Interactive Tree of Life (v.4) (Letunic and Bork, 

2019) and defined the nifH crown group as that containing all ARBitra-

tor reference nifH queries, as well as the immediately basal clades in 

which at least one nifH is adjacent to nifDKENB (Supplementary Figure 

2). The sequences not within the nifH crown group appear highly di-

verged from nifH (Supplementary Figure 2), suggesting that their protein 

products are not involved in nitrogen fixation. Some of these sequences 

include the nifH paralog cfbC (Group IV), which was recently shown to 

be involved in methanogenesis and methanotrophy (Zheng et al., 2016; 

Moore et al., 2017). Although there are no apparent chlL/bchL/bchX 

sequences (Group V) on the reference tree, which are involved in chlo-

rophyll and bacteriochlorophyll biosynthesis (Fujita et al., 1992; Fujita 

and Bauer, 2000), PPIT successfully identified a set of diverse partial-

length bchL sequences as nifH homologs when used as queries (Supple-

mentary Table 1). Given the phylogenetic diversity of sequences outside 

the nifH crown group, we consider it possible that the reference tree also 

contains novel nifH homologs. We refer to the collection of these diver-

gent sequences as suspected nifH homologs, agnostic to both function 

and evolutionary relationship to nifH. 

2.4 Calculation of rank cutoffs 

To minimize bias towards overrepresented species or species with multi-

ple similar copies of nifH during the calculation of rank cutoffs, we first 

clustered sequences in each assembly at 95% similarity and selected one 

strain to represent each species in the curated full-length nifH database (n 

= 1620 nifH sequences; 1347 unique taxa). We chose type strains when 

available, otherwise we chose strains with the contig containing the most 

remaining nifH sequences, or lastly strains with the longest nifH-

containing contig. When multiple taxa were missing classifications for 

ranks between class and species, but were identical in the provided clas-

sifications, we kept only one taxon using the criteria described above.  

 We excluded nifH sequences on contigs <10 kb to minimize erroneous 

taxonomic comparisons due to misidentified contigs. We set the thresh-

old to 10 kb because previous benchmarking of the widely used meta-

genomic binning software CONCOCT suggests the pipeline has a spe-

cies-level binning error probability of <0.05 for contigs >10 kb 

(Alneberg et al., 2014). This error probability therefore represents the 

lower limit to taxonomic misclassification during taxonomic profiling for 

at least one software approach. These sequences are also excluded during 

the taxonomic inferencing step. 

 We calculated pairwise percent identity and patristic distance rank 

cutoffs from phylum to genus using an approach similar to that described 

in Yarza et al., 2014. Briefly, we calculated global matrices of pairwise 

percent identities (including gaps) and patristic distances based on the 

nucleotide alignment and reference tree, respectively. In the calculation 

of each rank’s cutoff, we only recorded comparisons between taxa that 

shared the same taxonomic identity at that rank but differed in the imme-

diate subrank (e.g., for phylum cutoff, comparisons between two se-

quences from the same phylum but different classes). We removed 

groups containing fewer than three comparisons and those identified as 

patristic distance outliers (median ± 2.5 MAD) to exclude taxonomic 

groups in which the presence of numerous horizontally-inherited nifH 

sequences skewed the group’s comparisons. Estimating cutoffs using 

only comparisons between vertically-inherited nifH sequences is neces-

sary to avoid relaxed pairwise percent identity and patristic distance 

thresholds. For each taxonomic classification at each rank, we then cal-

culated the first quartile for pairwise percent identity and third quartile 

for patristic distance based on the recorded comparisons. We used the 

Hodges-Lehmann estimator based on the remaining pairwise percent 

identity and patristic distance quartiles for each rank as the rank cutoffs 

(Figure 2). Basing the cutoffs on the selected quartiles provides flexibil-

ity if the relationships in novel lineages deviate from those in the existing 

dataset, and results in cutoffs that are lower relative to other estimates for 

nifH (cf. Gaby et al., 2018). 

2.5 Error analysis 

To benchmark package performance against other common approaches, 

we performed a 10-fold cross-validation analysis comparing inferences 

derived from PPIT, blastn, and blastp using partial-length nifH sequenc-

es. We created partial-length nifH sequences representative of those 

produced during amplicon sequencing by extracting the region targeted 

by the nifH primers described in Mehta et al., 2003 for each sequence in 

the reference alignment. These partial-length sequences correspond to 
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the most frequently targeted nifH region for amplicon sequencing (Gaby 

and Buckley, 2012). 

 For taxonomic inferencing using PPIT, we conducted sequence align-

ment, tree estimation, calculation of rank cutoffs, and query placement as 

previously described, except only one run of RAxML was executed for 

each train set. We clustered the nifH sequences in each test set for each 

species at 5% pairwise identity based on the full nucleotide alignment 

used for total gene tree estimation (n = 360 – 391 nifH seqs. per test set). 

For inferencing using blastn and blastp, we performed BLAST searches 

locally using rBLAST (v.0.99.2) on the nifH database described in Sec-

tion 2.2 (containing both partial- and full-length sequences; n = 81 889). 

We then inferred source organism taxonomy using the match with the 

lowest E-value. For each fold, the sequences in the test set were removed 

from the database prior to BLAST.  

 We analyzed inference accuracy at each rank as a function of the max-

imum pairwise percent identity between a query in the test set and a 

reference in the train set. To estimate the probability that a given infer-

ence is correct, we assigned correct inferences a value of 1 and incorrect 

inferences a value of 0, neglecting inferences at ranks for which the 

query’s identity was unassigned in GenBank. To estimate the probability 

that an inference will be made for a given query, we assigned all infer-

ences a value of 1, regardless of whether they were correct, and unmade 

inferences a value of 0. We then combined values from each fold into a 

single dataset and fit LOESS curves to the results from each test fold 

using first-degree polynomials. We optimized the proportion of infer-

ences per window using the bias-corrected Akaike Information Criterion 

as implemented in fANCOVA (v.0.5-1), but manually increased the span 

for PPIT’s phylum and class inference probability to remove local fitting 

errors (Supplementary Figure 3). We interpret the LOESS curves as 

estimates of inference accuracy. 

2.6 Field demonstration 

We analyzed nifH sequences from a deep-sea sediment sample using 

PPIT to demonstrate its application on an environmental dataset. Briefly, 

we collected a sediment core at 3535 m water depth offshore San Fran-

cisco, CA, USA using a multicorer on board the R/V Oceanus in March 

2017. We sectioned the core on board and stored aliquots at -80ºC until 

DNA extraction in the laboratory using an RNeasy PowerSoil DNA 

elution kit (Qiagen, cat. no. 12867-25) after RNA extraction using an 

RNeasy PowerSoil Total RNA kit (Qiagen, cat. no. 12866-25). Here, we 

present an analysis of the DNA extracted from the 0 – 2.5 cm below 

seafloor (cmbsf) horizon. 

 We prepared nifH amplicons for sequencing with primers from Mehta 

et al., 2003 following the two-step PCR protocol described in Kapili et 

al., 2020 without pooling duplicate reactions. We sent the samples to the 

UC Davis DNA Technologies Core Facility (Davis, CA, USA) for 2 × 

250 bp sequencing on an Illumina MiSeq platform. For a summary of 

sequencing statistics, including negative control and nifH mock commu-

nity results, see Supplementary Table 2. 

 We trimmed primer sequences from demultiplexed samples using 

cutadapt (v.1.18; Martin, 2011), then quality-filtered reads (including 

chimera removal) and inferred amplicon sequence variants (ASVs) using 

DADA2  (v.1.12.1; Callahan et al., 2016). We removed ASVs that either 

did not align to the nifH target region or were less than 320 bp or greater 

than 367 bp in length. We then inserted the remaining ASVs (n = 1245) 

into the reference alignment and tree described in Section 2.3 using 

SEPP (v.4.3.5). We analyzed the ASVs using PPIT (v.1.2.0) on a 2016 

MacBook Pro, which took 67 mins for phylogenetic neighborhood opti-

mization and 6.2 mins for final taxonomic inference. We then ran PPIT 

again using the phylum patristic distance cutoff as the optimal phyloge-

netic neighborhood to attempt identity inference for ASVs that did not 

have a reference within the calculated optimal distance (n = 46 ASVs). 

 We additionally analyzed previously published nifH Illumina MiSeq 

data generated from soil samples (Tu et al., 2016). We downloaded the 

data from NCBI’s Sequence Read Archive (BioProject number 

PRJNA308872) and processed the raw reads using the same protocol as 

previously described, except removing sequences not between 300 and 

325 bp in length to account for a different nifH amplicon length. 
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3 Results and discussion 

3.1 PPIT returns a higher proportion of correct inferences 

than blastn and blastps 

PPIT produced the highest proportion of correct taxonomic inferences in 

comparison to blastn and blastp at each rank for all tested percent identi-

ties (Figure 3). For a nifH query sequence that shares the minimum pair-

wise identity with a reference expected for sequences from the same 

genus (i.e., 81% nucleotide pairwise identity; Figure 2), the probability 

of PPIT correctly inferring the source organism’s phylum is 0.93 while 

for blastn it is 0.78 (Figure 3). PPIT increasingly outperforms blastn and 

blastp with respect to the proportion of correct inferences as pairwise 

identity between the query and closest reference sequence decreases. 

Inference accuracy when query sequences are dissimilar to existing 

references is particularly important to studies with environmental sam-

ples because metagenomics-based estimates suggest that the majority of 

microorganisms in marine sediments, soils, the terrestrial subsurface, 

seawater, and freshwater are phylogenetically dissimilar to cultured 

organisms (Lloyd et al., 2018). At 72% nucleotide pairwise identity – the 

lowest pairwise identity at which blastn returned a match – PPIT correct-

ly infers query phylum with 0.77 probability while blastn correctly infers 

with 0.53 probability (Figure 3). Since other existing software for infer-

ring the source organism identity of nifH sequences relies on blastn 

(Gaby et al., 2018) or blastp (Angel et al., 2018), PPIT is therefore the 

preferred tool for analyzing a variety of environmental samples. 

 

3.2 PPIT returns fewer total inferences than blastn and 

blastp 

Due to its conservative approach, PPIT draws fewer taxonomic infer-

ences for a given query set than both blastn and blastp (Figure 3). At 

81% nucleotide pairwise identity, the probability of PPIT drawing an 

inference for a given query is 0.67 while the probability of blastn return-

ing a match, and therefore drawing an inference, is 0.92 (Figure 3). For 

inferences at the phylum and class rank, the disparity in the number of 

returned inferences increases as pairwise identity between the query and 

closest reference decreases (Figure 3).  

 Our results also show that, for ranks class through genus, PPIT’s infer-

ence probability either locally or globally decreases with increasing 

identity to a reference sequence (Figure 3). We believe this trend is due 

to the combined effects of the strict inference criteria, overestimated 

patristic distance cutoffs for some lineages, and the relatively short ter-

minal branch lengths when queries are similar to reference sequences. 

PPIT does not infer identity if there is at least one taxonomic incon-

sistency in the gathered reference subset, which is defined using the 

patristic distance cutoffs. However, these cutoffs likely are overestimates 

for some taxonomic lineages.  Therefore, the reference subsets for query 

sequences from these lineages may include sequences from distant taxa 

along a shared line of vertical descent. This overexploration of local tree 

topology can result in no inference being drawn due to mischaracterizing 

vertical inheritance as horizontal inheritance. The issue is exacerbated as 

sequences increase in similarity to references because the query se-

quences’ terminal branch lengths tend to decrease, permitting greater 

exploration of the tree topology. The problem of overexploring tree 

topology is particularly relevant to sequences from sparsely sampled 

taxonomic groups, such as the Acidobacteria, Chloroflexi, and Plancto-
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mycetes (Supplementary Table 3). Branches leading to undersampled 

taxa tend to have underestimated lengths (Fitch and Bruschi, 1987; 

Heath et al., 2008), which in turn increases the probability of overexplor-

ing the local topology for queries if they are placed nearby. 

 Additionally, some references do not contain taxonomic assignments 

at all ranks (min. 0.54% of references [missing phylum], max 7.3% 

[missing class]). Taxonomic inferences based solely on these references 

will therefore have gaps and contribute to lower inference probabilities. 

This phenomenon explains the observed dip in inference probability for 

blastp (Figure 3). However, PPIT does not consider missing taxonomic 

information as a taxonomic inconsistency. For example, if all the collect-

ed references for a given query are taxonomically consistent but one 

reference contains information at a rank that is missing for the others (or 

vice versa), an inference would still be made and would include the 

taxonomic information at the rank missing in the other references. 

 Lastly, issues inherent to NCBI taxonomy, particularly conflicts be-

tween taxonomy and organism phylogeny, may contribute to the fewer 

inferences PPIT provides. For example, NCBI taxonomy currently clas-

sifies Betaproteobacteria and Gammaproteobacteria as separate classes 

within the Proteobacteria, although recent efforts to improve phyloge-

netic consistency across taxonomy suggest the Betaproteobacteria are 

more accurately considered an order of the Gammaproteobacteria (Parks 

et al., 2018). To account for this revision, we have modified PPIT to 

consider the Betaproteobacteria an order of the Gammaproteobacteria 

during taxonomic consistency evaluation. Similar manual adjustments 

will likely be required to future PPIT reference databases until the NCBI 

taxonomy adopts the recommendations in the Genome Taxonomy Data-

base.  

3.3 Field test suggests abundance of potential Deltaproteo-

bacteria diazotrophs 

PPIT inferred the taxonomic identity for 44 of the 59 recovered nifH 

ASVs (Table 1). Deltaproteobacteria compose most of the inferred nifH 

source organism assemblage, accounting for 36 ASVs and 78% of reads 

(Table 1). The inferred source organisms are split amongst the Desul-

fobacterales (n = 8) and Desulfuromonadales (n = 28), both orders of 

which were previously implicated as active nitrogen fixers in marine 

sediments using stable isotope tracer and molecular analyses (Kapili et 

al., 2020). The phylogenetic placement of the inferred Desulfuromona-

dales nifH ASVs shows that they are most similar to nifH sequences 

from Desulfuromonadales organisms either isolated (Liesack and 

Finster, 1994; Holmes et al., 2004) or sequenced (Barnum et al., 2018) 

from estuarine sediments near Boston Harbor, MA, USA, Aarhus Bay, 

Denmark or San Francisco Bay, CA, USA (Figure 4A). See Supplemen-

tary Figure 4 for their placement in the context of the entire reference 

tree. 

 Furthermore, the recovered nifH ASVs share high sequence identity 

with each of the references in the clade (Figure 4B). The similarity be-

tween the nifH ASVs recovered here and the reference nifH sequences 

from geographically distant samples suggest that lineages phylogenet-

ically similar to these potential Desulfuromonadales diazotrophs are 

widespread in coastal marine sediments. 

 In addition to Proteobacteria, PPIT inferred nifH source organisms 

from the Lentisphaerae, Kiritimatiellaeota, and Planctomycetes (Table 

1). These results demonstrate PPIT’s ability to draw inferences for poor-

ly represented taxonomic groups, as only two sequences from the Len-

tisphaerae and Kiritimatiellaeota, and ten from the Planctomycetes, were 

present in the reference tree at the time of analysis. 

 PPIT identified 90% of the sequences in the field test sample as sus-

pected nifH homologs (Supplementary Table 2). To demonstrate PPIT 

use on samples containing fewer nifH homologs, we analyzed previously 

published nifH Illumina MiSeq data generated from soil samples (n = 21 

samples) from Niwot Ridge, Colorado, USA (Tu et al., 2016) (Supple-

mentary Figure 5). PPIT identified 90% of the ASVs as nifH (n = 2921 

out of 3260 ASVs), and inferred the identity for an average of 41% 

(±10%; min. 25%, max. 59%) of the nifH ASVs in each sample, with 

taxonomic inferences spanning 6 phyla. On average, these ASVs com-

posed 60% (±25%; min. 11%, max 96%) of nifH reads in each sample 

(Supplementary Figure 5). The most common reason for failure to infer 

taxonomic identity was insufficient pairwise percent identity between 

queries and reference sequences and potential horizontal gene transfer. 

Table 1.  Inferred taxonomy of nifH source organisms in a deep-sea 

sediment sample using PPIT (n = 59 ASVs). Taxonomy for all lineages 

reported at the phylum rank except for Proteobacteria, which are report-

ed at the class rank. Average pairwise percent identity reported with ±1 

standard deviation. 

 Number of 

ASVs 

Relative         

abundance (%) 
Avg. ida (%) 

Deltaproteobacteria 36 78.5 86.0 ± 3.0 

Kiritimatiellaeotab 4 2.3 82.0 ± 2.2 

Gammaproteobacteria 2 1.0 77.4, 81.2c 

Lentisphaerae 1 0.3 78.3 

Planctomycetes 1 0.1 80.6 

No inference 15d 17.9 76.9 ± 4.5 

a With respect to nearest reference on the reference tree. 
b Visual inspection of ASV placement suggests Kiritimatiellaeota and/or Verru-

comicrobia source organisms. 
c Percent identities for both ASVs shown. 
d Visual inspection suggests 14 ASVs were erroneously flagged for horizontal gene 

transfer. 

3.4 Recommendations for visually inspecting PPIT results 

 Visually inspecting the field test ASVs’ placements on the input refer-

ence tree (i.e., inspecting the SEPP output tree) suggests vertical inher-

itance for 14 of the 15 query sequences that PPIT conservatively flagged 

for potential horizontal gene transfer (Figures 5 and 6). For example, ten 

of these ASVs were placed among reference nifH sequences from uncul-

tured Gammaproteobacteria, including two species of the proposed 

genus Candidatus Thiodiazotropha, and were flagged for potential hori-

zontal gene transfer at the class rank (Figure 5A). However, PPIT was 

unable to evaluate taxonomic consistency at ranks lower than class be-

cause either no references were within the patristic distance rank cutoff 

(genus) or no references contained taxonomic assignments at the neces-

sary ranks (family and order). Although PPIT could not infer source 

organism identity due to references’ incomplete taxonomic assignments, 

our manual inspection reveals that these 10 nifH ASVs form a clade with 

nifH sequences from multiple different Gammaproteobacteria (Figure 

5A). We therefore infer these 10 nifH ASVs to be from Gammaproteo-

bacteria source organisms because their placement is consistent with 

vertical inheritance from a Gammaproteobacteria ancestor. Visual in-

spection revealed three additional ASVs that PPIT flagged for horizontal 

inheritance – one placed with the Deltaproteobacteria and two with 

another Gammaproteobacteria clade – although their placements also 
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appeared consistent with vertical inheritance (Figure 5B,C). The single 

nifH ASV for which taxonomic identity was not inferred did not have a 

phylogenetic placement that was clearly interpretable (Supplementary 

Figure 6). 

 Inspecting the placement of query sequences also reveals some taxo-

nomic inferences that are in partial conflict with reference tree topology. 

The four ASVs from inferred Kiritimatiellaeota source organisms were 

placed in a clade consisting of Spirochaetes (n = 1 reference), Verru-

comicrobia (n = 1), and Kiritimatiellaeota (n = 2). However, another 

nifH ASV was placed among the four inferred Kiritimatiellaeota nifH 

ASVs, but was instead flagged for potential horizontal gene transfer 

because the Verrucomicrobia reference nifH sequence was within the 

genus rank cutoff in addition to the Kiritimatiellaeota reference sequenc-

es. Visual inspection does not provide a biologically meaningful distinc-

tion between the five ASVs’ placements (Figure 6). Since the Kiriti-

matiellaeota were classified as Verrucomicrobia subdivision 5 until 

recently (Spring et al., 2016) and currently contain only two nifH se-

quences, we consider it likely that these reference nifH sequences were 

vertically inherited but appear to be horizontally inherited due to poor 

taxon sampling. To reconcile the conflicting taxonomic inferences, we 

interpret that all five nifH ASVs are from members of the Kiriti-

matiellaeota and/or Verrucomicrobia, leaving open the possibility that 

either one or both phyla are represented in the dataset. 

 Our manual analysis provided an additional 14 taxonomic inferences, 

allowing us to infer the taxonomic identity for 58 of the 59 nifH ASVs in 

total. We recommend that users manually inspect the phylogenetic 

placement of ASVs that PPIT either: (1) flags for potential horizontal 

gene transfer or (2) infers to belong to poorly sampled phyla. We note 

that Case 1 may be particularly relevant to samples containing many 

Euryarchaeota nifH sequences (e.g., methane seeps, wetlands) due to 

challenges stemming from a probable inter-domain, ancient horizontal 

gene transfer event with the Clostridia (Doolittle, 2000; Boyd et al., 

2011) (see Supplementary Text 1 and Supplementary Figure 7). To sup-

port users in addressing Case 2, we provide the number of reference 

sequences in each phylum in Supplementary Table 3. Overall, emending 

PPIT results based on visual inspection helps address the fewer number 

of taxonomic inferences PPIT provides relative to BLAST-based ap-

proaches, and as illustrated here, can result in drawing taxonomic infer-

ences for nearly all the nifH sequences in a query set. 

3.5 PPIT applicability to other marker genes 

 PPIT can be applied to other marker genes, particularly genes with 

many full-length sequences available, such that the estimation of in-

formative reference trees is possible, and/or genes with an evolutionary 

history of horizontal gene transfer. For example, the depth of publicly-

available amoA (Pester et al., 2012) and mcrA (Speth and Orphan, 2018) 

sequences, used as marker genes for ammonia oxidation and methano-

genesis/methanotrophy, respectively, makes them suitable targets for 

analysis with PPIT. Additionally, PPIT may help address erroneous 

taxonomic inferences for nirS and nirK amplicon sequences, used as 

marker genes for denitrification, due to the prevalence of horizontal gene 

transfer in the evolutionary history of both genes (Heylen et al., 2006). 
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To adapt PPIT to the analysis of other genes, users need to supply the 

appropriate reference alignment, gene tree estimate, accompanying taxo-

nomic information, and taxonomic rank cutoffs (see Sections 2.2 – 2.4). 

4 Conclusions 

 We present PPIT to address the need for accurate, high-throughput 

taxonomy inferencing of nifH source organisms. We show that PPIT 

returns a higher proportion of correct taxonomic inferences than 

BLAST-based approaches at each taxonomic rank at the cost of fewer 

total inferences. However, we show that visual inspection of query se-

quence placements can recover the difference in taxonomic inferences. 

Furthermore, as the depth of the reference nifH database increases, we 

expect PPIT accuracy and inference rate to increase. We demonstrate 

PPIT on nifH amplicons from deep-sea sediment and, combined with 

visual inspection of results, were able to draw taxonomic inferences for 

58 of the 59 nifH sequences detected, including inferences from sparsely 

sampled phyla. We therefore recommend PPIT over alternative inferenc-

ing approaches for most environmental studies based on its higher accu-

racy and higher throughput. PPIT is readily integrated into current bioin-

formatic workflows, and allows users to substitute the provided nifH 
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resources with resources specific to other genes. PPIT is therefore a tool 

broadly applicable to the analysis of metabolic marker gene sequences. 
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Supplementary Figure 1 Summed edge length of NifH subtree as a function of sequences added 

to initial seed set (n = 37). Horizontal dashed line: summed edge length of total initial NifH tree 

(n = 6292 sequences). Horizontal dotted line: summed edge length of initial NifH tree containing 

only the NifH sequences selected for MAFFT-DASH alignment (n = 736). 
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Supplementary Figure 2 Identification of suspected nifH homologs. Scale bar shows the 

expected number of substitutions per site. 
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Supplementary Figure 3 LOESS curve fitting errors during estimation of PPIT inference 

probability when the span is optimized using the bias-corrected Akaike Information Criterion at 

the (A) phylum and (B) class ranks. Arrows point to fitting errors. To smooth the fitted curve, the 

phylum span was manually adjusted from 0.33 to 0.50; class span was manually adjusted from 

0.41 to 0.50. 
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Supplementary Figure 4 Phylogenetic placement of nifH ASVs from inferred 

Desulfuromonadales source organisms. Branches leading to reference nifH sequences are 

colored grey; tip labels include GenBank accession numbers in parentheses. Inset shows full nifH 

reference tree (homologs collapsed into grey wedge) with arrow pointing to the clade containing 

the inferred Desulfuromonadales nifH ASVs. Scale bar shows expected number of nucleotide 

substitutions per site. 
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Supplementary Figure 5 Relative abundance of previously published (Tu et al., 2016) nifH 

amplicon data generated from Niwot Ridge, Colorado, USA soil samples. Sequence Read 

Archive run numbers corresponding to each sample are reported on the x-axis. Taxa are reported 

at the phylum rank, except for the Proteobacteria, which are reported at the class rank when 

possible. nifH ASVs inferred to belong to the Proteobacteria, but for which the class could not 

be inferred, are shown as Proteobacteria. 
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Supplementary Figure 6 Visual inspection of the query sequence (ASV 720) for which 

taxonomic identity was not inferred. GenBank accession numbers for each reference sequence 

are reported in parentheses. Branches leading to reference nifH sequences are colored grey. Scale 

bar shows the expected number of substitutions per site. 
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Supplementary Figure 7 Minimum patristic distances between reference Euryarchaeota and 

Clostridia nifH sequences. A, Minimum patristic distance to a reference Clostridia nifH 

sequence for each reference Euryarchaeota nifH sequence (n = 218). B, Minimum patristic 

distance to a reference Euryarchaeota nifH sequence for each reference Clostridia nifH sequence 

(n = 687). Vertical dashed lines represent patristic distance taxonomic rank cutoffs. 
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Supplementary Text 1 

If we construct a histogram displaying the patristic distances between the reference 

Euryarchaeota (n = 218) and Clostridia nifH (n = 687) sequences on the reference tree, then we 

can explore a “worst-case-scenario” for inferring the taxonomy of query sequences from either 

of these two lineages (Supplementary Figure 7). Examining the existing tree is equivalent to 

examining a tree with query sequences that have terminal branch lengths of 0, which occurs 

when query sequences are identical to reference sequences. Analysis of the histograms reveals 

that 0.5% of Euryarchaeota references contain at least one reference Clostridia nifH within the 

genus cutoff, 12.4% within the family cutoff, and 17.9% within the order cutoff (Supplementary 

Figure 7A). All Euryarchaeota references contain at least one reference Clostridia nifH within 

the class cutoff and would therefore be flagged for horizontal gene transfer if an inference could 

not be made at the genus, family, or order ranks (Supplementary Figure 7A). The value of 

visually inspecting the phylogenetic placement of query sequences flagged for horizontal gene 

transfer is further underscored since inferencing power reduces to zero for the Euryarchaeota if 

an inference is not able to be made by the order rank. 

Potential query sequences that are identical to existing Clostridia references, however, 

fare better. Only 0.3% of Clostridia references contain at least one reference Euryarchaeota nifH 

within the genus cutoff, 6.8% within the family cutoff, and 9.8% within the order cutoff 

(Supplementary Figure 7B). Similar to the Euryarchaeota, 36.2% of reference Clostridia nifH 

sequences contain a Euryarchaeota nifH sequence within the class cutoff and 28.2% contain one 

within the phylum cutoff (Supplementary Figure 7B). Under the worst-case-scenario, PPIT 

remains capable of inferring the taxonomy for query sequences from the Euryarchaeota and 

Clostridia despite an inter-domain, albeit ancient, horizontal gene transfer event.  



Supplementary Table 1 Nucleotide accession 

numbers and coding sequence start/stop positions of 

diverse bchL sequences (n = 18). Sequences 

identified using a similar approach to how the 

ARBitrator nifH query set was gathered. Partial 

sequences created using the same method that was 

used for creating partial nifH sequences.  

Nucleotide accession CDS start CDS stop 

NC_016025.1 102584 103462 

LGEI01000001.1 275528 274635 

NZ_JAAXMP010000003.1 367812 366946 

NZ_GL501404.1 172500 173321 

NZ_NKFP01000006.1 2844089 2844952 

NZ_ANCI01000003.1 4181932 4181066 

NC_022600.1 4148557 4147730 

NZ_CP017675.1 2741729 2742583 

NZ_CAIY01000027.1 61572 62474 

JAAHGA010000056.1 46105 45643 

NZ_JRFE01000050.1 20067 20945 

NZ_JH980292.1 744116 743250 

NZ_WBXO01000004.1 231259 232092 

NZ_CP011454.1 1570572 1571468 

JAAUUL010000242.1 1925 2824 

SACE01000163.1 2184 1288 

NHKM02000072.1 1956 2846 

NZ_LJHQ01000063.1 35793 36722 
 

 

 

 

 

 

 

 

 



Supplementary Table 2 Summary of read filtering statistics and replicate similarity. 

 

3500 m, 0 – 2.5 cmbsf 
 

Mock community 
 

Negative 

         

 

Rep. 1 Rep. 2 

 

Rep. 1 Rep. 2 Rep. 3 

 
 

No. raw reads 22506 21299 

 

12494 15887 13381 

 

77 

No. filtered reads 13774 12748 

 

9593 12147 9938 

 

6 

         
No. nifHa reads 1148 1059 

 

6213 14193 6656 

 

1 

No. homologa reads 12626 11689 

 

3380 4611 3282 

 

5 

         

No. mock ASVsb – – 

 

12 12 12 

 

– 

No. unexpected ASVsc – – 

 

2 2 1 

 

6 

No. unexpected reads – – 

 

4 7 3 

 

6 

         

Bray-Curtis similarity 0.88   0.91 ± 0.05   – 

aAs determined by PPIT. 
       

bOut of 12 (8 nifH, 4 homologs; even community). 

    cASVs not matching a sequence that was included in the mock community. One chimera was shared 

among all three replicates. 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 3 Number of nifH 

references in each phylum used for taxonomic 

inferencing in PPIT (v.1.2.0). 

Phylum Num. references 

Euryarchaeota 197 

Acidobacteria 1 

Actinobacteria 40 

Aquificae 5 

Bacteroidetes 52 

Candidatus Dadabacteria 1 

Candidatus Margulisbacteria 4 

Chlorobi 34 

Chloroflexi 9 

Chrysiogenetes 2 

Cyanobacteria 412 

Deferribacteres 7 

Elusimicrobia 1 

Fibrobacteres 29 

Firmicutes 940 

Fusobacteria 1 

Kiritimatiellaeota 2 

Lentisphaerae 2 

Nitrospirae 22 

Planctomycetes 10 

Proteobacteria 4083 

Spirochaetes 28 

Thermodesulfobacteria 4 

Verrucomicrobia 31 
 

 

 

 

 

 

 


