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Abstract— Underwater motion recognition using acoustic wire-
less networks has a promisingly potential to be applied to the
diver activity monitoring and aquatic animal recognition without
the burden of expensive underwater cameras which have been
used by the image-based underwater classification techniques.
However, accurately extracting features that are independent of
the complicated underwater environments such as inhomogeneous
deep seawater is a serious challenge for underwater motion
recognition. Velocities of target body (VITB) during the motion
are excellent environment independent features for WiFi-based
recognition techniques in the indoor environments, however, VI'B
features are hard to be extracted accurately in the underwater
environments. The inaccurate VIB estimation is caused by the
fact that the signal propagates along with a curve instead of a
straight line as the signal propagates in the air. In this paper,
we propose an underwater motion recognition mechanism in the
inhomogeneous deep seawater using acoustic wireless networks.
To accurately extract velocities of target body features, we first
derive Doppler Frequency Shift (DFS) coefficients that can be
utilized for VIB estimation when signals propagate deviously.
Secondly, we propose a dynamic self-refining (DSR) optimiza-
tion algorithm with acoustic wireless networks that consist of
multiple transmitter-receiver links to estimate the VTB. Those
VTB features can be utilized to train the convolutional neural
networks (CNN). Through the simulation, estimated VTB features
are evaluated and the testing recognition results validate that our
proposed underwater motion recognition mechanism is able to
achieve high classification accuracy.

I. INTRODUCTION

Acoustic wireless networks have a great potential to perform
passive diver activity recognition and aquatic animal classi-
fication such as regalecus glesne and jellyfish in the deep
seawater environment. Although there are several image-based
underwater aquatic animals classification techniques such as
[1][2], underwater cameras are expensive and are susceptible
to underwater conditions such as light, transparency and depth.
Poor seawater transparency and night time certainly deteriorate
the quality of photos and limit the performance of the underwa-
ter camera. On the contrary, acoustic wireless sensing networks
are more robust than underwater cameras in austere situations
such as the dark deep seawater since the wireless signal won’t
be affected by the transparency of the underwater environments.
Underwater acoustic wireless networks are able to perform
24 hours monitoring and avoid the influences of bad weather.
Furthermore, with the communication devices that have been
installed on the autonomous underwater vehicle (AUV), there
is no extra cost of a hardware implementation for acoustic
wireless sensing networks. In addition, the capability of wire-
less sensing networks has been shown in WiFi-based wireless
sensing techniques. For example, wireless sensing techniques
are able to perform passive motion recognition from small
movements such as finger keystroke [3] to relatively drastic
activities such as walking and falling activity recognition [4]
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Fig. 1: Doppler effect when transmitter moves down to the
receiver at a constant speed

in the indoor environments. Furthermore, indoor environment
independent human activity recognition is developed in [5] by
minimizing the influences of environments on the input fea-
tures. However, those WiFi-based wireless sensing techniques
cannot be directly utilized for underwater motion recognition.

Due to the complicated influences of underwater environ-
ments, accurately estimating the environment independent fea-
tures is still the main challenge for underwater target motion
classification using acoustic wireless networks. Velocities of
the target body (VTB) that are estimated from Doppler fre-
quency shift values by DFS coefficients can be considered as
environment independent features. However, VTB estimation in
the inhomogeneous deep seawater faces four problems. Firstly,
when the signal propagates through the inhomogeneous deep
ocean water, the signal propagation path L(¢) is not a straight
line as shown in Fig. 1(b) but an arc as shown in Fig. 1(a) from
the transmitter to the receiver. That phenomenon is caused by
the fact that acoustic signal propagation speed in the under-
water environment becomes smaller with deeper depth before
reaching the minimum sound speed depth. As shown in Fig.1,
when the transmitter moves downwards at a constant speed,
Doppler effect in the inhomogeneous underwater environment
has an increasing DFS while Doppler effect in the air has a
constant DFS. Thus, DFS coefficients in inhomogeneous deep
seawater are different from the DFS coefficients in the air.
Secondly, ambiguity exists in the VTB estimations. Doppler
effects depend on both signal propagation speed and path length
changing speed. In inhomogeneous underwater environments,
if the signal propagation path length changing speed is equal to
the acoustic signal velocity changing rate, there is no Doppler
effect for one transmitter receiver pair (TRP) when the target
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moves. Different motion velocities may lead to the same DFS
value for one TRP. Thirdly, VTB features extractions still need
a suitable optimization algorithm to reduce the outliers. Fourth,
if multiple transmitter receiver pairs are utilized to solve the
ambiguity in VTB estimation, different receivers need to be
synchronized. Time and frequency synchronization among all
the receivers are important for the training data structure.

To solve the problems of underwater motion recognition, in
this paper, we propose an underwater target motion recognition
mechanism using acoustic wireless networks, which is able to
estimate the velocities of target body components as features
by dynamic self-refining optimization algorithm and underwa-
ter DFS coefficients. First, to solve the ambiguity of VTB
estimation in underwater environments, multiple autonomous
underwater vehicles are used as transmitter and receivers to
form an acoustic wireless network in deep seawater. Signal
path length changing speed cannot be the same for all TRPs
with different positions of receivers. Second, time and fre-
quency synchronization among all the receivers are achieved
by M’I based underwater synchronization strategy to reduce
the synchronization errors. Third, to derive DFS coefficients,
we calculate the curve signal propagation path length for one
TRP in the inhomogeneous deep seawater environment. When
deriving underwater DFS coefficients, we take the changing
sound speed and the curve signal propagation path into con-
sideration. Then, we show that the doppler frequency shift
is actually a linear combination of velocities that multiply
with DFS coefficients. Those coefficients are functions of the
positions of the target body when the positions of transmitter
and receivers are known. Fourth, to reduce the outliers in the
VTB estimation with multiple TRPs, we formulate a dynamic
self refining optimization algorithm to fully utilize the entire
motion procedure instead of estimating all the VTB at one time.
Taking advantage of dynamic optimization is able to iteratively
refine VTB based on the relations among velocities estimated
from different time points, which generates fewer outliers in
estimation results and emphasizes the changing pattern of
VTB. Due to the doppler coefficients initialization and rough
position estimation of the target body, estimated VTB cannot
be directly utilized to identify the target motions. We feed the
extracted VTB into a classic CNN as the training data. CNN
has the capability of learning the pattern of VIB to perform
motion identification. Through the simulation, we validate that
the VTB features that are recovered from received data have
fewer outliers and prove that our proposed underwater motion
recognition mechanism can achieve high classification accuracy
independent of the target location.

The rest of this paper is organized as follows: in Section
II, we derive the length and time of flight of curve signal
propagation path in isogradient acoustic signal speed deep
seawater. Then we derive DFS coeflicients that can be utilized
for VIB estimation. In Section III, we first utilize a M?3I
synchronization method to adjust the time clock and center fre-
quency for different receivers. Second, we propose a dynamic
self-refining VTB optimization framework to extract velocity
features from the Doppler frequency shift with fewer outliers.
In Section IV, we use MATLAB to simulate the received signal
in the isogradient sound speed underwater environment. Then,
VTB is estimated according to our proposed DFS coefficients
and optimization algorithm. Finally, classification results are
evaluated. Section V concludes this paper.
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Fig. 2: Signal propagation path length in isogradient acoustic
signal speed sea water

II. DFS COEFFICIENT DERIVATION IN ISOGRADIENT
ACOUSTIC SIGNAL VELOCITY UNDERWATER
ENVIRONMENT

In order to derive the DFS coefficients that can be utilized for
VTB estimation, we first derive signal path length expression
for one TRP by the ray-tracing method.

Although underwater environments are always assumed to be
homogeneous in some underwater channel modeling researches
[6][7], the real propagation model of acoustic signal in the in-
homogeneous ocean environments is different from the acoustic
signal propagation in the air. The underwater acoustic signal
speed c is affected by many factors such as salinity, seawater
density and temperature [8]. The acoustic signals propagate
along with a curve instead of a straight line such as they
propagate in the air.

In this paper, we assume that the underwater acoustic signal
propagates in the isogradient sound speed seawater which is
similar to the real ocean condition. The velocity of the acoustic
signal is only influenced by the decreasing gradient g and
acoustic signal speed at the surface of the seawater vy, which
can be summarized as a function of depth ¢(z) = gz + vyy.
In [9], the propagation of underwater acoustic signal between
two nodes can be considered as an arc. According to the Snell’s
law, the sound propagation meets the following equation:

do  sinf-dc  sinf-g 0
K= — = =
dl c-dz c
where « is the curvature of the arc. 6 is the angle between the
tangent line at any points on this arc and the vertical z axis.
[ denotes the length of this arc. Accordingly, the radius R of
this arc can be calculated by the following equation:

c(zr)
sinfg - g

c(zr)
sinfr - g

R=«"'= = 2)

where 67,6y are the angles between z - axis and tangent lines
at transmitter and receiver respectively as shown in Fig.2 (a).
c(zr), c(zg) are the acoustic signal speed at depth of transmitter
and receiver.

As shown in Fig.2 (a), ¢ is the central angle corresponding
to arc Irg. Thus, the central angle ¢ can be described by using
cosine theorem:

2R? — D?
2R?

where D = +/(x7 — xg)> + (yr — yr)* + (zr — 2z)? is the dis-

) 3)

¢ = arccos(
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tance between transmitter and receiver. ¢ is also the angle
between line RO and line TO and can be described by the
slope of TO kro and slope of RO kgo :
kro — kgo
¢ = arctan(————— 4)
+ krokro
where the slope k7o, kro are orthogonal to the slope of tangent
lines of arc I7x. Receiver and transmitter are located at different
depth and horizontal positions. So the slope kro,kgro can be

described as krp = —tanfr,kgo = —tanfg. By solving the
following equation:
2R* - D? k
arccos(T) - arctan(Tv:Ti)) =0
Zr) \2
2 - ~ 1 o ®)
(Zr)
2(%)2 1 4 ({Lant—tanty_y)

+tanfr -tanfg

We firstly take cos to all the terms in the equation and
infyc
then substitute 6 = arcsin——= into equation (5). Equation

solving procedures are omltted due to page limitation. Then
the angle 67 can be obtained as:

xr — xg)? + Or — yr)?
o = n —arctan(g \/( T ®)*+ Or —Yr) _
2 v + g2r + 82r ©)
ZrR — 21
arctan(

(x7 = xp)> + Or — y»)?
where x7,yr,zr are the coordinates of transmitter. xg, Vg, 2z
denote the coordinates of receiver. As shown in the Fig.2 (a),
the chord angle ¢rr is the angle between arc Irg and the
straight line D. Angle 8 = arctan R and angle

V(7 =xg)*+(yr—yr)?

= 0.57 — ¢rg — B. Since the ¢rg is the chord angle, the
central angle ¢ can be calculated as following equation:

g — xp)? + Oy — yr)?
2vas + 82r + g2r

¢ = 2¢7rr = 2arctan( 7

Then, the total underwater transmission length for acoustic
signal between transmitter and receiver can be calculated as:

g \/(XT = xg)? + (yr — y&)?
zvsuf + 8Zr + 82r

c(zr)
sinfr - g

lrR=R-¢= - 2arctan( 8)

The traveling time of signal that propagates along with arc
Irg cannot be calculated by dividing length by sound speed,
since the acoustic signal speed varies with different depth.
Traveling time can be calculated as an integration:

‘f f&z .d6 ’ _ l 'ln( secOg + tanG‘R) ©)
c(2) or

sinf-g| g secOr + tanfr

The doppler effect is caused by the signal propagation path
length changing speed and signal propagation speed according
o [10]. According to the classic doppler effect model, doppler
effect can be described as fpps = fo% when the velocity dif-
ference between transmitter and receiver is much smaller than
signal propagation speed, where fy is the original frequency.
This Av can be regarded as the signal propagation path length
changing speed due to the assumption that the source is moving
towards or away from a receiver with constant speed. Since the
underwater transmitter and receiver are the AUVs and could be

considered as roughly static, the only thing that changes the
signal path length is the motion of target as shown in Fig.2 (b)
where target body moves from location B(¢ — 1) to the location
B(#). Transmitted signals encounter the target body and then
are reflected towards the receivers. Underwater doppler effect
is significantly different from the doppler effect in the air as
shown in Fig .1 due to two reasons. First, as we explained
above, the signal propagation path is not a straight line but an
arc. Second, in the air, the signal velocity can be considered
as a constant. However, in the isogradient acoustic speed
seawater, the acoustic signal velocity changes with different
depths. Thus, as shown in Fig. 1, when the transmitter moves
vertically downward to the receiver in the air at a constant
speed, the doppler frequency is a constant as shown in Fig.
1(b). The doppler frequency in the isogradient deep sea water
is increasing even with a constant transmitter moving speed
as shown in Fig. 1(a). The reason is that the acoustic signal
speed becomes smaller when transmitter moves downward in
the isogradient sound speed seawater. It is noteworthy that only
the sound velocity at the location where motions happen affects
the doppler effect. When acoustic signals that are actually
mechanical wave propagate through other space in the seawater
which are not involved in the target motions, the frequency
f =% will not change.

In this paper, we consider the receivers and transmitters as
static in a short time when they collect data. In addition, we also
assume that there is no surface reflection and bottom reflection
in the deep seawater. Then, the doppler frequency caused by
the motions of the target can be calculated as a function of #:

Ve _ . dLO)
fa=f- 5 =1 2T

where L(f) = Iyp + lgg is the total path length which combines
the path length from transmitter to target body and path length
from target body to the receiver. According to the equation (8),
the total path length can be calculated as:

(10)

L(t) = lpp(t) + Igr(2)

= .C(;R) - 2arctan(
sinfpr - g

g(xp + Vit — xp)* + (v + vyt — Yr)?

2V + 82 + gVl + 82r
gxp + vt = x7)2 + (vp + vyt = yr)?
2V + 82p + gvit + gzr

)+

c(zp)
sinfpg - g

- 2arctan(

(1D
where 6gr denotes the angle between z axis and the tangent
line of arriving signal from transmitter to target body at the
location of target body. Oz denotes the angle between z-axis
and the tangent line of reflected signal from target body to
receivers respectively at the location of target body. vy, vy, v,
are the velocity of target motion along x-axis, y-axis and z-
axis. The expressions of sinfpg, sinfpr are really complicated
due to the 67 expression. Let’s denote a sub function u(7):

g[(XB + Vil — )CR)2 + ()13 + Vyf - yR)Z]
(2vyup +2828) - /(xp + vif — xg)> + (g + vyl — yg)?
[2vgur + g(zp + vt + zp)] - (zp + Vit — 2g)
(2vyup +2828) - /(xp + vif — xg)> + (g + vyt — yg)?

upg(t) =

12)

Then the term —$2 can be further derived as:

sinfpg-g
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[g(ZB + Vz't) + Vsuf] : I+ M%R

c(zp) _
sinOpg - g 8

13)

c(zp)
sinfpr-g

tion of % are omitted due to the page limitation, doppler
frequency effect can be represented as a linear summation of
Vy, Vy, v, and the DFS coefficients ay, ay, a;:

can be derived with a similar procedures. Calcula-

B f dL(t) _ Gy + ayvy + a;v;
Coe(t) dt A(D)

Jfa (14)
where A(f) = % denotes the acoustic signal wavelength at the
location where target motions happen. In this paper, locations
of transmitter and receivers are known. x-axis DFS coefficient
a, can be represented as following equation:

a = xp(1) = xg .
C V@) — ) + (a() — )
(15)
xp(t) — xp

\/(XB(t) —x7)? + (vp(t) — yr)?

where xp(1), yp(t), zg(t) denote the coordinates of target body

as functions of time 7. a, is a function of the location of target
body a, = fi(xp(t),yp(t)) when receiver and transmitter are
static and their positions are known. The y-axis DFS coefficient
ay has a similar expression:

_ ye(1) — Yr
Va0 = xp)2 + (p() — yr)? (16)
ye(0) = yr

\/(XB(l) —xr)? + (vp(t) = yr)?

ay is also a function of the location of target body a, =
fo(xp(1), yp(t)) when target is moving. a, has a more complex
expression which can be represented as following equation:

SLOBO—3R) >+ (1) -yR)T+2vgup +8(EE(O+2R) (5 (D -2R)
@ +282p) V(g0 —xp)2 +(5(0-yp)?
a, = +
1+ (g[(XB([)*XR)Z+(,VB(7)*YR)ZJ+[2V.mf+g(ZB([)+ZR)J‘(ZB([)*ZR))2
@y +282r) V(p(O)—xp)2 +(5(0-yp)?
LB =x7) > +(5()=y1)* [+ 20 +8GB(O+2r))2p()=2r)
@y +282r) VapO-x7)2+05(0-y7)?
1+ (g[(XB([)*XT)2+(}'H(')*)'T)2J+[2"suf+g(15(')+ZT)J'(ZB(I)*ZT))2
@vgu+282r) VapO—x7)2+0p(0-y7)?

an

a, is a function of the location of target body a, =
f3(xp(1), yp(t), zp(1)). As shown in Fig.2 (b), the received signals
can be divided into line-of-sight /7z and reflection signal from
target body for one transmitter and receiver link.

; ; in_ ¢ Vpath®
h(t) = eiﬂp"t[a/mei/zﬂf‘r’m + a[TBR(t)e_'IZHfI)CTT’TBR(t)] (18)

gt PSS
=e /Y [h.vmlic + CVITER(I)e / o lrer ]

where ¢; denotes the phase offset of jth TRP. Phase offsets are
caused by the carrier frequency unsynchronization and time
clock unsynchronizaiton. Phase offset changes with different
transmitter receiver link. a;,, denotes the attenuation coefficient
for LoS path. Since the transmitting AUV and receiving AUV
are regarded as static, only the path Iypg has the doppler
frequency shift due to the target motion. In addition, time delay

71, and attenuation coefficient «;,,, would also change with
the motions of target due to the changes of signal propagation
path length. The unknown phase offset can be mitigated ac-
cording to [10] by calculating the conjugate multiplication of
channel state information. In addition, the doppler frequency
shift could also be extracted from frequency domain according
to [10].

III. ESTIMATION OF VELOCITIES OF TARGET BODY
A. M?I Assisted Underwater Synchronization

As we mentioned in Section I, we utilize multiple receivers
and one transmitter to solve the ambiguity of VTB estimation.
Time and frequency synchronization should be performed
among different receivers.

Compared with indoor wireless sensing networks, the under-
water wireless networks encounter a more serious unsynchro-
nization problem due to the long distance of signal propagation
and the slower velocity of the acoustic signal. Time clock
unsychronization would lead to the problem that the extracted
DFS values form each receiver are not describing the motions
in the same time window. Frequency unsynchronization would
lead to inaccurate DFS values. In this paper, we utilize the
metamaterial inspired (M?I) assisted synchronization [11] to
synchronize the frequency and time clock for AUVs. M?I
channel have a significantly faster transmission speed that leads
to a tiny time delay.

To briefly explain, a predetermined master AUV acts as the
reference. The first step of synchronization is that the master
AUV broadcasts beacon signal to all other slave AUVs using
M?1 signals. This broadcast contains a beacon signal at a
known frequency and a synchronization preamble, which is
used for carrier frequency synchronization for each slave AUV.
According to the [11], the first step frequency synchronization
can be shown as:

ﬁ,l, i = fv,‘

where b; is the average clock drift of jth receiving AUV to the
master AUV. k is the frequency multiplier. f; ;. ; is the estimated
frequency of beacon signal with local oscillator of jth slave
AUV. f; ; is the operating frequency of jth slave AUV and f,
is the oscillator frequency of master node. €, ; is the frequency
estimation error. The time synchronization error for jth receiver
can be calculated as:

= (Bj— Dfuy + % (19)

Py dy & PL+Py o dy
=l 4 S )L+ 2]

(20)
i=j+1
where P;; and P;; are the total packet length delivered from
the master node to the slave node and packet length from the
slave node to the master node respectively. B is the bandwidth,
dy; is the distance between the master node and the slave
node j, v is the propagation speed of the signals used for
synchronization. € = % is the frequency estimation error.
According to the above two equations, the time synchroniza-
tion error and frequency synchronization error of M?I mainly
depend on the bandwidth B, signal propagation speed v and
frequency multiplier k. M1 has a obviously larger bandwidth,
faster transmission speed and bigger frequency multiplier k in
underwater environments compared with acoustic signal based

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on May 25,2021 at 18:18:40 UTC from IEEE Xplore. Restrictions apply.



synchronization method. Thus, M?I assisted synchronization
for underwater wireless sensing networks has a smaller both
time synchronization error and frequency synchronization error.

B. Dynamic Self-Refining Optimization for VIB Estimation

After synchronizing different receivers and extracting
doppler frequency shift values from the received data, the most
important step is to estimate the velocities of the target body.
In a certain type of motion of the target body, different parts
of the target body actually move at different velocities, which
causes different doppler frequency values in the frequency
domain. The amplitude of doppler frequency indicates the
reflection attenuation from those parts to the receivers. As we
mentioned, there is an ambiguity between doppler frequency
and the velocities of the target body. For example, as shown in
equation (10), the doppler frequency shift is equal to the signal
propagation path length changing speed over the acoustic signal
speed. It is easy to find a situation that the path length becomes
longer at a direction where the acoustic signal speed decreases.
This situation may introduce an unchanged doppler frequency
shift although the target is moving. Furthermore, different path
length changing speeds may lead to the same doppler frequency
shift due to the fact that the underwater acoustic signal speed
changes with different depths.

To solve the ambiguity between VTB and DFS value, we
take the advantages of multiple J receivers which are actually
AUVs to form a deep water wireless sensing network. With
the receivers distributed at different positions especially at a
different depth, the path length of signal propagation has differ-
ent changing speeds with the same velocities of target motion.
To briefly explain, different positions of receivers introduce
the different values of 6pg. According to the expression of
ay,a,, different horizontal positions of receivers lead to the
different values of ay, a,, Furthermore, with the same horizontal
positions, DFS values still can be distinguished by receivers at
different depth. With receivers at different depth z, the same
z-axis velocity v, can cause different values of DFS according
to the expression of a.

Algorithm 1 Dynamic Self-Refining VTB Optimization
Input: Doppler frequency shift profile D = {D;, D, ..., Dy,}
Output: V = {V;,V,, ..., Vy,} velocity profile of human body
components

J

initialize the linear coefficients profile A%, o Ay

1:

2:fori:1t0N,dol . .

3 perform miny Y,_, ;:l A4V, 1/A(z%) - DjII%

4 for m = 2 to i+1 do

5 for j=1toJ do

6 for k‘k: 1 to K do A .

! Al = LR O ), e Y, £ Gl v 2]

8 [, 0,28 ] =[xk + Ar-vmk k4 AL
vk zpy + At V%] where Ar = 5l

9: end for

10: end for

11: end for

12: end for

The underwater wireless networks contain one transmitter
and multiple receivers. Before performing target motion iden-
tification, AUVs first localize each other and the target body.

AUVs are assumed to know position of themselves and keep
static. We consider K as the total number of parts of target
body which can caused the doppler frequency shift. This K
is also the total number of doppler frequency bins that can
be extracted from frequency domain for one TRP at one time
point. The number of resolution in frequency domain can be
calculated by %.

Localization of target body could only give us the rough
estimations of positions of different parts. We cannot know
which part of human body corresponds to which doppler
frequency shift. Thus, we propose a dynamic self-refining
VTB estimation optimization algorithm. In the proposed op-
timization algorithm, we utilize an insight of target motion. To
illustrate, the doppler coefficients ay,ay,a, are the functions
of target body position when the transmitter and receivers are

considered as static. The velocity V;(k) = [v’; v’; vff] at time
i can be estimated by following equation:
i J ' A
miny " NNV = DI 21)

n=1 j=1

where I is the identity matrix. V; contains the K kinds of
estimated velocities.

vy Vi
Vi=| v vy (22)
v ve
And A{ contains doppler coefficients:
a]. a" Cll
A= LD (23)
‘ aK aK aK
X y ¢4

where D{ is a KxK diagonal matrix contains K DFS values
for jth TRP at time i. A{k = [dX, a, a¥] are the DFS coefficients
for jth TRP at time i. )

If the time interval between two consecutive received signals
is small enough, then we can reasonably assume that all parts
of the target body will keep the same direction and the same
velocity Vl.’ . Therefore, the DFS coeflicient A;;; of next time
point can be obtained as shown in algorithm 1 step 7 and step 8
where f/, f], f] denote the DFS coefficients functions that are
described in equations (15)(16)(17) for jth TRP. By adding the
newly obtained DFS coefficients A;;; into optimization frame-
work, all the velocities from i = 1th to i + 1th are re-estimated.
Then, the newly obtained are used v; to update A;. Utilizing
newly obtained v;;; to predict A;;; and estimate the velocity
of k part of target body again. With more DFS coefficients at
different time points added to the optimization problem, the
estimated accuracy would be more accurate. In addition, the
wavelength /l(z:.‘) could also be refined with the newly obtained
positions of the target body. With more accurate estimated
velocities, the DFS coefficients A will be more valid. Iteratively
performing proposed velocity optimization lets the velocities V
be more accurate. Furthermore, the velocity changing pattern
becomes more smooth with fewer outliers. All the procedures
are described in Algorithm 1. Although the time complexity of
the proposed algorithm 1 is O(n*), the total calculation time
is affordable. The number of transmitter receiver links and the
number of VTB features are often limited.
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Fig. 3: Underwater diver activity recognition using acoustic
wireless networks

IV. SIMULATIONS AND PERFORMANCE EVALUATION

Before embarking the simulation results, we first illustrate
the underwater environments simulation setup using MATLAB.

The situation for underwater target motion identification is
considered as the deep inhomogeneous seawater. According
to [8], the deep seawater environment can be modeled as the
isogradient acoustic signal speed environment where the sound
speed decrease with depth increases at a constant gradient.
We assume the sound speed at the surface of seawater vy, s
= 1470m/s and the sound speed decreasing gradient g = 0.03.
The total number of receivers is 10, that is, the total number
of TRP J = 10. We applied wavelet transformation to convert
the received signal into the frequency domain. Compared with
short time fourier transformation (STFT), discrete wavelet
transformation (DWT) is able to achieve high resolution in
both time and frequency domain. The k = 20 means that the
target body may have 20 different velocities during the motion.
The time period for a certain type of motion is defined as 5
seconds. The time resolution of DWT is defined as 0.1 second
and the VTB can be assumed as constant during this small
period. All the receivers and the transmitter are located from
91 meters to 181 meters in depth.

Before collecting data, all the AUVs perform time and fre-
quency synchronization. Frequency synchronization mitigates
the carrier frequency offset. Time synchronization is more
important for AUVs. In the underwater environment, the sound
speed is lower than the speed of EM signal in the air. The
acoustic signal propagation path length is also longer than the
signal path length in the indoor environment. Those two facts
lead to a larger time delay of received signals. The training data
can be collected immediately when the target motion starts in
the indoor environment. However, AUVs need to calculate the
corresponding time delays to choose the beginning time and
the ending time for training data. Local time clocks need to be
synchronized for different AUVSs to ensure they utilize the same
length of received data that only describes the target motion.
Otherwise, the length of training data may be different and the
training data may contain the time period without motion.

To summarize the procedures of simulation, first, we sim-
ulate the received signals according to our proposed channel
model and doppler frequency model in Section II. The second
step is to select the time period of the received signal when
the motion happened. Third, DWT is performed to extract the
doppler frequency shift from received data. In the fourth step,

v, mss
v, m/s

(a) lifting arm upward (b) putting arm downward

Fig. 4: VTB estimation results using dynamic self-refining
optimization and underwater DFS coefficients

(a) lifting arm upward

(b) putting arm downward

Fig. 5: VIB estimation using one time estimation and DFS
coeflicients in the air

the doppler frequency shift is fed into the dynamic self-refining
VTB optimization framework to generate the VTB. Finally,
we train the CNN with VIB and test our proposed motion
recognition mechanism. It is noteworthy that the same motion
happens at different locations to generate VIB features. The
testing data is the VTB that is generated by target motion in
different locations from the training locations.

The whole underwater wireless sensing scenario can be
described in Fig. 3. As shown in Fig.4 and Fig.5, VIB
estimations at a time point are performed with different types
of optimization algorithms and different DFS coefficients. The
target motion is defined as the human lifting and laying arms
in the underwater environments as shown in Fig.3. Since most
parts of the human body keep static, most points of VTB are
around zero velocity as shown in Fig.4 and Fig. 5. When lifting
arm upwards and laying arm downwards, different parts of the
arm have different velocities. Compared with Fig.4, the VTB
estimation results in Fig.5 have more outliers and larger values
of v, due to the one-time optimization and wrong DFS coef-
ficients. Our proposed DSR optimization framework considers
the relations between adjacent VIB values and iteratively self
refines both DFS coefficients and VTB values, which make
the VIB estimation smoother. With fewer variations in VITB
values, CNN is easier to find the pattern hidden in VTB along
with the time to achieve high recognition accuracy.

When training the CNN classifier, we define 4 different mo-
tions which are lifting hands, pushing, sweeping and drawing
circles. To simulate the received signal caused by those 4
types of motions, 5 points move at different speeds represent
the motion of the human arm. For example, 5 points move
at different angular velocities but at the same absolute speed
when the diver is drawing circles. After each time interval,
we update the positions of points. Then, we simulate the
received signals according to the proposed model in Section
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Fig. 6: Underwater target motion recognition accuracy in different situations

IL. It is noteworthy that we add addictive Gaussian noise to the
received signals to simulate the real noise in the underwater
environments. We generate 2100 samples for different types of
motions. In addition, the samples are generated in 3 different
locations. In each location, we generate 700 samples. For each
sample, it contains data collected from 50 times points, 10
transmitter receiver pairs and 20 different body components. In
other words, we generate a data set that has 4x2100x50x20x10
= 8.4x10e7 as our input training features.

We test our trained classifier in 3 different situations as
shown in Fig. 6 to illustrate the influences of unsynchro-
nization, wrong DFS coefficients, and our proposed under-
water DFS coefficients. In Fig. 6(a), we input the testing
data collected from unsynchronized receivers. All the receivers
have different local time clock. Therefore, data collected from
different receivers are not caused by the motions happen at the
same time, which leads to the low accuracy of classification
results. Although the testing accuracy increases with high
signal to noise ratio (SNR), the average classification accuracy
doesn’t reach 90 percent.

As shown in Fig. 6(b), we use the DFS coefficients when
signals propagate in the air and one-time optimization which
estimates the VTB values of a period at one time. As we
explained, using DFS coefficients in the air will make the
velocity along z-axis v, larger than the real values. Estimating
all VTB values at one time could lead to more outliers, which
makes the VTB changing pattern ambiguous. Even the training
data are generated with the DFS coefficients in the air and
the one-time estimation, the classification accuracy is still low
when SNR value is small.

Finally, we test our proposed underwater target motion
classification mechanism using derived underwater DFS co-
efficients ay, ay, a, and proposed DSR optimization. DSR opti-
mization produces fewer outliers in VTB values and estimates
VTB values that are more similar to the real velocities by
considering the relation between two sets of DFS coefficients
at consecutive times for a certain TRP. As shown in Fig.6 (c),
our proposed underwater recognition accuracy could achieve
high accuracy even with relatively low SNR values. When SNR
increases, the average classification accuracy could reach 97
percent. The classification results show that our proposed DFS
coeflicients in the inhomogeneous deep seawater and dynamic
self-refining optimization have the capability of performing the
accurate estimation of VIB features.

V. CONCLUSION

In this paper, we proposed a target motion recognition
mechanism using acoustic wireless networks in inhomogeneous
deep water environments. First, we derived the length of signal
propagation path in the isogradient sound speed underwater en-
vironments where signals propagate along with an arc to figure
out DFS coeflicients. Second, with derived DFS coefficients,
we developed a dynamic self-refining optimization algorithm
to estimate the VTB from doppler frequency shift, which has
more accurate VIB estimation results and reduces the outliers
of VTB estimation. Finally, we tested our proposed target
motion recognition mechanism through MATLAB simulations.
VTB estimation results are evaluated to verify the advantages
of our proposed DSR optimization algorithm. Classification
testing results showed that the underwater target motion can
be identified with high accuracy.
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