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Abstract—We consider a joint sampling and scheduling prob-
lem for optimizing data freshness in multi-source systems. Data
freshness is measured by a non-decreasing penalty function
of age of information, where all sources have the same age-
penalty function. Sources take turns to generate update packets,
and forward them to their destinations one-by-one through a
shared channel with random delay. There is a scheduler, that
chooses the update order of the sources, and a sampler, that
determines when a source should generate a new packet in
its turn. We aim to find the optimal scheduler-sampler pairs
that minimize the total-average age-penalty at delivery times
(Ta-APD) and the total-average age-penalty (Ta-AP). We prove
that the Maximum Age First (MAF) scheduler and the zero-
wait sampler are jointly optimal for minimizing the Ta-APD.
Meanwhile, the MAF scheduler and a relative value iteration
with reduced complexity (RVI-RC) sampler are jointly optimal
for minimizing the Ta-AP. The RVI-RC sampler is based on a
relative value iteration algorithm whose complexity is reduced
by exploiting a threshold property in the optimal sampler.
Finally, a low-complexity threshold-type sampler is devised via an
approximate analysis of Bellman’s equation. This threshold-type
sampler reduces to a simple water-filling sampler for a linear
age-penalty function.
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I. INTRODUCTION

In recent years, significant attention has been paid to age
of information as a metric for data freshness. This is because
there are a growing number of applications that require timely
status updates in various networked monitoring and control
systems. Examples include sensor and environment monitoring
networks, surrounding monitoring autonomous vehicles, smart
grid systems, etc. Age of information, or simply age, was
introduced in [2]-[5], which is the time elapsed since the most
recently received update was generated. Unlike traditional
packet-based metrics, such as throughput and delay, age is
a destination-based metric that captures the information lag at
the destination, and is hence more apt for achieving the goal
of timely updates.

There have been two major lines of research on age in single
source networks: One direction is on systems with a stochastic
arrival process. There are results on both queueing-based age
analysis [5]-[8] and sample-path based age optimization [9]-
[12]. The second direction is for the case that the packet arrival
process is designable [13]-[16], where our study extends the
findings in these studies to multi-source networks.

We consider random, yet discrete, transmission times such
that a packet has to be processed for a random period before
delivered to the destination. In practice, such random trans-
mission times occur in many applications, such as autonomous
vehicles. In particular, there are many electronic control units
(ECUs) in a vehicle, that are connected to one or more sensors
and actuators via a controller area network (CAN) bus [17],
[18]. These ECUs are given different priority, based on their
criticality level (e.g., ECUs in the powertrain have a higher
priority compared to those connected to infotainment systems).
Since high priority packets usually have hard deadlines, the
transmissions of low priority packets are interrupted whenever
the higher priority ones are transmitted. Therefore, information
packets with lower priority see a time-varying bandwidth, and

hence encounter a random transmission time.
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Figure 1: System model

Another example is the wireless sensor networks that are
used for environmental monitoring, human-related activities,
etc. In such networks, sensor nodes may be deployed in
remote areas and information is gathered from these sensors
by an access point (AP) through a shared wireless channel
[19]. Since this channel is influenced by uncertain factors, the
channel delay varies with time.

When the transmission time is highly random, one can ob-
serve an interesting phenomenon: it is not necessarily optimal
to generate a new packet as soon as the channel becomes
available. This phenomenon was revealed in [13] and further
explored in [15] and [16]. In the case of autonomous vehicles,
many sensors may share the same CAN bus. As a result, the
decision maker needs to control both the sampling times and
service order of these sensors. The same observations are also
applied to wireless sensor networks.

In this paper, our goal is to investigate timely status updates
in multi-source systems with random transmission times, as
depicted in Fig. 1. Sources take turns to generate update
packets, and forward the packets to their destinations one-by-
one through a shared channel with random delay. This results
in a joint design problem of scheduling and sampling, where
the scheduler chooses the update order of the sources, and
the sampler determines when a source should generate a new
packet in its turn. We find that it is optimal to first serve
the source with the highest age, and, similar to the single-user
case, it is not always optimal to generate packets as soon as the
channel becomes available. To that end, the main contributions

of this paper are outlined as follows:

o We formulate the optimal scheduling and sampling prob-
lem to optimize data freshness in single-hop, multi-source
networks. We use a non-decreasing age-penalty function
to represent the level of dissatisfaction of data staleness,
where all sources have the same age-penalty function.
We focus on minimizing the total-average age-penalty
at delivery times (Ta-APD) and the total-average age-
penalty (Ta-AP), where Ta-AP is more challenging to

minimize. We show that our optimization problem has an

important separation principle: For any given sampler, we
show that the optimal scheduling policy is the Maximum
Age First (MAF) scheduler (Proposition 1). Hence, the
optimal scheduler-sampler pair can be obtained by fixing
the scheduling policy to the MAF scheduler, and then
optimize the sampler design separately.

o We show that the MAF scheduler and zero-wait sampler,
in which a new packet is generated once the channel
becomes idle, are jointly optimal for minimizing the Ta-
APD (Theorem 2). We show this result by proving the
optimality of the zero-wait sampler for minimizing the
Ta-APD, when the scheduling policy is fixed to the MAF
scheduler.

o Interestingly, we find that zero-wait sampler does not
always minimize the Ta-AP, when the MAF scheduler
is employed. We show that the MAF scheduler and the
relative value iteration with reduced complexity (RVI-
RC) sampler are jointly optimal for minimizing the Ta-
AP (Theorem 6). We take several steps to prove the
optimality of the RVI-RC sampler: When the scheduling
policy is fixed to the MAF scheduler, we reformulate
the optimal sampling problem for minimizing the Ta-
AP as an equivalent semi-Markov decision problem. We
use Dynamic Programming (DP) to obtain the optimal
sampler. In particular, we show that there exists a sta-
tionary deterministic sampler that can achieve optimality
(Proposition 4). We also show that the optimal sampler
has a threshold property (Proposition 5), that helps in
reducing the complexity of the relative value iteration
(RVI) algorithm (by reducing the computations required
for some system states). This results in the RVI-RC
sampler in Algorithm 1.

o Finally, in Section V, we devise a low-complexity
threshold-type sampler via an approximate analysis of
Bellman’s equation whose solution is the RVI-RC sam-
pler. In addition, for the special case of a linear age-
penalty function, this threshold sampler is further simpli-
fied to the water-filling solution. The numerical results in
Figs. 5-10 indicate that, when the scheduler is fixed to the
MAPF, the performance of these approximated samplers is

almost the same as that of the RVI-RC sampler.

II. RELATED WORKS

Early studies have characterized the age in many interesting
variants of queueing models, such as First-Come, First-Served
(FCFS) [5], [8], [20], [21], Last-Come, First-Served (LCFS)



with and without preemption [6], [22], and the queueing model
with packet management [7], [23]. The update packets in these
studies arrive at the queue randomly according to a Poisson
process. The work in [9]-[12] showed that Last-Generated,
First-Served (LGFS)-type policies are optimal or near-optimal
for minimizing a large class of age metrics in single flow
multi-server and multi-hop networks.

Another line of research has considered the ‘“generate-at-
will” model [13]-[16], in which the generation times (sam-
pling times) of the update packets are controllable. The work
in [15], [16] motivated the usage of nonlinear age functions
from various real-time applications and designed sampling
policies for optimizing nonlinear age functions in single source
systems. Our study here extends the work in [15], [16] to a
multi-source system. In this system, only one packet can be
sent through the channel at a time. Therefore, a decision maker
does not only consist of a sampler, but also a scheduler, which
makes the problem even more challenging.

The scheduling problem for multi-source networks with
different scenarios was considered in [24]-[37]. In [25], the au-
thors found that the scheduling problem for minimizing the age
in wireless networks under physical interference constraints
is NP-hard. Optimal scheduling for age minimization in a
broadcast network was studied in [26]-[30], where a single
source can be scheduled at a time. In addition, it was found
that a maximum age first (MAF) service discipline is useful for
reducing the age in various multi-source systems with different
service time distributions in [26]-[28], [31], [32]. In contrast
to our study, the generation of the update packets in [25]-[32]
is uncontrollable and they arrive randomly at the transmitter.
Age analysis of the status updates over a multiaccess channel
was considered in [33]. The studies in [34]-[37] considered the
age optimization problem in a wireless network with general
interference constraints and channel uncertainty. Our result in
Corollary 9 suggests that if the packet transmission time is
fixed as in time-slotted systems [25]-[31], [33]-[37], then it
is optimal to sample as soon as the channel becomes available.

However, this is not necessarily true otherwise.

III. MODEL AND FORMULATION
A. Notations

We use N7 to represent the set of non-negative integers, R™
is the set of non-negative real numbers, R is the set of real
numbers, and R is the set of n-dimensional real Euclidean
space. We use ¢~ to denote the time instant just before ¢. Let
y7n) and y = (Y1, 92, . -

x = (z1, 29, ... ,Yn) be two vectors

in R™, then we denote x <y if x; <y; fori =1,2,...,n.
Also, we use z[;) to denote the i-th largest component of vector

X.

B. System Model

We consider a status update system with m sources as
shown in Fig. 1, where each source observes a time-varying
process. An update packet is generated from a source and is
then sent over an error-free delay channel to the destination,
where only one packet can be sent at a time. A decision
maker controls the transmission order of the sources and the
generation times of the update packets for each source. This
is known as the “generate-at-will” model [13]-[15] (i.e., the
update packets can be generated at any time).

We use S; to denote the generation time of the i-th generated
packet from all sources, called packet ¢. Moreover, we use r;
to represent the source index from which packet 7 is generated.
The channel is modeled as an FCFS queue with random i.i.d.
service time Y;, where Y; represents the service time of packet
i, Y; € Y, and Y C RT is a finite and bounded set. We
also assume that 0 < E[Y;] < oo for all i. We suppose
that the decision maker knows the idle/busy state of the
server through acknowledgments (ACKs) from the destination
with zero delay. If an update packet is generated while the
server is busy, this packet needs to wait in the queue until
its transmission opportunity, and becomes stale while waiting.
Hence, there is no loss of optimality to avoid generating an
update packet during the busy periods. As a result, a packet
is served immediately once it is generated. Let D; denote
the delivery time of packet i, where D; = S; + Y;. After
the delivery of packet i at time D,, the decision maker may
insert a waiting time Z; before generating a new packet (hence,
Siv1 = D;+Z;)', where Z; € Z, and Z C R is a finite and
bounded set?.

At any time ¢, the most recently delivered packet from

source [ is generated at time
Ul(t) = max{Si = Z,DZ S t}. (1)

Age of information, or simply the age, for source [ is defined
as [2]-[5]
Ay(t) =t = Ui(?). 2

As shown in Fig. 2, the age increases linearly with ¢ but is

reset to a smaller value with the delivery of a fresher packet.

'We suppose that Dy = 0. Thus, we have S1 = Zo.
2We suppose that we always have 0 € Z.
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Figure 2: The age A;(t) of source I, where we suppose that
the first and third packets are generated from source I, i.e.,
r =Ty = l.

We suppose that the age A;(t) is right-continuous. The age
process for source [ is given by {A;(t),¢ > 0}. We suppose
that the initial age values A;(0~) for all [ are known to the
system. For notation simplicity, we use a;; to denote the age
Ai(D;)?

For each source [, we consider an age-penalty function
g(A(t)) of the age A;(t). The function g : [0,00) — R

is non-decreasing and is not necessarily convex or contin-
a+w

value of source [ at time D;, i.e., a;; =

uous. We suppose that E[| [* (t)dr|] < oo whenever
r < oo. It was recently shown in [16] that, under certain
conditions, information freshness metrics expressed in terms
of auto-correlation functions, the estimation error of signal
values, and mutual information, are monotonic functions of
the age. Moreover, the age-penalty function g(-) can be used
to represent the level of dissatisfaction of data staleness in
different applications based on their demands. For instance, a
stair-shape function g(x) = |z| can be used to characterize
the dissatisfaction for data staleness when the information
of interest is checked periodically, an exponential function
g(z) = e
applications in which the demand for updating data increases

can be utilized in online learning and control

quickly with age, and an indicator function g(x) = 1(x > q)
can be used to indicate the dissatisfaction of the violation of

an age limit q.

C. Decision Policies

A decision policy, denoted by d, controls the following: i)
the scheduler, denoted by 7, that determines the source to be
). i)
the sampler, denoted by f, that determines the packet genera-
A
£ (81, 5,..

served at each transmission opportunity 7 = (71,7, ..

tion times f .), or equivalently, the sequence of

3Since the age process is right-continuous, if packet i is delivered from
source I, then A;(D;) is the age value of source [ just after the delivery time
D;.

waiting times f = (Zo, Z1,...). Hence, d = (7, f) implies
that a decision policy d employs the scheduler m and the
sampler f. Let D denote the set of causal decision policies
in which decisions are made based on the history and current
information of the system. Observe that D consists of II and
F, where II and F are the sets of causal schedulers and
samplers, respectively.

After each delivery, the decision maker chooses the source
to be served, and imposes a waiting time before the gener-
ation of the new packet. Next, we present our optimization

problems.

D. Optimization Problem

We define two metrics to assess the long term age perfor-
mance over our status update system in (3) and (4). Consider
the time interval [0, D,,]. For any decision policy d = (m, f),
we define the total-average age-penalty at delivery times (Ta-
APD) as
g (A(D

Agen(m, f) = hmsup E lz )

n—oo 1=1 i=1

and the total-average age-penalty per unit time (Ta-AP) as

[Zl 1 fO dt:|

, f) = limsup ]E[D ]

n—oo

Aavg(7T €]

In this paper, we aim to minimize both the Ta-APD and the
Ta-AP separately. In other words, we seek a decision policy
d = (m, f) that solves the following optimization problems:

Aavg—D—opt £ werl'r[ufneFAdvg D( f)7 %)
and
Apvgopt = Werlg[11fn€}_Aan(7T ), (6)

where Ayygp-opt and Ayyg.op are the optimum objective values
of Problems (5) and (6), respectively. Due to the large decision
policy space, the optimization problem is quite challenging.
In particular, we need to seek the optimal decision policy
that controls both the scheduler and sampler to minimize the
Ta-APD and the Ta-AP. In the next section, we discuss our

approach to tackle these optimization problems.

IV. OPTIMAL DECISION POLICY

We first show that our optimization problems in (5) and (6)
have an important separation principle: Given the generation
times of the update packets, the Maximum Age First (MAF)
scheduler provides the best age performance compared to any

other scheduler. What remains to be addressed is the question



of finding the best sampler that solves Problems (5) and (6),
given that the scheduler is fixed to the MAF. Next, we present

our approach to solve our optimization problems in detail.

A. Optimal Scheduler
We start by defining the MAF scheduler as follows:
Definition 1 ( [26]-[28], [31], [32]). Maximum Age First

scheduler: In this scheduler, the source with the maximum age

is served first among all sources. Ties are broken arbitrarily.

For simplicity, let myiap represent the MAF scheduler. The
age performance of myap scheduler is characterized in the

following proposition:

Proposition 1. For all f € F

Aavg—D(TrMAFv f) = frnelll'll Aavg—D(7T7 f)a @)
Aavg(7TMAF7 f) = frnellr'll Aavg(ﬂ—y f) (8)

That is, the MAF scheduler minimizes both the Ta-APD and
the Ta-AP in (3) and (4) among all schedulers in 11.

Proof. One of the key ideas of the proof is as follows:
Given any sampler, that controls the generation times of the
update packets, we only control from which source a packet
is generated. We couple the policies such that the packet
delivery times are fixed under all decision policies. In the MAF
scheduler, a source with maximum age becomes the source
with minimum age among the m sources after each delivery.
Under any arbitrary scheduler, a packet can be generated from
any source, which is not necessarily the one with the maximum
age, and the chosen source becomes the one with minimum
age among the m sources after the delivery. Since the age-
penalty function, g(-), is non-decreasing, the MAF scheduler
provides a better age performance compared to any other
scheduler. For details, see Appendix A. O

Proposition 1 is proven by using a sample-path proof
technique that was recently developed in [32]. The difference
is that the authors in [32] proved the results for symmetrical
packet generation and arrival processes, while we consider
here that the packet generation times are controllable. We
found that the same proof technique applies to both cases.
Observe that, Proposition 1 holds when all sources are equally
prioritized. However, for the sources with different priorities
(i.e. different age-penalty functions), this result does not hold
anymore. This is because the order of the age-penalty values

of various sources may change with time.

Proposition 1 helps us conclude the separation principle that
the optimal sampler can be optimized separately, given that the
scheduling policy is fixed to the MAF scheduler. Hence, the
optimization problems (5) and (6) reduce to the following:

Aavg—D—opt £ ?g}}_ Aavg—D (WMAFy f)a )
Aavg—c'pt £ ?g}}_ Aavg(WMAF? f) (10

By fixing the scheduling policy to the MAF scheduler, the
evolution of the age processes of the sources is as follows:
The sampler may impose a waiting time Z; before generating
packet ¢ 4+ 1 at time S;11 = D; + Z; from the source with
the maximum age at time ¢ = D,. Packet ¢ + 1 is delivered
at time D;11 = S;+1 + Y;+1 and the age of the source with
maximum age drops to the minimum age with the value of
Y11, while the age processes of other sources increase linearly
with time without change. This operation is repeated with time
and the age processes evolve accordingly. An example of age
processes evolution is shown in Fig. 3. Next, we seek the
optimal sampler for Problems (9) and (10).

B. Optimal Sampler for Problem (9)

Now, we show that the MAF scheduler and the zero-wait
sampler are jointly optimal for minimizing the Ta-APD as

follows:

Theorem 2. The MAF scheduler and the zero-wait sampler

form an optimal solution for Problem (5).

Proof. We prove Theorem 2 by proving that the zero-wait
sampler is optimal for Problem (9). In particular, we show that
the Ta-APD is an increasing function of the packets waiting

times Z;’s. For details, see Appendix B. O

Remark 1. The results in Proposition 1 and Theorem 2 hold
even if Y and Z are unbounded and uncountable sets. Indeed,
the finiteness assumption of Y and Z is only needed for the

utilization of the DP technique in the next subsection.

C. Optimal Sampler for Problem (10)

Although the zero-wait sampler is the optimal sampler
for minimizing the Ta-APD, it is not clear whether it also
minimizes the Ta-AP. This is because the latter metric may not
be a non-decreasing function of the waiting times as we will
see later, which makes Problem (10) more challenging. Next,
we derive the Ta-AP when the MAF scheduler is employed and

reformulate Problem (10) as a semi-Markov decision problem.
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Figure 3: The age processes evolution of the MAF scheduler in a two-sources information update system. Source 2 has a
higher initial age than Source 1. Thus, Source 2 starts service and Packet 1 is generated from Source 2, which is delivered at
time D;. Then, Source 1 is served and Packet 2 is generated from Source 1, which is delivered at time D,. The same
operation is repeated over time.

1) Reformulation of Problem (10): We start by analyzing
the Ta-AP when the scheduling policy is fixed to the MAF
scheduler. We decompose the area under each curve g(A(¢))
into a sum of disjoint geometric parts. Observing Fig. 3 4, this
area in the time interval [0, D,,], where D,, = Z::Ol Zi+Yiq1,
can be seen as the concatenation of the areas (Q;;, 0 < i <
n — 1. Thus, we have

D,
/0
where

Diy1 D;i+Z;+Yit1
u= [ gy~ | g(AiD)dr. (12)

n—1

g(Au(t))dt = Qu, (11)
1=0

For t € [D;, D;11), we have

Al(t) :t—Ul(t) =t— (Di—ali), (13)

where (D; — ay;) represents the generation time of the last de-
livered packet from source [ before time D; ;. By performing

a change of variable in (12), we get

aii+Z;i+Yit
Qi = / g(7)dr. (14)
ag;
Hence, the Ta-AP can be rewritten as
-1 i+Zi+Y;
SRS [ ()
lim sup (15)

n—oo

Z?:_ol E[Z; +Yit1]
Using this, the optimal sampling problem for minimizing the
Ta-AP, given that the scheduling policy is fixed to the MAF

4Observe that a special age-penalty function is depicted in Fig. 3, where
we choose g(z) = z to simplify the illustration.

scheduler, can be cast as

-1 it2Z;+Y;
L YR, [T g(rydr
Agvg-opt = min lim sup — .
fer > ico E[Zi + Yiy]

n—oo

(16)
Since |f;llj+zi+y”1 g(r)dr| < o forall Z; € ZandY; € Y,
and E[Y;] > 0 for all 4, Agvgopt is bounded. Note that
Problem (16) is hard to solve in the current form. Therefore,
we reformulate it. We consider the following optimization

problem with a parameter 3 > 0:

1 n—1 m ayi+Zi+Yiq
o(s) é?gnlimsupf ZE Z/ g(T)dr—
a

n—oo N L

i=0  Li=1 a7
B(Z; + Yit1)

)

where © () is the optimal value of (17).

Lemma 3. The following assertions are true:
<

(. Aavg-opz‘ = B if and only lf@(ﬂ) §0
(ii). IfO(B) = 0, then the optimal sampling policies that solve
(16) and (17) are identical.

Proof. The proof of Lemma 3 is similar to the proof of [38,
Lemma 2]. The difference is that a regenerative assumption
of the inter-sampling times is used to prove the result in [38];
instead, we use the boundedness of the inter-sampling times
to prove the result. For the sake of completeness, we modify

the proof accordingly and provide it in Appendix C. O

As a result of Lemma 3, the solution to (16) can be obtained
by solving (17) and seeking a § = Aavg_opt > 0 such that

©(Aavg-opt) = 0. Lemma 3 helps us to utilize the DP technique

to obtain the optimal sampler. Note that without Lemma 3, it



would be quite difficult to use the DP technique to solve (16)
optimally. Next, we illustrate our solution approach to Problem
(17) in detail.

2) The solution of Problem (17): Following the method-
ology proposed in [39], when § = Aavg_opt, Problem (17) is
equivalent to an average cost per stage problem. According
to [39], we describe the components of this problem in detail

below.

o States: At stage’ 4, the system state is specified by
(18)

where ayj; is the I-th largest age of the sources at

stage 4, i.e., it is the [-th largest component of the

vector (ay;, .- ., ami). We use S to denote the state-space
including all possible states. Notice that S is finite and
bounded because Z and ) are finite and bounded.

« Control action: At stage 4, the action that is taken by
the sampler is Z; € Z.

« Random disturbance: In our model, the random distur-
bance occurring at stage ¢ is Y; 11, which is independent
of the system state and the control action.

« Transition probabilities: If the control Z; = z is applied
at stage ¢ and the service time of packet i+11is Y;1; = v,
then the evolution of the system state from s(7) to s(i+1)
is as follows:

Am)i+1 = Y, (19)

a[l]i+1 :a[H_l]i—l—z—Fy, l:1,7m—1

We let Psy/(2) denote the transition probabilities

Pse (2)=P(s(i+1)=5"|s(i)=s, Z;=2), s,s' €S. (20)

When s = (a[l],...,

law of the transition probability is given by

apm)) and s = (agy); - - -, af,,), the

P(Yi41 =y) if a,; =y and
Pss(2) = ail] =ap)+z+y for l#m;

0 else.
21

e Cost Function: Each time the system is in stage ¢ and
control Z; is applied, we incur a cost

C(s(i), Zi, Vi) Z /

Aavg-opt (Zz =+ )/i+1 ) .

1i+Zi+Yiq
g(m)dr—

(22)

To simplify notation, we use the expected cost

SFrom henceforward, we assume that the duration of stage i is [D;, D;y1).

C(s(i), Z;) as the cost per stage, i.e.,

C(S(i), Zi) = IEYq',+1 [C(S(Z)v Z;, YH—IH ) (23)

where Ky, , is the expectation with respect to Y1,
which is independent of s(7) and Z;. It is important to
note that there exists ¢ € R™ such that |C(s(i), Z;)| < ¢
for all s(i) € S and Z; € Z. This is because Z, ), S,
and A,yg.ope are bounded.

In general, the average cost per stage under a sampling policy

f € F is given by

n—1
1
limsup —E C(s(1), Z; 24
im sup — ; (s(7), Zi) (24)

We say that a sampling policy f € F is average-optimal if
it minimizes the average cost per stage in (24). Our objective
is to find the average-optimal sampling policy. A policy f is
called a stationary deterministic policy if Z; = ¢(s(¢)) for all
1=0,1,...,
In the next proposition, we show that there is a stationary

where ¢ : R™t — Z is a deterministic function.

deterministic policy that is average-optimal.

Proposition 4. There exist a scalar A and a function h that

) o (25

where ) is the optimal average cost per stage that is indepen-
dent of the initial state s(0) and satisfies

satisfy the following Bellman’s equation:

S,z +ZIF’SS

s’eS

A+ h(s) = mln (

A= lim(1—a)J

a—1

+(s),Vs € S, (26)

and h(s) is the relative cost function that, for any state o,
satisfies

h(s) = lim (Ju(s) — Ja

a—1

(0)),Vs € S, 27)

where J,(s) is the optimal total expected a-discounted cost

function, which is defined by

,8(0) =s €S,
(28)

where 0 < a < 1 is the discount factor. Furthermore,

fEF n—oo

Jo(s) = minlimsup E lz a'C(s(i

there exists a stationary deterministic policy that attains the

minimum in (25) for each s € S and is average-optimal.

Proof. According to [39, Proposition 4.2.1 and Proposition
4.2.6], it is enough to show that for every two states s and s’,
there exists a stationary deterministic policy f such that for

some k, we have P[s(k) = s'|s(0) =s, f] > 0, i.e., we have



a communicating Markov decision process (MDP). Observe
that the proof idea of this proposition is different from those
used in literature such as [28], [30], where they have used the
discounted cost problem to show their results and then connect
it to the average cost problem. For details, see Appendix D.

O

We can deduce from Proposition 4 that the optimal waiting
time is a fixed function of the state s. Next, we use the RVI
algorithm to obtain the optimal sampler for minimizing the Ta-
AP, and then exploit the structure of our problem to reduce its
complexity.

Optimal Sampler Structure: The RVI algorithm [40,
Section 9.5.3], [41, Page 171] can be used to solve Bellman’s
equation (25). Starting with an arbitrary state o, a single
iteration for the RVI algorithm is given as follows:

Qn+1(s,2) = C(s,2) + Z Pssr(2)hn(s),
s'€S

Jn+1(s) = ggg(Qn+1(sv Z)),
hnt1(8) = Jny1(8) — Jn1(0),

where Q,411(s,2), Jn(s), and h,(s) denote the state action

(29)

value function, value function, and relative value function for
iteration n, respectively. In the beginning, we set Jy(s) = 0
for all s € S, and then we repeat the iteration of the RVI
algorithm as described before®.

The complexity of the RVI algorithm is high due to many
sources (i.e., the curse of dimensionality [42]). Thus, we need
to simplify the RVI algorithm. To that end, we show that the
optimal sampler has a threshold property that can reduce the
complexity of the RVI algorithm. Define z as the optimal
waiting time for state s, and Y as a random variable that
has the same distribution as Y;. The threshold property in the

optimal sampler is manifested in the following proposition:

Proposition 5. If the state s = (apy,...,apn,)) satisfies
Ey [Z?;l glap + Y)] > Aavg_op,, then we have zt = 0.

Proof. See Appendix E. [

We can exploit the threshold test in Proposition 5 to
reduce the complexity of the RVI algorithm as follows:
The optimal waiting time for any state s that satisfies
Ey [>% g(ap +Y)] > Awgopt is zero. Thus, we need to

6According to [40], [41], a sufficient condition for the convergence of
the RVI algorithm is the aperiodicity of the transition matrices of stationary
deterministic optimal policies. In our case, these transition matrices depend
on the service times. This condition can always be achieved by applying the
aperiodicity transformation as explained in [40, Section 8.5.4], which is a
simple transformation. However, This is not always necessary to be done.

Algorithm 1: RVI algorithm with reduced complexity.

1 given [ = 0, sufficiently large u, tolerance €; > 0,
tolerance €5 > 0;
2 while ©v — [ > ¢; do

3| =1
4 J(s) =0, h(s) = 0, hise(s) = 10ey for all states
seS;

5 while maxges |h(s) — g (s)| > €2 do

6 for each s € S do

7 it By > g(ay +Y)] > 3 then
8 \ 2r =0;

9 else

10 z} = argmin, . ;C(s, z) +

Syes Pes ()(8));

1 end

2 J(s) = C(5,22) + Yy Pow (21)A(s):
13 end

14 hlast(s) - h(S),

15 h(s) = J(s) — J(o);

16 end

17 if J(o) > 0 then

18 | u=p;

19 else

20 | 1=5
21 end
22 end

solve (29) only for the states that fail this threshold test. As a
result, we reduce the number of computations required along
the system state space, which reduces the complexity of the
RVI algorithm. Note that Aavg_opt can be obtained using the
bisection method or any other one-dimensional search method.
Combining this with the result of Proposition 5 and the RVI
algorithm, we propose the “RVI with reduced complexity
(RVI-RC) sampler” in Algorithm 1. In the outer layer of
Algorithm 1, bisection is employed to obtain Aavg_opl, where
B converges t0 Agyg-opt-

Note that, according to [40], [41], J(o) in Algorithm 1
converges to the optimal average cost per stage. Moreover,
the value of w in Algorithm 1 can be initialized to the value
of the Ta-AP of the zero-wait sampler (as the Ta-AP of the
zero-wait sampler provides an upper bound on the optimal
Ta-AP), which can be easily calculated.

The RVI algorithm and Whittle’s methodology have been
used in literature to obtain the optimal age scheduler in time-
slotted multi-source networks (e.g., [28], [30]). Since they
considered a time-slotted system, their model belongs to the
class of Markov decision problems. In contrast, we consider
random discrete transmission times that can be more than one

time slot. Thus, our model belongs to the class of semi-Markov



decision problems, and hence is different from those in [28],
[30].
In conclusion, an optimal solution for Problem (6) is man-

ifested in the following theorem:

Theorem 6. The MAF scheduler and the RVI-RC sampler

form an optimal solution for Problem (6).

Proof. The theorem follows directly from Proposition 1,

Proposition 4, and Proposition 5. O

3) Special Case of g(x) = x: Now we consider the case
of g(x) = x and obtain some useful insights. Define Ay =
>~ apy as the sum of the age values of state s. The threshold
test in Proposition 5 is simplified as follows:

Proposition 7. If the state s = (a1, . . ., ajy)) satisfies Ay >
(Auvg-opr — ME[Y]), then we have z% = 0.

Proof. The proposition follows directly by substituting g(x) =
z into the threshold test in Proposition 5. O

Hence, the only change in Algorithm 1 is to replace the
threshold test in Step 7 by Ay > (Apgop — ME[Y]). Let
yme = inf{y € YV : P[Y = y] > 0}, i.e., yinr is the smallest
possible transmission time in ). As a result of Proposition 7,
we obtain the following sufficient condition for the optimality
of the zero-wait sampler for minimizing the Ta-AP when
g(x) =
Theorem 8. If

(m — 1DE[Y]? + E[Y?]

in 2 ) 30
Yinf (m + DE[Y] 30)
then the zero-wait sampler is optimal for Problem (17).

Proof. See Appendix F O

From Theorem 8§, it immediately follows that:

Corollary 9. If the transmission times are positive and con-
stant (i.e., Y; = const > 0 for all i), then the zero-wait

sampler is optimal for Problem (17).

Proof. The corollary follows directly from Theorem 8 by
showing that (30) always holds in this case. O

Corollary 9 suggests that the designed schedulers in [25]-
[30], [33]-[37] are indeed optimal in time-slotted systems.
However, if there is a variation in the transmission times, these
schedulers alone may not be optimal anymore, and we need

to optimize the sampling times as well.

V. LOW-COMPLEXITY SAMPLER DESIGN VIA BELLMAN’S
EQUATION APPROXIMATION

In this section, we try to obtain low-complexity samplers
via an approximate analysis for Bellman’s equation in (25).
The obtained low-complexity samplers in this section will be
shown to have near optimal age performance in our numerical
results in Section VI. For a given state s, we denote the next
state given z and y by s'(z,y). We can observe that the transi-
tion probability in (21) depends only on the distribution of the
packet service time which is independent of the system state
and the control action. Hence, the second term in Bellman’s

equation in (25) can be rewritten as

D P (2)hls/(z,y) = D P(Y = y)h(s'(z,9)).

s’'eS yey

€2y

As a result, Bellman’s equation in (25) can be rewritten as

A=min[C(s,2)+ ST P(Y = y)(h(s(2.9)) —h(s)) | . (32)
yeY

Although h(s) is discrete, we can interpolate the value of

h(s) between the discrete values so that it is differentiable

by following the same approach in [43] and [44]. Let s =

(apy, ..., apm)), then using the first order Taylor approxima-
tion around a state v = (aﬁ], ol a[”m]) (some fixed state), we
get

h(s) = h(v) + > (ag — afy) —-—

=1

(33)

Again, we use the first order Taylor approximation around the

state v, together with the state evolution in (19), to get

- v Oh(v)
h(s'(2,y)) =h(v) + (y — a’[m])aTM
. 34
1(a s )8h(v) (34)
=R P By
From (33) and (34), we get
Oh(v)
h(s'(z,y)) — h(s) =(y — a[m])é)TM+
m— 35
1(a s )8h(v) (35)
=1 s . / dayy
This implies that
SR = y)(h(s' () — h(s) ~
yeY
Oh(v) i Oh(v)
(Y] = apm) Dafm) ' 1=1 (G = g + 2+ BV dayy



Using (32) with (36), we can get the following approximated

Bellman’s equation:

. Oh(v)
A A~ min <C(s,z)+(E[Y}am) +
z (] 8a[ ] (37)
m—1
oh
an41) — aq + 2z 4+ E[Y]) a;[:?)
l=1

By following the same steps as in Appendix E to get the
optimal z that minimizes the objective function in (37), we
get the following condition: The optimal z, for a given state

s, must satisfy

Ey Zg(am +t+Y) avg opt Z a[l] > 0 (38)
Li=1 | =1
for all ¢ > z, and
Ey Zg(am +t+Y) avg opt Z a[l] < 0 (39)
Li=1 | =1

for all ¢ < z. The smallest z that satisfies (38)-(39) is

2 inf{t >0:Ey [Zg(a[l] +t+Y)
=1

m—1
. Oh(v)
Aavg-opl - § 8a[l] } i

=1

(40)

where Z7 is the optimal solution of the approximated Bell-
man’s equation for state s. Note that the term 377" da};([vl) i

constant. Hence, (40) can be rewritten as

m

Z g(am +t+ Y)

ﬁ;:inf{t>OZEy
=1

T}. 1)

This simple threshold sampler can approximate the optimal
sampler for the original Bellman’s equation in (25). The
optimal threshold (7") in (41) can be obtained using a golden-
section method [45]. Moreover, for a given state s and the
threshold (7"), (41) can be solved using the bisection method

or any other one-dimensional search method.

Low-complexity Water-filling Sampler: Consider the case
that g(z) = x, the solution in (41) can be further simplified.
Substituting g(x) = x into (40), where the equality holds in
this case, we get the following condition: The optimal z in
this case, for a given state s, must satisfy

_ v
Ag — Apgopt + mz + mE[Y] ) =0,

(42)

where A, is the sum of the age values of state s. Rearranging

40 ' :
— (RAND, Zero-wait)
35p ----(MAF, Constant-wait) [
- — (MAF, Zero-wait)
30 ..
~ 251 Ny
o S
<20 s
151 N
10t <3
0 : ' ' '
0 0.2 0.4 0.6 0.8 1

p

Figure 4: Ta-APD versus the probability p for an update
system with m = 3 sources, where g(z) = x.

(42), we get

X +
Aavg-opt — mE[Y] - n;il %(V) A
2: _ g-op - =1 0 U E‘; . (43)

m— 1 Bh(v)
dayy)

-2

m

By observing that the term ).~

is constant, (43) can
be rewritten as

(44)

The solution in (44) is in the form of the water-filling solution
as we compare a fixed threshold (7") with the average age of
a state s. The solution in (44) suggests that this simple water-
filling sampler can approximate the optimal solution of the
original Bellman’s equation in (25) when g(z) = z. Similar
to the general case, the optimal threshold (7') in (44) can
be obtained using a golden-section method. We evaluate the

performance of the approximated samplers in the next section.

VI. NUMERICAL RESULTS

We present numerical results to evaluate our proposed
solutions. We consider an information update system with
m = 3 sources. We use “RAND” to represent a random
scheduler, where sources are chosen to be served with equal
probability. By “Constant-wait”, we refer to the sampler that
imposes a constant waiting time after each delivery with
Z; = 0.3E[Y], Vi. Moreover, we use “Threshold” and “Water-
filling” to denote the proposed samplers in (41) and (44),
respectively.

We set the transmission times to be either 0 or 3 with
probability p and 1 — p, respectively. Fig. 4 illustrates the
Ta-APD versus the probability p, where we have g(z) = z.

As we can observe, with fixing the sampler to the zero-wait
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Figure 5: Ta-AP versus the probability p for an update
system with m = 3 sources, where g(z) = %1% — 1.

341
3.3
3.21
D_3.1 F
<
© 3f
= — (RAND, Zero-wait)
291 |—(MAF, Constant-wait)
ogl |- (MAF, Zero-waiting)
— (MAF, RVI-RC)
2.71 |- - (MAF, Threshold)
26 ! ! ! ! !
0.4 0.5 0.6 0.7 0.8 0.9

p

Figure 6: Ta-AP versus the probability p for an update
system with m = 3 sources, where g(z) = z°1.

one, the MAF scheduler provides a lower Ta-APD than that
of the RAND scheduler. Moreover, with fixing the scheduling
policy to the MAF scheduler, the zero-wait sampler provides a
lower Ta-APD compared to the constant-wait sampler. These
observations agree with Theorem 2. However, as we will see

later, zero-wait sampler does not always minimize the Ta-AP.

We now evaluate the performance of our proposed solutions
for minimizing the Ta-AP. We set the transmission times to be
either 0 or 3 with probability p and 1 — p, respectively. Figs.
5, 6, and 7 illustrate the Ta-AP versus the probability p, where
we set the age-penalty function g(z) to be €% —1, 291, and
x, respectively. The range of the probability p is [0.4,0.99]
in Figs. 5, 6, and 7. When p = 1, E[Y] = E[Y?] = 0 and
hence the Ta-AP of the zero-wait sampler (for any scheduler)
at p = 1 is undefined. Therefore, the point p = 1 is not
plotted in Figs. 5, 6, and 7. For the zero-wait sampler, we
find that the MAF scheduler provides a lower Ta-AP than

1ap S
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Figure 7: Ta-AP versus the probability p for an update
system with m = 3 sources, where g(z) = x.
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Figure 8: Ta-AP versus the maximum service time Yp,x for
an update system with m = 3 sources, where
g(z) = ell* — 1.

that of the RAND scheduler. This agrees with Proposition 1.
Moreover, when the scheduling policy is fixed to the MAF
scheduler, we find that the Ta-AP resulting from the RVI-
RC sampler is lower than those resulting from the zero-
wait sampler and the constant-wait sampler. This observation
suggests the following: i) The zero-wait sampler does not
necessarily minimize the Ta-AP, ii) optimizing the scheduling
policy only is not enough to minimize the Ta-AP, but we have
to optimize both the scheduling policy and the sampling policy
together to minimize the Ta-AP. In addition, as we can observe,
the Ta-AP resulting from the threshold sampler in Figs. 5 and
6, and the water-filling sampler in Fig. 7 almost coincides with
the Ta-AP resulting from the RVI-RC sampler.

We then set the transmission times to be either 0 or

Yiax with probability 0.9 and 0.1, respectively. We vary the

maximum transmission time Yj,,x and plot the Ta-AP in
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Figure 10: Ta-AP versus the maximum service time Yi,.x for
an update system with m = 3 sources, where g(z) = x.

Figs. 8, 9, and 10, where g(z) is set to be -1 — 1, 201,
and x, respectively. The scheduling policy is fixed to the
MAF scheduler in all plotted curves. We can observe in all
figures that the Ta-AP resulting from the RVI-RC sampler is
lower than those resulting from the zero-wait sampler and the
constant-wait sampler, and the gap between them increases as
the variability (variance) of the transmission times increases.
This suggests that when the transmission times have a big
variation, we have to optimize the scheduler and the sampler
together to minimize the Ta-AP. We also can observe that the
Ta-AP of the threshold sampler in Figs. 8 and 9, and the water-
filling sampler in Fig. 10 almost coincides with that of the
RVI-RC sampler.

Finally, we consider a larger scale update system with m =
10. We model the transmission time as a discrete Markov chain
with a probability mass function P[Y; = 1] = 0.9 and P[Y; =
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Figure 11: Ta-AP versus the parameter o of the transmission
time Markov chain for an update system with m = 10
sources, where g(z) = z.

30] = 0.1, and a transition matrix

©|q

8 fed 8
s ts 1-9-
g

1—o0

] . (45)

Fig. 11 illustrates the Ta-AP versus the transition matrix
parameter o, where g(x) = x. As we can observe, the (MAF,
water-filling) policy provides the lowest Ta-AP compared to
all plotted policies. Also, when o = 1, the transmission time
reduces to be a constant time. We can observe that, when
the scheduling policy is the MAF, the Ta-APs achieved by
the zero-wait and water-filling samplers are equal. This agrees

with Corollary 9.

VII. CONCLUSION

In this work, we studied the problem of finding the optimal
decision policy that controls the packet generation times and
transmission order of the sources to minimize the Ta-APD
and Ta-AP in a multi-source information update system. We
showed that the MAF scheduler and the zero-wait sampler
are jointly optimal for minimizing the Ta-APD. Moreover, we
showed that the MAF scheduler and the RVI-RC sampler,
which results from reducing the computation complexity of
the RVI algorithm, are jointly optimal for minimizing the Ta-
AP. Finally, we devised a low-complexity threshold sampler
via an approximate analysis of Bellman’s equation. This
threshold sampler is further simplified to a simple water-filling
sampler in the special case of linear age-penalty function.
The numerical results showed that the performance of these
approximated samplers is almost the same as that of the RVI-

RC sampler.



VIII. APPENDIX

APPENDIX A
PROOF OF PROPOSITION 1

We will need the following definitions: A set U C R” is
called upper if y € U whenever y > x and x € U.

Definition 2. Univariate Stochastic Ordering: [46] Let X
and Y be two random variables. Then, X is said to be
stochastically smaller than Y (denoted as X <, Y), if

P{X >z} <P{Y >z}, VzeR.

Definition 3. Multivariate Stochastic Ordering: [46] Let
X and Y be two random vectors. Then, X is said to be
stochastically smaller than Y (denoted as X <, Y), if

P{X e U} <P{Y €U}, for all upper sets U C R".

Definition 4. Stochastic Ordering of Stochastic Processes:
[46] Let {X(¢t),t € [0,00)} and {Y (t),t € [0,00)} be two
stochastic processes. Then, {X (t),t € [0,00)} is said to be
stochastically smaller than {Y (t),t € [0,00)} (denoted by
{X(t),t €]0,00)} <o {Y(¢t),t €[0,00)}), if, for all choices
of an integer n and t; < ty < ... <ty in [0,00), it holds that

(X(tl)a X(tQ)a s 7X(tn)) SSt(Y(tl)?Y(tQ)a tey Y(tn))v
(46)

where the multivariate stochastic ordering in (46) was defined
in Definition 3.

Now, we prove Proposition 1. Let the vector A, (t) =
(Apa(t), -+ Apny,«(t)) denote the system state at time ¢ of
the scheduler 7, where Ay (t) is the I-th largest age of the
sources at time ¢ under the scheduler 7. Let {A,(t),t > 0}
denote the state process of the scheduler 7. For notational
simplicity, let P represent the MAF scheduler. Throughout
the proof, we assume that A, (07) = Ap(0™) for all 7 and
the sampler is fixed to an arbitrarily chosen one. The key step
in the proof of Proposition 1 is the following lemma, where

we compare the scheduler P with any arbitrary scheduler 7.

Lemma 10. Suppose that A (07) = Ap(07) for all sched-

uler m and the sampler is fixed, then we have

{Ap(t),t >0} <4 {Ax(t),t >0} 47

We use a coupling and forward induction to prove Lemma
10. For any scheduler m, suppose that the stochastic pro-
cesses Ap(t) and A, (t) have the same stochastic laws as
Ap(t) and A, (t). The state processes Ap(t) and A (t) are

coupled such that the packet service times are equal under
both scheduling policies, i.e., Y;’s are the same under both
scheduling policies. Such a coupling is valid since the service
time distribution is fixed under all policies. Since the sampler
is fixed, such a coupling implies that the packet generation and
delivery times are the same under both schedulers. According
to Theorem 6.B.30 of [46], if we can show

P [&P(t) <AL(t),t>0] =1, 48)

then (47) is proven. To ease the notational burden, we will
omit the tildes on the coupled versions in this proof and
just use Ap(t) and A,(t). Next, we compare scheduler P
and scheduler m on a sample path and prove (47) using the

following lemma:

Lemma 11 (Inductive Comparison). Suppose that a packet
with generation time S is delivered under the scheduler P and
the scheduler  at the same time t. The system state of the
scheduler P is A p before the packet delivery, which becomes
AL after the packet delivery. The system state of the scheduler
7 is Ay before the packet delivery, which becomes Al after
the packet delivery. If

A[i],P < A[i],‘n’?i: 1)"'ama (49)

then

A{i]vp < A@‘],wi =1,...,m. (50)
Lemma 11 is proven by following the proof idea of [32,
Lemma 2]. For the sake of completeness, we provide proof of

Lemma 11 as follows:

Proof. Since only one source can be scheduled at a time and
the scheduler P is the MAF one, the packet with generation
time S must be generated from the source with maximum age
Ay, p, call it source [*. In other words, the age of source [* is
reduced from the maximum age Afj) p to the minimum age
Afm).p
remain unchanged. Hence,

= ¢ — S, and the age of the other (m — 1) sources

A{i],P = A[i+1]7p,i = 1,...,m— ].7
Alyp=1-5.

[m]

&1V

In the scheduler 7, this packet can be generated from any

source. Thus, for all cases of scheduler 7, it must hold that

Al Apsi)mri=1,...,m—1 (52)

i =



By combining (49), (51), and (52), we have

Aii]-,‘ﬂ' > A[H_l],ﬂ > A[H_l],p = Afi],P’i =1,...,m—1.
(53)
In addition, since the same packet is also delivered under the
scheduler 7, the source from which this packet is generated
under policy 7 will have the minimum age after the delivery,

i.e., we have

By this, (50) is proven. O

Proof of Lemma 10. Using the coupling between the system
state processes, and for any given sample path of the packet
service times, we consider two cases:

Case 1: When there is no packet delivery, the age of each
source grows linearly with a slope 1.

Case 2: When a packet is delivered, the ages of the sources
evolve according to Lemma 11.

By induction over time, we obtain

Ap,p(t) < Ap(t),i=1,...,m,t > 0. (55)

Hence, (48) follows which implies (47) by Theorem 6.B.30 of
[46]. This completes the proof. O

Proof of Proposition 1. Since the Ta-APD and Ta-AP for any
scheduling policy 7 are the expectation of non-decreasing
functional of the process {A(t),t > 0}, (47) implies (7)
and (8) using the properties of stochastic ordering [46]. This
completes the proof. O

APPENDIX B
PROOF OF THEOREM 2

The optimality of the MAF scheduler follows from Propo-
sition 1. Now, we need to show the optimality of the zero-wait
sampler. We need to show that the Ta-APD is an increasing
function of the packets waiting times Z;’s. Define Kj; as the
number of packets that have been transmitted since the last
received service by source [ before time D;. Also, let ; be
the index of the first delivered packet from source I.

For ¢ > ~, the last service that source [ has received before
time D, was at time D,_f,,. Since the age process increases

linearly with time when there is no packet delivery, we have

AZ(D;):Di_Di—Kli_F}/i—Klia i>’yl? (56)

where Y;_,, is the service time of packet i — Kj;. Note that
Y;_k,, is also the age value of source [ at time D,_g,,, i.e.,
Al(Dz’—K“) = Y;‘_Kh. Note that D; = Y; + Z;_1 + D;_1.

Repeating this, we can express (D; — D;_f,,) in terms of
Z;’s and Y;’s, and hence we get

Ky Ky

MDY= Yiw+ ) Zick, i>m. (57
k=0 k=1

For example, in Fig. 3, we have Ay(D; ) =Y, + Z1 + Ya.

For ¢ <, Ay(D; ) is simply the initial age value of source
[ (A;(0)) plus the length of the time interval [0, D;). Hence,
we have

Ay(Dy) = A(0) + Dj, i <y (58)

Again using D; = Y;+ Z;_1+ D;_; and the fact that Dy = 0,

we get
AD) =80+ Y Y+ D> Zr, i<y (59)
k=1 k=0
In Fig. 3, For example, we have A1(D7 ) = A1(0)+ Zp+ Yi.
Substituting (57) and (59) into (3), we get
1 m v 7
Aug(m, f) =limsup - E LZ; > 9 (Az(O) + I; Vit

i n p Ki; Ky
zzk> sy (z Vo zzm)
k=0 k=0 k=1

1=

(60)

Since the function g(-) is non-decreasing, (60) implies that
the Ta-APD is a non-decreasing function of the waiting times.
This completes the proof. O

APPENDIX C
PROOF OF LEMMA 3

Part (i) is proven in two steps:

Step 1: We will prove that Agg.op < B if and only if
O(B) < 0. If Aggopt < B, there exists a sampling policy
f=(Zo,Z1,...) € F that is feasible for (16) and (17), which

satisfies

Sy B[S [t g(rar ]

lim sup — <B. (6
n-roo Y120 ElZi + Y]
Hence,
AR g () = Bt Vo)
lim sup T <0.
n—oo n Zi:o E[ZZ‘ +Yi+1]
(62)

Since Z;’s and Y;’s are bounded and positive and E[Y;] > 0
for all 4, we have 0 < liminf, o = S0 E[Z; + Yiii] <
limsup,,_, ., 1 Z?;Ol E[Z; +Yit1] < q for some ¢ € RT. By



this, we get

n—l

lim sup — ZE

n—oo

m o ratditYin
Z/ g(1)dr—B(Z;+Yin)| <O0.
=17l
(63)

Therefore, O(3) <0

In the reverse direction, if ©(3) < 0, then there exists a
(Zo, Z1,...) € F that is feasible for (16)
and (17), which satisfies (63). Since we have O < liminf,
LS E[Zi+Yi4] < limsup,, ., + " >ico E[Zi+Yi] <
g, we can divide (63) by liminf, o + ?:o E[Z; + Yii1]
to get (62), which implies (61). Hence, Aa\,g,opt < 3. By this,
we have proven that Ayye.op < 3 if and only if ©(3) < 0.

sampling policy f =

Step 2: We need to prove that Aavg_opl < (B if and only
if ©(8) < 0. This statement can be proven by using the
arguments in Step 1, in which “<” should be replaced by “<”.
Finally, from the statement of Step 1, it immediately follows
that Aavg,opt > [ if and only if ©(5) > 0. This completes part
@).

Part(ii): We first show that each optimal solution to (16)
is an optimal solution to (17). By the claim of part (i),
O(B) = 0 is equivalent to Aygop = (3. Suppose that policy
f=(Zo,24,..
Aavg(myar. f)
of (61)-(63), we can show that policy f satisfies

lim sup — ZE

n—oo N

.) € F is an optimal solution to (16). Then,
= Augopt = B. Applying this in the arguments

m aitZi+Yim
Z/ g(r)dr—B(Z;+Yia)| = 0.

=17l

(64)

This and ©(8) = 0 imply that policy f is an optimal solution
to (17).

Similarly, we can prove that each optimal solution to (17)

is an optimal solution to (16). By this, part (ii) is proven. [

APPENDIX D
PROOF OF PROPOSITION 4

According to [39, Proposition 4.2.1 and Proposition 4.2.6],
it is enough to show that for every two states s and s’, there
exists a stationary deterministic policy f such that for some
k, we have

P[s(k) = s's(0) =s, f] > 0 (65)

From the state evolution equation (19), we can observe that
any state in S can be represented in terms of the waiting and
service times. This implies (65). To clarify this, let us consider

a system with 3 sources. Assume that the elements of state s’

are as follows:

ap =y3 + 22 +y2 + 21+ y1,
ap = Y3 + 22 + Yo, (66)
/
[

a3 = Ys,

where y;’s and z;’s are any arbitrary elements in ) and Z,
respectively. Then, we will show that from any arbitrary state
s = (a[l],a[g], a[3]), a sequence of service and waiting times
can be followed to reach state s’. If we have Zy = z1, Y1 = y1,
Z1 = 721, Yo = Yo, Zo = 29, and Y3 = ys3, then according to
(19), we have in the first stage

an = apg) + 21 + Y1,

app = a) + 21 + 1, (67)
afz) = Y,
and in the second stage, we have
ape = apg) + 21 + Y2 + 21 + 1,
apj2 = Y2 + 21 + Y1, (68)
agj2 = Y2,
and in the third stage, we have
aps =ys + 22 +y2 + 21+ y1 = ajy),
ap3 = Y3 + 22 + Y2 = ajy; (69)

a[3]3 = Y3 = a’[3].
Hence, a stationary deterministic policy f can be designed to
reach state s’ from state s in 3 stages, if the aforementioned
sequence of service times occurs. This implies that

3

P[s(3) = s'Is(0) =, f] = [ P(Y; = 4:) > 0,

i=1

(70)

where we have used that Y;’s are i.i.d.” The previous argument
can be generalized to any number of sources. In particular, a

forward induction over m can be used to show the result,

where (65) trivially holds for m = 1, and the previous

argument can be used to show that (65) holds for any general

m. This completes the proof. O
APPENDIX E

PROOF OF PROPOSITION 5

We prove Proposition 5 into two steps:
Step 1: We first show that 2(s) is non-decreasing in s. To do

so, we show that J,,(s), defined in (28), is non-decreasing in

7We assume that all elements in ) have a strictly positive probability, where
the elements with zero probability can be removed without affecting the proof.



s, which together with (27) imply that h(s) is non-decreasing
in s.
Given an initial state s(0), the total expected discounted cost

under a sampling policy f € F is given by

n—1
Ja(s(0); f) = limsupE Z a'C(s(i), Zs) | , (71)
n—oo i=0

where 0 < o < 1 is the discount factor. The optimal total

expected a-discounted cost function is defined by

Jo(s) = min J, (s; (72)

S.
feF f). s €

A policy is said to be a-optimal if it minimizes the total
expected a-discounted cost. The discounted cost optimality

equation of J,(s) is discussed below.

Proposition 12. The optimal total expected a-discounted cost
Jo(8) satisfies

Jo(s) =minC(s, 2) + « Z Pss (2)Ju(s’).  (73)
zEZ
s’eS
Moreover, a stationary deterministic policy that attains the
minimum in equation (73) for each s € S will be an a-optimal

policy. Also, let Jyo(s) =0 for all s and any n > 0,

— 3 !/
Jant+1(s) = ];rélg C(s,2)+« Z Psgr (2)Jan(s’).  (74)
s’eS
Then, we have Jy n(s) = Jo(8) as n — oo for every s, and

Q.

Proof. Since we have bounded cost per stage, the proposition
follows directly from [39, Proposition 1.2.2 and Proposition
1.2.3], and [47]. O

Next, we use the optimality equation (73) and the value

iteration in (74) to prove that J,(s) is non-decreasing in s.

Lemma 13. The optimal total expected «-discounted cost

function J,(s) is non-decreasing in s.

Proof. We use induction on n in equation (74) to prove
Lemma 13. Obviously, the result holds for J, (s).

Now, assume that J,, ,(s) is non-decreasing in s. We need
to show that for any two states s; and s, with s; < so, we
have Jy n+1(81) < Ja,nt1(s2). First, we note that, since the
age-penalty function g(-) is non-decreasing, the expected cost

per stage C(s, z) is non-decreasing in s, i.e., we have
C(sl,z) < C(SQ,Z). (75)

From the state evolution equation (19) and the transition

probability equation (21), the second term of the right-hand

side (RHS) of (74) can be rewritten as

> Pew(2)Ja, =Y PY

s'eS yey

an(s'(z,9)),  (76)
where s/(z,y) is the next state from state s given the values
of z and y. Also, according to the state evolution equation
(19), if the next states of s; and so for given values of z
and y are s)(z,y) and sh(z,y), respectively, then we have
s1(z,y) < sh(z,y). This implies that

> B <D P(Y

yey yey

Jan (s5(2,9)),
(77

where we have used the induction assumption that J, ,(s)
is non-decreasing in s. Using (75), (77), and the fact that the

anslzy

minimum operator in (74) retains the non-decreasing property,

we conclude that

Ja,n+l(sl) S Ja,n+1(52)~ (78)

This completes the proof. O

Step 2: We use Step 1 to prove Proposition 5. From Step
1, we have that h(s) is non-decreasing in s. Similar to Step
1, this implies that the second term of the right-hand side
(RHS) of 25) O _gcsP
Moreover, from the state evolution (19), we can notice that, for

ss'(2)h(s")) is non-decreasing in s’.

any state s, the next state s’ is increasing in z. This argument
implies that the second term of the right-hand side (RHS) of
(25) Qg5 Pss/(2)h(s)) is increasing in z. Thus, the value
of z € Z that achieves the minimum value of this term is
zero. If, for a given state s, the value of z € Z that achieves
the minimum value of the cost function C(s, z) is zero, then
z = 0 solves the RHS of (25). In the sequel, we obtain the
condition on s under which z = 0 minimizes the cost function
C(s, 2).

Now, we focus on the cost function C(s,z). In order to
obtain the optimal z that minimizes this cost function, we
need to obtain the one-sided derivative of it. The one-sided
derivative of a function ¢ in the direction of w at z is given
by

0q(z;w) = lim (24 ew) — a(z) (79)
e—0t €
Let r(s,2,Y) = >~ 1f ”+Z+Y (7)dr. Since 7(s, z,Y) is

the sum of integration of a non- decreasmg function g(-), it

is easy to show that r(s, z,Y) is convex. According to [15,
Lemma 4], the function ¢(z) = Ey [r(s,z,Y)] is convex
as well. Hence, the one-sided derivative d¢(z;w) of ¢(z)

exists [48, p.709]. Moreover, since z — r(s, z,Y) is convex,



the function e — [r(s,z + ew,Y) — r(s,z,Y)]/e is non-
decreasing and bounded from above on (0, ] for some 6 > 0
[49, Proposition 1.1.2(i)]. Using the monotone convergence
theorem [50, Theorem 1.5.6], we can interchange the limit

and integral operators in dq(z;w) such that

1
5(](2’;&)) = 61ir£1+ EEY [T’(S, z + ew, Y) - T’(S, 2, Y)]
= Ey [hm {r(s,z+ew,Y) —r(s,z Y)}}
e—0+
m
—Ey |1 t+ Y)wly,
v t_lngg | HE+Y)wliosop +
1 t+ Y)wly,
tE?EJJ 1+ +>W{<m1
tliI?f Ey z_: a[l]+t+Y)wIL{w<o}] (80)

where 1 is the indicator function of event E. According to
[48, p.710] and the convexity of ¢(z), z
function C(s, z) if and only if

is optimal to the cost

0q(z;w) — Aavg_optw >0, YVw e R. (81)

As w in (81) is an arbitrary real number, considering w = 1,

(81) becomes

tll)gl+ Ey ;g(a[l] +t+ Y) - Aavg-opl > 0. (82)
Likewise, considering w = —1, (81) implies
33&»;¥WWH+Y>—&%MS& (83)

Since g(+) is non-decreasing, we get from (81)-(83) that z must

satisfy
Z NHt+Y)| = Apgon >0, if t > 2, (84)
Z DHEHY)| = Dpgop <0, ift <2 (85)

Subsequently, the smallest z that satisfies (84)-(85) is

m

Z g(a[l] +t+Y)

z:inf{tZO:Ey
=1

> Aavg-opt} . (86)

According to (86), Since g¢g(-) is non-decreasing, if
Ey [3202 g(ag +Y)] = Awgop. then z =
C(s, z). This completes the proof. O

0 minimizes

APPENDIX F
PROOF OF THEOREM 8

We use the threshold test Ay > (Aygop — mE[Y]), in
Proposition 7, to prove Theorem 8. We will show that the
condition in (30) implies that As > (Agygope — ME[Y]) holds
for all states s € S, and hence the zero-wait sampler is optimal
under this condition. From the state evolution (19), we can
deduce that for any state s € S, we have

ag) = (M =1+ Dying, VI=1,...,m (87)

This implies

m+)

Yinf» Vs e S. (88)

m
Z Yinf =

Moreover, it is easy to show that the total-average age of the
zero-wait sampler, when the scheduling policy is fixed to the
MATF scheduler, is given by

m(r 1 m
m( r2L+ )E[Y}Q + TE[YQ]

Ay =
0 5 (89)
Since Ay > Aavg-opts we have
Ay —mE[Y] > Aavg_opt — mE[Y]. (90)
Hence, if the following condition holds
mm+1)  "UFUEY] + GEY?)
——"Yinf > -mE[Y], 91
2 Yinf = E[Y] mE[Y], (O1)
which is equivalent to
m— 1DE[Y]2 +E[Y?2
Yint = ( EY] b (92)

(m+1)EY]

then we have A, > (Aavg_npt — mE[Y]) for all states s € S.
This implies that the zero-wait sampler is optimal under this

condition. This completes the proof. O
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