Environment-Aware Localization for Wireless
Sensor Networks using Magnetic Induction

Xin Tan, Zhi Sun, Pu Wang, and Yanjing Sun

Abstract—The Magnetic Induction (MI) communication tech-
niques can enable or enhance many wireless applications in
the complex environments where line-of-sight (LOS) links do
not exist. The critical position information of each wireless
device can also be derived by the same MI systems without
additional hardware or infrastructure. However, while MI signals
can penetrate most of the transmission media without significant
attenuation or phase shifting, the obstacles with high conductivity
can still influence the signal propagation, which incurs additional
positioning errors in the MlI-based localization. To address
such challenge, this paper develops an environment-aware MI-
based localization technique for wireless sensor networks in
complex environments with significant amount of high-conductive
obstructions. First, the system architecture of the MI-based
environment-aware localization and the MI channel is introduced.
The environment-aware capability is realized by analyzing the
unique MI response information gathered by each MI-based
sensor node. Then, a joint device localization and environment
sensing algorithm is developed to estimated the position of each
device in the network as well as the distribution of the high-
conductive objects. Finally, the performance of the proposed
solution is validated through both computer simulations and real-
world experiments.

Index Terms—wireless sensor network, magnetic induction,
localization, environment-aware.

I. INTRODUCTION

Due to the lack of the line of sight to satellites, the GPS,
which is widely used to obtain the position information in
outdoor environments cannot work in many places such as
underground tunnels [2], [3], underwater environments [4] and
indoor environments [5], [6]. The localization based on wire-
less sensor networks (WSN) becomes one of key technologies
to address the challenges in these scenarios [7], [8], [9], [10].
Based on the signal strength or phase of the received signal
obtained by the communications in the network, the internode
distance can be estimated and then the position of each node
can be determined by geometric calculations [11], [12], [13].

Numerous technologies including received signal strength
indication (RSSD)[13], [14], [15], time of arrival (TOA) [16],
and angle of arrival (AOA) [12], [17] can be utilized for
the localization of WSNs. By capturing the information from
the internode communications, such as signal strengths and
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phases, the internode distances or orientations can be estimated
by relating them with the channel model of the signal prop-
agation. The positions of the sensor nodes are then estimated
based on their relative positions. However, the problems exist
when we apply these technologies in the complex environ-
ments. First, traditionally the localization technologies for the
WSN are based on the EM signals received in the sensor
nodes. Due to the rapid attenuation of the EM signal strength
in the RF-challenging environments, such as underground
and underwater environments, the sensor nodes can only be
localized in very limited distance [18]. Second, existing local-
ization techniques for WSNs are mainly based on deploying
anchor nodes or RFID tags at predesigned positions, which
requires pre-installed infrastructures in the environments [11],
[19], [20], [21]. However, the pre-installed infrastructures are
not feasible in many applications, such as the military or
law enforcement missions in indoor environments and the
exploration tasks in underground or underwater environments.
Moreover, since the complex environments, such as indoor and
in-pipe environments, usually consist of reflectors like walls,
pipes, and rebar structures, error increases as the distance from
the anchors or tags increases due to the severe propagation
conditions of the radio channel influenced by the signal re-
flections. To address the problems caused by signal reflections
and improve the localization accuracy, fingerprint database
for localization is built by aforehand training measurements
to better relate the signal strength with the device position
[22], [23]. However, such strategies are based on aforehand
experimental measurements and not applicable for unknown
or dynamic environments.

To address the problems of the signal attenuation in RF-
challenging environments, the magnetic induction (MI)-based
communication has been proposed [24], [25], [26], [27], [28].
As shown in Fig. 1, the MI communication uses a small
loop to generate magnetic field in high frequency (HF) band
and receive the signal by capturing the induced current in
another coil. Instead of using propagating EM waves, MI tech-
nique utilizes the near field of low frequency electromagnetic
field to realize the wireless communication. Hence, it is not
significantly influenced by the complicated underground or
underwater medium because the magnetic permeability of in
these medium is almost the same as that in air. Moreover, the
MI channel is also reliable and determined since the MI signals
are not easily reflected or scattered by the random obstructions.
As a byproduct of the wireless communications, the same MI
system can readily provide localization capability without any
additional hardware or cost.

Although MI-based communication has more tractable



channels, it is still influenced by high-conductive objects in
the complex environments. For example, if the MI coils are
located near large metallic facilities, such as reinforcing bars,
metallic pipes, and metallic walls, the magnetic field can not
penetrate them. Eddy currents will be generated on these
objects and they will excite new magnetic field to affect
the primary field. Therefore, the influence from those high-
conductive objects need to be considered when we apply
the MI-based localization in such complex environments.
However, since the MI coils are sensitive to those high-
conductive objects nearby, it is possible to use the MI coil
as a “radar” to detect and estimate those high-conductive
objects. The magnetic field generated by the eddy currents on
those objects will also be detected by the MI coil itself. By
capturing the feedback by the MI coils, the distribution of the
high-conductive objects can be estimated and it can be used
as the environment-aware information to develop localization
algorithms.

In this paper, an environment-aware localization strategy
is developed for Ml-based wireless networks in complex
environments with arbitrary number of conductive objects.
Specifically, the influence of conductive objects on the MI
channel in complex environments is first investigated and then
an environment-aware algorithm for the conductive objects
is developed. Based on the environment-aware measurement
obtained by the MI nodes, a joint device localization and
conductive-object tomography algorithm is developed to es-
timate the position of the wireless devices as well as the
distribution of conductive objects. In particular, the distribution
of the conductive objects is quantized by the newly defined
intensity magnitude. By adding the intensity magnitude as an
input of the localization algorithm, the internode distances and
orientations are determined and then the coordinates of nodes
can be estimated. Finally, through numerical simulations and
real-world experiments, the localization accuracy is analyzed
and the environment-aware localization technique is validated
to be better than that without the environment-aware capability.

The remainder of this paper is organized as follows. The
related works are presented in Section II. The preliminaries,
including the system architecture and the channel modeling
of MI communications, are introduced in Section III. Then,
we analyze the influence from the conductive objects in the
complex environments to the MI channel in Section I'V. In Sec-
tion V, the localization algorithms based on the environment-
aware result is presented. After that, we present the system
implementation, experimental result and discussion in Section
VI. Finally, this paper is concluded in Section VII.

II. RELATED WORK

The wireless sensor network becomes a solution for the
localization in complex environments where the GPS does
not work due to the lack of the line of sight to satellites.
However, the localization for WSNs based on EM waves has
problems when applied in the complex environments. In the
wireless channel consisting of the RF-challenging propagation
medium, such as underground and underwater, conventional
wireless techniques based on the EM waves do not work due

Fig. 1. MI technique based on two coupled coils

to the rapid attenuation of signal strength [9]. To address this
problem, the wireless communication technique based on MI
for RF-challenging environments is proposed in [25], after
which many novel applications using MI-based communica-
tion are presented, including underground [26], underwater
[24], pipelines [29], [30], and reserviors [27]. The availability
of MI-based communication is demonstrated and evaluated by
the experimental research in [28]. The preliminaries of the
MI-based localization are provided by these research.

Another problem of traditional localization strategies is the
requirement of pre-installed infrastructures. In the complex en-
vironments, anchors or RFID-tags are usually used to localize
the mobile sensor nodes [5], [6], [7], [8], [19], [20], [21].
However, these strategies can be used in the known indoor en-
vironments but difficult to be applied in unknown or dynamic
environments. Moreover, the localization error significantly
increases as the distance from the anchors or tags increases
due to the influence of the signal reflections. To address the
problem caused by the signal reflections, fingerprint database
for localization is built by aforehand training measurements
to better relate the signal strength with the device position so
that the localization performance can be improved [22], [23].
However, since these techniques require aforehand knowledge
and numerous facilities, they are not easy to be applied in the
unknown or dynamic environments.

Research on MI-based localization is developed in [31] and
[32]. In [31], researchers propose methods for object local-
ization using beacons of low frequency quasi-static magnetic
field. To localize the object, the magnetometer readings on
the object are processed to estimate the magnitude and phase
of the received beacon signals. Due to the utilization of low
frequency magnetic field, the signal can penetrate foliage,
soil, buildings and has no direct influence by bad weather
conditions and diurnal variations. In [32], the MI-based lo-
calization is utilized to solve the problem of RF-challenging
environments. In this research, the magnetic induction and
acoustic wireless communications are combined to localize
the drag anchors in the seabed. The environments in these
scenarios are considered as homogenous environments, which
do not have any high-conductive objects to affect the magnetic
field generated by the MI coils.

Although the MI signal has more stable and penetrable
channel for the localization, it is still influenced by the high-
conductive objects nearby. To apply the MI-based localization
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Fig. 2. 3-directional (3D) MI node.

in complex environments with conductive objects, the MI-
based environment-aware localization is proposed for indoor
environments in our previous work [1]. As a foundation of
this paper, our previous work completes the channel modeling,
the solution and the numerical analysis. As an extension,
this paper considers the complex environments with arbitrary
number of conductive objects, such as indoor, in-pipe, and
underground environments. Then, we focus on the implemen-
tation of the localization techniques by developing an MI-
based localization test-bed. The performance of the localiza-
tion algorithm is evaluated by a series of in-lab experiments
using the test-bed.

III. PRELIMINARIES
A. System architecture

The 3-directional (3D) MI nodes shown in Fig. 2 are used to
form the WSN for the environment-aware localization. The 3-
directional (3D) MI sensor node is first designed to realize
the omnidirectional coverage of the MI signal [27], which
also provides the convenience to the MI-based localization.
As shown in Fig. 2, three coils are wound orthogonally for a
3D MI node. Similar to a 3 x 3 MIMO system, the signal
is delivered by the three transmitting coil Tx1, Tx2, Tx3
and received by the three receiving coils Rx1, Rx2 and Rx3.
Therefore, totally 9 independent links are established between
the transmitting node and the receiving node to provide more
information input for the localization algorithm. Additionally,
each MI node is equipped with an inertial sensor, which can
sense the gravity and determine the orientation of the node.

Consider a network formed by a cluster of 3D MI sensor
nodes as shown in Fig. 3. The objective of the localization
technique is to determine the position of each node in the
global coordinate system x —y — z. The localization algorithm
can be concluded as three phases shown in Fig. 4. In the first
phase, each MI node in this network uses its environment-
aware capability to sense the distribution of conductive objects
in the complex environment. The details of the environment-
aware algorithm will be presented in Section V A. In the
second phase, we try to establish communications between the
MI nodes in this network. Based on the information obtained
by the internode communications and the environment-aware
capability, the relative positions of the communicating nodes,
including the distance and directional angles, can be estimated.
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Fig. 3. The system architecture of the MI-based localization.
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Fig. 4. The three-phase localization algorithm.

However, as shown in Fig. 3, once the relative positions of
node i and node j determined by d’, 9;1, 9;2, and 9;3 are
estimated, we can only find out the position of node j in the
coordinate system x’ —y" —z’. To determine the position in the
global coordinate system x —y — z, additional work is need as
the third phase. In the third phase, the inertial sensors equipped
on MI nodes are used to determine the orientation of the node
(the normal vector of Tx3). Based on the relative positions
estimated in phase 2 and the orientations of nodes provided by
the inertial sensors, we can formulate an optimization problem
to determine the global position of each node. Details of phase
2 and phase 3 will be presented in Section V B.

B. Channel modeling in homogenous environments

Since MI techniques have good penetrating performance,
most of materials are transparent to MI devices, except metal.
Hence, the environments with less metallic objects can be
considered as homogenous environments, which do not cause
significant effect to MI signals.

The model of 3D MI channel has been developed in
our previous work [30]. As shown in Fig. 1, the MI-based
localization uses MI signals generated and received by two
coupled coils. A small coil can be modeled as a magnetic
dipole. Hence, the magnetic field generated by a coil is given
by [33]:
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Once another coil is deployed in the environment, the mutual
induction between these two coils can be determined by taking
the derivative of the magnetic flux with respect to the injected
current [27]:
u de d(ﬂyr2 |H - nl)
S dly dl

where n is the normal vector of the receiving coil and pu is
the permeability. Once the mutual induction is determined, the
ratio of the received power to the transmitted power can be
written as:
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where Ry is the unit-length resistance of coil. w is the operating
frequency.

By substituting (2) into (3), the ratio of the received power
to the transmitted power can be approximated as a function of
distance d and intersection angles 6, and 6,:
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We can find from (4) that the received power is related to
the intersection angles 6, and 6, shown in Fig. 1. For example,
if 6, = g and 6, = 0, two coils become orthogonal and the
received power becomes zero. If 6, 6, = 0, two coils are facing
each other and the received power can be maximized.

By considering the 3 X 3 channel obtained by the 3D MI
nodes, the received power can be written as:

k
P, = 3 -0 (5)
where Py is a 3 X 3 matrix of received power:
Py Prz Pags
Pr=| Po1 Poa Pps | (6)
P31 Ps2 Prs

Here P,;; indicates the received power in Rxj from transmit-
ting coil Txi. The elements in ® are related to the intersection
angles between Txi and Rxj as shown in Fig. 5:

2
1
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The coefficient k is related to the transmitting power and
parameters of MI coils:
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IV. INFLUENCE OF CoNDUCTIVE OBJECTIVES ON MI SYSTEMS

A complex environment for MI signals implies that many
objects in this environment have high conductivity to sig-
nificantly affect the MI signals. Many environments, such
as indoor, underground, and in-pipeline environments can be
considered as complex environments for the MI channel due to
the existence of furniture, rebars, underground rocks, metallic
pipewalls, and so on. To propose the MI-based localization
for these complex environments, the analysis of the influence
from these high-conductive objects is necessary.
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Fig. 6. The influence from the complex environment to MI signals.

An indoor environment with a lot of metallic furniture
shown in Fig. 6 can be considered as a complex environment
for the MI channel. In fact, no matter how complex the envi-
ronment is, the objects in this environment can be considered
as the combinations of conductive surfaces (the red area in
the figure). Due to the eddy current induced on these surfaces,
new magnetic field will be generated and the received signal
becomes the superposition of the signals from the primary
field and the new field generated by the eddy current. The
influence from the conductive surfaces on MI signals can be
analyzed as shown in Fig. 7. The magnetic field generated
by the transmitting coil Tx induces the eddy current on a
conductive surface. Based on the image theory, the magnetic
field excited by this eddy current can be regarded as a signal
generated by the image source Tx’, which is symmetric to the
original source Tx by the conductive surface. Therefore, the
power from this new field can be written as:

C*Ll2 W N1 P,cos? (%0’)
P~ )
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where 6" and d” are the intersection angles and distance shown
in Fig. 7. C is the reflection coefficient of magnetic field given
by [27]:

Ho — Hu
Mo +
where 1o and y; are the effective permeability of the air and
the conductive objects.

The power from a certain path can be calculated by the
image method but the unknown parameters in this model
make the calculation difficult. Fig. 8 shows three paths from
the transmitter to the receiver in the complex environment
with multiple conductive surfaces. The power from multi-paths

(10)
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Fig. 8. The MI signal from multi-paths.

are different and dominated by the parameters according to
(9). However, due to the uncertainties of the environment,
the power from each path cannot be exactly calculated but
analyzed by statistics.

When the signal from a path arrives at the receiving node,
it has been affected by multiple conductive surfaces. After
traveling a length of / and being affected by m conductive
surfaces, the PDF of a path that intersects n conductive
surfaces can be decomposed as [34]:

f,mll) = fi(nlD) - f(min, D) (1)

where fi(n|l) is the PDF for a path that has undergone n
surfaces after traveling a distance of /. This function can be
expressed as a Poisson distribution by the demonstration of
Monte Carlo simulation:

Sl =
where =

7 is the mean free distance which is related to the
dimension and deployment of conductive surfaces. The second
function f>(mln,l) gives the probability of having exactly m
influencing surfaces on total n surfaces in the path length /:

Q0
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where p, g are determined by:
1 +e 4D
ph=—F5—. q=1-p (14)

Therefore, by considering the 3D MI nodes as transceivers,
the power from a path with a length of / can be written as:
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Fig. 9. Environmental awareness by MI node.

Intuitively, the power of MI signal decays with the increase of
the number of influencing surfaces m and sixth order of the
length /.

Since the MI-based communication utilizes the near field in
HF band, the phase difference from different paths is negligi-
ble. Therefore, the total received power is simply defined as
the summation of the power from individual paths regardless
of the phase [34]:

Pua(d) = Pi(d) + )" P(d + icrc) (16)
i=1

where ¢, o are light speed and bin time unit, respectively. The

bin time unit o is determined by the bandwidth B that o = %.

V. LOCALIZATION ALGORITHMS
A. Environment-aware algorithms

Since usually the information of the environments is un-
known to us, the mean free distance and reflection coefficients
introduced in Section IV are not easy to be determined. Instead
of knowing these parameters, the MI-based sensor nodes are
used to sense the environment to determine the parameters.
As shown in Fig. 9, we first use the MI coil Tx1 to transmit
the signal with the power P,. Due to the existence of the
conductive surface nearby, the eddy current will be induced
on the surface and the new magnetic field can be regarded
as the signal generated by the image coil Tx1’. Therefore,
the new field can be observed as the feedback by the coil
Tx1, Tx2, and Tx3[35]. Similarly, Tx2 and Tx3 can transmit
and receive the signal for environment-aware measurements.
Therefore, totally 9 measurements can be measured:

p*

P* P*
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where P; ; is the received signal strength obtained by trans-
mitting the signal from Txi and receiving in TXj.

The total received signal strength can be written as the 1-
norm ||Py;;l|; and derived by substituting d = 0 into (16) and
eliminate the direct-path term:

IPei i = Pj,y(d = 0) = " Plicre)
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Denoting the intensity magnitude A as:

N — f (n,mlioc) Ccm
A= (19)
= ; Z (ioe)®
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total(d 0) s d (20)

16R? + p2w?N?'

It is easy to learn from (19) that the intensity magnitude is
related to the reflection coefficient, the number and density of
objects nearby. Intuitively, the intensity magnitude increases
if the node is deployed at more constricted environments with
more conductive objects nearby. As a result, the developed
intensity magnitude provides convenience to us to estimate
the distribution of the conductive objects in the environment.
Instead of estimating the reflection coefficient and mean free
distance, estimating an entire function which includes those
parameters becomes more applicable. According to (20), the
intensity magnitude is estimated by:

2 2, 2n72
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Consider an MI sensor network with multiple sensor nodes,
each node can estimate the local intensity magnitude at its
own position. Based on the intensity magnitude at different
positions, a map of the intensity magnitude in this environment
can be reconstructed by the biharmonic interpolation method.

An example of the environmental reconstruction is shown
in Fig. 10. In this simulation, 3D MI nodes shown as the blue
spots are deployed in an environment with multiple reflectors.
The coils on the 3D MI nodes are simulated by 20 AWG wires
with the unit-length resistance of 3.331 x 1072 Q/m. All the
coils have the same radius 15 ¢m and number of turns N, = 50.
An excited current with a frequency of 30 MHz is injected
into the transmitting coil circuit. The black bars with arrows
in Fig. 10 show the positions and directions of the conductive
surfaces. To calculate the intensity magnitude on the nodes’
positions, we consider that the signal generated by each coil
will be affected once on each surface. In this case, the multi-
hop paths are neglect since the signal becomes too weak to
contribute the total received signal strength after going through
multiple surfaces. As shown in Fig. 10(a), we first deploy 6
nodes to calculate the intensity magnitude. The colored map
shows the reconstruction result by biharmonic interpolation.
The area colored by red indicates the high intensity magnitude
and it turns to blue with the intensity magnitude decreasing.
Since the environmental reconstruction is obtained by the
interpolation. The result will be more accurate if more nodes
are deployed for the measurements. In Fig. 10(b), two more
nodes (Node 7 and Node 8) are added and the result is different
from it of Fig. 10(a). Obviously, the intensity magnitude at
point A (marked in the map) should be higher than it at point B
since point A is closer to the surfaces I';, I'4 and I's. However,
due to the lack of measurements, the estimated potential at A
is lower in Fig. 10(a). The accuracy of intensity magnitude at
A and B is then improved in Fig. 10(b).

X (m)

(a) The intensity magnitude sensed by 6 nodes.

0 IZ t‘l B é 1t| 1i2
X (m)

(b) The intensity magnitude sensed by 8 nodes.

Fig. 10. The environmental reconstruction using intensity magnitude.

B. Estimation of nodes’ positions

In this subsection, we propose the algorithm to determine
the position of MI sensor nodes in the network. Consider a
network with K MI nodes as shown in Fig. 11(a). We build the
coordinate axis by locating the first node at the original point
pi1 = (0,0,0). The normal vectors of Tx1, Tx2, Tx3 superpose
the x, y, and z axis, respectively. Therefore, the coordinates of
other nodes p3, p3, ..., Px in this network need to be determined
in this coordinate system. According to the system architecture
introduced in Section III A, communication links need to be
established between these MI nodes. Intuitively, the localiza-
tion accuracy will increase if more links are established to get
more measurements.

The RSSI measurements can be efficiently obtained by
broadcasting. In the first time slot, we use Node 1 to broadcast
and the other nodes keep hearing. Therefore, the K — 1
measurements are obtained in total. Then, Node 2, Node 3,
..., and Node K broadcast successively so that a matrix of
measurements can be obtained:

Pt Prp Pk
P, - Poi Pop Py x 22)
Pix1 Pexo Pk x

where Py ; (i # j) is the measurement taken from the
communication between Node i and Node j. Since each node
has three transmitting/receiving coils, Py; ; is a 3 by 3 matrix
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Fig. 11. Relative position of MI nodes in the network.

written as (6). The diagonal elements are the environment-
aware measurements presented in (17).

Once a link is established between two MI nodes, the related
position can be estimated based on the channel model of MI
signals. We first consider the homogenous environments. Here
all the coils have the same design and three transmitting coils
have the same power P,. According to (5), the inter-node
distance d can be estimated by:

1

A k ¢
d= .
(”Prnl)

Then, the vector related to the intersection angles @ is
estimated by:

(23)

6

®= % (P; + P, + P3) (24)

where Py, P, and P3 are column vectors by extracting each
column from P,:

P.=[P; P P31 (25)
® is expressed as:
(cosO;, + %sinQ,l)z
D =| (cosHp + %sin@,z)z (26)

(cosbs + %sin9,3)2

Obviously, once the vector @ is estimated, the intersection
angles 6,1, 6, and 6,3 are determined. Therefore, the relative
position of two MI nodes can be determined by d and ®.

Then we estimate the related position by considering the
complex environments. Since the internode distances are usu-
ally meter-level, we have oc > d. Therefore, (16) can be
approximated as:

Pua(d) = Py(d) + )" P(d + ioe) ~ Po(d) + ) | Plicrc)
i=1 i=1 (27)
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where A is the intensity magnitude around the transmitting
node and receiving node determined by A = \/A,f\,. At and
A, are the intensity magnitudes estimated at transmitting node
and receiving node, respectively. By considering the 3 x3 link,
the internode distance and intersection angles are estimated by:

1
6
i (nPrnl ) A) 08)
k
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where A is a column vector with elements A; = \/A,,f\,. Ati
is the estimated intensity magnitude by transmitting the signal
from the i-th (i = 1,2,3) coil and capturing the feedback by
the node itself. Therefore, the relative position of two nodes
is estimated by considering the influence from the complex
environments.

The coordinate of each node needs to be determined in the
global coordinate system based on the relative positions and
the nodes’ orientations measured by inertial sensors. Since
the proposed MI-based localization can estimate not only the
internode distance but also the relative orientations, x-, y- and
z-coordinates can be independently estimated by solving three
optimization problems. We first discuss the estimation of z-
coordinates. Based on the estimated ﬁ, <i), and the normal
vector of Tx3 of node i (njy, niy, nj;) measured by the inertial
sensor, the difference of node i and node j on z-coordinates
can be expressed as:

AZ[,I‘ = nizc?[,jcos@[,g (30)

The estimation of z-coordinates of nodes (2o, z3, ..., 2x) In
this network can be formulated as following minimization:

2. =z - ag|

(i, ))eA

min 31

22,3235-+52K
where A is called the neighbor set defined as A := {(i, )) :
llpi = pjll < R.}. Here R, is the communication range for the
MI sensor nodes. d;; and 6;3 are respectively the measured
internode distance and intersection angle shown in Fig. 11(a).
Since (31) is nonconvex, it is necessary to convert it to a
convex optimization problem for a global solution. Here we
reformulate it by using relaxation method. As a first step, we
rewrite (31) as:

min E lai,j - AZ,-2 '
20,23 500,2K50i /

(i.J)eA (32)

s.t. aij = (Z[ - Zj)z, V(i, J) €A.
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Fig. 12. A comparison between 6 nodes and 8 nodes.

Relaxing the equality constraints to ”>" yields the following
convex problem [36]:
Z |Lli,j - Aziz,j|

(i,))eA

min
2252350+ 2K5di j

(33)

stooai > @—z)% Vi, j)eA

which is a second-order cone programming (SOCP) for solv-

ing the original problem. Finally, we rewrite it to the standard
form:

min E tij
22,2350, 2K5 i ol j
2543 K>di jsli,j (i,j)EA

2
sitooai; > (zi—2z;)°,

tij > Jaij = A,

(34)

V(@i, j) € A.

Therefore, the z-coordinates of the MI sensor nodes can be
determined by solving above optimization problem. Similarly,
the x-, y- coordinates can be estimated by respectively using
6i,1, 6> instead of 6,3, and using n;,, n;, instead of n;; in above
optimization problem.

Due to the approximation used in (27), errors will be caused
when we estimate the relative position of each pair. The
formulated optimization problem aims at minimizing the mean
of the positioning errors by considering the measurements
from all the communication pairs in this network. Intuitively,
the mean of errors can be reduced if more nodes are deployed
to establish more links for the measurements. The simulation
in Fig. 12 shows the improvement of positioning accuracy
when a network with more nodes and links is used. In this
simulation, we use the same scenario and parameters as used
in Fig. 10. Each node is assumed to communicate with all the
other nodes in this network. The black circles indicate the real
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Fig. 13. Signal generation and observation.

Fig. 14. USRP N210.

positions of nodes. The estimated positions of the original 6
nodes are marked as green stars while the updated localization
results of the 8 nodes are marked as red stars. The mean of
positioning errors are calculated as shown in Fig. 12(b). The
mean of errors is reduced by about 0.2 meters when 2 more
nodes are added.

VI. EXPERIMENTAL IMPLEMENTATION AND RESULT

In this section, we test the developed MI-based localization
algorithm by a series of in-lab experiments on the MI-based
localization test-bed.

A. System design and experimental facilities

The architecture of MI-based localization test-bed can be
developed as shown in Fig. 13. The signal generation and
observation modules are formed by the USRPs with the control
of PC. As shown in Fig. 14, USRP N210 is used that equipped
with a Xilinx Spartan-3A DSP 3400 FPGA, a 100 MS/s
dual ADC, a 400 MS/s dual DAC, and a gigabit ethernet
connectivity to stream data to and from host PCs. Two 3D MI
coils, performing as the antennas, are designed by enwinding
the wires on the cubic frames shown in Fig. 15 with following
parameters: The edge length of the cube I, = 10cm. The
number of turns for each coil N = 8. The conductivity of the
wire o = 0.1339Q/m (26 AWG). According to the localization
algorithm using a network introduced in V B, the orientation
of each node is required to determine the nodes’ positions
in the global coordinate system. In this implementation, the
9DOF RAZOR IMU shown in Fig. 15 is used to measure the
orientation of each node.
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Fig. 18. Node-to-node localization (case 1).
1.6 T %1@ T
14t Y4 %
vV
1.2r
1 v@
0.8r
0.6
041 %
Py -1 287l 0.2r
Fig. 16. A view of MI-based localization (case 1). ? @
- 0 012 0:4 0:6 018 1‘ 1‘.2 14
B. Experimental result and discussion
. . L. Fig. 19. Localization by a network (case 1).
As shown in Fig. 16 (case 1), we first test the localization
algorithm on the floor of a lab. To compare the result of node-
to-node localization and the localization by a network using Error mean (m)
the optimization presented in Section V B, we implement the
. . . . . . 0.18
localization in two ways shown in Fig. 17. In Fig. 17(a), ot
the transmitting node is deployed at the original point (blue 013
spot) as the anchor. The receiving node is deployed at the test 012
L. . ® without awareness
positions (red spot) to be localized. Then, we deploy a network 0"0'; a with swareness
with 6 nodes as shown in Fig. 17(b). In this network, each pair 0o
of nodes can communicate so that 30 links are established (The 004
transmitter and receiver can be interchanged). The position of 0.2
the first node is known by (0,0) and the other 5 nodes need * " otebymodeocaization | Locazation by anetwork

to be localized in the global coordinated system.

The experimental results are shown from Fig. 18 to Fig. 21. Fig. 20. Error mean (case 1).
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(a) Node-to-node localization. (b) Localization by a network.

Fig. 17. The deployment of nodes in the experiment. Fig. 21. Intensity magnitude (case 1).



Dumbbell

Fig. 22. A view of MI-based localization (case 2).
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Fig. 23. Node-to-node localization (case 2).

The black circles in Fig. 18 and Fig. 34 indicate real positions
of Ml-based sensor nodes. The blue stars are the estimated
positions obtained from the developed environment-aware lo-
calization algorithm. To compare with the environment-aware
localization, the localization technique without environment-
aware capability is implemented and the result is shown as
the red triangles in the figures. In Fig. 20, the mean error of
the localization is evaluated. Obviously, shown as the red bars,
the localization is more accurate when the environment-aware
capability is applied. In Fig. 26, after estimating the positions
and the intensity magnitude of the 6 nodes, the reconstruction
of the environment can be obtained by biharmonic interpola-
tion. The intensity magnitude at the right side is higher than it
at left side since the nodes are close to some metallic furniture
on the right and the aisle exists on the left side of the map.
As shown in Fig. 22 (case 2), we implement the localization
algorithm by deploying some metallic objects, such as metallic
boards and a dumbbell. The same deployment scenarios shown
in Fig. 17 are used. The localization result is shown from Fig.
23 to Fig. 25. Shown as the map in Fig. 26, the positions of
two metallic boards and the dumbbell are estimated by envi-
ronmental reconstructions since those high-conductive objects
are easily detected due to the large influence to the MI signals.
From Fig. 27 to Fig. 31 (case 3), we test the environment-
aware localization by deploying a pipeline-like structure. The
same deployment scenario as case 1 and case 2 is used for
the MI-based sensor nodes. The blue bars in Fig. 30 shows
that the error becomes extremely large without considering
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Fig. 24. Localization by a network (case 2).
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Fig. 25. Error mean (case 2).
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Fig. 26. Intensity magnitude (case 2).
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Fig. 32. The deployment of nodes for case 4 (in the tank).

Fig. 33. Simulated underground environment.

the influence from the environments, while the accuracy is
significantly improved by the environment-aware capability of
MI nodes shown as the red bars. The position of the pipeline-
like structure is estimated by the red area in Fig. 31.

To test the localization algorithm in the RF-challenging
environments, the MI-based sensor nodes are buried in the
simulated underground environment shown in Fig. 33. In this
implementation, an acrylic tank with a size of 255 cm X 76
cm X 76 cm (length X width X height) is set up on a pedestal.
About 980000 cm® of sand is poured into the tank serving
as the base material for the underground environment. Since
usually the soil medium contains a certain concentration of
water with electrolyte [28], which is the dominate factor that
can influence the performance of underground communication,
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Fig. 34. Node-by-node localization (case 4).
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Fig. 36. Error mean (case 4).

a certain volume of of water is poured into the tank and mixed
with the sand. Since the dimension of simulated underground
environment is different from it of in-lab environment, the
deployment of nodes is changed as shown in Fig. 32. Similarly,
we did the node-to-node localization (Fig. 32(a)) and the
localization by a network (Fig. 32(b)). The localization result
is shown from Fig. 34 to Fig. 36. In the reconstruction map
shown in Fig. 37, the right side turns to red since the tank
is placed against the wall with metallic structures inside. The
calculated intensity magnitude becomes much higher than it
at the left side.

In the tank
N

Wall

— Es

= Intensity magnitude
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Fig. 37. Intensity magnitude (case 4).
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VII. CoNcLUSION

In this paper, an environment-aware localization algorithm
is developed for MI-based wireless sensor networks. Different
from existing MI localization solutions that only work in
ideal and homogeneous environments, the developed algorithm
can handle real-world complex environments with arbitrary
number of conductive objects. In particular, each MI sensor
node can be used as a “radar” to capture the influence of
the surrounding environment on the MI channel. Then by
analyzing the measurements from each node in the network,
the intensity magnitude of the environmental influence can be
estimated. Finally, based on the estimated intensity magnitude
and the cooperation among all MI nodes in the network, a joint
node localization and conductive-object tomography algorithm
is developed to estimate the position of the wireless devices as
well as the distribution of conductive objects. Compared with
the existing MI-based localization techniques, the experiment
results show that the proposed environment-aware solution
achieves significantly better localization accuracy, (i.e., aver-
age localization error of each node in the network is 61.7%
less).
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