

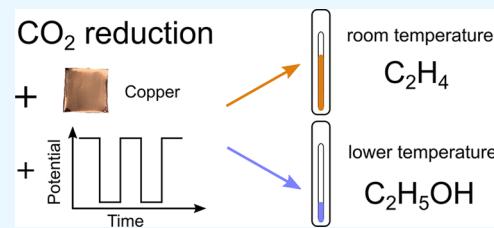
Cu(I) Reducibility Controls Ethylene vs Ethanol Selectivity on (100)-Textured Copper during Pulsed CO₂ Reduction

Zhichu Tang, Emily Nishiwaki, Kevin E. Fritz, Tobias Hanrath, and Jin Suntivich*

Cite This: *ACS Appl. Mater. Interfaces* 2021, 13, 14050–14055

Read Online

ACCESS |


Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: The electrochemical CO₂ reduction reaction (CO₂RR) can convert widely available CO₂ into value-added C₂ products, such as ethylene and ethanol. However, low selectivity toward either compound limits the effectiveness of current CO₂RR electrocatalysts. Here, we report the use of pulsed overpotentials to improve the ethylene selectivity to 67% with >75% overall C₂ selectivity on (100)-textured polycrystalline Cu foil. The pulsed CO₂RR can be made selective to either ethylene or ethanol by controlling the reaction temperature. We attribute the enhanced C₂ selectivity to the improved CO dimerization kinetics on the active Cu surface on predominately (100)-textured Cu grains with the reduced hydrogen adsorption coverage during the pulsed CO₂RR. The ethylene vs ethanol selectivity can be explained by the reducibility of the Cu(I) species during the cathodic potential cycle. Our work demonstrates a simple route to improve the ethylene vs ethanol selectivity and identifies Cu(I) as the species responsible for ethanol production.

KEYWORDS: electrochemical CO₂ reduction, pulsed potential, temperature, ethylene, ethanol

INTRODUCTION

The electrochemical CO₂ reduction reaction (CO₂RR) has received extensive attention as a solution to the growing demand for sustainably sourced materials and fuels.^{1–4} Among the known CO₂RR catalysts, Cu is unique for its ability to produce hydrocarbons and oxygenates,^{5–7} in particular, C₂ products such as ethylene (C₂H₄: 2CO₂ + 12H⁺ + 12e[−] → C₂H₄ + 4H₂O) and ethanol (C₂H₅OH: 2CO₂ + 12H⁺ + 12e[−] → C₂H₅OH + 3H₂O). As these molecules are the important building blocks for key compounds in the chemical industry, the ability to produce these products by using renewable energy has the potential to sustain the global need for materials and chemicals in the 21st century. However, future progress toward the generation of chemical feedstocks derived from the CO₂RR remains impaired by the limited selectivity of C₂ products.

Many strategies have been explored to improve the C₂ selectivity of the Cu electrode, to date, including by tuning the Cu surface facet. Hori et al. investigated the structure sensitivity of Cu and found that the (100) facet was more selective to C₂H₄ (>40%) than the (111) facet (<10%).⁸ This selectivity has been attributed to CO_{ad} dimerization (the subscript _{ad} denotes adsorbed species) on the (100) facet.^{9–13} This finding has led to the suggestion that increasing the CO_{ad} binding strength on Cu(100)¹⁴ may allow for higher CO_{ad} coverage and consequently improved C₂H₄ selectivity. To this end, strategies for controlling the CO_{ad} interaction with Cu surfaces, for example, by controlling facets, morphology, oxidation states, and dopants have been investigated.^{15–18} While these methods have yielded a state-of-the-art C₂

selectivity of >70%, the approaches are often complex and require several synthesis steps. Furthermore, the long-term stability for some of these approaches remains an open challenge.

In comparison to the surface modification methods, the use of pulsed electrochemical potentials has been demonstrated to be a simple and effective way to enhance CO₂RR selectivity,^{19–23} especially to C₂ products.²⁴ We point out the recent work by Aran-Ais et al., which showed that applying a pulsed potential to Cu(100) single crystals could enhance the C₂H₅OH selectivity to 30% and C₂H₄ to 45%, with >75% combined C₂₊ selectivity.²⁴ This enhancement was attributed to the stabilization of the Cu(I) species which promote C₂H₅OH formation without affecting the C₂H₄ production. While these works have established that the application of a pulsed electrochemical potential can improve the CO₂RR selectivity over the hydrogen evolution reaction (HER) and support C–C coupling, it is still unclear which factor controls the selectivity between C₂H₅OH and C₂H₄ and whether the enhanced C–C coupling can be directed to only one product such as C₂H₄.

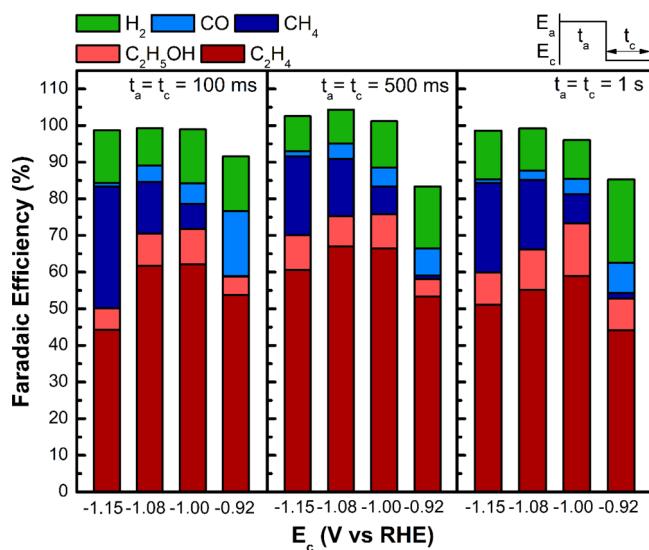

In this work, we demonstrate that the factor controlling the selectivity between C₂H₅OH and C₂H₄ is the reduction rate of

Received: October 1, 2020

Accepted: March 2, 2021

Published: March 11, 2021

Figure 1. (a) XRD patterns (symmetric out-of-plane scan) and (b) corresponding pictures of unreacted Cu foil, Cu foil after 6 h of the constant potential CO₂RR at -1 V vs RHE, and Cu foil after the 6 h of pulsed potential CO₂RR at $E_c = -1$ V vs RHE, $E_a = 0.6$ V vs RHE, with $t_a = t_c = 1$ s.


the Cu(I) species during the reduction (cathodic) cycle of the pulsed CO₂RR. By controlling the reduction kinetics through temperature control, the C₂H₄ selectivity can be as high as 67% with >75% selectivity toward C₂ products. This C₂ selectivity, which is obtained on a (100)-textured polycrystalline Cu foil under pulsed conditions at 25°C without using any special treatment, is comparable to the state-of-the-art CO₂RR performance.¹⁷ We hypothesize that the transient species formed during the anodic cycle plays a critical role in the selectivity. Thus, the formation of these transient species can be exploited for selectivity control. We found that by tuning the temperature to control the reduction kinetics, C₂H₄ can be favored over C₂H₅OH. When the reducibility of the surface species formed during the anodic cycle is facile, such as when the cell temperature is held at 25°C, the C₂H₄ selectivity is enhanced at the expense of C₂H₅OH. Along the same line of reasoning, by decreasing the temperature to 15 and 5°C, the active species from the anodic cycle persists during the reduction cycle, positively impacting the C₂H₅OH selectivity. The 40% C₂H₅OH selectivity at 5°C is among the highest reported in a buffered, neutral electrolyte.^{5,24} The finding that the C₂H₄ vs C₂H₅OH competition corresponds proportionally to the response time of the reduction cycle of the pulsed CO₂RR suggests that the reduction of the surface-oxidized Cu is the factor controlling the C₂ selectivity. Our work has implications on the interpretation of the active species for C₂H₄ vs C₂H₅OH and demonstrates a simple strategy for controlling the selectivity among the C₂ products during the CO₂RR. The combined use of pulsed electrochemical potentials on Cu foils to improve the C₂ selectivity and controlled temperature to tailor the C₂ selectivity presents a possible strategy for future mechanistic investigations and possibly industrial deployment for selective electrosynthesis.

RESULTS AND DISCUSSION

We conducted our CO₂RR experiments in a custom temperature-controlled cell with 0.1 M KHCO₃ electrolyte. X-ray diffraction (XRD) shows that our polycrystalline Cu electrodes consist predominantly of (100) facets (Figure 1), which remain robust throughout the CO₂RR experiment. We note that this orientation represents a bulk, out-of-plane value and should not be taken to imply that the surface morphology of the polycrystalline foil has a perfect single-crystal-like (100) orientation. Scanning electron microscopy (SEM) showed that the used Cu foil had a rough surface morphology (*vide infra*).

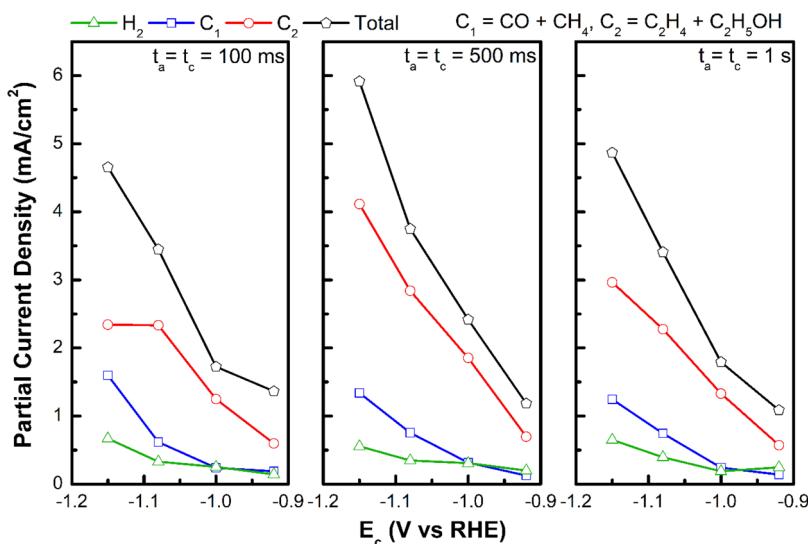

Furthermore, the CO₂RR under the traditionally used constant electrochemical potential yielded a product distribution (Figure S1) consistent with the literature on polycrystalline Cu.^{7,25} We performed the pulsed CO₂RR using square wave potentials with symmetric anodic and cathodic pulse intervals ($t_a = t_c$). The anodic potential (E_a) was set to +0.6 V vs RHE for all measurements, while the cathodic potential (E_c) was varied from -0.9 V to -1.15 V vs RHE.

Figure 2 shows the faradaic efficiencies (FEs) of the primary products of the CO₂RR on Cu for 100 ms, 500 ms, and 1 s

Figure 2. Faradaic efficiencies of the main products of the pulsed CO₂RR on Cu at different E_c values. All data were collected with $E_a = 0.6$ V vs RHE and $t_a = t_c = 100$ ms (left), 500 ms (center), and 1 s (right) at 25°C.

pulsed potentials at 25°C. Similar selectivity trends were observed for all three pulse times, suggesting that the effect of the pulse time was minor. There was a slight enhancement in C₂ selectivity for the 500 ms pulse relative to 100 ms or 1 s pulses (Figure 2). At all potentials, C₂H₄ was the major product with 50–67% selectivity at most conditions, while CH₄, H₂, and CO were suppressed to <20, <15, and <10%, respectively (Figure 2). The C₂H₅OH selectivity was ~10%, resulting in the maximum C₂ selectivity >75% at $E_c = -1$ V vs RHE, with $t_a = t_c = 500$ ms. This C₂ selectivity corresponds to

Figure 3. Partial current densities of H_2 , C_1 , and C_2 products of the CO_2RR on Cu at different E_c values, with $E_a = 0.6$ V vs RHE, $t_a = t_c = 100$ ms (left), 500 ms (center), and 1 s (right), at 25°C.

a C_2/C_1 ratio of ~ 5.9 (Figure S2), much higher than the literature result (~ 1.5) on Cu(100) single crystals under a constant potential.¹⁴ CO production is minimal except at $E_c = -0.92$ V vs RHE. Interestingly, the total FE also dropped to ~ 80 –90% at this same potential. This observation may reflect the possible CO oxidation during the anodic potential swing.

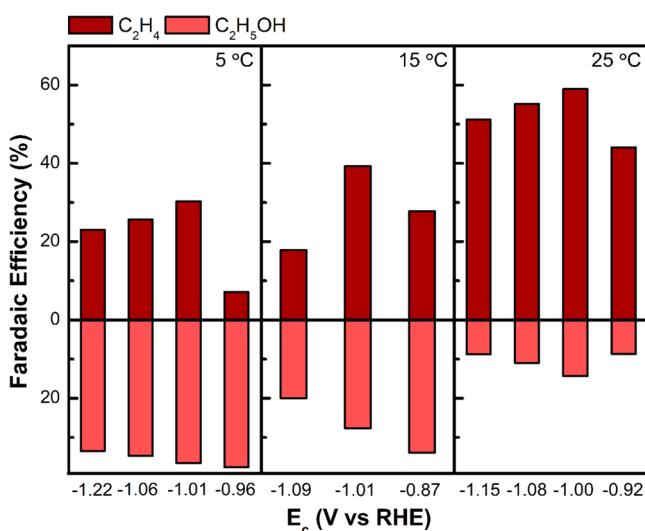
We analyzed the partial current densities to investigate whether the activity toward C_2 products was enhanced or the activity toward other products was suppressed (see the Supporting Information for the calculation details). Compared to the previously reported Cu foil with randomly oriented crystal grains,²⁶ the total CO_2RR current density on (100)-oriented Cu foil was slightly smaller and did not vary significantly with pulse times (Figure 3). However, the partial current density of the C_2 products at -1 V vs RHE increased by $2 \times$ (to ~ 2 mA/cm² from ~ 1 mA/cm²) with respect to the constant potential situation. The partial current densities of the minor products (H_2 and C_1) decreased to ~ 0.6 mA/cm² from ~ 3 mA/cm² in the constant potential report.²⁵ This observation suggests that pulsed potentials both enhance C_2 generation and suppress other CO_2RR and HER products.

It is important to note that the reported high C_2 selectivity represents the steady state selectivity, which was attained after ~ 2 h of the measurement. We chose to report the steady-state performance at the end of a 6 h experiment to ensure consistency of the reporting procedure. The change in the CO_2RR FE in the first 2 h, where the C_2H_4 FE initially increased, provides information on the origin of the C_2 selectivity (Figure S3). We observed a coloration of the electrode surface after the pulsed CO_2RR experiment (Figure 1), indicating a cycle of Cu restructuring or redeposition in the first 2 h of the measurement.²⁷ This finding is consistent with the inductively coupled plasma mass spectrometry (ICP-MS) work by Speck and Cherevko, which found that Cu can dissolve as early as 0.5 V vs RHE.²⁸ Interestingly, the cyclic voltammogram stayed approximately the same during this period (Figure S4), suggesting minimal changes in surface roughness ($<20\%$ change in the EDLC response) and adsorption features. We therefore believe that the observed C_2 selectivity is not due to the increased surface roughness but rather due to the active surface forming over the (100)-

oriented polycrystalline Cu foil. Earlier atomic force microscopy (AFM) investigation on Cu(100) showed that the (100) surface stayed intact during the pulsed CO_2RR through stabilization of the (100) island morphology.²⁴ Our observation from the cyclic voltammogram showing that the CO_2RR did not significantly change the surface roughness is consistent with the literature's finding. XRD patterns of the polycrystalline Cu foils after a 6 h pulsed potential experiment with $E_c = -1$ V vs RHE, $t_a = t_c = 1$ s, as well as a 6 h constant potential experiment with $E_c = -1$ V vs RHE (Figure 1) show no measurable changes in the facet distribution. We emphasize again that XRD should not be taken as a representative surface model for the Cu foil. SEM shows that the surface Cu foil was rough, even after the CO_2RR (Figure S5). Electron backscatter diffraction (EBSD) showed evidence of (100), (101), and near (112) orientation. However, we were not able to provide a quantitative analysis with the surface roughness of the sample. X-ray photoelectron spectroscopy (XPS) of Cu 2p_{3/2} (Figure S6) showed the presence of Cu/Cu₂O (932.6 eV), CuO (933.6 eV), and Cu(OH)₂ (935.1 eV). Both samples contain a total of $\sim 20\%$ CuO plus Cu(OH)₂, similar to the amount of CuO and Cu(OH)₂ observed for unreacted Cu foil in ambient air.²⁹ Although we cannot resolve Cu vs Cu₂O due to their overlapping XPS feature, our results suggest that the chemical makeup of the Cu foil did not change going through the constant-potential or pulsed-potential CO_2RR , in agreement with the cyclic voltammogram. Taken together, we hypothesize that the enhanced C–C coupling is due to the active species formed through a series of redox cycles on polycrystalline Cu foil of the preferred (100) orientation. Continuous oxidation and reduction of electrodes under pulsed conditions has been shown to promote the surface CO_{ad} coverage and C–C coupling to ethylene.^{27,30,31} This increase in the partial current density of C_2H_4 by $\sim 3 \times$ in the first 2 h of the experiment (Figure S3) agrees with these observations and suggests that the increased C–C coupling is intrinsic to the changing Cu surface chemistry during pulsed potential application instead of the changing surface area.

Reaction temperature is commonly used to tune selectivity. To understand the enhanced C_2H_4 selectivity under pulsed conditions, we tested the effect of temperature on the pulsed

CO₂RR at 5 and 15°C using the same experimental parameters. The activation energy for C₂H₄ formation under pulsed conditions was calculated to be 25.98 ± 3.88 kJ/mol (Figure S7) at -1 V vs RHE, which is lower than the C₂H₄ activation energy under constant potential conditions (~35 kJ/mol).²⁵ This reduced activation energy for C₂H₄ production supports our hypothesis of enhanced C₂H₄ production under pulsed conditions. Under constant potential conditions, the C–C coupling process is limited by the low CO_{ad} coverage, where CO_{ad} must compete against H_{ad} for available Cu sites.³² Under pulsed potential conditions, we hypothesize that a cycle of oxidizing–reducing potential allows H_{ad} to preferentially desorb. While CO_{ad} can similarly desorb or oxidize at the oxidative potential, we postulate that the kinetics are slower than the H_{ad} desorption. The H_{ad} desorption creates open Cu sites to allow the CO_{ad} coverage to increase relative to H_{ad}, favoring C–C coupling.²⁷ This effect should simultaneously suppress HER, enhance C–C coupling, and minimize the C₁ product formation, which are the results observed under pulsed potentials.


The critical question is why it is that our C₂H₄ selectivity (>65%) is significantly higher than Aran-Ais et al., whose investigation using a similarly designed experiment showed similar C₂ selectivity (~75%) but with significantly lower C₂H₄ selectivity (~45%).²⁴ We postulate that the difference could be because most CO₂RR experiments are conducted at room temperature that is closer to 20°C, which is lower than the temperature used in our experiment (25°C). To test this hypothesis, we tested the selectivity at 5 and 15°C for a variety of voltages with $E_a = 0.6$ V and $t_a = t_c = 1$ s. In agreement with our hypothesis, we observed a significant temperature dependence of the selectivity between C₂H₄ and C₂H₅OH (Figure 4). At 5°C, C₂H₅OH selectivity is relatively voltage-

selectivity toward C₂ products remains >60%, with C₂H₄ and C₂H₅OH selectivity at values between the 5 and 25°C experiments. We also note that HER selectivity is suppressed to <15% for all potentials at 5 and 15°C (Figure S8), which further strengthens the argument that pulsed voltages suppress HER by decreasing the coverage of H_{ad} on the Cu surface. The amount of formate increases as the overpotential becomes less negative at both temperatures.

Our results demonstrate that the ratio of C₂H₄ to C₂H₅OH is sensitive to reaction temperature, with higher temperatures favoring C₂H₄ and lower temperatures favoring C₂H₅OH. To explain this observation, we consider a shift in the equilibrium between C₂H₄ and C₂H₅OH due to the hydration reaction (C₂H_{4(g)} + H₂O_(l) → C₂H₅OH_(l), $\Delta G^0 = -6$ kJ/mol).³³ If the observed C₂H₅OH selectivity was due to faster C₂H₄ hydration kinetics at higher temperature, the C₂H₄ to C₂H₅OH ratio should move closer to equilibrium at 25°C. However, we observed the opposite result, indicating that the observed effect is not due to the hydration effect, i.e., the observed C₂H₄ vs C₂H₅OH selectivity is a result of catalysis. Cu single-crystal studies attributed the enhancement in the C₂H₄ selectivity to the (100) facets³⁴ and C₂H₅OH selectivity to the stabilization of Cu(I) under pulsed conditions.²⁴ These surface Cu(I) species could create an oxophilic surface that stabilizes the adsorbed oxygen that impacts the branching point between the C₂H₄ and C₂H₅OH pathways, i.e., OHCH_{2,ad}.²⁴ Based on this prior mechanistic proposal, the temperature-dependent C₂H₄ vs C₂H₅OH selectivity observed in our experiments is likely a result of how Cu(I) is stabilized during the pulsed potential, where lower temperature more effectively stabilizes the Cu(I) species.

To understand why Cu(I) is stabilized at lower temperature, we examined the temperature dependence of the current response during the pulsed CO₂RR (Figure S9). Similar to the previous report,²¹ we observe a sharp current spike at the beginning of each pulse which decays to a stable current on the ms timescale. We characterize the response time by fitting an exponential function and extracting the time constant, which we found to increase with decreasing temperature (Figure S10). Specifically, the time constant in the reductive cycle (cathodic pulse) was found to be higher at 5°C than at 25°C. We believe that this result indicates the slow kinetics of the reduction of Cu(I) to Cu(0) at low temperature. The similar oxidation and reduction time constants at 25°C indicate that a smaller fraction of residual Cu(I) stays intact during the reductive cycle. Thus, C₂H₄ enhancement is a result of the Cu(I) species being reductively eliminated on the Cu(100) facet, while the higher time constants at low temperature kinetically stabilize Cu(I), effectively allowing the Cu(I) species to facilitate the C₂H₅OH production as has been previously reported.²⁴ Based on this mechanism, our C₂H₄ enhancement at 25°C compared to the previously reported enhancement in C₂H₅OH on Cu(100) single crystals at room temperature is due to our active control of the reaction temperature at 25°C vs an uncontrolled system that is likely closer to ~20°C. Most importantly, our analysis suggests that the species responsible for C₂H₅OH is Cu(I) while the active sites responsible for C₂H₄ are the reduced Cu facets. Although both Cu(0) and Cu(I) are capable of supporting C–C coupling, the former favors C₂H₄ formation while the latter favors C₂H₅OH.

The details of the exact atomic structure during cycling and its relationship to the C–C coupling remains an open

Figure 4. Faradaic efficiencies of ethylene and ethanol for the CO₂RR on Cu at different E_c values, with $E_a = 0.6$ V vs RHE, $t_a = t_c = 1$ s, at 5, 15, and 25°C.

independent with an FE between 30 and 40%, which is among the highest C₂H₅OH selectivity reported in an H-cell with neutral bicarbonate electrolyte.^{5,24} Combined with C₂H₄, the total C₂ selectivity is >60%, which suggests that under pulsed conditions the total C₂ selectivity does not strongly depend on temperature. The results at 15°C support this trend—the

question. Polycrystalline surfaces are complicated by the presence of different terminations and structural defects, including grain boundaries and morphologies. In addition to this issue, it is possible that the oxygen atom near the oxidized Cu can migrate into the subsurface. In such situations, the cathodic pulse may not fully reduce the subsurface oxygen since it is kinetically inaccessible, leading to persistent subsurface oxygen species. Several groups have suggested that subsurface oxygen can enhance C_2H_4 selectivity on Cu by increasing the CO_{ad} binding energy which enhances C–C coupling.^{35,36} Additionally, Cu(I) may be stabilized by OH_{ad} formed via water electro-oxidation ($H_2O \rightarrow OH_{ad} + H^+ + e^-$), the residue of which could participate in the CO_2RR . Understanding the nature of the oxidized Cu will be essential in understanding and eventually improving the pulsed CO_2RR performance in the future.

CONCLUSIONS

In summary, we report a highly C_2H_4 -selective (67%) CO_2RR using square wave potentials on (100)-textured polycrystalline Cu foil with >75% total C_2 selectivity. We show that temperature plays a crucial role in whether the CO_2RR favors ethylene or ethanol with the maximum ethylene production found at 25°C (67%) and the maximum ethanol production found at lower temperature (up to 40%). We attribute the overall enhancement in C_2 selectivity to the reduced H_{ad} coverage, which enhances the CO_{ad} coverage to support C–C coupling during the pulsed CO_2RR . The C_2H_4 selectivity is favored at higher temperature where the cathodic pulse can reduce the majority of Cu(I) to Cu(0). On the other hand, the Cu(I) species persist at a lower temperature, causing the CO_2RR to favor C_2H_5OH . Our results establish a simple method for not only enhancing the CO_2RR selectivity toward the C_2 products but also to tailor the $C_2H_4:C_2H_5OH$ ratio through controlling the reaction temperature.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acsami.0c17668>.

Experimental methods; FE of main products of the CO_2RR under constant potentials; the current ratio of C_2/C_1 for the CO_2RR under pulsed potentials; FE and partial current densities of major products of the CO_2RR over time; CV of Cu foil in 0.1 M KOH before and after the CO_2RR ; XPS data of Cu foil before and after the CO_2RR ; Arrhenius plot of the C_2H_4 partial current density; FE of main products of the CO_2RR under pulsed potentials at 5 and 15°C; pulsed current for 5, 15, and 25°C; and the time constant of cathodic and anodic pulses ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

Jin Suntivich – Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States; orcid.org/0000-0002-3427-4363; Email: jsuntivich@cornell.edu

Authors

Zhichu Tang – Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States

Emily Nishiwaki – Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States; orcid.org/0000-0002-3419-8604

Kevin E. Fritz – Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; orcid.org/0000-0002-9033-8157

Tobias Hanrath – Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States; orcid.org/0000-0001-5782-4666

Complete contact information is available at: <https://pubs.acs.org/10.1021/acsami.0c17668>

Author Contributions

Z.T., E.N., and J.S. conceived the experimental design. Z.T., E.N., and K.E.F. conducted the experiments and analyzed the data. T.H. contributed to the discussion. Z.T. and J.S. prepared the manuscript with help from E.N. and K.E.F. All authors have approved the final version of the manuscript.

Funding

This work was supported by the National Science Foundation (NSF) under Grant No. CBET-1805400. This work also made use of the Cornell Center for Materials Research Shared Facilities which are supported through the NSF MRSEC program (DMR-1719875).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Yixu Zong, Kevin Kimura, Abigail Nason, and Don Werder for their help with the temperature-control setup, the faradaic efficiency analysis, and the Cu foil characterization.

REFERENCES

- (1) De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? *Science* **2019**, 364, No. eaav3506.
- (2) Chen, C.; Kotyk, J. F. K.; Sheehan, S. W. Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction. *Chem* **2018**, 4, 2571–2586.
- (3) Smith, W. A.; Burdyny, T.; Vermaas, D. A.; Geerlings, H. Pathways to Industrial-Scale Fuel Out of Thin Air from CO_2 Electrolysis. *Joule* **2019**, 3, 1822–1834.
- (4) Whipple, D. T.; Kenis, P. J. A. Prospects of CO_2 Utilization via Direct Heterogeneous Electrochemical Reduction. *J. Phys. Chem. Lett.* **2010**, 1, 3451–3458.
- (5) Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Norskov, J. K.; Jaramillo, T. F.; Chorkendorff, I. Progress and Perspectives of Electrochemical CO_2 Reduction on Copper in Aqueous Electrolyte. *Chem. Rev.* **2019**, 119, 7610–7672.
- (6) Li, C. W.; Kanan, M. W. CO_2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu_2O Films. *J. Am. Chem. Soc.* **2012**, 134, 7231–7234.

(7) Hori, Y. In *Modern Aspects of Electrochemistry*, No 42 *Modern Aspects of Electrochemistry*, eds Vayenas, C. G.; White, R. E.; GamboaAldeco, M. E.; Springer, 89–189 (2008).

(8) Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. *J. Mol. Catal. A-Chem.* **2003**, *199*, 39–47.

(9) Montoya, J. H.; Shi, C.; Chan, K.; Norskov, J. K. Theoretical Insights into a CO Dimerization Mechanism in CO₂ Electroreduction. *J. Phys. Chem. Lett.* **2015**, *6*, 2032–2037.

(10) Calle-Vallejo, F.; Koper, M. T. M. Theoretical Considerations on the Electroreduction of CO to C₂ Species on Cu(100) Electrodes. *Angew. Chem.-Int. Edit.* **2013**, *52*, 7282–7285.

(11) Schouten, K. J. P.; Kwon, Y.; Van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. A new mechanism for the selectivity to C₁ and C₂ species in the electrochemical reduction of carbon dioxide on copper electrodes. *Chem. Sci.* **2011**, *2*, 1902–1909.

(12) Gao, D. F.; Aran-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO₂ electroreduction towards multicarbon products. *Nat. Catal.* **2019**, *2*, 198–210.

(13) Perez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes. *Angew. Chem.-Int. Edit.* **2017**, *56*, 3621–3624.

(14) Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. Electrochemical Reduction of CO₂ Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene. *ACS Catal.* **2017**, *7*, 1749–1756.

(15) Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H.; Edwards, J. P.; Xu, Y.; McCallum, C.; Tao, L. Z.; Liang, Z. Q.; Luo, M. C.; Wang, X.; Li, H. H.; O'Brien, C. P.; Tan, C. S.; Nam, D. H.; Quintero-Bermudez, R.; Zhuang, T. T.; Li, Y. G. C.; Han, Z. J.; Britt, R. D.; Sinton, D.; Agapie, T.; Peters, J. C.; Sargent, E. H. Molecular tuning of CO₂-to-ethylene conversion. *Nature* **2020**, *577*, 509.

(16) Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X. Y.; Bell, D. C.; Norskov, J. K.; Chan, K. R.; Wang, H. T. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO₂ reduction. *Nat. Catal.* **2018**, *1*, 111–119.

(17) Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P.; Li, H. M.; Chen, P. N.; Bladt, E.; Quintero-Bermudez, R.; Sham, T. K.; Bals, S.; Hofkens, J.; Sinton, D.; Chen, G.; Sargent, E. H. Dopant-induced electron localization drives CO₂ reduction to C₂ hydrocarbons. *Nat. Chem.* **2018**, *10*, 974–980.

(18) Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Morphology-Directed Selective Production of Ethylene or Ethane from CO₂ on a Cu Mesopore Electrode. *Angew. Chem.-Int. Edit.* **2017**, *56*, 796–800.

(19) Shiratsuchi, R.; Aikoh, Y.; Nogami, G. Pulsed Electroreduction of CO₂ on Copper Electrodes. *J. Electrochem. Soc.* **1993**, *140*, 3479–3482.

(20) Kumar, B.; Brian, J. P.; Atla, V.; Kumari, S.; Bertram, K. A.; White, R. T.; Spurgeon, J. M. Controlling the Product Syngas H₂:CO Ratio through Pulsed-Bias Electrochemical Reduction of CO₂ on Copper. *ACS Catal.* **2016**, *6*, 4739–4745.

(21) Kimura, K. W.; Fritz, K. E.; Kim, J.; Suntivich, J.; Abruna, H. D.; Hanrath, T. Controlled Selectivity of CO₂ Reduction on Copper by Pulsing the Electrochemical Potential. *ChemSusChem* **2018**, *11*, 1781–1786.

(22) Engelbrecht, A.; Uhlig, C.; Stark, O.; Hammerle, M.; Schmid, G.; Magori, E.; Wiesner-Fleischer, K.; Fleischer, M.; Moos, R. On the Electrochemical CO₂ Reduction at Copper Sheet Electrodes with Enhanced Long-Term Stability by Pulsed Electrolysis. *J. Electrochem. Soc.* **2018**, *165*, J3059–J3068.

(23) Yano, J.; Morita, T.; Shimano, K.; Nagami, Y.; Yamasaki, S. Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes. *J. Solid State Electrochem.* **2007**, *11*, 554–557.

(24) Aran-Ais, R. M.; Scholten, F.; Kunze, S.; Rizo, R.; Cuenya, B. R. The role of in situ generated morphological motifs and Cu(I) species in C₂₊ product selectivity during CO₂ pulsed electroreduction. *Nat. Energy* **2020**, *5*, 317–325.

(25) Zong, Y.; Chakthranont, P.; Suntivich, J. Temperature Effect of CO₂ Reduction Electrocatalysis on Copper: Potential Dependency of Activation Energy. *J. Electrochem. En. Conv. Stor.* **2020**, *17*, No. 041105.

(26) Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. *Energy Environ. Sci.* **2012**, *5*, 7050–7059.

(27) Kimura, K. W.; Casebolt, R.; Cimada DaSilva, J.; Kauffman, E.; Kim, J.; Dunbar, T. A.; Pollock, C. J.; Suntivich, J.; Hanrath, T. Selective Electrochemical CO₂ Reduction during Pulsed Potential Stems from Dynamic Interface. *ACS Catal.* **2020**, *10*, 8632–8639.

(28) Speck, F. D.; Cherevko, S. Electrochemical copper dissolution: A benchmark for stable CO₂ reduction on copper electrocatalysts. *Electrochem. Commun.* **2020**, *115*, No. 106739.

(29) Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. Oxidation of polycrystalline copper thin films at ambient conditions. *J. Phys. Chem. C* **2008**, *112*, 1101–1108.

(30) Hori, Y.; Murata, A.; Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. *J. Chem. Soc., Faraday Trans.* **1989**, *85*, 2309–2326.

(31) Jiang, K.; Huang, Y. F.; Zeng, G. S.; Toma, F. M.; Goddard, W. A.; Bell, A. T. Effects of Surface Roughness on the Electrochemical Reduction of CO₂ over Cu. *ACS Energy Lett.* **2020**, *5*, 1206–1214.

(32) Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. *J. Phys. Chem. Lett.* **2015**, *6*, 4073–4082.

(33) In *CRC Handbook of Chemistry and Physics*, 101st Edition Rumble, J. R. CRC Press/Taylor & Francis, 2020.

(34) Schouten, K. J. P.; Qin, Z. S.; Gallent, E. P.; Koper, M. T. M. Two Pathways for the Formation of Ethylene in CO Reduction on Single-Crystal Copper Electrodes. *J. Am. Chem. Soc.* **2012**, *134*, 9864–9867.

(35) Favaro, M.; Xiao, H.; Cheng, T.; Goddard, W. A.; Yano, J.; Crumlin, E. J. Subsurface oxide plays a critical role in CO₂ activation by Cu(111) surfaces to form chemisorbed CO₂, the first step in reduction of CO₂. *Proc. Natl. Acad. Sci. U. S. A.* **2017**, *114*, 6706–6711.

(36) Eilert, A.; Cavalca, F.; Roberts, F. S.; Osterwalder, J.; Liu, C.; Favaro, M.; Crumlin, E. J.; Ogasawara, H.; Friebel, D.; Pettersson, L. G. M.; Nilsson, A. Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction. *J. Phys. Chem. Lett.* **2016**, *8*, 285–290.