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Abstract—This letter considers an M -ary hypothesis testing
problem on an n-dimensional random vector perturbed by the
addition of Gaussian noise. A novel expression for the gradient
of the error probability, with respect to the covariance matrix
of the noise, is derived and shown to be a function of the cross-
covariance matrix between the noise matrix (i.e., the matrix
obtained by multiplying the noise vector by its transpose) and
Bernoulli random variables associated with the correctness event.

I. INTRODUCTION

Hypothesis testing is a well-defined problem setting for any
detection or estimation problem and hence it is broadly used
in various areas, such as signal processing [1], information
theory [2], regression theory [3], [4] and biostatistics [5], [6].

The performance of a hypothesis testing problem is mea-
sured in terms of the error probability, which is determined
by the used decision criterion. In the binary hypothesis testing
problem, the optimum decision criterion (i.e., the one that leads
to the smallest error probability) is derived in [7] and shown
to be the so-called likelihood ratio test. For the case of an M -
ary hypothesis testing problem, the optimum decision criterion
can be obtained by minimizing the Bayes risk [8], which is
the maximum a posteriori probability decision. However, in
general settings characterizing the optimum decision regions
is not an easy task, which in turn leads to a very few
existing results on the minimum error probability. For instance,
in [9], the authors characterized the minimum error probability
of an M -ary hypothesis testing problem via two alternative
expressions. In [10], the authors provided upper and lower
bounds on the error probability of an M -ary hypothesis testing
problem in terms of the Arimoto-Rényi conditional entropy.

In this letter, we consider an M -ary hypothesis testing
problem on an n-dimensional random vector X, which is per-
turbed by the addition of Gaussian noise. We are interested in
analyzing the performance of this hypothesis testing problem
in terms of the error probability under the optimal decision
criterion. The main merit of our work is the derivation of
a novel expression for the gradient of the error probability,
which can be obtained as a function of the cross-covariance
matrix between the noise matrix (i.e., the matrix obtained by
multiplying the noise vector by its transpose) and Bernoulli
random variables associated with the correctness event. This
result can be leveraged to study the first-order behavior (in
terms of the noise variance) of the error probability. For exam-
ple, in practice, the first-order behavior of the error probability
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is often estimated by using Monte Carlo simulations, by first
estimating the error probability itself, and then approximating
the derivative by using finite differences [11], [12]. For such a
procedure to be consistent, one needs to estimate the error
probability at multiple values of the noise variance, which
can lead to a large sample complexity. Our result allows for
an alternative procedure that enables to directly study the
derivative, and hence can potentially lead to a lower sample
complexity.

II. PROBLEM STATEMENT AND MAIN RESULT

Notation. Boldface upper case letters X denote vector random
variables; the boldface lower case letter x indicates a specific
realization of X; E[·] is the expectation with respect to the
joint distribution of all the (vector) random variables inside the
brackets. [n1 : n2] is the set of integers from n1 to n2 � n1;
0n is the column vector of dimension n of all zeros; 0n⇥n is
the matrix of dimension n⇥ n of all zeros; In is the identity
matrix of dimension n ⇥ n; for a square matrix A, A�1 is
its inverse, Tr [A] is its trace, and det(A) is its determinant;
kxk is the `2 norm of x, and xT is the transpose of x; h·, ·i
is the inner product operator. Calligraphic letters indicate sets;
1A(x) is the indicator function that has value 1 for x 2 A

and value 0 for x /2 A; |A| is the cardinality of A.
We consider a framework in which an n-dimensional ran-

dom vector X is generated according to the distribution pX(·)
and then passed through an additive Gaussian noise channel.
The output of the channel is denoted by Y and given by

Y = X+N, (1)

where N – which is independent of X – is an n-dimensional
Gaussian random vector with zero mean and covariance matrix
KN. We also assume that pX(·) is not a function of KN.

Given the observation of Y in (1), we are interested in
analyzing the probability of error of an M -ary hypothesis
testing problem under the optimal decision rules [7], [8]. A
standard M -ary hypothesis testing problem consists of the
following:

1) A collection of hypothesis regions to be denoted by

Hi ⇢ Rn, i 2 [1 : M ]; and (2)

2) A collection of decision regions to be denoted by

Ri,KN ⇢ Rn, i 2 [1 : M ], (3)

where the region Ri,KN corresponds to declaring Hi.



Remark 1. We assume that both hypothesis and decision
regions are partitions. Moreover, Ri,KN , i 2 [1 : M ] in (3)
highlights the fact that the M decision regions can be a
function of the noise covariance matrix KN.

For a given collection of hypothesis and decision regions,
the probability of error is given by

pe(n,KN) =
X

i2[1:M ]

Pr (Y /2 Ri,KN |Hi) Pr(Hi)

= 1�
X

i2[1:M ]

Pr (Y 2 Ri,KN |Hi) Pr(Hi). (4)

The next theorem (the proof of which is provided in Sec-
tion III) is the main result of this work. The theorem pro-
vides an expression for the gradient of the error probability
pe(n,KN) of an M -ary hypothesis testing problem.

Theorem 1. Given an observation Y = X+N, where N ⇠

N (0n,KN) with positive definite KN, consider a hypothesis
testing problem with M hypotheses Hi, i 2 [1 : M ] on X, and
corresponding decision regions Ri,KN . Then,

rKNpe(n,KN)=�
K�1

N Cov
�
NNT, 1A(X,Y)

 
K�1

N

2
, (5)

where

A =
[

i2[1:M ]

{(X,Y)|X 2 Hi,Y 2 Ri,KN} (6)

is the event of correctness and where Cov
�
NNT, 1A(X,Y)

 

is the cross-covariance matrix between NNT and 1A(X,Y).

By applying the fundamental theorem of calculus on (5),
we readily obtain the next corollary.

Corollary 1. Assume positive definite KN,1 and KN,2. Let
Ñ ⇠ N (0n, K̃) and Ỹ = X+ Ñ. Then,

pe(n,KN,2)� pe(n,KN,1)

=�

Z

C

*
K̃�1Cov

n
ÑÑT, 1A(X, Ỹ)

o
K̃�1

2
, dK̃

+
, (7)

where C is an arbitrary path from KN,1 to KN,2 that preserves
the positive definite property.

The following lemma simplifies (5) when KN = �2In.

Lemma 1. For the case of independent and identically dis-
tributed Gaussian noise, i.e., N ⇠ N (0n,�2In), we have

@

@�2
pe(n,�

2In) = �
1

2�4
Cov

�
||N||

2, 1A(X,Y)
 
. (8)

Proof: When KN = �2In, the expression in (5) becomes

rKNpe(n,�
2In) = �

1

2�4
Cov

�
NNT , 1A(X,Y)

 
. (9)

Moreover, we have that

@

@�2
pe(n,�

2In) = Tr

⇥
rKNpe(n,�

2In)
⇤T @�2In

@�2

�
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Fig. 1: Derivative of the error probability for the permutation
recovery problem versus �2 for different values of n.
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2�4
Cov

�
Tr

⇥
NNT

⇤
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= �
1

2�4
Cov

�
||N||

2, 1A(X,Y)
 
, (10)

where the first equality follows by using the chain rule in [13,
eq.(137)], and the second equality follows by using (9).

We next present an example that showcases how our result
can be used to study limiting behaviors of the error probability.
Example. Let X ⇠ N (0n, In) and Y = X + N with
N ⇠ N (0n,�2In). Given the noisy observation Y, according
to which permutation (among the n! possible ones) was X
sorted? This question falls within the topic of recovering
the structure (i.e., permutation) of noisy data, as recently
analyzed in [14] and references therein. In [15], the authors
characterized the structure of the optimal decision regions by
showing that Ri,KN = Hi, i 2 [1 : n!]. However, in [15]
a question remained open: How does the error probability
behave in the low noise regime? Using the result in (5), we can
gain insights helpful to answer this question, as we describe
next. Fig. 1 empirically shows the behavior of @

@�2 pe(n,�2In)
versus different values of �2 and for several values of n.
From Fig. 1, we observe that the error probability has a steep
behavior with respect to �2, hence suggesting that even a slight
increase of the noise variance results in large increases of
the error probability. We also observe that this noisy behavior
becomes more remarkable as n increases and that the slope
seems to be infinite when � ! 0. Consequently, we have
obtained some insights into the behavior of the minimum
probability of error. Note that obtaining similar insights (e.g.,
slope of the error probability) by computing the probability of
error using the Monte Carlo method would have been a more
computationally involved task. ⇤

III. PROOF OF THEOREM 1
We start by noting that the probability of correctness asso-

ciated with the hypothesis Hi, i 2 [1 : M ] is

pc(n,KN,Hi) =

Z

y2Rn

1Ri,KN
(y)fY(y,Hi) dy,



where fY(y,Hi) is defined as

fY(y,Hi) = fY(y|Hi) Pr(Hi), i 2 [1 : M ], (11)

and Ri,KN is the optimal decision region for Hi in (3) when
the noise covariance is KN. Then, the probability of correct-
ness of the hypothesis testing problem can be computed as

pc(n,KN) =
X

i2[1:M ]

pc(n,KN,Hi)

=
X

i2[1:M ]

Z

y2Rn

1Ri,KN
(y)fY(y,Hi) dy

=

Z

y2Rn

X

i2[1:M ]

1Ri,KN
(y)fY(y,Hi) dy,

where the last equality follows by using the Fubini-Tonelli
theorem [16]. Since pe(n,KN) = 1� pc(n,KN), we obtain

pe(n,KN) = 1�

Z

y2Rn

MX

i=1

1Ri,KN
(y)fY(y,Hi)dy. (12)

We now claim that the gradient of the probability of error with
respect to KN is given by (5). In order to verify this claim,
it is sufficient to show the following equation, which follows
from the fundamental theorem of calculus for line integral,

Z

C

hrrpe(n, r), dri = pe(n,KN)� pe(n, 0n⇥n)

= pe(n,KN), (13)

where C is an arbitrary path from 0n⇥n to KN that preserves
the positive definite property, and where we let the probability
of error be zero for the noiseless case, i.e., when KN = 0n⇥n.

By defining r(t) = KNt = tKN, we obtain
Z

C

hrrpe(n, r), dri =

Z 1

0

⌦
rr(t)pe(n, r(t)), r

0(t)
↵
dt

=

Z 1

0
Tr

h⇥
rr(t)pe(n, r(t))

⇤T
r0(t)

i
dt, (14)

where the last equality follows since Tr[·] is the inner product
operator over the space of matrices, particularly, hA,Bi =
Tr[ATB] = Tr[ABT ].

With the goal to show that (13) holds, we now substitute (5)
inside (14), where remember that r(t) = KNt = tKN, and
hence r0(t) = KN. In order to highlight the fact that the
gradient depends on t, we use the notation Nt,Yt,At when
the noise covariance KNt is used. With this, and by using
symmetry of the covariance matrix, we obtain
Z

C

hrrpe(n, r), dri

=

Z 1

0
Tr


�
1

2
K�1

Nt
Cov

�
NtN

T
t , 1At(X,Yt)

 
K�1

Nt
KN

�
dt

(a)
=

Z 1

0
Tr


�
1

2
E [⌦(Nt)1At(X,Yt)]KN

�
dt

(b)
=

Z 1

0
Tr

2

4�1

2
E

2

4⌦(Nt)
X

i2[1:M ]

1Hi(X)1Ri,t(Yt)

3

5KN

3

5 dt

(c)
=

Z 1

0

X

i2[1:M ]

Tr


�
1

2
E
⇥
⌦(Nt)1Hi(X)1Ri,t(Yt)

⇤
KN

�
dt

(d)
= �

Z 1

0

X

i2[1:M ]

Tr


Pr[Hi]E


⌦(Nt)1Ri,t(Yt)

2

���� Hi

�
KN

�
dt,

(15)

where the labeled equalities follow from: (a) the definition of
covariance and by defining

⌦(!) = K�1
Nt

!!TK�1
Nt

�K�1
Nt

; (16)

(b) letting Ri,t = Ri,KNt
for shorthand, and using A defined

in (6) by recalling that the hypothesis and decision regions
are partitions; (c) the fact that Tr[·] and E[·] are linear
operators; and (d) the fact that E [f(·)1S(X)] = Pr(X 2

S)E [f(·) | X 2 S].
Since Nt = Yt �X, the trace in (15) can be expressed as

Tr


Pr[Hi]E


⌦(Yt �X)1Ri,t(Yt)

2

���� Hi

�
KN

�

(a)
= Tr

"
Pr[Hi]E

"Z

y2Ri,t

⌦(y �X)fNt(y �X)

2
dy

�����Hi

#
KN

#

(b)
=

Z

y2Ri,t

Tr


Pr[Hi]E


⌦(y �X)fNt(y �X)

2

����Hi

�
KN

�
dy

(c)
=

Z

y2Ri,t

Tr
⇥
rKNt

fYt(y,Hi)KN

⇤
dy

(d)
=

Z

y2Ri,t

@fYt(y,Hi)

@t
dy, (17)

where the labeled equalities follow from: (a) the definition of
expected value; (b) using Fubini-Tonelli theorem [16], which
is verified from the fact that E

⇥
1
2⌦(Yt �X)1Ri,t(Yt)

�� Hi

⇤

is a finite matrix and the fact that Tr[·] is a linear operator;
(c) using Lemma 2 (below); and (d) using the chain rule for
the derivative of structured matrices [13, eq.(137)].

By substituting (17) into (15), we obtain
Z

C

hrrpe(n, r), dri

= �

Z 1

0

X

i2[1:M ]

Z

y2Ri,t

@fYt(y,Hi)

@t
dy dt

= �

Z

y2Rn

Z 1

0

X

i2[1:M ]

@fYt(y,Hi)

@t
1Ri,t(y) dt dy, (18)

where the last equality follows by the Fubini-Tonelli theo-
rem [16].

We now analyze the integrand in (18). By using the result
in Lemma 3 (below), we can restrict our attention to y’s that
belong to the interior of Ri,KN . Thus, we have

@fYt(y,Hi)1Ri,t(y)

@t

=
@fYt(y,Hi)

@t
1Ri,t(y) + fYt(y,Hi)

@1Ri,t(y)

@t

=
@fYt(y,Hi)

@t
1Ri,t(y), (19)



where the second equality follows by leveraging the result in
Lemma 4 (below), i.e., the continuity property of 1Ri,t(y)
implies that it is also differentiable (because of the property
of indicator function), and hence

@1Ri,t (y)

@t = 0. Consequently,
we can rewrite (18) as
Z

C

hrrpe(n, r), dri

= �

Z

y2Rn

Z 1

0

X

i2[1:M ]

@fYt(y,Hi)1Ri,t(y)

@t
dt dy

= �

Z

y2Rn

X

i2[1:M ]

fY1(y,Hi)1Ri,1(y)�fY0(y,Hi)1Ri,0(y) dy

(a)
= pe(n,KN)� 1� pe(n, 0n⇥n) + 1

= pe(n,KN), (20)

where the equality in (a) follows by using (12).
The expression in (20) is equivalent to (13), and hence the

proof of Theorem 1 is concluded.

A. Ancillary Results
We here state and prove three lemmas, which we have used

in the proof of Theorem 1.

Lemma 2. Let eX = y �X. Then,
1

Pr(Hi)
rKNfY(y,Hi)

=
1

2
E
h
fN(eX)

⇣
�K�1

N +K�1
N

eXeXTK�1
N

⌘ ��� Hi

i
. (21)

Proof: We start by noting that, by using the chain rule,
we obtain

rKN ln fN(n) =
1

fN(n)
rKNfN(n). (22)

Then, we have that
1

Pr(Hi)
rKNfY(y,Hi)

(a)
=rKNE [fN(y �X) | Hi]

(b)
= E [rKNfN(y �X) | Hi]

(c)
=E [fN(y �X)rKN ln fN(y �X) | Hi]

(d)
=

1

2
E
h
fN(eX)

⇣
�K�1

N +K�1
N

eXeXTK�1
N

⌘ ��� Hi

i
, (23)

where the labeled equalities follow from: (a) using (11) and
fY(y|Hi) = E [fN(y �X)|Hi]; (b) the Leibniz rule which is
here trivially verifiable [16]; (c) using (22); and (d) using the
gradient rules (see [13] for details). This concludes the proof
of Lemma 2, which we have used in step (c) in (17).

Lemma 3. Let @Ri,KN , i 2 [1 : M ] be the boundary of the
set Ri,KN . Then, @Ri,KN is a set of Lebesgue measure zero
for all i 2 [1 : M ].

Proof: The proof is by contradiction, i.e., we assume
that @Ri,KN is a set of positive measure, and we show that
this leads to a contradiction. Note that, since @Ri,KN is the
boundary of a decision region, then by the optimal decision

criterion in [8, Appendix 3C], there must exist j 6= i such that
fY(y,Hi) = fY(y,Hj), for all y 2 @Ri,KN . We now
leverage two well-known properties: (i) a convolution with
Gaussian preserves analyticity [17], and hence fY(y,Hi) is
an analytic function for every i 2 [1 : M ]; and (ii) two analytic
functions in Rn that agree on a set of a positive measure must
be equal everywhere [18], and hence, for all y 2 Rn, we have

fY(y,Hi) = fY(y,Hj). (24)

By using characteristic functions, it is a standard exercise to
show that if the outputs of the probability density function are
the same, so are the input distributions [16]. Therefore, for all
measurable sets B ✓ Rn, we have

Pr(X 2 B,X 2 Hi) = Pr(X 2 B,X 2 Hj). (25)

However, since Hi and Hj are disjoint (Remark 1), choosing
B=Hi leads to a contradiction since Pr(X 2 Hi,X 2 Hi) 6=
Pr(X 2 Hi,X 2 Hj) = 0. This concludes the proof of
Lemma 3 (used to analyze the integrand in (18)).

Lemma 4. For any (i, j) 2 [1 : M ]2 if y belongs to the
interior of Ri,t, then 1Rj,t(y) is continuous in t.

Proof: The proof is by contradiction, i.e., we assume that
1Rj,t(y) is discontinuous1 in t and we show that this leads
to a contradiction. Let ỹ 2 Ri,t̃ be a fixed point. Assume
that 1Ri,t(ỹ) is discontinuous at t = t̃ > 0. Without loss of
generality, we can assume that ỹ 2 Ri,t when t ! t̃+ and
that ỹ 2 Rj,t, j 6= i when t ! t̃�. From the optimal decision
rule [8], we then get the following two inequalities

lim
t!t̃+

(fYt(ỹ,Hi)� fYt(ỹ,Hj)) > 0, (26)

lim
t!t̃�

(fYt(ỹ,Hi)� fYt(ỹ,Hj)) < 0. (27)

Letting g(t, ỹ) = fYt(ỹ,Hi) � fYt(ỹ,Hj), we hence have
that g(t, ỹ) is a discontinuous function in t, where the discon-
tinuity occurs at t = t̃. However, for t̃ > 0 we have

lim
t!t̃

fYt(ỹ,Hi) = Pr(Hi) lim
t!t̃

E [fNt(ỹ �X)|Hi]

(a)
= Pr(Hi)E


lim
t!t̃

fNt(ỹ �X)|Hi

�

(b)
= Pr(Hi)E

⇥
fNt̃

(ỹ �X)|Hi

⇤
= fYt̃

(ỹ,Hi), (28)

where the labeled equalities follow from: (a) using the dom-
inated convergence theorem, which is verified since

E [fNt(y �X)|Hi] < E
h
(2⇡det (KNt))

�
n
2

i
< 1, (29)

where the last inequality follows by recalling that KNt = tKN

where KN is positive definite, and t ! t̃ with t̃ > 0; and (b)
since fNt(y�X) is continuous. The equation (28) shows that
fYt(ỹ,Hi) is continuous in t, which implies that g(t, ỹ) is
continuous in t. This contradicts the assumption and concludes
the proof of Lemma 4 (used in the proof of (19)).

1To prove this claim, it is sufficient to consider only jump discontinuity
since the removable discontinuity cannot happen.
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