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Abstract

Unlimited access to a motorway network can, in overloaded conditions, cause a loss
of throughput. Ramp metering, by controlling access to the motorway at onramps, can
help avoid this loss of throughput. The queues that form at onramps are dependent on
the metering rates chosen at the onramps, and these choices affect how the capacities
of different motorway sections are shared amongst competing flows. In this paper we
perform an analytical study of a fluid, or differential equation, model of a linear network
topology with onramp queues. The model allows for adaptive arrivals, in the sense
that the rate at which external traffic enters the queue at an onramp can depend on the
current perceived delay in that queue. The model also includes a ramp metering policy
which uses global onramp queue length information to determine the rate at which
traffic enters the motorway from each onramp. This ramp metering policy minimizes
the maximum delay over all onramps and produces equal delay times over many
onramps. The paper characterizes both the dynamics and the equilibrium behavior
of the system under this policy. While we consider an idealized model that leaves
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out many practical details, an aim of the paper is to develop analytical methods that
yield interesting qualitative insights and might be adapted to more general contexts.
The paper can be considered as a step in developing an analytical approach towards
studying more complex network topologies and incorporating other model features.

Keywords Dynamic traffic network model - Ramp metering - Global delay
minimization - Adaptive arrivals - Feedback signals - Equilibrium states - Long run
behavior

Mathematics Subject Classification 90B10 - 90B20 - 93B52 - 37N35

1 Introduction

Once motorway traffic exceeds a certain threshold level (measured in terms of
density—the number of vehicles per mile) both vehicle speed and vehicle throughput
drop precipitously [8,17]. The smooth pattern of flow that existed at lower densities
breaks down, and drivers experience stop-go traffic. Maximum vehicle throughput
(measured in terms of the number of vehicles per minute) occurs at quite high speeds—
about 60 miles per hour on Californian freeways and on London’s orbital motorway,
the M25—while after flow breakdown the average speed may drop to 20-30 miles
per hour. Particularly problematic is that flow breakdown may persist long after the
conditions that provoked its onset have disappeared.

Ramp metering (signals on the onramps to control access to the motorway) can
limit the density of vehicles, and thus can avoid the loss of throughput [13,15,18].
But there are many choices of metering rates that keep the density of vehicles below
threshold levels, and difficult choices need to be made: if more traffic is allowed to
join the motorway at one onramp then less may be allowed to join at the next onramp,
with consequences for the queueing times at the different onramps.

Early work on ramp metering considered just a single ramp meter, with rates deter-
mined by historical data, and in later work, by real-time data. More recent work has
concentrated on integrated network traffic control, where ramp meter rates are set
in a coordinated fashion. Papageorgiou and Kotsialos [15] give a survey of earlier
literature, and demonstrate, via a simulation based on historical data, the power of
coordinated controls to reduce congestion. Zhang and Wang [19] give a nice survey
of more recent work on coordinated ramp controls, and propose a hierarchical con-
trol approach, where the choice of ramp meter settings is given as a multiobjective
optimization problem with priorities attached to the varying objectives.

Sections of the motorway are often modelled as compartments, as in the cell trans-
mission model first proposed by Daganzo [4,5], where the emphasis is on modelling
flow along the motorway, and the speed of flow within compartments and from com-
partment to compartment is modelled in some detail. Particularly notable here is Gomes
et al. [9], which shows that in a discrete time cell transmission model with station-
ary demand, a linear motorway will experience a number of bottleneck points with
behaviour upstream linked to their capacity, a feature we shall see arises, in the form
of choke points, in the model we study below. In the setting of the cell transmission

@ Springer



Applied Mathematics & Optimization

model in continuous time with constant demand, Coogan and Arcak [3] develop aramp
metering rule that optimizes throughput, and for a linear network, again displays the
bottleneck features seen earlier in Gomes et al. Furthermore, when demand exceeds
capacity, there is a unique equilibrium flow within the network.

A common assumption in these papers and other earlier work on ramp meters is
that while controls and delays may affect traffic assignment and routing, the external
demand remains fixed, or if not fixed, varies over time independently of the control.
For an example of the latter, see Sumalee et al. [16], where Gaussian noise is added
to an underlying deterministic demand, which can vary over time. In a very nice
recent paper, Mandjes and Storm [14] model stochastic demand using Poisson arrival
streams, and their results can be generalized to time varying arrival rates, but again,
those rates do not depend on the current state of their network. However, as real time
information about network delays increases in both accuracy and availability, it will
be increasingly important to understand interactions between controls and demand.

This paper analyzes the effects of dynamic external demand, which decreases as
delay increases, interacting with a controller obtained by minimizing the maximum
delay over all onramps. The emphasis here is on the queueing delays at onramps.
We make the simplifying assumption that there is a maximal carrying capacity on
each section of the motorway, which cannot be exceeded, but do not include in this
model the details of flow along the motorway. The maximal carrying capacity could
be chosen in various ways, e.g. to be some fraction of the maximum density, or the
maximal capacity under which free flow at a certain speed can be maintained.

The addition of dynamic demand raises interesting questions. With this additional
feature, do the controls (and flows) converge to a unique equilibrium? And does a
bottleneck phenomenon similar to that described in Gomes et al. arise? We show
below that, with dynamic demand and under mild assumptions, the answer to both these
questions is yes. Furthermore, we show that the dynamics of the system are governed
by bottlenecks (called chokepoints here), whose locations can change dynamically
with time.

1.1 The Control Policy we Analyze

In this paper we develop a modeling approach, and associated analytical methods,
to explore control of ramp metering rates in situations where the potential motorway
drivers know the current (perceived) wait time for motorway access (at each onramp).
This driver behavior is incorporated in our model by allowing the rate of arrival of
external traffic to an onramp (called the arrival rate function) to be a decreasing function
of the current queue length there. For this situation we describe a “delay minimizing”
ramp metering control policy and analyze how onramp queue lengths behave when it
is in effect. Our methods are analytical, rather than simulation based. This allows us
to deduce qualitative information that does not depend on details of the model such
as fine structure of the arrival rate function.

The control policy we study uses knowledge of the queue lengths m; at each onramp
i and is designed to minimize the current maximum wait time (delay) over all onramps,
subject to the constraint that traffic on the motorway does not exceed its capacity. We
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characterize this policy using a linear program (hence easily implementable provided
one knows the m;), and then analyze properties of the controlled system. The system
behavior turns out to be dominated by traffic “bottlenecks” (we call them choke points).
An interesting result is that under this minmax delay controller, all onramps upstream
of the first bottleneck experience the same delay as the bottleneck onramp. If there is a
second bottleneck, then all onramps between the first and second experience the same
delay as the second bottleneck, which is less than that experienced at and upstream of
the first bottleneck, and so on. So the ramp metering policy developed in this paper
will yield the same delays at all onramps if there is just a single bottleneck, i.e., it is
located at the final onramp in the sequence. Moreover, the approach in this paper can
be modified to produce prescribed ratios of delays along the onramps.

The paper also proves (under mild assumptions) that the delay d;(¢) at time ¢ at
the i"" onramp converges to an equilibrium as  — oo. Bottleneck locations are
functions of time and we prove that they also converge as t — oco. We prove this
initially for the first bottleneck and then extend the results to downstream onramps with
some additional assumptions. While not conclusive about practical performance, this
gives evidence that the system is not prone to chattering (e.g. a bottleneck perpetually
jumping back and forth from one onramp to another, or delays varying capriciously).
We emphasize that all of these findings depend only on the monotonicity of the arrival
rate function and do not depend on its detailed form.

The model can be used to explore questions such as where bottlenecks arise; what
happens to throughput when capacities (in some literature these are called target flows)
are changed. Thus it can be used to address issues such as where additional capacity
should be added to obtain the most benefit; and where should capacity be added in
order to equalize delays at all onramps. The detailed answers to these questions will
depend on the particular form of the arrival rate function, however.

1.2 Modeling Choices

One of the assumptions in our model is that both the controller and the drivers in the
arrival stream are operating with the same information on the delay at each onramp.
One justification for this situation is that drivers can now access crude, lagged estimates
of queueing delays from information sources such as traffic apps. Possibly, if control
policies such as the one considered here were implemented, then more accurate and
timely information would be widely distributed.

We deliberately do not model the measurement and estimation of vehicle volumes,
an essential aspect of the closed loop control used to link ramp inflow to the target
flows on the motorway in works such as [1].

In addition, much of the more detailed information practically available pertains to
the state of traffic flow on the motorway and is approximated in our model by a simple
constraint that flow does not exceed given capacity constraints. Refining the model
much, to add realism, would likely force one to abandon analytic methods and be
approachable only via simulations. In contrast to refinements, future generalizations
in various directions might well be possible.
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We address equity by choosing to minimize the maximum delay over all of the
onramps. Other approaches to equity have been to equalize the average delay at all
onramps (see e.g. Zhang and Wang [19]); that article did not allow arrivals to adapt to
the perceived delay however.

There are many different models in the literature. For example, contrasting with
our work is the recent paper of Como and Nilsson [2], which is an analytical study
of a model for the control of motorway outflows. On the other hand, after analysis of
a traffic model, Coogan and Arcak [3] introduce a linear programming approach to
ramp metering.

1.3 Generalizations and a Guide for the Reader

The next section states our model and results precisely. Section 3 presents key differ-
ential equations and a few very accessible facts, including properties of the equilibria
of the system. Section 4 presents the (rather involved) proofs that delays and choke
points have good asymptotic behavior. The final section discusses some of the sub-
tleties of the minmax delay controller and describes more general motorway models
and extensions of the minmax delay controller to them. One extension is the use of
weights to adjust the wait times at onramps. Another is how to treat motorways with
offramps (in addition to onramps).

2 Model Description and Main Results

In this section we give a detailed description of our model, and the minmax delay
controller that we study in this paper. We outline the main results of the paper, including
a characterization of the equilibrium behavior and dynamics of the model.

2.1 Model Formulation
2.1.1 Traffic Network Model Setup

We consider a fluid (differential equation) model for the flow of traffic in a linear
network with onramp metering control and feedback of congestion information. The
notation used here is similar to that of Kelly and Williams [12], where a related model
was first introduced. Our model can be imagined as one for the flow of traffic on a
motorway leading to a city centre, where all traffic has a common final destination.
A variant of this model permits traffic to depart the network at off ramps before the
final section of motorway is reached (see Sect. 5.2). (While our basic model structure
is similar to that in [12], they studied a model with given (stochastic) arrivals under a
proportionally fair onramp metering policy. Here we consider a model with adaptable
deterministic arrivals under an onramp metering policy that minimizes the overall
maximum delay. Note also that the labelling of motorway sections in this paper is in
the reverse order from that in [12].)
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The linear traffic network has successive sections of motorway labelled 1, 2, ..., N.
Traffic entering at section i passes through all of the sections j > i before leaving
the network (see Fig. 1). We assume that section i has a fixed carrying capacity C;,
1 <i<N,with0<C; <Cy <C3 <--- < Cy < 00. The capacity C; is the
maximum rate at which traffic can flow along the ith section of the motorway. We
assume that the only sources of traffic for the motorway come from waiting lines or
queues at onramps for each of the N sections of motorway. We also assume that traffic
entering section i at rate A; simultaneously uses the same capacity A; from each of
the sections i, i 4+ 1, ..., N. This modeling assumption corresponds to a time-scale
separation (refered to as the snapshot principle in [12]) where the time for onramp
queues to vary is much longer than the time to pass through sections of the road. (The
model can be modified to allow exogenous inflow of traffic to section 1 at a positive
constant rate Cp < C7. This can be analyzed in a similar manner to what we do here,
by replacing C; by C; = C; — Cp. Consequently, we only treat the Cy = 0 case here.)

Let m;(t) denote the size of the ith queue, at the onramp to the ith section of
the motorway, at time ¢, and let m(t) = (m(t), ma(t), ..., my(t)). From a systems
perspective, m(t) is the state of our system at time . We assume that m is a Lipschitz
continuous function of time that takes values in Rﬁ . Inparticular, m; (¢) is non-negative
and real-valued. This is consistent with a fluid model of traffic flow, in which we regard
m;(t) as the amount (or mass) of traffic queued at onramp i at time ¢, and arrivals to
and departures from the queue will be flows into and flows out of the queue.

We assume that queue 7, for 1 <i < N, has a ramp meter which controls the rate
at which traffic flows from that queue onto the i¢% section of the motorway. This paper
examines a natural algorithm for selecting the vector of ramp meter rates as a function
A : RY — RY of the current state of the system, so that A;(m(t)) is the ramp meter
rate for queue i at time ¢, given the system state m(¢) at time ¢. This vector of rates
A(m((t)) = (Ay(m(t)), ..., Axy(m(t))) needs to be chosen so that the rate of flow of
traffic on any section of the motorway does not exceed its capacity, i.e.,

Y Aim@) <Cj,  1<j<N. @.1)

ii<j

We only consider ramp meter functions A(-) that have the property that for each
m € Rﬁ andi € {1,..., N}, A;(m) > 0 whenever m; > 0.

Given a ramp meter function A : Rﬁ — Rﬁ and m € RY, we define for i =
I,..., N,

0  ifm; =0. (2:2)

di(m) = {% if m; >0,
We call d;(m) the current delay at queue i associated with the state m. Given the
current state m () of the system, the current delay at queue i is defined to be d; (m(t)).
This is the amount of time that queue i would take to clear if no further traffic entered
it after time ¢, and the current metering rate A; (m(¢)) were to remain constant until
the queue clears.
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p1 (dl) = arrival rate to queue 1 g
m2 |4+——>

L AZ(m)
ml '—H
Al (m) = ramp meter rate for queue 1
CO Cl = capacity of section 1 CZ
size of queue 1
Fig. 1 Schematic of the ramp meter model with two onramps, N = 2. Upstream is to the left and

downstream is to the right of a given location. The motorway gains capacity as one moves downstream.
Here d1 =dy,d2 =dy,ml =my and m2 = my

The arrival rate to queue i is adaptive in the sense that it is determined by a function
pi : Ry — (0, 00) of the current delay at queue i, so that p; (d; (m(t))) is the arrival
rate to queue i at time . We assume that p; is a uniformly Lipschitz continuous and
strictly decreasing function, and that p; (s) — Oass — oco.Letp = (p1, ..., py) and
call it the arrival rate function for the system. We shall later impose some additional
conditions on p in order to study the long run dynamic behavior of our system (see
Sect. 2.3).

2.1.2 System Dynamics

Given a ramp meter function A and the arrival rate function p, we assume that for each
i, the function m; : [0, oo) — R is Lipschitz continuous and evolves as follows (for
more detail see Sect. 3.1). For almost every ¢ > 0,

+

fl—tml'(t) = pi (di(m(1))) — Ai(m(t)), 1=<i=N, 2.3)

+ . . . . .
where [fi_z is the usual right hand derivative. Of course, at a time ¢ > 0 where m; (t)

.. . T ..
is differentiable, ”fi—t is the usual derivative. However, as we shall see, due to the non-

negativity constraints on m;, and control switching from one regime to another, our
m;(-) can have points where it is not differentiable. We do not assume that there is
a unique solution of the above system of differential equations, but simply that m (-)
satisfies this system.

Remark 2.1 To ensure that m; (-) stays in R, we want at times ¢ > 0 where m; (1) = 0
that the right member of (2.3) is non-negative. We will ensure this by assuming that
A;(m) = 0 when m; = 0. This ensures that if m; (-) reaches zero, then it will imme-
diately return to a strictly positive value, since d;(m) = 0 if m; = 0 and p;(0) > O.
Although this assumption means that there is no onflow to the motorway from onramp
i when the queue there is empty, we will show that the set of times at which this occurs
is negligible and so the choice of A;(m) at such points is not of practical significance.
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Nevertheless, other choices may be possible if we make additional assumptions. For
example, if we assume that p; (0) > C;, then no matter how A;(m) is defined when
m; = 0, the right hand derivative of m; () when m;(¢) = 0 will be strictly positive,
whenever it exists.

2.1.3 Ramp Meter Rate Control Policy

We shall analyze the system dynamics when the ramp meter rate function A : Rﬁ —
Rﬁ is chosen such that for each m, A (m) minimizes the maximum delay at all onramps.
More precisely, for fixed m € Rﬁf , A(m) is chosen to be a minimizer for the following
minimization problem:

minimizeAeRZ max {’:\i} such that Z A <Cjforl<j<N. (24

1<i<N

i ii<j
In the above, we make the convention that m; /A; = 0 if m; = 0 and equals +oo if
m; > 0, A; = 0. The latter ensures that A;(m) > 0 if m; > 0 and that the value of
the optimization problem is zero if m = 0, in which case, we shall take A(m) = 0.
Fortunately, despite the seeming nonlinearity of (2.4), upon denoting max<;<y ’/’\’—t
asd andlettingA; = d A;, one can see how to find such a control policy A (-) by solving
the following linear program in the variables d, . (A technical point: if m; = 0, then
we take A;(m) = 0, and their ratio d; (0) is set to be O (as in (2.2)), and if m; #~ 0 the
constraints force A;(m) # 0. This allows us to pass back and forth between (2.4) and
(2.5)—(2.7).)
Minmax delay controller LP For fixed m € Rﬁ , let (d f‘ (m), A(m)) be a minimizing
solution for the following linear program:

df(m) = mi”AeRﬁ d 2.5)
such that
m; <XA;j, 1<i<N, (2.6)
d a=dCj 1<j=N. 2.7)
ii<j

When the optimal value d (m) # 0, for a minimizing solution (d} (m), A(m)), we
define the control policy A;(m) fori =1,2,..., N, by

Ai(m) - .
Aij(m) = { dim) ?fm‘ >0, (2.8)
0 lfm,- =0.

When the optimal value dj (m) = 0, then we define A;(m) =0fori =1,..., N.
We warn the reader that the above LP may not determine the control policy uniquely.
In particular, when the constraint (2.7) is not binding, the X; (m) may be not uniquely

@ Springer



Applied Mathematics & Optimization

determined. Later, when better motivated, we shall add conditions which determine
the control policy uniquely (see Sect. 2.2.2).

Much of the rest of the paper is devoted to analyzing the system (2.3) when a
minmax delay controller is used for it.

2.2 Properties of the Control Policy

The minmax delay controller LP can be solved explicitly for all onramps upstream of
a certain onramp, which we call the first chokepoint (defined formally below). In the
first subsection we give expressions for the optimal control policy upstream of that first
chokepoint and show that delays at all these upstream onramps are equal. Downstream
of the first chokepoint, the minmax delay controller LP does not give unique solutions.
In the second subsection we propose a successive delay minimization algorithm for
the onramps downstream of the first chokepoint, and give expressions for the optimal
rate control and delays at those onramps under this algorithm.

2.2.1 Formulas for the Controller Upstream of the First Choke Point
The minmax delay controller LP for the linear traffic network considered here can be

solved explicitly.
Given m € Rﬁ, let M; = Ziﬁjmi forj =1,2,...,N.Since ,; = m;, i =

1,2,..., N is feasible for the linear program, it is easy to see that the value of the LP
is
. M;
dy (m) := max —-. 2.9)
i Cj

Let ji(m) = max{j : M;/C; = dj (m)}, and call it the (first) choke point associated
withm. Let J1(m) = {j : j < j1(m)}, the set containing jj (m) and onramps upstream
from j;(m), and f1 (m) = {j : j > ji(m)}, the complement of Jj(m), containing
onramps downstream from j; (). It is straightforward to see from the above that d} (-)
is a continuous function on Ri’ and j; (+) is an upper semicontinuous function on RY,
ie., limsup,,_,,,  ji(m) < ji(mo), for all mg € Rf.

Note that if m = 0, then dj (m) = 0 and recall that if m; = 0, then d;(m) = 0.
Henceforth, the notation m > 0 will mean that m; > O fori = 1,..., N. The
next proposition characterizes the behavior of the delays at, or upstream of, the first
chokepoint when m > 0.

Proposition 2.2 Fix m € R’} satisfying m > 0. Then

L di(m) =d{(m), for i=1,..., ji(m).
2. Ai(m) =m;, A;(m) = % for i=1,..., j1(m).

3. Zifjl(m) Ai(m) = Cjym).
4. The solutions A;(m) : 1 <i < ji(m) and df (m) to the LP are unique.
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The proposition tells us that on {m € Rﬁ : m > 0}, the control values A;(-) for
i < ji(m), i.e., at or upstream from the first choke point, have excellent properties.
Downstream values are highly nonunique and Sect. 2.2.2 addresses that.

Proof Fix m > 0. Then d{(m) > 0 and a minimizing solution, A(m), for the LP
satisfies

M.
My = Y, mi< Y xi(m) < dfm)Cjm = D C v my = My,
i<j1(m) i<j1(m) )

(2.10)

and so all of the inequalities are equalities. Since m; < A;(m) for all i, we then obtain
m; = Xi(m) fori < jj(m), and by the definition of A (m),

£m)Ai(m) = Ai(m) = m; fori =1,..., ji(m). @2.11)

So fori < ji(m), Aj(m) = m;/d{(m) is uniquely determined, and the delay d; (m)
atramp 7 is % = d{ (m). This establishes Items 1 and 2 of the proposition.
Furthermore, by (2.10),

Zi</’ (m) Ai(m)
D Ailm) = _(’;TT = Cjiom:

i<j1(m)

and Item 3 follows.
The uniqueness in Item 4 follows immediately from the formulas in (2.9) and Item 2.
(]

2.2.2 Successive Delay Minimization Controller

For m e Rﬁ , although the A;(m) are uniquely determined at and upstream of the
first choke point, that is for i < jj(m), this is not the case for i > jj(m). One
reasonable way to select the A;(m) for i > jj(m) is by successive maximum delay
minimization, which we now describe. The basic idea is to pretend that the motorway
starts at the first choke point, jj(m), focus on what is happening downstream from it,
and just apply the minmax delay contol algorithm there. This produces its own first
choke point j,(m), which of course is the second choke point for the motorway as a
whole. We proceed down the motorway in this fashion, thereby producing choke points
Ji(m), ..., jkm)(m)and associated successive minmax delays dj (m), .. ., dl*((m) (m)
where K (m) is the total number of choke points, which depends on m. In a similar
manner to that for the first choke point, this leads to explicit formulas for the successive
minmax delays, choke points and control laws, which we now describe via an inductive
procedure.

Let dik (m), j1(m), J1(m) be defined as in Sect. 2.2.1. Suppose that successive min-
max delays, df (m), ...,d;_,(m) and choke points, 1 < ji(m) < --- < j,_1(m) <
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N, have been defined for some n > 2. Then define

M;— M,
d*(m) = max —i It 2.12)

j>jn—](m) Cj — Cjn—l(m) ’

. . Mj—M;_

Jn(m) = max {J > jp—1(m) 1 dy(m) = ’—JI(’")} ’
Ci=Cj_iim

Jn(m) ={j i ju—1(m) < j < ju(m)}. (2.14)

(2.13)

We continue in this manner until j,(m) = N. The value of n at which the latter
occurs is the number of chokepoints K (im) associated with m. For example, setting
My(m) = 0, Co(m) = 0, and jo(m) = 0, we readily see that the above formulas
reduce to our previous definitions:

M
dT(M)=mj'<1X C—j jimy=max{j : M;/C; =di(m)}, Jim)={j:j < ji(m)}.
J

As we shall see in Lemma 3.7, for m € Rﬁ, the di"‘ (m) are decreasing in i.
Via this successive delay minimization procedure, a unique choice for A(m), A(m)

is determined forn = 1, ..., K(m), and j,_1(m) <i < j,(m), by
df(m)m; . )
ri(m) = | dgom 1L mi >0, (2.15)
0 if m; =0,
As(m) % it m; > 0, 2.16)
i(m) ;= { .
! 0 ifm; =0.

We note that A(m) is an optimal solution of the minmax delay controller LP and A; (m)
is the corresponding optimal control. Also, the following proposition can be proved
in a similar manner to Proposition 2.2.

Proposition 2.3 Suppose the successive minmax delay control policy is in effect. Fix

m € R satisfyingm > 0. Thenforn =1, ..., K(m), for eachi suchthat j,_(m) <

i < jo(m), we have

L di(m) = d,(m),
d; (mym; ;

2 dim) = IR Ajm) =

30 X juciimy<i<jom Di ) = Cjoomy = Cjyyom)-

Proof This proposition is proved in a similar manner to Proposition 2.2, with ;' (m),
{dym)A;(m) = xi(m) =m; @ ju_1(m) <i < ju(m)}, Mj,ony — Mj,_ on)» Cjyom) —
Cj,_ion) in place of df(m), {df(m)A;j(m) = Ai(m) = m; i < j1(m)}, Mj ),
C i, (m)» respectively, and using (2.8) to obtain the formula for A; (m) : j,—1(m) <i <

Notational Convention From hereon, when considering solutions {m(¢), t > 0} of the
system dynamics, we shall slightly abuse notation and abbreviate K (m(¢)), d,,(m(t))
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and j,(m(t)) for1 <n < K(m(t)),and A;(m(t))for1 <i < N, as K(¢),d,(t), and
Ja@®) for1 < n < K(t),and A;(¢) for 1 <i < N, respectively. We also let M (t)

stand for Y"7_, m; (1).

2.3 Main Dynamic Results

To this point we have given (an easily implemented) control law and shown that it
has choke points and equal ramp delays between choke points. Now, under a mild
additional condition, we study the dynamics and give evidence that it is well behaved,
mitigating the worry that delays and choke points will be perpetually changing in
steady state conditions. The additional mild condition is on the arrival rate functions
and is specified as follows. For j = 1,..., N, define

Y pis)
s

> 0. 2.17
c, > 2.17)

vjs) =

We henceforth assume that
Y;j0)>1 forj=1,...,N. (2.18)

It follows (see Lemma 3.6) that foreach j = 1, ..., N, there is a unique value ¢; such
that

Yilej) =1. (2.19)

Throughout the paper we shall assume that the e; are distinct. It turns out that e =
(e1, ..., en) is an important quantity in the dynamic behavior of our algorithm.
Wecall ey, ..., ey the equilibrium delays because ey is the delay, which if experi-
enced ateachrampi = 1, ..., k, makes the total of all traffic coming into these ramps
equal to the capacity of the motorway at onramp k. We also define the maximum
equilibrium delay, e*, and the last onramp at which that maximum is attained, j*, as

" =maxe;, j*=max{j: e; =e"}. (2.20)
1

2.3.1 Behavior Upstream of the First Choke Point

We now investigate the dynamics upstream of the first choke point in greater detail.

Theorem 2.4 Assume (2.18) holds and the equilibrium delays e;, i = 1,..., N are
mutually distinct. Then the motorway under the minmax delay control policy, for any
initial m(0) € Rﬁ, satisfies

L d{(t) — e*ast — oo
2. There is ty > 0, depending on m(0), such that for all t > ty, the first choke point
J1(t) equals j*.
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3. If, in addition, d{ (ty) = €*, then d} (t) = e* fort > 1.

Items 1 and 2 provide evidence that delays and choke points usually do not jump
around a lot as time goes by.

Proof Items 1 and 2 are proved in Sect. 4.2. The proof requires analysing several cases
as key functions transiently switch back and forth from being active to inactive and
vice versa. Item 3 follows immediately from Item 4 of Lemma 3.5 with a = #o.

2.3.2 Multiple Choke Points

To analyze the successive delay minmax control policy, we think of sections of roadway
along which the onramps have constant delays. The first section is the one we just
analyzed. The notions surrounding equilibria for downstream motorway sections are
defined as follows.

Define the cumulative sums

J
R; j(s) :Zpk(s), for s >0, 1 <i<j<N.
k=i

Letegl) be the solution of Ry, j(s) = Cj,for j =1,2,..., N. Let

ef =maxel”  ji=max{j:e

(1) *}
i '

i
which yield our previous definitions via e§1) =e¢j and e] = e*, j{ = j* as defined
above. Also we set jo = j; = 0, and recall that Co = 0.

To analyze downstream sections of motorway we make the following inductive
definition. Suppose e; and j* exist, and that j < N, forsome k € {1,2,..., N —1}.

Then, assuming (2.18), let e;kH) be the solution of
RJZ‘HJ(S):C]_C]:’ s >0,
for j =j,j‘+1,j,j‘+2,...,N.Let

* (k+1) ok . Sk (k+1) %
€1 = }TE’,E ¢j Jepr =max{j > jg rey = e}
k

Note that since N is finite, there exists a k < N such that j,j‘ = N, which we denote
by K, i.e., K is the number of equilibrium choke points.

Theorem 2.5 Assume that for eachk = 1, ..., K, the equilibria e;-k), j= j,f_l +1,
..., N, are distinct. Suppose for some k € {1,2,..., K — 1}, that there is a finite
time ty (depending on m(0)) such that the chokepoints up through k satisfy

Jn(t) = jy and d;(t) = e, forallt > 1, 1 <n <k. (2.21)
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Then
Lodf (1) > ef, ast — 0o,
2. there exists a finite tyy1 > ty such that jii1(t) = ji, fort > tiq1.

Proof The hypothesis guarantees that jj, j5, ..., j remain chokepoints after time
tx. So, summing in Item 3 of Proposition 2.3, ramp meter rates at each chokepoint up
to the k" satisfy

D Aim))=Cjr. 1=n<k t=n. (2.22)

i:ifj;lk

In other words, all capacity at each chokepoint up to the k’* is in use. Furthermore,
fort > 1

Mjp()= Y mit) =) di())Ai(m()) (223)
i< IREy
k Jn
= Y diOAm@)+ Y Y di(®)Aim(®)
ii<jf n=2i=j* +1
(2.24)
k
=eiCir+ Y er(Cjz = Cpx ) (2.25)
n=2

the final equality following since we have assumed that the delay, d; (¢) at each onramp
in the n'" subsection for 1 < n < k is given by e}, and also, from (2.22) the ramp
meter rates between the (n — 1) and n'”* chokepoints satisfy Z{ij’f 1 A;(m(t)) =
Ciz = Cjr -

Since the total onflow, Zi:ii i Ai(m(t)),upto j,f is constant, and M ji (t) is constant
for t > t;, the motorway sections having onramps j,f + 1, ..., N behave as sections
of motorway treated in Sect. 2.3.1, but with carrying capacity C; — C j; atonramp j,
and cumulative queue lengths M (¢) up to onramp j replaced by M, (t) — [e]C it
Zﬁ:z ey (Cjx—C i )], for jf < j < N.The result then follows from an application
of Theorem 2.4 to the reduced motorway model associated with onramps downstream
of onramp j;. O

This theorem provides support for the following more general conjecture. To prove
the conjecture would require involved estimates showing that if upstream of chokepoint
Jk the delays are near enough to equilibrium, then the conclusion of Theorem 2.5 still
holds. Such a proof would be very long and involved and we have not attempted it
here.

Conjecture 2.6 Foreachk : 1 < k < K and initial conditions m(0), there exists a #,
dependent on m(0), such that for ¢ > #, the delay time d,f () exists, with choke point
Jk(t) < N, and, furthermore,
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1. df(t) — e ast — oo,
2. k() — jfast — oo.

2.4 Other Control Perspectives

In control theory language, the problem studied here is: Consider a system that satisfies
the following differential equation for almost all # > 0.

d
Zm(t) = E@m(1), A(m(1))) (2.26)
where
Ei(m, A) = {pf (A%) — Ailm) i mi >0, 2.27)
pi (0) if mj =0,

The state of the system is m and we seek a state feedback law A (m) which minimizes
the cost d(m) = max; %

There is a classical theory which pertains to problems of this type and a guide to it
can be found in [10,11]. To such a problem we can associate a Bellman type inequality
which couples the controller u(m) and a “value function” V (m). We pursued this but
were unable (and felt it unlikely) to find a solution. Even had we found a solution,
proving asymptotic stability of the controlled system seems not to result immediately
from that theory.

3 Key Differential Equations and Basic Properties
3.1 Basics of Queue Length Dynamics

Recall the dynamics of the queue lengths described in Sect. 2.1.2. In particular, we
assume that each of the components of the N-dimensional fluid queue size function,
m(-) = {m(t),t > 0}, is a Lipschitz continuous function. By Rademacher’s theorem
(see Sect. 3.1.6 in [7]), a Lipschitz continuous function has a finite derivative from the
left and from the right at almost every (a.e.) t > 0, these derivatives are equal a.e.,
and the function is absolutely continuous and can be recovered by integrating its a.e.
defined (left/right) derivative.

In defining our system dynamics in Sect. 2.1.2, we assumed thatfori = 1, ..., N, at
each of the almost every r > 0 where the derivative from the right, %m i (1), exists for
m; (+), it satisfies (2.3). Upon breaking into the cases when m; (t) > 0 and m; (t) = 0,
under our conventions that A; (m) = 0 and d; im) = 0 when m; = 0, the differential
equation (2.3) for m; (-) at time ¢ reads

dt

AR () = Aim@) i mi) > 0, A
l pi (0) if m;(t) = 0.
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We shall find it convenient to define the notion of a regular point for m(-).

Definition 3.1 A time ¢ > 0 is a regular point for m(-), if m;(-) is differentiable at ¢
foreachi = 1,..., N. We denote the derivative of m;(-) at a regular point for m(-)
by ri1; (1), orby Lm;(t), fori =1,..., N.

Because m(-) is Lipschitz continuous, a.e. ¢ > 0 is a regular point for m(-) and the
behavior of m(-) can be recovered from knowing its differential behavior just at its
regular points. The following lemma simplifies the analysis of such points by excluding
those times where some component of m(-) is zero.

Lemma 3.2 Supposethatt > Qisaregular pointform(-). Thenforeachi =1, ..., N,
m;(t) > 0.

Proof For a proof by contradiction, suppose that > 0 is a regular point for m(-) and
that m;(t) = O for some i € {1, ..., N}. Then, since m;(-) only takes non-negative
values, the derivative from the left and from the right at time ¢ will be non-positive and
non-negative, respectively, and so the derivative of m; () at + must be zero. However,
from (3.1), the derivative from the right of m; (-) at 7 is p; (0), which is strictly positive,
by assumption. This yields the desired contradiction. O

Remark 3.3 To determine dynamic behavior derived from (3.1), it suffices to consider
differential behavior at regular points for m(-). By the above lemma, we see that we
can assume that m; (¢) > 0 at such points and so only the upper case in equation (3.1)
needs to be considered.

3.2 Virtual Delays

Our proofs of the main theorems heavily use the notion of virtual delays. These are
functions of time defined by

8i(t) = , i=1,...,N, 3.2)

where we recall that M; (1) = Y_,_; m¢(t). Wecall §; the virtual delay at queue i. We
use the term “virtual delay” because &; () would be the delay at onramp i if the queues
at the onramps indexed by ¢ = 1, ..., i were collapsed to a single queue at onramp i,
and the ramp meter rate at onramp i was equal to the maximum possible, C;. These
virtual delays are connected to the minmax controlled system through the fact that, if
the first choke point is i, then §; (¢) is the delay at queue i and equals the minmax delay
dj (1). Indeed, we can compare the size of the §/s to determine the minmax delay d (1)
and also to determine the optimal control law A ;(m(zt)) for j < ji(t) (see Lemma
3.5).

Our analysis of the virtual delays will depend heavily on a well behaved differential
equation which they satisfy. Fortunately, for each j = 1, ..., N, the function §;(-),
being a finite sum of Lipschitz functions is Lipschitz continuous and any regular point
for m(-) is a regular point for & (-). It follows from (3.6) below that d; (-) is Lipschitz
continuous, being a maximum of a finite number of Lipschitz continuous functions.
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Lemma 3.4 At any regular pointt > 0 for m(-), for j = 1,2,..., N, we have
d 1 m;(t)
—8;i(t) = — <p- <—) — A~(m(t))> . 3.3)
a7 C; ; \Aim@y))

Proof By Lemma 3.2, at any regular point ¢t > 0 for m(-), we have for each i that
m;(t) > 0and so by the definition of A (m(¢)) wehave A; (m(t)) > 0, thuslegitimizing
the right hand side of the differential equation. Now we just sum the differential
equations (3.1) on i. O

Recall, from Sect. 2.3, that for each j € {1,..., N},

S pils) Ry j(s)
Cj e

Yi(s) = fors e R,. 3.4)

The function p; is uniformly Lipschitz continuous, decreasing and bounded below,
andsoitisboundedonR, fori =1,..., j.It follows that v, is uniformly Lipschitz
continuous, decreasing and bounded on R, . We define the j* auxiliary differential
equation for t > 0 by

d
(1) = Y (0) ~ 1. (35)

It follows from standard differential equation theory, using the regularity properties of
¥; and the assumption (2.18), that given u;(0) € R, there is a unique continuously
differentiable solution u; : [0, 00) — R of (3.5) with this initial value. The equilib-
rium delay, e}, introduced in Sect. 2.3, is the unique fixed point of this equation (see
Lemma 3.6). Recall the definitions of ¢* = max; e¢; and j* = max{j : e¢; = e*} from
(2.20).

Items 1-4 of the following lemma indicate properties related to the differential
equations (3.3) and (3.5) that play an important role in determining the asymptotic
behavior of d(t) as t — oo. In particular, Item 3 indicates that when j;(-) = j Tis
constant over an interval of time, then §;+(-) = df () is a solution of the auxiliary

equation (3.5) over the interval, with j = jT there.

Lemma 3.5 The following properties hold when the minmax control law is in force.
For eacht > 0,

di(t) = max 3 (¢), (3.6)

mi@) _ mi@® _ m;®)
i) 8@ Mjw@)

Aj(m()) = Ciwy forj=<ji(v), @BD

where the first choke point at time t is
Ji(®) = max{j : §;(r) = dj (1)} (3.8)
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Furthermore, iij e{l,...,N}and 0 < a < b < 0o are such that the first choke
point ji1(t) = jT forallt € [a, b), then we have

1. for each regular point t > 0O that is in [a, b),

i5'(t)— '(d*(t))—gj(t) =12 " (3.9
a2 = ¥j(d; a0 J=12,00 :

2. forj < jit) = j, Aj(m() = 7H55Cliq forall t € [a.b),

3. forallt € (a,b), df(t) = §;:(t) satisfies the auxiliary differential equation (3.5),
with j = j and dyf in place of u,

4. if jT=j* and di (a) = e*, then df (t) = e* forallt € [a, b).

Proof Equations (3.6), (3.7) and (3.8) follow immediately from (3.2), (2.9), Item 2 of
Proposition 2.2, and the definition of the first choke point. Item 2 is immediate from
3.7).

For the proof of Items 1-4, assume that jT and a, b are as in the condition imme-
diately preceding these items. For Item 1, by Items 1 and 2 of Proposition 2.2, for all
i < jT, we have df(t) =d;(t) = m;(t)/Ai(m(t)). When combined with Lemma 3.4
and the definition of §;, this yields for each regular point ¢ > 0 that is in [a, b), for
j=1...,j%

45ty = - (@) = SO
a0 Z]p (a5 1)) Z, 0, (3.10)
5;(1)
=i} - 3.11
Vi) - 2o (3.11)

For Item 3, note that since dj (t) = 8, = 81 (1) forall ¢ € [a, b), Item 1 implies
that 8j+ satisfies (3.5) (with u; = é‘jf and j = jT) at all regular points ¢ € (a, b).
So by integration, §;+(1) = §;+(a) + fat (¥+(df(s)) = 1)ds for all 1 € [a, b), and
since the integrand equals the continuous function jt © jt (+)) — 1, it follows that § jt
satisfies (3.5) atallt € (a, b).

For Item 4, suppose that j© = j* and d{(a) = e*. Then, combining Item 3 and
the uniqueness of solutions of (3.5) for j = j* with the fact that 1/« (e*) = 1, we
conclude that df (1) = §;«(t) = e* forall ¢ € [a, D). O

3.3 Delays d; (t) of the Multichoked Minmax System and Their Equilibria e,
3.3.1 Properties of Equilibrium Delays e1, e, ..., ey
Note that the equilibrium delays e;, defined in Sect. 2.3, satisfy ¥;(e;) = 1, for

j = 1,2,..., N. In other words they are equilibria for the auxiliary differential
equations in (3.5). In order to guarantee the existence of eq, es, ..., ey, we have
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assumed that ¥;(0) > 1 for all j, and a sufficient condition for this to be the case is
that p;(0) > C; for all j. The condition on the v; just says there are no parts of the
motorway which are underloaded when all queues are empty. Recall that in addition
we have assumed that each p; is a strictly decreasing uniformly Lipschitz continuous
function that decreases to 0 at co.

Lemma3.6 For each j, equation (3.5) has a unique equilibrium point e; and it is
globally asymptotically stable, in the sense that all solutions of the equation converge
to this equilibrium as time goes to infinity.

Proof Uniqueness of the equilibrium e follows from strict monotonicity of v ;, which
itinherits from the p/s. Existence follows from the intermediate value theorem. Global
asymptotic stability comes from the facts that

Vi) —1<0if ej<s and Yj(s)—1>0if ej>s.

3.3.2 The Successive e, and d;’ are Decreasing with k

We show first that the delays d}’(m) are strictly decreasing in k, and then prove that
the e} as defined in Sect. 2.3.2 are strictly decreasing in k.

Lemma 3.7 Consider the minmax controlled system and recall that K (m) denotes the
number of chokepoints ji(m), jo(m), ..., jkwm)(m) = N for state m. Then

di(m) > d5(m) > -+ > dl*((m)(m).

Proof Fixm € Rﬁ andk € {1, 2, ..., K(m)—1}. In the following proof, we suppress

the dependence of ji_1, jx on m, to ease the notation. As usual, M; = Z'l.’:l m;. By
definition,

M;— M, M — M,
d;:(m) — 'm'aX J Jk—1 — Jk Jk—1

izi=1 €= Cjy Cj=Cjiy
and for all j > j; we have
M;—M,;
J Jk—1 < dlzk(m)
Cj=Cj,

This last inequality is equivalent to

M; — M +Mj —Mj,_, - M — M,
Cj=Cj +Cjy —=Cji, Ci = Ciiy
& Mj—Mj +Mj —M;_)(Cj —Cj_,)
<Mj =M )(Cj—=Cj +Cj —=Cj_y)
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< Mj—M;)(Cj —Cj_ ) <M —Mj_)(Cj—Cj)
Mj—Mj, My =M, — d*(m).
Cji—Cj Cj —Cji,

Since this inequality holds for all j > ji, and there are only finitely many indices j
greater than ji, we have that

M;—M,
dif 1 (m) = max ——— < df(m).
=ik C;j —Cj,

Since k < K (m) — 1 was arbitrary, the desired result follows. O

It is easy to show that the e} are strictly decreasing in k.

Lemma3.8 The ¢;, | < k < K, as defined in Sect. 2.3.2, satisfy e,fH < ey for
1<k<K--1.

Proof Fixk € {1,2, ..., K —1}. We will show that e;H < e,’g. By definition e,‘c‘ > egk)
for all j > j¥ ,, with strict inequality for all j > j7. Hence, since p; is strictly
decreasing in its argument, p; (ef) < p; (e}k)) for j > j,j_l and all 7, with again, strict
inequality if j > j. But this implies that for j > j/,

j j
k
Z pi(ef) < Z pi(eﬁ h=c; - Cj |

=i +] =i +]

where the equality follows from the definition of e;.k). But, again by definition, for
J > g

J Wi J
Yoonied= Y pie+ Y pilep)
i=j |+l i=j¢ +1 i=ji+1

J
=Cp—Cjr + Z pi(ef)

i=ji+1
and hence, we obtain
J
*
> pile) <Cj— Cjr.
i=ji+1
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delay
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0 20 40 60 80 100 0 20 40 60 80 100

time time
(a) Chokepoint at queue 1 in equilibrium (b) Chokepoint at queue 2 in equilibrium
Ci1=2,Cy=5 Ci1=3,0C=5
p1 (d) — 4670‘%, pz(d) — §.5¢~0:2d n (d) — 46—0.2d7 pQ(d) — Ge0-2d

In both plots (a) and (b),
denotes delay at queue 1, d;(-) —— denotes delay at queue 2, da(-)

Fig.2 Examples of trajectories for dj (-) and d ()

Thus, since all of the p; are strictly decreasing in their arguments, for j > j, the
(k+1)

solution, e ; , to
J
D pils)=Cj—Cjr
i=ji+1
must satisfy e§k+]) < e;. Since this is true for all j > j, we have also immediately
that max ;. ju e;kH) < e}, that is, that e,’fﬂ <ej. O

Figure 2 gives examples for a system with N = 2, illustrating trajectories of d; and
d> in two cases, the first where the equilibrium chokepoint jf is at 1, and the second
when it is at 2.

4 Proofs of Asymptotics of the Controlled System

In this section we show that the minmax delay, di“ (t), and first chokepoint, j;(¢),
converge to ¢* and j* respectively as t — oo.

Although the ji depend on time, to ease the notation in the following, we shall
sometimes suppress this time dependence when k > 1.
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4.1 Preliminary Lemmas

We begin this section by deriving some preliminary lemmas which will be used in the
proof of the main theorem. The first lemma compares differences in delays at adjacent
chokepoints with differences in the virtual delays. It also shows that the virtual delays
are decreasing in k and that the delay at each chokepoint, apart from the first, is strictly
less than the virtual delay there. Recall that K (¢) is the number of chokepoints at time
t.

Lemma4.1 Foreacht > 0,if K(t) > 1 thenfor1 <k < K(t) — 1,

8y @) > 8jiy (1) > iy (1), 4.0
and
* * 0 ) ]
di (1) = dif (1) = ———"— (80 (®) = 8j,,(n (D)) (4.2)
Cinn = Cjeay

where equality holds in (4.2) when k = 1, and the inequality is strict for k > 1.
Proof Observe first that for fixed i and j suchthat 1 <i < j < N, we have

M) _ M;(@) + Mj(t) — M;(t)

8i(t) =
10 Cj Cj
_ M@ G M) - M;i(1) Cj -G
Ci Cj C;—C; C;
C; Ci\ Mj(t) — Mt
= —15;(t) + (1 — _’> M (4.3)
a convex combination of §;(¢) and W In the particular case where i = ji
J i

and j = jxt1, we therefore have fork =1,2,..., K(¢t) — 1,

C; C;
Sini ) = 2285 (1) + (1 - ]—()) i (). (4.4)
Cienn) Jrp1 ()

We now show that (4.1) holds, by induction on k. Consider first the case k = 1. From
(4.4) above,

C; C;
8 (1) = C’—Eia o0 + (1 - C’—Ei) di (1), (4.5)
J2 J2
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a convex combination of 8} () and d5(¢). From Lemma 3.7, d{ (1) > dj(t), and
hence, since §;,(,)(t) = dj (t) > d5 (1), it follows immediately that 8, (t) > d5(¢).
On the other hand, applying the same inequality to @ () in (4.5), we obtain & ;, ;) () <
3, (). Thus (4.1) holds for k = 1. Now assume that (4.1) holds for k = n — 1 for
some n such that 2 < n < K(r) — 1. We will show that it holds for k = n using very
similar arguments to those for k = 1. From (4.4) above,

C; C;
Sina (1) = G285, (1) + (1 - ’—“) 0. @46
Jn+1 (0 Jn+l(t)

By the induction hypothesis, §;,(t) > d;(t), and, from Lemma 3.7, d;(t) >
dy (1), thus implying &, (t) > d,;,(¢). Using this in (4.6) we obtain §;, (1) >
8jn @) > d;‘ +1(D). This completes the induction step and it follows that (4.1) holds
foreachk =1,2,..., K(t) — 1.

We now show (4.2) holds. Using (4.4), we have

C.
850 (1) = 85410 (1) = (1 ~ ’—”) @y (1) — dif 1 (1)

Jkr1(1)

C.
> (1 - ’—“) (df () — df 1 (1)),

Jk+1(0)

where the inequality follows from the fact that §;,(,)(t) = dj (t) for k = 1, and with
k — l'in place of k in (4.1) for k > 2. Furthermore, the inequality is strict unless k = 1,
in which case it is an equality. O

The second lemma gives a bound on the derivative at regular points of the virtual
delay for chokepoints.

Lemma4.2 Let K(t) be the number of chokepoints at time t. Then for k such that
2 <k < K(t), at any regular point t,

8y (@) < Yy (dy (1) — 1. 4.7

Proof Fix t and k € {2,3,..., K(¢)}. We begin with the general expression for the
derivative, from (3.3):

. 1
S (@) = D Loidi0) = Ai(m(t)]

Ciwr /=5,

1 k Jn(1)
= Z Z i (dy (1)) = Ciray

Cir \a= iz S0t

k
1
= (Rl.jl(r)(df(t)) + Z [R1,j, (1) — R1,j,,,(r)(d,f(l))]> -1
Ji (1)

n=2
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1

k
=i <C.f1(z)1ﬁ_mz) @)+ Y [CinnVinin @i @) = Cjy Vi UD]) -1
Jielt n=2

k—1
1
= <Z Civtoy [V @y ) = ¥y (s )] + Cloioy Wy (i (t))) -1

Civo

n=1

< I//jk(,)(d]j(l‘)) — 1. (48)

The second equality above follows from Item 1 of Proposition 2.3, which implies
that d; () = d(t) for j,_1(t) < i < ju(¢), and the final inequality follows since
d,(t) > dy () implies ¥rj, ) (d; (1)) < ¥j,1)(dy,(1)). The reasoning in (4.8) also
holds for k£ = 1, but then the final inequality is replaced by an equality. O

4.2 Asymptotics of d} (t) and of j; (f)

In this section, we prove Items 1 and 2 of Theorem 2.4. Note that in these proofs, we
have reused the symbols #, i.e. these are not the same as in Theorem 2.5.

Proof of Items 1 and 2 of Theorem 2.4 In this argument, a regular point means a time
t > 0 that is a regular point for m(-) and dj(-). Then almost every ¢ is such a regular
point. Note that by Lemma 3.2, at suchat,m;(t) > 0fori =1,2,..., N.
Preliminaries on properties at regular points. Fix a regular point ¢ > 0. We claim that
for any j such that §;(r) = dj (¢), we have Sj (1) = df‘(t). This is a well known result
at regular points for maxima of Lipschitz functions, which can be seen as follows (cf.
the justification of (3.2) in Dai and Weiss [6]):

di(s) —di® _ lig ) = 8;®)

di (1) = li =38t

1() slgl s —1 st s —1 ]()

. d¥(s) —di(t 8i(s)—8;(t .

df(t):limM ZlimM =48;(1),
syt s —t syt s —t

and so di“ (=34 j(t). Here we have used the fact that s < ¢ in the first line to reverse
the inequality dj (s) > §;(s). O

Inequalities for d (t) and Sj* (t) at a regular point. The signs of df‘(t) and Sj*(t)
depend on the position of d (1) relative to e*. We now derive inequalities that we will
be using later under various conditions. Recall that ji () = max{;j : §;(¢) = df (1)}.
Suppose ¢ > 0 is a regular point. We consider three cases.

(Case df (t) > e*) Ifd{(t) > e*, then

di (1) = 85,1 ()
= Vim0 —1 <0 4.9)
where we have used Proposition 2.2, and Lemmas 3.2 and 3.4 , for the second equality,
and the facts that dj(t) > e* > e; and ¥ is a strictly decreasing function with

V¥ j(ej) = 1 for each j, for the last inequality.
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(Case dj (1) < e*) Ifdj(t) < e*, then we have d (t) > §;+(¢), with

§jo) = 3" (pildi(1)) = Ai(m(1))) /C e

i<j*
= Y (@) = Ai(m (1)) /C s
i<j*
> Y (di (1) — 1
> 0, (4.10)

where we used Lemma 3.4 for the first equality, in the second line we used the facts
that d; (t) < d (t), and p; is a decreasing function for each i, and in the third line we
used the definition of v+, and the fact that Zif j* A;(m(t)) < Cj=. For the fourth
line, we used the assumption that d} (1) < e¢* = e+ and the fact that ¢/« is a strictly
decreasing function with ¥« (ej) = 1.

(Case df (t) = e*) 1f dj(t) = e*, we have that d{(t) > §;+(¢), and, proceeding
exactly as in (4.10), except that in the last line there is now equality, we have:

§jx(t) = Yj(df (1)) — 1 =0. 4.11)

Also, the first inequality is an equality if j; () = j*.

Proof of Item 1 of Theorem 2.4 We again must consider cases, this time two.

(Case df (0) > e*) Here it follows from the fact that (4.9) holds for an arbitrary
regular point + > 0 for which d{(t) > e* that d{ (-) is strictly decreasing on [0, ¢),
where

¢ =inf{r > 0:d}(r) = e*). (4.12)

If £ = 400, thendj(t) — e*ast — oo. This can be seen by arguing by contradiction
as follows. If d{ (1) /> e*, then using the aforementioned decreasing property of d'(-),
there is € > 0 such that dj (t) > e* + € for all > 0. But by (4.9), using the fact that
Y is a strictly decreasing function for each j, we would then have that

t
di (1) = df(0)+/0 Vi) (d] (8)) — Dds (4.13)
1
=di(0)+ / Wjis) (€ +€) — Dds (4.14)
0
< df(0) + t(max (e +€) — 1). (4.15)
)

Since ¥j(e* +€) < ¥j(e*) < 1 for each j, the maximum in the above is strictly
less than one and it would follow that df (t) = e* for some t < (d}(0) — e*)/(1 —
max; ¥ ;(e* + €)), which contradicts the assumption that { = +-o00. Thus, Item 1 is
proved for df (0) > e* if { = 4-00. Now, with the same initial condition, if { < oo,
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then using (4.9), we see that di* (t) < e*forallr > ¢. Thus, in this case, the asymptotic
behavior of dj (-) reduces to that for dj(0) = e*.

(Case df(0) < e*) Ifdf(t) = e forallt > 0, thenItem 1 is proved. If d{(-) # e*
then from the above, we have that d?‘ (r) < e* forall t > 0 and there is a time 1; > 0
such that d (1) < e*. Define ¢* = max{e; : e; < e*} to be the second greatest value

that the ¢; take, let y = max j«<ji<y % and set e’ = ye* + (1 — y)&*. Note that
el > &* and set £* = %(e* +e"). Then ¢* > .
Let

t =inf{tr > 11 1 dj(t) < " ord{(t) = §;+(1)}. (4.16)
Then f; < oo, since at any regular point ¢ in [z, 12),

di () = 8j,0(1) = Vji (i) =1 where ji(r) # j*
= VioE) =1
<0 since £* > &* = max e;
JEAt
and by (4.10)~(4.11),
81*(1‘) >0,

and so if df (1) > £* on [#, 00), then df‘ = 4+ at, or before, the time

e* — 8 :x(t
1+ () o
l—man;gj* l/fj(ﬂ)

and so 1, < 00.
Now let

n=inf{r > 1 1 df(t) = 8;+(1)}.
If t, = 13, then 13 is finite, otherwise, if t, < t3, then
di(r) < ¢* forallz € [1, 13). 4.17)

This is because when 1, < t3, di“ (t2) < £* and at a regular point 7 in [#,, f3) for which
di (1) > &*, we have

di(t) =8, (t) = ¥, (df (1)) — 1 forsome ji (1) # j*,
<0 since e, ;) < "

and so df is non-increasing on {t € [, 13) : df (1) > é*}.
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Given (4.17), by (4.10), at regular points ¢ € [2, 13) we have

§je(t) = Yy(df (1) — 1
> (€% — 1> 0,

and so

0 — 8jx(t2)
—_— <
Y= (l*) — 1

n<h+

Thus, in any event, 3 is finite.
Now for ¢ € [t3, 00), df (t) = §;+(t), where by (4.10), if  is a regular point then

§je(t) = Yjr(df (1)) — 1 > 0if df (1) < e, (4.18)
and so
di(t) = 8j«(t) = 8j+(r3) = dj (13) for all 1 € [13, 00). (4.19)
It also follows from the above that #4 = inf{t > #3 : d{ () > £*} is finite and that
df (tg) = 8+ (13). (4.20)

To see the finiteness of #4, note that for ¢ € [#3, 74) that is a regular point, from (4.18)
we have

Sj*(t) > W,'*(df‘(t)) -1
> wj*(ﬁ*) —1>0

and dj (1) > 8+(¢) for all 1 € [13, t4), so that for 13 < 14,

*
<t LB
Y () — 1

For the other claim (4.20), note that if 74 = t3, then the claim holds. On the other
hand, if 13 < 14, then df (t3) < £*, and for a proof by contradiction suppose that
df(t4) > 8;«(t4). Then by the continuity of df and §;+ there is € > 0 such that
13 <ty—€,df(t) > 8;+(t)and df(t) > ¢* forall t € (t4 — €, 14 + €). Then for any
regular point ¢ € (t4 — €, 14 + €)

di(t) =8;,0)t) = ¥j,(n(df () — 1 where ji (1) # j*
<0 since df (1) > ¢* = I_I;éa}( ej. 4.21)
J#ET*

If follows that df (t4) < dj (t4 — €) < £* by the definition of 74 when 74 > 13, but this
contradicts the fact that d (t4) > £*.
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Finally, let t5 = inf{t > 74 : d{ (1) = ¢*}. Then by a similar argument to that for
(4.19), we have that di“ (t) > £*and §=(¢t) > £* for all ¢ € [t4, t5). Also, by a similar
argument to that for (4.20), d{ (1) = §;+(t) for each t € [14, t5). Indeed, if there is
t € (t4,15) such that 4y (t) > 6;'.‘(1‘), then for #; = sup{s € (t4,1) : dj(s) = 8;+(s)},
we have, for regular points s € (¢, t),df‘(s) < Oasin (4.21), and Sj*(s) > 0 by (4.10),
and so di‘(-) — &+ (+) is decreasing on (#+, t). But this contradicts di“ () > 8;+(t). Thus
for a regular point ¢ € [t4, t5),

df (1) = 8;+(1)

It then follows by a similar argument to that given for the case d (0) > e* that either
ts = +oo and dj (1) — ¢* from below as t — oo, or 5 < 0o and df (t5) = ¢*. In the
latter case, dj (t) = e* for all 1 > t5 because e* > d(t) > §;«(1), for t > t5, and by
(4.10) and (4.11), §+(-) is non-decreasing on [#5, 00), and s0 § = () = df(t) = e* for
all ¢ > t5. Item 1 is now proved.

Proof of Item 2 of Theorem 2.4 Again, we consider the two cases, d{(0) > e* and
df(0) < e*.

(Case df(0) < e*) We will show that if df (0) < e* then ji(t) = j* fort > 14
where 14 is as defined in the proof of Item 1. Observe first that since & «(t) = d ()
for all > 14, we immediately have j(t) > j* for all + > #4. Thus the case when
j* = N is proved.

Now suppose that j* < N.We need only show that j; (r) < j*+1 forall sufficiently
large t > 14.

We showed in Item 1 that

di(t) = 8+(1) = £* forallt > 14,

and at any regular point r > t4, c?f (1 =34 j*() = 0 where the last inequality is by
(4.10)~(4.11) and is strict if d (t) < e*.

Let t¢ = t4 + 1. We show first that for r > 1, we have K(t) > 2, that is, there
are at least two chokepoints. (Here 76 could be replaced by any other fixed time
greater than #4.) For a proof by contradiction, suppose that there is ¢’ > f¢ such that
di(t') = 8y (1) = £*. Then by continuity of both § (-) and d; (-), in a neighbourhood
of ', dy (-) will be close to d (-). Specifically, from Lemma 4.1 we have for any 7,

di(t) —dy(t) =df(t) —dy (1) +d5(t) — - —dg 1 (1) +dg 1 () — di ) (1)

K()—1
Ciivin

(8, (1) = &, :
Cji+1(t) - Cj[,(,) ( ]’(t)( ) Jz+1(l)( ))

i=1
K(@)—1

Cn,
< _ Sin(@) — 8 t
- (j*<r?113§2<N Cp, — Cm) Z Ci0® = i)

i=1
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Cn
= ( max —2> B0 (@) —dn (1))

J¥<ni<ny<N an - Cnl

an *
(j*<r?11 =N Cn, — C, ) (@i (®) = 8n ®)- (422)

Then by the continuity of § (-) and dj (-), there exists 1 > € > 0 such that for all
s € (' —e.1' +6), we have d¥(s) — Sy (s) < (£* —eT)/ <maxj*5nl B, %)
and hence by (4.22) we have, df (s) —dy(s) < £* — e Since s > 14, di(s) = £*, and
this implies dy (s) > e’ Now, since N is the last chokepoint, by Lemmas 3.4 and 3.7,
the decreasing property of the p;, and since e’ > ey, we have that at any regular point
se( —et'+6€),5n() < Yn(dn(s) —1 <0.S08n(t — 3€) > Sy () = dji(t)).
But since di"(t) > 0 for any regular point > 14, we also have d} (' — %e) <di() <
Syt — %e), which yields a contradiction, since by definition, d'(t) > 8;(¢) for all ,
and 1 < j < N.Hencedy(t) < di“(t) for all t > 16, and also K (¢) > 2 for all t > .
Observe that if j* = N — 1, then it also immediately follows that j; () = j* for all
t > tg, so for the remainder of the argument below we assume that j* < N — 1.

Now consider di‘(t) for t+ > t4, noting that since K () > 2 for all t > tg, the
existence of d; (¢) is guaranteed. We also note that jo(t) > ji(t) > j* forall t > t.
From Lemma 4.1, noting that we have equality in that lemma for the case k = 1, we
have fort > 0,

C.
di(t) = df(t) — ——L9 (5,0, (1) — 81,0y (1))
Cirin — Cjin
C.
=di(t) — —LY (@) = 8,,0)(1))

Cihay —Cjin

C; C;
— j;m%z(z)(l) _ /—lmd;ﬁ(t),
Cihany—Cjin Ci) — Cjiny

where the second equality follows since di‘(t) = 8,1 (t), and the third involves a
simple rearrangement of the terms. Hence

C; C;
di(1) = & = S0 = (1 - M) F 00y, 4.23)
Chw j2(0)

Observe that for t > 16 we have e* > df (1) > £* > ¢*, so that if for any ¢ > 14, we
have 8;,(1)(t) > e we also have

8j2(l)(t) > 61r

> Chw ey (1 N Cn(r))é*

Ciho Ch
> S0 gy 4 (1 _ Cj.(z))é*
~ Chn Ciho
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. . . C; C; v
the second inequality following from #ﬁi; < maxjr<j<i<N Ff = y and e* > é*,

and the third inequality following since dj (t) < e*. Thus if §;,,)(t) > e then the
right hand inequality in (4.23) is satisfied and hence dj (1) > é*. ) )

Note thatatregular points t > 76, dy (f) > £* > max ;= ejanddy (1) = 8, (1) =
Vi) —1 < 0if ji(t) # j*. Butdj(t) > 0att > t¢ that are regular points.
It follows that we must have that j;(z) = j* for all regular points that satisfy 7 > fg.
Below we will show that there is #7 > ¢ such that this also holds true for all non-regular
points t > f7.

Now fort > t, we consider 8, ;) (), where we know that j>(f) > j*. Atany regular
pointt > tg,if 8,1 (t) > e’ then from the arguments above, this implies d5 (1) > ¢,
and then using Lemma 4.2 we have § j,(1) (1) < ¥j,(1)(d5 (1)) —1 < max . jx ¥ (%) —
1 < 0.Sett; =inf{t > 16 : §,()(t) < %(e* + £*)}. Then in a similar fashion to
proofs we have seen already, #7 is finite. Moreover, 6 j, 1) (¢) < %(eJf + %) < dj (¢) for
r> 1.

Then, by (4.1) with k = 1, we have

T *

A1) < 8,01 < = < di () forallt > 1. 4.24)

Also, by (4.3) with i = j*, for j > j* and any regular point ¢ > 7, since j;(z) = j*
at such a regular point, we have

0= Lapw s (12 G) MO M0
J

< L g 1— L )dr@

=7, 1()+< C,-) H (1)

Cj* C i+ eT—i-f*

< L ar@ 1— =L ) (—— 4.25
-G l()+< Cj)( 2 ) (4:2)

where we used the definition of d; () for the first inequality and (4.24) for the second
inequality. Then, using (4.25) and the fact that d} (t) > £*, we have

Cj el 4 ¢*
1 — 2L d¥ ) —
< Cj)(l() 2 )
min | 1 — Cr)(t =< >0 (4.26)
j>j* Cj 2 ’ '

Now the set of regular points is dense in [#7, 00) and so it follows by the continuity of
d{ and §; that the above also holds for all > ¢; for all j > j*. It follows from this
that j; () = j* forall t > t7.

(Case d{ (0) > e*) When proving Item 1 of the theorem for d{ (0) > e*, we defined
¢ =inf{t > 0:d{(t) = e*},in (4.12), and noted that if { < oo, then the asymptotic
behavior of d} (-) reduces to its asymptotic behavior when d} (0) = e*. This is also true

di(t) —8;(1)

v

v
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of the asymptotic behavior of ji(¢), which is again covered by the case d} (0) < e*.
So it remains only to consider the case where ¢ = +o0.

In the following, we assume ¢ = 400, that is df (t) > e* for all + > 0. We show
first that, for any € € (0, df(0) — e*), d{ (-) reaches e* 4 € by some finite time 7. and
stays less than or equal to this level after #.. This follows from the fact that d} (1) — ¢*
as t — oo, and by (4.9), df is monotone decreasing when { = +o0. We also have
that j () reaches j* in finite time. To see this, observe thatif j () # j* forallz > 0,
then max ;.= 1;(e*) = B < 1, and then, using the monotonicity of ¥;(-) and (4.9),
we have at any regular point ¢ that

di(t) = ¥j,di®) —1
<VYineeH—-1 < p—-1<0,

and so for some t < (dj(0) — e*)/(1 — B), we have that d{(tr) = e*. But this
contradicts the assumption that { = +o00 and so we must have that j(z) = j* for
some ¢ sufficiently large. We need to now show that there is such a ¢ for which jj
remains at j* ever after that time. We will do this by showing, using a proof by
induction, that for any j # j*, there isan > 0 and finite time after which §; () is less
than or equal to e* — n for all time.

If j* = N,let 0 < n < $(1 — 0)e* where § = max;zj+ ¥;(¢*). If j* < N, let
0<n< %min(a, (1 — 0)e*) where

k k

e* —¢
o= — (4.27)
MmaXj*<i<j<N ¢,=¢;

Note that 8 = max .+ ¥;(e*) < 6. Then for all € € (0, min(d; (0) — e*, n, (e*(1 —
0) —1n)/2)), wehave 1 —6 — % > 0 and hence also 1 — 8 — Z,?Lf: > 0.

Fix such an € > 0. We begin by deriving some general inequalities that we will use
repeatedly in the proof. If ji(z) > 1, then for any k # j*, k < ji(¢t) and any regular

point ¢ > t., if §;(t) > e* — n, then by Lemma 3.4,

. 1 1 m; (1)
) = — i (d; — A = — i (df -
W= %;(p( (D) = Ai(m()) = = %; <p @i — (l))
B « M) wiy _ Ok(®)
= Y(dy (1)) — de—T(t) = Y (di (1)) VR0
S
e*+¢€
= e —1+ 17 2o 4.28)
e* 4 ¢

where the equalities follow from Proposition 2.2, (2.17) and (3.2), and for the inequal-
ities we have used the facts that e* — n < 6 (t), e* < df(t) < e* + €, and
[ = e Als.o, for any regular point > ¢, since di‘(t) > ¢*, we have, by (4.9),
Sjiny(t) =di(t) = ¥jin(df (1) —1 <0.
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We are now ready to show, using a proof by induction on j, that if j* > 1, then for
any j < j*, there is a finite time (greater than or equal to ) after which §; is always
less than or equal to e* — 7.

Suppose j* > 1 and j < j*. We first consider j = 1. Let 77 = inf{r > 1. :
31(t) < e* —n}. If 1y = t, then §1(11) < e* — 1. Suppose that 7} > 7. and ¢ is a
regular point such that 7 <t < 7. Then, §1(t) > ¢* — n.If j;(¢) = 1, then by (4.9),
$1(t) = df (t) = Y (df(t)) — 1 < Y(e*) — 1 < 0. On the other hand, if ji () > 1,
then by (4.28),

: +
1) < yi(e) — 1+ 1€ . (4.29)
e*+e€
Thus, we have
€+n
T <t + < +00.

1 — (e — 2

Furthermore, for any regular point # > 71 for which §; () € (e* — n, e*], by the same
reasoning as for (4.28), we have 51 () < 0. It then follows that §{(¢) < e¢* — n for all
t > 11, and we have shown the case j = 1.

Now, for the induction step, fix 1 < j < j*. Suppose that it has been shown that
there are finite times 7 < 71 < --- < 7;_1 such that §;(t) < e* —n forall t > 1;,
fori =1,...,j — 1. Define t; = inf{r > 7;_; : §;(t) < e* — n}. We show by
a similar argument to that for 7y, that 7; is finite. If 7; = 7;_1, then 7; < 00 and
dj(rj) < e* — n. On the other hand, for regular points ¢ such that Tj1 <t <Tj
we have e —n < §;(t) < df(t) < e* 4 €. Note that we must have ji(t) > j,
since ¢+ > t;_jimplies §;(1) < e* —n fori < j.If ji(t) = j, then by (4.9),
Sj(t) = wj(df(t)) — 1 <v¥j(e*) —1 < 0. On the other hand if j < jj(¢), then from
(4.28), Sj (1) <yjle*) — 1+ TH€ — (). Thus, as for 71, we have

e*+e

Ti<T + €tn
= tj—1
T e - 2

< +00. (4.30)

Finally, for any regular point ¢+ > t; for which §;(t) € (e* — n, e*], by the same
reasoning as above, we have $ ;) < 0.1t then follows that §;(t) < e* — n for all
r=>7j.

This completes the induction step and so the desired statement is true forall j < j*,
and so there is 7;+_; < oo such that§;(¢) < e* —nforallt > rjx_jandall j < j*.
Since we have assumed that dik (t) > e* forall ¢ > 0, it follows that for all r > 7;+_y,
we have jj(t) > j*. Soif j* = N, then jj(t) = j* = N forall t+ > ty_1, and we
have proved the desired result.

We now suppose that j* < N. We need to consider the behavior of the §; for
J > j*. We will show first that for all sufficiently large 7, the first chokepoint is less
than N, that is, jj (1) < N. Let t}*_l = inf{r > tj«_ : ji1(r) < N}. Note that t}*_l
is finite, by the same reasoning as that used to show that j; (1) = j* for some finite
time ¢.
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We now proceed by showing that for all sufficiently large 7, the first chokepoint
cannot be at N. We do this by showing that §y () < di“ (7) for all sufficiently large
t. Note that since we have assumed j* < N, and C; > O for all i, we have that
a < e —£*. So for e € (0,a), we have £* < ¢* — a + € < e*. Note also that
whenever j # j*,ifu > e*—n > £*, then wehave ¥; (u) — 1 < ¥;(e*—n)—1 < 0.
Fix such an €, small enough that the prior induction proof also holds for this €. Let
n=a—ce¢.

Now let 7| = inf{r > t’* _y 1 8n(1) < e* —n'}. We wish to show that 7] is finite.
Ifry =1 -1 the results holds so suppose that 7 € (t «_1»T1). Then 8y (1) > e* —1n'.
Since (Sjl(,)(t) = dj(t) < e* + €, we then 1mmed1ately have 8, (t) — én (1) < a.
Recall that K () is the number of chokepoints at time 7, with N = jk (), so using
(4.22), which also holds for d} (0) > e*), we have

Cn
di(t) —dn(t) S( max —) G (@) —dn (1) < " — £~

Jj¥<ni<ny<N an — Cn|

Hence, since d{ (1) > e*, we immediately have dn (t) > £*. From (4.7) we have that
at any regular point t € (t 1 T Sn (1) < Yn(dn (1)) — 1, and now dy (1) > £*
implies further that wN(dN(t)) — 1 < ¥n(*) =1 < 0. Then it follows that 7| is
finite, and furthermore, since, by similar reasoning to that above, ) N (t) < 0 for any
regular point ¢ for which §y (¢) € (¢* — 7', e*], we have § (1) < e* — 1/ forallr > rl.
Then, since we have assumed d () > e* for all ¢t > 0, this implies that ji (1) < N
forall 7 > 7. Note that if j* = N — 1 then this completes the argument to show that
Jji(t) = j* forall t > t{. So we now assume that j* < N — 1.

In the above, we have shown that the first chokepoint is less than N for all # > ;.
This implies that j>(¢) exists for all times r > 7.

Finally, we will prove the following concluding property: for j = j* + k, k =
1,2,..., N — j*, there is a finite time (greater than or equal to tl’), after which §;(-)
is less than or equal to e* — n for all time. As for j < j*, we shall use a proof by
induction.

We will show first a general inequality, that will be used repeatedly in this section
of the proof. We show that at any regular point ¢ > 77, for j such that j* < j < ja (1),
if §;(t) > e* — n, then we have

. N+ 2e
8i(t) <y ;i(€*) —1
JO =Y — 1+ =

< 0. (4.31)

Note first that for any regular point 7 > 7, if j* < j < ji(¢),and §;(t) > e* —n, then
by (4.9) and (4.28), we have §;(r) < ¥;(e*) — 1 + ’Zﬁfe <Y — 1+ L <o,
as desired. On the other hand, if j* < j;(t) < j < j>(¢) then from (4.3),

i) —Mjn)C;—C;
5,(1) = "(’)SJH(IH M) = M@0 Cj = Ciaoy

(4.32)
Cj Ci—Cjw Cj
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Recalling that e* < df(t) < e* + € and dj (1) = §;,(1)(¢), if §;(¢) > " — n, then
using (4.32) we have

M) - Mjo@® (e* e le(t)(t)df(t)> Cj
Ci=Ciw Cj Cj=Chm
Ciiop . Cj
Ci=Cihwy Cj=Cjw
o Cho+nCi . €+

=" — (df(t) — ")

> > . (4.33)
Ci=Cjiwn Ci—Cj
Sosince) <€ <n < %a and e* > £*, we have
Mi(t) — M; (¢
di(t) > iO=Mpo® max e;. (4.34)

Ci—Cjin J£P*

For regular points 1 > t{, if j* < j = jo(t) and §;(r) > €* — 1, then since d; (1) >
£* > max .« e, from (4.7), Sj(t) <Y =1y -1+ e”*fe < 0. On the
other hand, if j* < ji(f) < j < j2(?), and §;(t) > €* — 1 at a regular point # > 77,
then

. 1<
3j(1) = C_, ; (pi(di (1)) — Ai(m(2))), (4.35)
where now
1< 1 / m;(t)
— Aim@) = — | Ci) + — (4.36)
Cj ,; ¢\ i=,-12<;>+1 d3 (1)

M;@)—M; ) ()
_ G Ci=Cio GG

(4.37)
C; C; d; ()
We can use the bound d} (1) < df(t) < e* + €, together with (4.33) to obtain
Mj(t)=Mj, ) (1) .
Ci=Cio e nte Cj (4.38)

A1) e +e e +eCi—Cia
We also have p; (d; (1)) < p;(d;(t)) for alli < j>(1), since d;(t) = d5(¢) for ji(t) <
i < jp() and di(t) = df(t) > d5(t) fori < ji(¢), and so from (4.35)—(4.38), and
using the inequalities n < %e*(l —0)ande < (e*(1 —0) —n)/2,
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) C; C;—C; e* n+e C;
5.5 < W (dHE)) — jl<r)+< j nm)( 3 j ))
]()_ij( 2()) ( C Cj e* + ¢ €*+€C/—C]1(t)
* +€
< Ui(0*) -1 ]l(t) _ e n
=¥ +< e* + ¢ +e*+e

2e 2
n—+ <9- 1+T)+€
T te e*+e¢

<y —1 +

< 0. (4.39)

This proves the desired result (4.31) for j* < ji1(t) < j < jo(2).

We now start the proof of the concluding property, which will proceed by induction.
For the case k = 1, we start by showing that 7+ = inf{r > 7] : §;+11(r) < e* —n}
is finite. If § j+ 1 1 (r{) < e* —nthen Tj« | = 7] < 00. Sosuppose &+ 1(t) > €* —1.
Since we have already shown that for all ¢ > r{, j1(t) = j*, we have immediately that
J*+1 < jo(r) forallt > {. Hence for any regular points r > t{,if §+41(r) > e*—n,

n+2e
e*+e

then by the property just proved, 8 1 () S P (89 — 1+ < 0, and

n—+e

n+2e <
I =1 (%) — e*te

’
Tix+1 = Tq +

Furthermore, since § j*+1(t) < O for any regular point t > 7+, such that § j«1(¢) >
e* —n, wehave 8+ (t) < e* —nforallt > 7« . Thus we have proved the case
k = 1 holds.

Now assume that the concluding property holds for k < n — 1, some n > 2 and
n < N — j*. Then we may assume that for j = j*+ 1, j*+2,...,j*+n—1,
8j(t) < e* —nforallt > tj+;,—1. This implies, since ji(¢) > j*, that if for some
t > Tjxy,—1 we have §;+4,(t) > e* —n, then we will also have j>(1) > j* + n.
Let tjxy, = inf{t > Tjryp_1 1 8jrqn(t) < € — ). If §jeyy (Tjrypn—1) < " —n,
then 7+, = Tj+;,_1 < 00. So we may suppose that &« , (Tj+1,—1) > e* — 1.
For any regular points ¢ > Tjsy,_1, if §;+4,(t) > ¢* — 7, then since that implies

Jjo(t) = j* + n, by (4.31) we have Sj*+n(t) S Y€)= 14 ":f: < 0, and

‘[j*+n<‘l,'j>s<+n_l+ n+€ < 00
- L= Yo (€%) = B
Jrtn et +e

Furthermore, since Sj*+n (t) < 0, for any regular point# > 7+, such that § 1, () >
e* —n, we have §;+4,(t) < e* —nforallt > 7;+y,. Thus we have proved the case
k = n holds, and hence by the principle of induction, the concluding property holds
forallk =1,2,...N — j*.

We have shown that forall 1 > 7, wehave §; (1) < e*—nforall j # j*. However,
since d (t) > e*, we must therefore have §«(t) = dj (t) > e* forall t > Ty.

Thus, finally, considering both the case di" (0) > e* and df (1) < e* we have shown
that j;(r) — j* ast — oo. Since j|(¢) is integer valued, this implies that j; (1) = j*
for all ¢ sufficiently large. O
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5 Generalizations and Discussion
5.1 Living with Short Ramps

In practice, onramps will be of different lengths, depending on their location. There
are other reasons why some onramps may need to have shorter queues, for example,
at peak times queues for an onramp may obstruct suburban streets.

A shorter ramp may act as a deterrent to arrivals. This can be incorporated in our
model via the arrival rate function for that ramp. Furthermore a mechanism which
allows our control policy to adjust the relative queue lengths and to achieve other
effects is assigning weights to the queues. That is the topic of this subsection.

Letw € Rﬁf be weights attached to the queues. Then for fixed m € Rﬁ , A(m) is
chosen to be a minimizer for the following adjusted minimization problem.

L. wim; .
m1n1mlzeAE]M 11221<XN {A_} such that Z A <Cj forl <j<N. (5.1)
- ! ii<j

The w-minmax delay controller LP is: Given m € RY

c?ik(m) = minkeﬂw d

0<wimj <k, 1<i=<N, (5.2)
0< ) a<dCj, 1<j=<N. (5.3)
ii<j

The solution to this has the same properties as did the unweighted controller: for
queues i < jj(m), where jj(m) is the first chokepoint, we have that the delay, t; (m),
at onramp i satisfies

w;Ti(m) = dj(m), forl <i < ji(m).

This is because the w-minmax and the minmax solutions map perfectly to each other
via:

di(m) =di(wm) and  ji(m) = ji(wm).
5.2 Control Policy when There are Outflows

We have assumed throughout that all traffic admitted to the motorway will travel
through to the end of the motorway. However, in general not all individuals will do so.
In this section we outline an approach to incorporating outflow from the motorway,
that is, we have offramps with nonzero traffic on them.

Suppose there is an outflow rate y; > 0 for offramp i. In this section we write the
onflow rate at onflow ramp i to the motorway as A; (m, y). The effective onflow rate
is
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Ai(m,y) = Ai(m,y) — v;. (5.4)
The delay is now
m;
dim,y) = ——. (5.5)
' Ai(m,y)

The congestion constraint becomes

J
0<Y Aim,y) <Cj (5.6)
i=1

which includes the requirement that the rate of flow of cars onto the motorway always
be nonnegative. Additional constraints are

0<di(my) <d,1<i<N. (5.7)

This now gives us the following minmax delay controller LP. Given m, y € RY,

di(m,y) = mi”AeRﬁ d (5.8)

0<m; <X, 1<i<N (5.9)

0< > (hi—dy)<dCj, 1<j<N. (5.10)
ii<j

When the optimal value dj (m, y) # 0, for an optimal solution A(m, y), we define
the control policy A;(m, y) fori =1,2,..., N, by

ALY E s ()
Ajm,y) =1 dmy) ! ’ 5.11
im. ) 0 if m; =0. 1D

(Note that an optimal solution may not be unique, see Sect. 2.2.2.)
5.2.1 Properties and Analysis

Thus the LP is the same as before except that the last constraint has been modified.
This final constraint can be rewritten as

dy yi<) ri=dC, 1<j<N. (5.12)

ii<j ii<j

where C; = Cj + .
freeway capacity.
Note The key hypothesis that capacity is increasing in the queue number still holds

ii<j yi- The effect of the outflows is mostly to increase the

Cit1—Cj=Cjp1—Cj+yjt1 > 0. (5.13)
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Next we ask what parts of the theory that we developed in the previous sections
still hold. Suppose the outflows y; are all constant in time. Then it is natural to define
the equilibrium delays éy, ..., éy by

Y opi@p=Ci+ Yy yi=Cj, 1<j<N. (5.14)

ii<j ii<j

A plausible sufficient condition for the theorems to hold is that the lower bound
in (5.12) is never an active constraint. Thus, for instance, we expect the convergence
results of Theorem 1.3 will hold for suitable initial values m(0), namely, those for
which no resulting m(¢) and j satisfy

D vi= ) Aim@). ).

ii<j ii<j

If this lower bound is achieved for some jy, then the rate of flow of traffic onto the
motorway is zero at jo. Effectively, this would mean that congestion downstream of jo
doesn’t depend on traffic at jy or upstream of it. Thus it would be sufficient to consider
the downstream network in isolation. In this paper we are particularly concerned with
heavily congested networks, so it is reasonable to make the assumption that the lower
bound is never the active constraint.

5.3 Proportionally Fair

The controller we studied here minimizes a worst case performance measure
(maximum delay). Another possible way to choose the control policy A is to maximize
proportional fairness. Namely, for each m, a metering policy A (m) is called propor-
tionally fair (see [12]) if it solves

N
maerRi/ Z m;log A;
i=1

subject to

D> Ai=Cj 1<j<N. (5.15)

Here the i"" summand in the objective function is assumed to be zero if m; = 0. This
model with a proportionally fair policy has not been analyzed to date.

It would be interesting to compare the dynamic behavior of a proportionally fair
controlled system with our minmax delay controlled system.
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5.4 Discontinuity of A; at m; = 0 Downstream

In another direction we point out that there are many natural values for a controller A;
whenever m; = 0 at an i which is downstream of the first choke point. This is because
the limit of A;(m) as m; — 0 can take a range of values, and, hence A; need not be
continuous in m; at 0. (Remember that we have defined A;(m) = 0 when m; = 0.)
We illustrate this with a couple of simple examples. The first example illustrates that
continuity is possible. The next two illustrate how it can fail. Suppose N = 2.

1. Suppose m = (e, s), where € << s. Then
Ai(m) =Corxe€/(s+¢€) with Ar(m) = Coxs/(s +€)

and A{(m) — Oase — 0.

2. Suppose m = (s, €) where € << s. Then A1(m) = C; with Ax(m) = C; — Cy
and Ar(m) —> C, — Cyase — 0.

3. Supposem = (ae, €) with e small and forsomea € R suchthata < C1/(C2—C1)
so that j; = 2. Then A1(m) = C2 xa/(1 + a) and Ay(m) = C2/(1 + a), neither
of which converges to 0 as € — 0.

Funding This research was supported in part by National Science Foundation Grants DMS-1500835, DMS-
1206772, DMS-1712974, the Charles Lee Powell Foundation, Matatini Marsden Fund grant UOA 1114 and
Te Punaha Matatini.

Declarations

Conflict of interest The authors declare that they have no competing interest.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abouaissa, H., Fliess, M., Join, C.: On ramp metering: towards a better understanding of ALINEA via
model-free control. Int. J. Control 90, 1018-1026 (2017)

2. Como, G., Nilsson, G.: On the well-posedness of dynamical flow networks with feedback-controlled
outflows. Preprint, arXiv:2001.06097 (2020)

3. Coogan, S., Arcak, M.: A compartmental model for traffic networks and its dynamical behavior. IEEE
Trans. Autom. Control 60, 2698-2703 (2015)

4. Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent

with the hydrodynamic theory. Transp. Res. B 28, 269-287 (1994)

Daganzo, C.F.: The cell transmission model, Part II: network traffic. Transp. Res. B 29, 79-93 (1995)

6. Dai, J.G., Weiss, G.: Stability and instability of fluid models for reentrant lines. Math. Oper. Res. 21,
115-134 (1996)

W

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2001.06097

Applied Mathematics & Optimization

10.

11.

12.

14.

15.

17.
18.

19.

Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

Gibbens, R.J., Saatci, Y.: Data, modelling and inference in road traffic networks. Philos. Trans. R. Soc.
A366, 1907-1919 (2008)

Gomes, G., Horowitz, R., Kurzhanskiy, A.A., Varaiya, P., Kwon, J.: Behavior of the cell transmission
model and effectiveness of ramp metering. Transp. Res. C 16, 485-513 (2008)

Huang, S., James, M.R.: L%°-bounded robustness for nonlinear systems: analysis and synthesis. IEEE
Trans. Automatic Control 48, 1875-1891 (2003)

Huang, S., James, M.R., Jiang, Z.P.: L-infinity bounded robust control of nonlinear cascade systems.
Syst. Control Lett. 54, 215-224 (2005)

Kelly, E.P., Williams, R.J.: Heavy traffic on a controlled motorway. In: Bingham, N.H., Goldie, C.M.
(eds.) Probability and Mathematical Genetics: Papers in Honour of Sir John Kingman. Cambridge
University Press, Cambridge (2010)

. Levinson, D., Zhang, L.: Ramp meters on trial: evidence from the Twin Cities metering holiday. Transp.

Res. A40, 810-828 (2006)

Mandjes, M., Storm, J.: A diffusion-based analysis of a multiclass road traffic network. Stoch. Syst.
(2021). https://doi.org/10.1287/stsy.2019.0065

Papageorgiou, M., Kotsialis, A.: Freeway ramp metering: an overview. IEEE Trans. Intell. Transp.
Syst. 3, 271-281 (2002)

Sumalee, A., Zhong, R.X., Pan, T.L., Szeto, W.Y.: Stochastic cell transmission model (SCTM): a
stochastic dynamic traffic model for traffic state surveillance and assignment. Transp. Res. B 45,
507-533 (2011)

Varaiya, P.: What we’ve learned about highway congestion. Access 27, 2-9 (2005)

Zhang, L., Levinson, D.: Ramp metering and the capacity of active freeway bottlenecks. In: Proceedings
of the 83rd Annual Meeting of the Transportation Research Board (2004)

Zhang, G., Wang, Y.: Optimizing coordinated ramp metering: a preemptive hierarchical control
approach. Comput.-Aided Civil Infrastruct. Eng. 28, 22-37 (2013)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.1287/stsy.2019.0065

	A Fluid Model of a Traffic Network with Information Feedback and Onramp Controls
	Abstract
	1 Introduction
	1.1 The Control Policy we Analyze
	1.2 Modeling Choices
	1.3 Generalizations and a Guide for the Reader

	2 Model Description and Main Results
	2.1 Model Formulation
	2.1.1 Traffic Network Model Setup
	2.1.2 System Dynamics
	2.1.3 Ramp Meter Rate Control Policy

	2.2 Properties of the Control Policy
	2.2.1 Formulas for the Controller Upstream of the First Choke Point
	2.2.2 Successive Delay Minimization Controller

	2.3 Main Dynamic Results
	2.3.1 Behavior Upstream of the First Choke Point
	2.3.2 Multiple Choke Points

	2.4 Other Control Perspectives

	3 Key Differential Equations and Basic Properties
	3.1 Basics of Queue Length Dynamics
	3.2 Virtual Delays
	3.3 Delays dk*(t) of the Multichoked Minmax System and Their Equilibria ek* 
	3.3.1 Properties of Equilibrium Delays e1, e2, …, eN
	3.3.2 The Successive ek* and dk* are Decreasing with k


	4 Proofs of Asymptotics of the Controlled System
	4.1 Preliminary Lemmas
	4.2 Asymptotics of d1*(t) and of j1(t)

	5 Generalizations and Discussion
	5.1 Living with Short Ramps
	5.2 Control Policy when There are Outflows
	5.2.1 Properties and Analysis

	5.3 Proportionally Fair
	5.4 Discontinuity of Λi at mi=0 Downstream

	References




