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Abstract—This paper considers a noisy data structure recovery
problem. Specifically, the goal is to investigate the following
question: Given a noisy observation of the data, according to
which permutation was the original data sorted? The main focus
is on scenarios where data is generated according to an isotropic
Gaussian distribution, and the perturbation consists of adding
Gaussian noise with diagonal scalar covariance matrix. This
problem is posed within a hypothesis testing framework. First,
the optimal decision criterion is characterized and shown to be
identical to the hypothesis of the observation. Then, by leveraging
the structure of the optimal decision criterion, the probability of
error is characterized. Finally, the logarithmic behavior (i.e., the
exponent) of the probability of error is derived in the regime
where the dimension of the data goes to infinity.

I. INTRODUCTION

The problem of recovering data structure, given a perturbed
observation of it, is becoming a prevailing task of modern
communication and computing systems. For instance, in a
recommender system, users may desire to privatize their data
before it is collected from an external party. A suitable solu-
tion to privatize data, and hence maintain its confidentiality,
consists of perturbing it with some noise. Upon receiving the
perturbed/noisy data the recommender system might need to
recover the data structure (e.g., ranking of users’ interests) in
order to provide the next recommendation.

In this work, we are interested in investigating the following
question on noisy data structure recovery: Given a noisy
observation of the data, according to which permutation was
the original data sorted? In particular, we consider a scenario
where data is generated according to a Gaussian distribution,
and the perturbation consists of adding Gaussian noise. The
main focus is on Gaussian noise perturbations for which the
covariance matrix is diagonal with all elements equal to o2,

We start our analysis by formulating the problem within a
hypothesis testing framework, which consists of n! hypothe-
ses, where n is the dimension of the data vector. We then
characterize the optimal decision criterion for the hypothesis
testing problem, by deriving the optimal decision regions. In
particular, we show that the optimal decision is identical to
the hypothesis of the observation, and is independent of o2
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With the structure of the optimal decision regions, we finally
proceed to characterize the probability of error incurred by the
decision criterion. In particular, we express the probability of
error in terms of the volume of a region which consists of the
intersection of a cone with a linear transformation of the unit
radius n-dimensional ball. We also use this characterization
to derive the logarithmic behavior (i.e., the exponent) of the
probability of error as n goes to infinity.

Related Work. The problem of permutation recovery has
recently gained significant importance, and it is widely studied
in several fields, such as computer science and (bio)statistics.

In the machine learning literature, a problem of permutation
estimation given noisy observations is studied in [1]. The
model in [1] consists of recovering the permutation needed to
match two sets of features, given noisy observations of them.
In particular, the authors provide a separation rate parameter
for estimating the permutation, and a minimax separation rate
for recovering the permutation. In [2] the authors analyze a
framework for estimating not only the structure/permutation,
but also the values of an original sorted vector perturbed by
noise, by performing joint estimation and sorting.

A permutation recovery problem also appears in linear
regression [3], [4]. The authors consider an additive noise
linear regression model in which the output is permuted
by an unknown permutation matrix. In [3], conditions for
(approximate) permutation recovery are discussed. Under the
same model, a characterization of the minimax prediction error
and estimators are discussed in [4]. In [5], multivariate linear
regression under sparse permutation is considered. The goal
is to recover the permutation, which acts only on part of
the data. Other interesting works on this topic are [6]-[8].
The uncoupled isotonic regression problem, where the goal
consists of estimating a non-decreasing regression function
given unordered sets of data, is studied in [9].

A study on permutation recovery in biostatistics is found
in [10]. The authors discuss exact and partial permutation
recoveries under Kendall tau distance for the microbiome
growth dynamics. Further, an interesting binary hypothesis
testing detection problem with unknown permutation, namely
unlabeled detection, is discussed in [11].

Paper Organization. Section II introduces the notation and
formulates the hypothesis testing problem. Section III dis-
cusses the optimal decision regions for our hypothesis testing
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Fig. 1. Graphical representation of the proposed framework.

problem. Section IV presents a new characterization for the
probability of error and illustrates its logarithmic behavior as
n goes to infinity. Section V concludes the paper.

II. NOTATION AND PROBLEM FORMULATION

Notation. Boldface upper case letters X denote vector random
variables; the boldface lower case letter x indicates a specific
realization of X; [ny : ng] is the set of integers from ny to
ng > nq; I, is the identity matrix of dimension n; 0,, is the
column vector of dimension n of all zeros; 0,,«, is the zero
matrix of dimension n x n; A~1! is the inverse of the square
matrix A; || A]| is the spectral norm of the matrix A and det(A)
is the determinant; ||x|| is the 5 norm of x, and x” is the
transpose of x. Calligraphic letters indicate sets; |.4| denotes
the cardinality of the set A; for two sets A and B, A\ B is
the set of elements that belong to .4 but not to B, ANB is the
set of elements that belong both to A and B, and AU B is the
set of elements which are in either set; & is the empty set.

We consider the framework in Fig. 1, where an n-
dimensional random vector X is generated according to an
isotropic Gaussian probability density function (PDF), namely
X ~ N(0,,I,). The vector X is passed through an additive
noisy channel with Gaussian transition probability, the output
of which is denoted as Y. Thus, we have Y = X 4+ N, with
N ~ N (0, Kn) where K denotes the covariance matrix of
the additive noise N, and where X and N are independent.

In this work, we are interested in answering the following
question: Given the observation of Y, according to which
permutation - among the n! possible ones - was the vector
X sorted? Towards this end, we define P as the collection of
all permutations of the elements of [1 : n]; clearly |P| = nl.
We formulate a hypothesis testing problem with n! hypotheses
Hr,m € P, where H, is the hypothesis that X is an n-
dimensional vector sorted according to the permutation m € P.
Formally, each hypothesis corresponds to the following set,

Hﬂ':{x;xﬂ'l Sxﬂ'gg.'.gxﬂ'n}) (1)

where z.,,7 € [1 : n] is the m;-th element of x, and 7,7 €
[1:n] is the i-th element of 7.

We seek to characterize the optimal decision criterion
among the n! hypotheses, as well as assessing its performance
in terms of error probability. In other words, with reference to
Fig. 1, we are interested in characterizing the decision criterion
so that its output H;, 7 € P is such that

Hz 7 =argmin {Pr(H, # Hre )}y 2)
TEP

where 7* denotes the permutation according to which the
random vector X is sorted.

Example. Let n = 3, then we have |P| = 6 and hypotheses
Hr,m € P defined as

Hii23): X1 < Xo < X,
Hiz1,3 1 Xo < Xy < X,
Hizi0 + X3 < X1 < Xy,

Hiizoy: X1 < X3 < Xo,
7‘[{27371} : X2 S X3 S Xl,
Hizo1y: X3 < Xo < Xy,
where X;,i € [1 : 3] is the i-th element of X. Each hypothesis
is hence associated to a region — referred to as hypothesis

region — in the 3-dimensional space, as also graphically
represented in Fig. 2.
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Fig. 2. Case n = 3. Graphical representation of the hypothesis regions
associated to each of the 6 hypotheses.

III. OPTIMAL DECISION REGIONS

In this section, we seek to solve the optimization problem
in (2), hence characterizing the optimal decision criterion.
Towards this end, we make use of the result in [12, Ap-
pendix 3C], which shows that, for an observed y, the optimal
decision criterion in (2) is given by the maximum a posterior
probability (MAP) decoder, namely

Hi: 7 =argmax {fy(y,Hr)}, (3a)
TeP

fY(Y7H7r) = fY(Y|H7T) PI‘('Hﬂ—), meP. (3b)



By defining the likelihood functions L(y,H,) =
fy(y|Hz),Vm € P, we have that (3) can be equivalently
formulated as

L(y7 Hfr)
Hqi: ————F
Ly, Hxr)

where we have used the fact that Pr(H,) = Pr(H,),¥(m, 7) €
P x P, which follows since X ~ N(0,, I,,). It is worth noting
that, since X and N are independent, then the likelihood
function L(y,H.), 7 € P can be expressed by using the
convolution between two PDFs as

L(YvHW):E[fN(y_X)‘rHTr]v )]

where fn(-) is the PDF of N and x indicates the convolution
operation.

With the formulation in (4), we can now define the optimal
decision regions R i, ™ € P of our hypothesis testing prob-
lem'. In particular, the decision criterion will leverage these
regions to output H;, 7T € P, namely if the observation vector
Y € Rx Ky, then the decoder declares that the input vector
x € H,. We have that the optimal decision region R gy
corresponding to the hypothesis H,, 7 € P is defined as

> 1, Vr # 7, “4)

RTI’,KN =4YE€ R™: fY(y7H‘n') > I_Pea,;(fY(vaT)
TH#T
L) ) vreprin } ©6)

= ceR?, 2 72
{y Ly, H,)

We highlight that each decision region described in (6) is a
set of observation vectors y € R"™ that satisfy the optimal
decision criterion in (4).

Remark 1. In order to guarantee that the collection
{Rr kn,m™ € P} is a partition of the n-dimensional space,
we assume that if the observation vector y € R" belongs
to the boundary between two or more decision regions, i.e.,
Y € {Rekn:m € S,8 CP,|S| > 1}, then we arbitrarily
select one of the hypotheses H,,m € S.

We next present one of our main results, which fully char-
acterizes the optimal decision regions in (6) for the case when
N ~ N(0,, KN) with KN = o21,,. Under this assumption,
the regions R, iy, ™ € P depend on K only through the
parameter o. Hence, in what follows we let R xyy = Rr.0-

Theorem 1. Assume that N ~ N (0,,, Kn) with Kn = 021,.
Then, the optimal decision regions in (6) are given by

Rro =My, V7 €P. 7)

Before delving into the proof of Theorem 1, we state two
remarks that highlight some properties of the result in (7).

Remark 2. We note that the result in Theorem 1 can be
extended beyond Gaussian X and holds for any X that has a
spherically symmetric distribution, i.e., X and UX have the
same distribution for every unitary matrix U.

I'The notation R, Ky indicates that, in general, the decision regions might
be functions of the noise covariance matrix K.

Remark 3. The result in (7) shows that when Kn = o021,
then the optimal decision is identical to the hypothesis of
observation. This result implies that: (i) there is no need of
performing any further operation, such as likelihood ratio
comparisons, to obtain the optimal decision criterion; and (ii)
the optimal decision is independent of the value of o. These
results are a consequence of the symmetry of X and N.

In the remaining of this section, we focus on proving the
result in Theorem 1. In particular, we use the notation h, with
m € P to denote the fact that the components of h, are sorted
according to the permutation 7, i.e., h, € H,. We now note
that for any vector h,, 7 € P, we have that

Prbefi)= o [ Il =) (o) de. )

Xn€EHr
and similarly for 7 € P with 7 # 7 we have that

fY(hﬂ'lHT) = Pr('l}[ ) / In(hy — XT)fX(X7-> dx,
e =Ta
@ 1
= Pr(?—[ﬂ_) / fN(hTr - PT(,’TXT{')fX(Pﬂ-’TXﬂ_) dxﬂ_’ (9)

XnEHr
where the equality in (a) follows from the fact that, by
assumption, we have Pr(#,) = Pr(#,), and by using a
change of variable where P ; is the permutation matrix that
permutes the vector X, € H, into Py ;X = X, € H,.
Thus, from (8) and (9), we obtain

fY(hW|H7T) - fY(hW|HT)

(a)

Z / {fN(hﬂ' - Xﬂ') - fN(hﬂ' - P‘n’,'rxﬂ')} fX(Xﬂ') dx‘ﬂ'
Xn€Hnr

(®)

> 0, (10)

where the inequality in (a) follows since Pr(H,) < 1, and
the inequality in (b) follows because of the following lemma.

Lemma 1. Assume m € P and let g, € H, and h, € H.
Then, for all T € P with T # 7, we have

lgn — hﬂHQ <|lgn — PTr,Thﬂ”Qa

where Py ; is the permutation matrix that permutes the vector
h, € H, into Py ;hy =h, ¢ H,.

Proof: We start by noting that for any two vectors
gr € Hr and h, € H,., where 7 € P and 7 € P, the
maximum inner product is obtained when 7 = 7, i.e., when
the two vectors are sorted according to the same permutation.
Formally, we have

argmax {g'h, } = .
TEP
Moreover, for m € P, we have

lg= — hal* = llgxl* — 287 hr + b

(1)

(a)
< ||gﬂ'||2 - QgZ:P‘n',ThTr + ||P7r,7'h7rH2

= ng —PW,-,—hﬂ||2, (12)



where (a) follows from (11) and since ||h,||? = || P; +h,|%
This concludes the proof of Lemma 1. ]

From the result in (10), it follows that, if the observation
y € Hp with 7 € P, then fy(y|H.) > fy(y|H.),VT €
‘P, T # m. This together with the definition in (6) implies that

He C R, Vo € P. (13)

The equality follows since both H,,7 € P, and R, ,,7 €
‘P, partition the entire n-dimensional space. Formally, assume
that, for a permutation p € P, there exists t € R, , \ H,.
Then, since the H’s satisfy the condition in (13) and partition
the entire n-dimensional space, we must have that there exists
T € P,T # p, such that t € R, , N H,. However, by the
condition in (13) and since also the R, ,’s partition the entire
n-dimensional space, we have that R,, N H, = J,Vp #
7. It follows that such a t cannot exist, which contradicts
the assumption. This shows that H, = Rr,,Vm € P and
concludes the proof of Theorem 1.

IV. PROBABILITY OF ERROR

In this section, we assume K = 2], and we characterize
the probability of error incurred by the optimal decision
criterion in Theorem 1. In particular, in Section IV-A we
express the probability of error in terms of the volume of
a region which consists of the intersection of a cone with a
linear transformation of the unit radius 2n-dimensional ball.
Then, in Section IV-B we use this characterization to derive
the logarithmic behavior (i.e., the exponent) of the probability
of error as n goes to infinity.

Next, the n-dimensional ball centered at ¢ with radius r is
denoted as B™(c,r), and the volume (i.e., the n-dimensional
Lebesgue measure) of a set S C R™ is denoted as Vol(S).

A. Characterization of the Probability of Error

The following theorem characterizes the probability of error
incurred by the optimal decision criterion in Theorem 1.
Theorem 2. Assume that N ~ N (0,,, Kn) with Kn = 021,.
Then, the probability of error is given by

Vol(Cyy, N AB> (020, 1))

P.=1—n 14

¢ T e Ol(B2 (00, 1)) (14)

where A = In Onxn eR?™ Cy =HnxXH,, and 7 € P
- In O_In » H,r - T T

can be chosen arbitrarily.

Proof: Instead of working with the probability of error, it
is more convenient to work with the probability of correctness
of our hypothesis testing problem. Using the structure of the
optimal decision regions found in Theorem 1, the probability
of correctness can be written as

P=Y Pr ((X,Y)T €M, x Rm)
TEP
=3 Pr((X V)" € M x Hy)
TEP

—nlPr ((X7Y)T € Hy x Hﬁ) : (15)

where the last equality follows from the symmetry of X and
Y, and by choosing 7 € P arbitrarily.

Furthermore, let Z € R™ denote the standard normal
random vector, i.e., Z ~ N(0y, I,,). Then,

Pr((X,Y)" € Ha x My )
=Pr (X, X+02)" € Uy x Uy )
=Pr(AX,Z)" € Hx x Hy)

=Pr((X,2)" € A 'Cy,), (16)

where A = ‘E" 0;;"} and Cy, = Hn X Hr. Note that A
is invertible for o > 0.

We observe that the shape of the region H, is an n-
dimensional cone (see Fig. 2 for a graphical representation
when n = 3). Thus, Cy_ is a 2n-dimensional cone and so
is A71Cy... It therefore follows that we have to determine
the probability of (X, Z)T to fall within a cone. Using the
symmetry of the Gaussian distribution, the probability of a
pair (X, Z)7 to fall within a cone is simply determined by
the angular measure of the cone. Now, the angular measure of
the cone A~'Cy,, is given by

Pr((X,2)" € A™'Cy,)

Vol (A~1Cy, N B (0, 1))
B Vol (B2 (03, 1))

|det(A~1)|Vol (Cy, N AB*™ (03, 1))
- Vol (B2 (025, 1)) ’

A7)

where in the last equality we have used the fact that
Vol (AS) = |det(A)|Vol (S) for any invertible matrix A and
any set S. By combining (15), (16) and (17) we arrive at

Pl |det(A_1)|Vol (CH, N AB*" (Ogn, 1))
e = Vol (B2 (02, 1)) '

(18)
The proof is concluded by verifying that det(A) = o™ and by
using the fact that P, =1 — P,. |

Remark 4. There are several alternative ways of expressing
the probability of error in (14) such as

1 p = n!Vol(CHW N AB?*" (03, 1))
o™ Vol(B?"(02,, 1))
(a) 1 VO](C'HW N AB2n(02n, 1))
= ! Vol (A(Cy. N B27(02,,,1)))
(b) Vol(AN AB?"(0,,,1))
~ o"Vol(B2"(0y,,1)) ’

where the equality in (a) follows since Vol (AS) =
|det(A)|Vol (S) for any invertible matrix A and any set S,
and by computing the volume of the intersection of a ball
and a cone Cy_. and the equality in (b) follows by letting
A = UrepCy, ie., Ais the collection of events of correct
detection.



B. Behavior of P, as n — oo.

Using the expression for the probability of error in (14)
together with a covering argument, we can find the first order
logarithmic behavior of the probably of error, as stated in the
next proposition.

Proposition 1. Assume that N ~ N(0,, Kn) with Ky =
021,,. Then, the probability of correctness can be upper and
lower bounded as

2n
l <P.< l& (19a)
n! n! on ’
_ In 0n><n n
where A = [In aln] € R*" and
3
ot +4)2 o2
|A|l = <(2)+2+1 . (19b)
Consequently,
log &
8P _ . (19¢)

noso0 log(n!)

Proof: We start by deriving the lower bound on F,,

P.=3 Pr ((X7X+N)T € Ha x HW)
TEP
> 3 P (X N)" € My x Ay

TeP
1

=n!
(n)2’

where the inequality follows from the fact that if (X, N)” €
Hy x Hy then (X, X +N)T € Hy x Hy.
Now to show the upper bound we use Theorem 2. We have
'Vol (CHW N AB*" (09,,,1))
a™Vol (B2" (09, 1))
(a) 'VOI (C'Hﬂ n 8271(02“7 ||A||))
a™Vol (B2" (09, 1))
(b) Vol (B> (02n, [|A])
nlo™Vol (B2™ (03, 1))
© A"

nlon ’

P.=n

(20)

where the labeled (in)equalities follow from: (a) using the
fact that AB?"(03,,1) C B*(02,,|Al); (b) comput-
ing the volume of the intersection of a ball and a cone
Cy,; and (c) using the fact that Vol (B2"(0a,,[|Al)) =
[|A|[* Vol (B*"(02y,1)). The proof is concluded by using the
fact that the spectral norm of A is given by the largest singular
value of A, that is given by (19b). ]

Remark 5. The fact that P, = 0 at 0 = 0, together with
the upper bound in (19a), suggests that to achieve a small
probability of error for even moderate values of n the value
of o must be extremely small.

Remark 6. The upper bound on P, in (19a) is a function of
|A||?™ /o™ It is not difficult to see that, for o > 0, we have
the following range of parameters for || A|*/c

@e [\/§+1,00)7

where the minimum is achieved at o = /2.

21

The convergence of the upper bound on P, in (19a) for finite
values of n is evaluated in Fig. 3. From Fig. 3 we observe
that, since w is convex in o € (0, co] with minimum value
achieved at o = /2 (see Remark 6), then the convergence of
the bound to 1 in (19¢c) for ¢ = v/2 is fastest among all other
values of ¢. From Fig. 3, we also note that: (i) for o € (0, /2]
the convergence of the bound to 1 is faster for higher values
of o, whereas (ii) for ¢ € [v/2,00) the convergence of the
bound to 1 is faster for smaller values of o.

1 T T T T T T T
0.8 |- =
0.6 [
log(}%
log(n!)
0.4}
0.2 f
| | | | |

| |
0 20 40 60 8 100 140

n

120

Fig. 3. Convergence of the upper bound on P in (19a) for finite values of

n with o = {mlﬁﬁﬁ}

V. CONCLUSION

This paper has considered a problem of recovering/detecting
a permutation of a sequence from an observation corrupted by
Gaussian noise. The structure of the optimal decision regions
was characterized for the case of i.i.d. noise and shown to
be independent of the variance of the noise. Then, using the
structure of the optimal decision regions, the probability of
error was derived in terms of a volume of a region that consists
of the intersection of a cone with a linear transformation of the
unit radius 2n-dimensional ball. Finally, this characterization
of the error probability was used to determine its logarithmic
behavior as the length of the sequence goes to infinity.

An interesting future direction, which is a subject of the
current investigation, is to extend the result to colored Gaus-
sian noise. Another interesting direction is to characterize the
asymptotic behavior of the probability of error in the regimes
of large and small noise variances.
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