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Abstract7

Magnetic particles confined in microchannels can be actuated to perform translation motion8

using a rotating magnetic field, but their actuation in such a situation is not yet well understood.9

Here, the actuation of a ferromagnetic particle confined in square microchannels is studied using10

immersed-boundary lattice Boltzmann simulations. In wide channels, when a sphere is away11

from channel corners, it experiences a modest hydrodynamic actuation force parallel to the12

channel walls. This force decreases as the sphere is shifted toward the bottom wall but the13

opposite trend is found when the channel is narrow. When the sphere is positioned midway14

between the top and bottom channel walls, the actuation force decreases as the channel width15

decreases and can reverse its direction. These phenomena are elucidated by studying the flow16

and pressure fields in the channel-particle system and by analyzing the viscous and pressure17

components of the hydrodynamic force acting on different parts of the sphere.18

∗To whom correspondence should be addressed, email: ruiqiao@vt.edu.
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1 Introduction1

Manipulating microscale objects in a liquid environment is challenging. One of the reasons is2

that the motion of small objects is often governed by Stokes flows. A key characteristic of Stokes3

flows is that reciprocal movement of a ”swimmer” in these flows cannot lead to a net displacement4

due to the time-reversibility in them, which is known as Purcell’s scallop theorem.1 Many tech-5

niques have been developed to manipulate microscopic objects in liquids, e.g., dielectrophoresis,6

diffusiophoresis, magnetophoresis, and so on.2,3 Magnetism-based methods are popular because7

they are typically bio-compatible, e.g., magnetic fields can penetrate most media without adverse8

effects.4–6 Magnetism-based particle manipulation methods can be broadly divided into two cate-9

gories: driving particles using a net magnetic force and driving particles using a magnetic torque.10

For particles with a characteristic dimension r, the net magnetophoresis force they experience often11

scales as r3,7,8 and the induced translation speed scales with r2.9 Therefore, actuation based on net12

magnetic force typically requires very strong magnetic fields when the particle is small. Actuation13

based on magnetic torques, on the other hand, has more favorable scaling laws (e.g., the translation14

speed can scale with r)10 and can provide large translation speed with weak or moderate magnetic15

fields. As such, torque-based magnetic actuation has attracted much attention in recent years.16

To actuate microparticles using a magnetic torque, it is essential to break the time-reversal17

symmetry inherent in Stokes flow. Such a symmetry can be broken by using asymmetric geometry18

such as an artificial flagella or introducing a substrate.11–16 Particles exhibiting magnetic torque-19

induced translation motion near substrates are often called surface walkers, and they are being20

studied intensively by many research groups.10,17–22 Many interesting phenomena related to surface21

walkers have been discovered.5,23–29 For example, when magnetic particles rotate above a solid wall,22

a chain of rotating particles travel faster than an individual particle rotating near the same wall;1923

hydrodynamic interaction between rotating particles can leads to particle clustering;30 particle24

clustering can emerge spontaneously due to fingering instability in a swarm of particles;31,32 rolling25

particles can exhibit flocking behavior at some frequencies of the applied magnetic field;33 clusters of26

magnetic particles can be disassembled into shorter chains near uneven substrates using three-axis27

dynamic magnetic fields.2028

Many potential applications of surface walkers require them to be actuated in confined spaces.34,3529

Therefore, it is worthwhile to study the dynamics of magnetic surface walkers under confined condi-30

tions. Research in this direction begins to receive attention only most recently, but some interesting31
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phenomena have already been reported. For instance, the reversible response of superparamagnetic1

particles confined in a microchannel has been analyzed. It was found that the particle assembly2

is reconfigurable and the shape of the particle assembly depends strongly on the channel-particle3

size ratio.36 The rheology of a sphere particle suspension confined between two plates under an4

external uniform magnetic field was studied. It is discovered that the magnetic torque applied to5

the sphere is transmitted to the fluid via viscous force, and consequently, the induced shear stress6

drives a unidirectional flow of the suspension.377

Understanding the actuation of magnetic surface walkers, or more generally, dynamics of mag-8

netic particles in fluids, using experiments alone is challenging. Computational modeling is a9

powerful tool to complement experimental investigations. In the literature, many different meth-10

ods, including Stokesian dynamics,38 dissipative particle dynamics,39 finite element method,40,4111

smoothed particle hydrodynamics,42,43 and lattice Boltzmann method (LBM),44,45 have been de-12

veloped to investigate the dynamics of magnetic particles suspended in liquids. Using LBM, we13

recently studied the dynamics of surface walkers confined between two infinite walls.46 It was found14

that the degree of confinement and the nature of the confining walls (slip vs no-slip) not only affect15

the speed of a sphere actuated by a rotating field, but also its direction. For example, for a sphere16

positioned at a fixed height above a lower no-slip wall, as the no-slip upper wall is brought closer17

to the lower wall, the translation of the sphere first slows down, then reverses direction, and finally18

reaches zero when the sphere is exactly in the middle way between the two walls.19

While existing studies provided useful insights into the effects of confinement on the actuation20

of magnetic surface walkers by rotating fields, the confinement considered so far is usually afforded21

by two parallel walls that are normal to the rotating axis of surface walkers. In practice, a surface22

walker may be confined in more complex environment such as inside a channel with a finite aspect23

ratio. Understanding the actuation of surface walkers in such environment is useful for harnessing24

them for applications such as drug delivery through capillaries.47 However, research on this is25

scarce at present. In particular, how the confinement by walls normal to the sphere’s axis of26

rotation changes the fluid flow and actuation force has not been studied and is poorly understood.27

In this work, we investigate the actuation of a spherical surface walker confined in a square-shaped28

microchannel. The flow field and actuation force acting on the sphere in the channel length direction29

are computed numerically by varying the position of the sphere inside the channel and the dimension30

of the microchannel. The variation of the net actuation force is elucidated by examining its various31

components and the flow fields inside the microchannel.32
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2 Models and Methods1

2.1 Physical and mathematical models2

As shown in Fig. 1, the simulation system consists of a ferromagnetic sphere and a water-filled3

square channel, in which the sphere is immersed. The sphere has a radius of r. The channel4

has a width of W and a length of L. The sphere is positioned at a distance a and b from the5

bottom wall and the purple-shaded side wall, respectively. The bottom channel wall is in the xy-6

plane and the side channel wall is in the xz- plane. Under the action of an external magnetic field7

B, the sphere rotates around the z-axis in the clockwise direction. If the sphere is free, it may8

move in all three directions, which changes its confinement by the channel walls (i.e., a and b) and9

complicates the study of how confinement affects its actuation. To circumvent this problem, as is10

widely practiced,48–50 the sphere is allowed to rotate but its center is fixed. The rotation-induced11

hydrodynamic force acting on the sphere in the x-direction, Fx, is measured as the actuation force.12

Figure 1: A three-dimensional view (a) and side view (b) of the system used to study the actuation

of a magnetic sphere in a square channel. The sphere surface is divided into S1, S2, S3, and S4. In

(b), only the channel walls closest to the sphere are shown. The origin of the coordinate system is

set on the sphere’s center.

Without losing generality, the sphere’s radius is set to 12µm. Its magnetic moment is m =13

1.45× 10−10A·m2. A magnetic field B = B cos(2πfBt)i−B sin(2πfBt)j is applied, where B is the14

strength of the magnetic field and fB is the rotational frequency. B and fB are set to 3 mT and 2015

Hz, respectively. With the above parameters, the sphere rotates synchronously with the magnetic16

field in all of our simulations. The rotational Reynolds number Reω = 2πρfBr
2/µ = 4.52×10−3 �17

1.18
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We note that the sphere also experiences forces in the y− and z−directions. These forces can1

change the position of a free particle across the channel, but they are much weaker. Specifically,2

Fx ∼ πµωr2.48,50,51 Forces in the y− and z−directions (Fy and Fz), unlike Fx, originate from3

inertia effects and scale as Fy,z ∼ πρω2r4,46,50 i.e., Fy,z/Fx ∼ Reω. Because Reω =� 1, inertia4

effects are negligible and Fy and Fz are very small. In addition, other forces (e.g., Brownian forces)5

in those directions may be more important in understanding how a particle is driven away from6

walls. For these reasons, we will not elaborate on Fy and Fz. Because a free particle can depart7

from its initial position relative to channel walls due to non-zero Fy,z, we study the implications of8

such departure by examining how Fx varies with a and b in Fig. 1.9

Three series of systems are studied to probe the effects of confinement on actuation by channel10

walls (see Table 1). In all systems, the sphere is positioned at a distance b = 1.5r from the purple-11

shaded side wall. This distance is chosen so that particle actuation can be effectively studied using12

direct numerical simulations. For surface walkers, the actuation force decreases rapidly as b/r13

increases. Hence, a small b/r is preferred. However, if b/r is too small, resolving the flow between14

the sphere and wall necessitates an extremely fine grid and high computational cost. With b = 1.5r,15

our tests showed that a strong actuation force is generated and the force can be computed accurately16

using a reasonably fine grid (see below). The channel length is selected to 60r to minimize the17

finite size effects.46 In the first series of systems, the channel is wide (W = 6.5-30r) and the sphere18

is fixed at various distances above the bottom wall to study the actuation near walls of a wide19

channel. In the second series of systems, the sphere is positioned midway between top and bottom20

walls while the channel width is varied to study the actuation with symmetric top/bottom walls.21

In the third series of systems, the channel is narrow (W = 3.5−6r) and the sphere is fixed at 1.2-3r22

above the bottom wall to study the actuation near walls of a narrow channel.23

Table 1: A summary of the simulations performed in this study.

Series a b W L

1 1.2r to W/2 1.5r 6.5 to 30r 60r

2 W/2 1.5r 3 to 30r 60r

3 1.2r to W/2 1.5r 3.5 to 6r 60r

The fluid motion is governed by the Navier-Stokes (NS) equations:24

∂ρ

∂t
+∇(ρu) = 0 (1)
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∂ρ

∂t
+∇(ρuu) = −∇p+∇[µ(∇u+ (∇u)T ] + F (2)

where ρ is the fluid density, u is the velocity, p is the pressure, µ is the viscosity, and F is the body1

force. The no-slip boundary condition is imposed on channel walls and the sphere’s surface. The2

periodic boundary condition is imposed in the x−direction. The sphere’s rotation is governed by3

Ip
dωp

dt
=

∫
s
(Xs −Xp)× (σ · n)ds+m×B (3)

where Ip is the sphere’s moment of inertia, ωp is the sphere’s angular velocity, σ is the fluid stress4

tensor, n is the unit normal vector of the sphere’s surface, Xs and Xp denote the sphere’s center5

and position on the sphere’s surface, respectively. Equation 3 is solved together with Eq. 1 and 2 to6

compute a sphere’s rotation. For the rotating magnetic field considered in this work, our simulation7

shows that the sphere rotates synchronously with the applied magnetic field.8

2.2 Numerical methods and code validation9

The mathematical models described in the previous section are solved by combining the LBM10

and the immersed boundary method (IBM).52,53 These methods and their implementation have11

been described in details in our recent publication.46 Here we highlight the salient features of these12

methods and present key implementation details.13

The NS equations are solved using LBM. In LBM, evolution equations of the density distri-14

bution function, which can recover to the NS equations via the Chapman−Enskog expansion, are15

solved on a Eulerian lattice to obtain the fluid’s density and velocity fields. The basic operations in16

LBM are the collision step and the streaming step. In the collision step, the distribution function17

components on each lattice is computed. In the streaming step, the post-collision distributed func-18

tions are spread to neighbor lattices by following designated microscopic velocity vectors. Because19

collision and streaming are local operations, LBM is highly efficient and easily parallelized.20

The interactions between fluids and the solid sphere are handled using a fixed-grid method21

IBM.53 Briefly, each solid boundary is represented using a set of Lagrangian forcing points and22

the flow field is solved on the Eulerian lattice, which covers both inside and outside of the solid23

boundary. The velocity of Lagrangian points on the solid boundary is interpolated from adjacent24

Eulerian lattice points through a discrete delta function. Meanwhile, the force density evaluated25

on Lagrangian points is spread to nearby Eulerian lattice points through the same discrete delta26
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function. These treatments enforce the no-slip condition on the solid boundary and allow the effects1

of solid boundary on fluid flow to be modeled.2

When implementing LBM, we adopt the three-dimensional 19-velocity (D3Q19) multi-relation-3

time scheme to solve the evolution equations54–564

gα(x+ eαδt, t+ δt)− gα(x, t) = −(M−ΛM)αβ[gβ − geqβ ] + δtFα, α = 0 · · · 18 (4)

where g is the density distribution function, eα is the discrete velocity along the α direction, and Λ5

is the collision matrix. The free relaxation parameter related to the kinematic viscosity is set to 1.256

while others are set to 1. The hydrodynamic force acting on fluids due to fluid-sphere interactions is7

treated using the techniques developed by Guo et al57 and Kang et al.53 The no-slip wall boundary8

condition is enforced using the halfway bounce-back scheme.56 A uniform lattice spacing of r/6 is9

used to solve the Eq. 4. For the systems listed in Table 1, the total number of grid points ranges10

from 160,000 to 12,000,000, and there are at least two lattice points in the gap between the sphere11

and the wall (corresponding to a/r = 1.2). Grid-dependence is tested by comparing actuation force12

in representative cases with that obtained using a finer grid of r/10, with a deviation less than 2%.13

When implementing IBM, the sphere’s surface is discretized into 536 Lagrangian nodes according14

to the method proposed by Feng et al,52 leading to the spacing between neighbor Lagrangian nodes15

approximately equal to that between the Eulerian lattices.52,56 The range of kernel function (Dirac16

delta distribution) to deal with the fluid-solid interaction function is twice the lattice spacing.17

A code implementing the above methods has been developed and validated extensively for18

actuation of spherical surface walkers.46 First, the rotation of a magnetic sphere driven by a rotating19

field in a unbounded fluid was simulated. The evolution of the sphere’s rotation speed as a function20

of the field frequency, including the transition from the synchronous regime to the asynchronous21

regime, was accurately captured. Next, the hydrodynamic forces experienced by a sphere enclosed22

between two no-slip walls separated by 30r were studied systematically. When the domain size23

reaches 60r in the longitude direction and 30r in the transverse direction, the computed drag24

acting on a sphere translating near the lower wall agrees well with the analytical prediction for25

spheres moving parallel to a semi-infinite wall.48 The hydrodynamic forces acting on a center-fixed26

sphere rotating at a height of 1.5r above the lower wall computed by the code converges within27

∼ 5% of the analytical predictions by Goldman and colleagues.48,5028
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3 Results and Discussion1

Here we study the hydrodynamic actuation force experienced by a magnetic sphere inside a2

square channel under the actuation of a rotating magnetic field. As mentioned in Section 2.1, we3

let the sphere rotate around the z−axis in the clockwise direction but fix its center. We measure4

the hydrodynamic force on the sphere in the x-direction. Figure 2 summarizes the actuation force5

Fx, for the various a and W listed in Table 1. We observe that, in a very wide channel (e.g.,6

W = 30r), when the sphere is away from the corner (e.g., a = 15r), Fx is positive as shown in7

prior works,46,50 but becomes negative as the sphere is shifted toward the bottom wall (i.e., as r/a8

increases). In addition, as a sphere is shifted toward the bottom wall, Fx decreases if the channel9

is wide but increases when the channel is narrow (W <∼ 6r). These phenomena are examined in10

details in Sections 3.1 and 3.3, respectively. When the sphere is positioned midway between the11

top and bottom channel walls, Fx decreases as the channel width decreases and becomes strongly12

negative when the sphere becomes highly confined by the channel, and sharply recovers to zero13

when the symmetry is reached at W = 3r and a = 1.5r. This series of study is discussed in Section14

3.2.15

Figure 2: The evolution of the x−direction hydrodynamic actuation force on a rotating sphere

as a function of channel width W and the sphere’s distance from the bottom channel wall a. The

blue, red, and black lines correspond to the Series 1, 3, and 2 simulations in Table 1.
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3.1 Sphere actuation near walls of a wide channel1

For the system shown in Fig. 1, the situation with W � r and a � r (i.e., when a sphere is2

positioned close to a semi-infinite vertical wall), has been studied in the literature.10,46 Here, we3

set the sphere at a distance b = 1.5r from the purple-shaded vertical wall and position the bottom4

wall at a distance a beneath the sphere. To understand how the sphere’s actuation is affected by5

the corner formed by the bottom and side walls of a wide channel, we focus our discussion on a6

representative set of simulations where W is set to 30r and a is varied from 15r to 1.2r.7

We first examine the flow and pressure fields in two sample cases with r/a = 1/15 and 1/1.5.8

Figure 3 show sample streamlines in the channel. At r/a = 1/15, when there is little confinement by9

the bottom wall, the rotating sphere induces a global flow in the channel in the positive x−direction10

(see Fig. 3a). Fluids are drawn toward the vertical wall on one side of the sphere and ejected11

away from the wall on the other side of the sphere (marked by red arrows). This global flow is12

accompanied by two recirculations, one primarily in the horizontal plane (marked by a black arrow)13

and one primarily in the vertical plane (marked by a blue arrow). Because the global flow is in the14

positive x−direction, hereafter, upstream of the sphere refers to the space in which x < 0 while15

downstream refers to the space in which x > 0.16

Figure 3: Sample streamlines in two channel-particle systems with r/a = 1/15 (a) and r/a = 1/1.5

(b). W = 30r and b/r = 1.5 in both systems.

At r/a = 1/1.5, when there is significant confinement by the bottom wall, Fig. 3b shows that17

the basic features of the flow field remain similar, e.g., a global flow in the positive x−direction18

and recirculations still exist. Nevertheless, the additional confinement by the bottom wall leads19
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to important differences from those shown in Fig. 3a. First, the bending of streamlines toward1

and away from the vertical wall becomes somewhat stronger. Practically, because there are often2

many particles in a channel, this effect makes it easier to entrain other particles toward a rotating3

particle located near a channel corner (note that the trajectory of entrained particles may differ4

from the streamlines showed here if the particle density in the channel is not low). This can be5

useful because the motion of an entrained, passive particle (e.g., a biological cell), once close enough6

to the rotating particle, can be controlled indirectly by manipulating the rotating sphere (e.g., push7

and pull of cells by a magnetic particle rotating near a semi-infinite wall have been demonstrated8

in recent experiments).17 Second, in the horizontal plane, the recirculation zone moves closer to9

the sphere, which tends to increase the velocity gradient near the sphere’s surface that faces away10

from the vertical wall. As we shall see later, this contributes to the reversal of the hydrodynamic11

actuation force on the sphere as r/a increases from 1/15 to 1/1.5.12

Figure 4 shows the pressure field in the horizontal (z = 0) and vertical (y = 0) planes passing13

through the sphere’s center for r/a = 1/15 and 1/1.5. As shown in Fig. 4a, at r/a = 1/15,14

where the confinement by the bottom wall is negligible, the confinement of a rotating sphere by15

the vertical wall induces a heterogeneous pressure field in the channel. Specifically, the rotating16

sphere draws fluids on one of its sides toward the wall to rise the pressure there (region A in Fig.17

4a’s inset) but reduces the pressure on its other side (region B in Fig. 4a’s inset). This, along with18

the recirculation of fluids near the sphere, cause the fluid pressure to rise on one side of the sphere19

and to decrease on the other side. Examination of the pressure fields in the z = 0 and y = 0 planes20

(see Fig. 4a and 4c) reveals that the recirculation-induced pressure heterogeneity exists in a region21

up to many r from the sphere, which is consistent with the global flow shown in Fig. 3a. On the22

sphere’s surface facing the vertical wall (S3 and S4), this kind of pressure heterogeneity creates a23

net force pushing the sphere in the negative x−direction.46,5024

The global flow generated by the rotating sphere and its interactions with the center-fixed25

sphere, however, create a opposite pressure force on the sphere. Specifically, the pressure on the26

sphere’s upstream surfaces is enhanced by the global flow, while the opposite occurs on the sphere’s27

downstream surfaces. As shown in the inset of Fig. 4a, on the sphere’s surface facing the vertical28

wall, this pressure imbalance by the global flow is weaker compared to the recirculation-induced29

pressure imbalance; however, on the sphere’s surface facing away from the vertical wall, this pressure30

imbalance dominates and creates a net pressure force in the positive x−direction.31

When the rotating sphere is positioned close to the bottom wall with r/a = 1/1.5, Fig. 4b32
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Figure 4: Pressure field and streamlines in channel-particle systems with different r/a but same

b/r = 1.5. (a, b): flow in the z = 0 plane. (c, d): flow in the y = 0 plane. p̄ = (p− pref )/µω.

and 4d show that the pressure field in the system is qualitatively similar to that at r/a = 1/15.1

However, because of the stronger confinement by the horizontal wall, the pressure heterogeneity2

due to recirculation flow is enhanced and thus the pressure imbalance on the sphere’s surface facing3

the vertical wall is enhanced (see Fig. 4b’s inset). Meanwhile, the global flow around the sphere4

is weakened and thus the pressure imbalance on sphere’s surface due to the interactions between5

the global flow and the center-fixed sphere is weakened. As a result, although this kind of pressure6

imbalance remains important on the sphere’s surface facing away from the vertical wall, the region7

of surface where it dominates over the recirculation-induced pressure imbalance becomes smaller8

(see Fig. 4b’s inset). As we shall see later, this change contributes to the reversal of hydrodynamic9

force on the sphere as r/a increases from 1/15 to 1/1.5.10

Having studied the flow induced by a rotating sphere, we now evaluate the hydrodynamic11

force experienced by the sphere. Because the sphere rotates around the z−axis, the most significant12

hydrodynamic force acting on sphere is in the x−direction. Figure 5a shows the total hydrodynamic13

force Fx. We observe that, as r/a increases, Fx decreases and reverses sign at r/a > 1/3. In other14

words, as the confinement by the bottom wall increases, the actuation force decreases and ultimately15

reverses its direction.16

To understand the origins of the observed evolution of Fx as a function of r/a, we first compute17

the components of Fx due to the pressure and viscous forces acting on the sphere’s surface (Fx,p18
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Figure 5: The hydrodynamic force acting on a rotating sphere positioned near walls of a channel

with W = 30r. (a) The net force in the x−direction and its pressure and viscous components, (b-c)

The x−direction pressure (b) and viscous (c) forces acting on surface S1 to S4 labeled in the inset

of panel (b) (see Fig. 1a for a 3D view).

and Fx,v). As shown in Fig. 5a, at r/a = 1/15, when the sphere is essentially confined only by1

a semi-infinite vertical wall, Fx,p is negative due to the large pressure difference across the sphere2

induced by the flow recirculation. As elucidated earlier,46 the net viscous force on the sphere is in3

the positive x−direction and stronger than the pressure force. As r/a increases, both Fx,p and Fx,v4

decreases. Eventually, at large enough r/a (i.e., the sphere is positioned close to the bottom wall),5

pressure forces dominate the viscous forces, which differs qualitatively from the situation when the6

sphere is close to a semi-infinite vertical wall and leads to the reversal of Fx. To gain insight into7

the evolution of these pressure and viscous forces, we next decompose each force into that acting8

on the sphere’s four surfaces labeled in Fig. 1b (S1, ..., S4). Hereafter, the pressure and viscous9

force on piece i of the sphere’s surface are denoted as F ix,p and F ix,v, respectively.10

Figure 5b shows the variation of F 1···4
x,p as r/a increases (note that, throughout this work, r/b11

is fixed at 1/1.5). While each force becomes more negative with increasing r/a, the decrease of12

F 2
x,p and F 3

x,p are far greater than that of F 1
x,p and F 4

x,p. This is expected because the flow near13
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surfaces facing toward the bottom wall (S2 and S3) is affected more significantly than that near1

surface facing away from the bottom wall (S1 and S4). The more negative F 3
x,p at larger r/a2

is caused by the enhanced pressure buildup on the downstream of the sphere and the pressure3

depression on the upstream (cf. regions B and A in Fig. 4a and 4b), which is in turn caused4

by the increased confinement by the bottom wall as explained above. The decrease and eventual5

reversal of F 2
x,p as r/a increases is expected. Specifically, as the confinement by the bottom wall6

increases, recirculation-induced pressure difference along the sphere in the streamwise direction7

(which produces a negative pressure force) is enhanced while global flow-induced pressure difference8

in the same direction (which produces a positive pressure force) is reduced as discussed above. To9

see this more clearly, we study the pressure field in the z = −0.4r plane when r/a = 1/15 and10

r/a = 1/1.5. Figure 6 shows that, as r/a increases from 1/15 to 1/1.5, the pressure gradient along11

the surface facing toward the vertical wall increases, while that along the surface facing away from12

the vertical wall reverse direction, which is in line with the fact that F 3
x,p becomes more negative13

while F 2
x,p changes from positive to negative.14

Figure 6: Pressure field and streamlines in the z = −0.4r plane when r/a = 1/15 (a) and

r/a = 1/1.5 (b).

Having analyzed the evolution of the pressure force Fx,p acting on the sphere as r/a increases,15

we now analyze the evolution of the viscous force Fx,v. Figure 5c shows that, similar to the pressure16

forces, as r/a increases, only the viscous forces on the two surfaces facing the bottom wall (S2 and17

S3) change markedly. Because the sphere rotates in the clockwise direction, the viscous shear on18

S2 and S3 (F 2
x,v and F 3

x,v) are in the negative and positive x−directions, respectively. As r/a19

increases, the strength of F 2
x,v increases monotonically. This increase is caused by the enhanced20

velocity gradient ∇rux (r denotes the sphere’s radial direction) in region near surface S2, which21

can be inferred from Fig. 3 as discussed earlier and is a result of the reduced distance between22

S2 and the no-slip bottom wall. The enhanced ∇rux can also be more clearly shown in Fig. 7, in23

which ux along a ray OA passing through surface S2 is shown at different r/a.24
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Figure 7: The variation of the x−component fluid velocity along rays OA and OB when the sphere

is positioned at different height above the bottom wall. Both rays originate from the sphere’s center

and reside in the x = 0 plane. Rays OA (OB) passes through surface S2 (S3) and forms an angle

of 3π/4 (5π/4) with the positive z−axis.

The variation of F 3
x,v with r/a however, is more complicated. As r/a increases from 1/15 to1

∼1/2, F 3
x,v decreases slightly; as r/a increases further, F 3

x,v increases markedly. The initial, slight2

decrease of F 3
x,v as the bottom wall moves toward to the sphere is mostly caused by the increase of3

the induced pressure gradient in the x−direction in the region between the sphere and the vertical4

wall. Specifically, although reducing the distance between the bottom wall and the sphere tends to5

increase ∇rux near surface S3 just like that near surface S2, the increased pressure gradient tends6

to increase the fluid velocity in the region between surface S3 and the vertical wall, thus reducing7

∇rux near surface S3. The latter is supported by the velocity profile along ray OB passing through8

surface S3 as shown in Fig. 7. As the bottom wall moves very close to the sphere (i.e., r/a >∼ 1/2),9

the enhancement of ∇rux due to the proximity of the no-slip bottom wall to surface S3 dominates10

the reduction of ∇rux due to the enhanced pressure gradient, and F 3
x,v increases markedly.11

Overall, as r/a increases, the increase of the positive F 3
x,v is weaker compared to the increase of12

the negative F 2
x,v, leading to a decrease of Fx,v. The weakening of the positive Fx,v and strengthening13

of the negative Fx,p with the increase of r/a eventually allows the pressure force to dominate the14

viscous force and makes the overall actuation force negative as shown in Fig. 5.15

3.2 Sphere actuation in channels with symmetric top and bottom walls16

We now fix the sphere at a distance a = W/2 from the bottom wall and vary W from 30r to17

3r to study the effects of confinement by four walls on the actuation of the sphere (see Series 2 in18

Table 1 for details). In all studies, b is fixed at 1.5r. The channel has a square cross-section, and19

14



the system geometry is symmetric in the z−direction. As in Section 3.1, we compute the flow in1

the system and measure the hydrodynamic force on the sphere in the x−direction.2

Figure 8: Flow in a channel-particle system with a = W/2, b = 1.5r, and W = 3.5r. (a) Sample

streamlines. The sphere rotates around the z−axis in the clockwise direction. (b-c) Pressure field

and streamlines in the z = 0 plane (b) and y = 0 plane (c) passing through the sphere’s center (c).

p̄ = (p− pref )/µω.

We first study the flow field in a representative system where a = W/2 and W = 3.5r. Figure3

8a shows the streamlines near the sphere. Similar to the situation shown in Fig. 3, a global flow in4

the x−direction is induced (marked by red arrows). However, because of the proximity of the two5

vertical walls, the fluids drawn from the sphere’s one side are ejected onto the wall on the sphere’s6

other side. The recirculation of fluids around the sphere’s surface (marked by an orange arrow)7

induces two predominately horizontal recirculation bubbles near the vertical wall that is further8

away from the sphere (marked by two black arrows).9

Figure 8b and 8c show the pressure field in the horizontal (z = 0) and vertical (y = 0) planes10

passing through the sphere’s center. Because of the small W , both vertical walls affect the fluid11

flow. Such a flow rises the pressure in region A and lowers it in region B near the vertical wall that12

is closer to the sphere. At the same time, the flow rises the pressure in region A’ and lowers it in13

region B’ near the other vertical wall that is slightly further away from the sphere. Overall, the14

pressure imbalance between regions A and B is higher than that between regions A’ and B’. Such15

kind of pressure imbalance occurs very close to the vertical walls – as shown in Fig. 8c, it is hardly16

15



noticeable in the y = 0 plane (i.e., 1.75r from the vertical walls). In addition to the above highly1

localized pressure heterogeneity, a pressure difference accompanying the global flow shown in Fig.2

8 is developed along the channel: the pressure upstream of the sphere is lower and the pressure3

downstream of the sphere is higher. As discussed in Section 3.1, this pressure distribution creates4

a net force pushing the sphere in negative x−direction.5

Figure 9a shows the variation of the hydrodynamic force acting on the sphere in the x−direction6

(Fx) as a function of r/W . As r/W increases, Fx decreases slightly, becomes negative at r/W =7

1/3.75, then increases sharply and eventually reaches zero at r/W = 1/3. Fx = 0 at r/W = 1/3 is8

expected, because at this ratio, all four channel walls are distributed symmetrically with respect to9

the sphere. To understand the variation of Fx, we again decompose Fx into a pressure component10

Fx,p and a viscous component Fx,v. Figure 9a shows that the variations of Fx,p and Fx,v with r/W11

are both similar to that of Fx, thus indicating that the changes of these forces contribute similarly12

to that of Fx. To understand these forces, we next decompose each pressure/viscous force into13

that acting on the sphere’s four surfaces delineated in Fig. 1b and analyze these forces (note that,14

because the top and bottom walls are symmetric with respect to the sphere, the force acting on15

S1(S3) is the same as that acting on S2(S4)). Figure 9b shows the variation of F 1···4
x,p as a function16

of r/W . As r/W increases from 1/30 to 1/10, F 1
x,p to F 4

x,p all decreases slightly; as r/W increases17

further, all four components decrease significantly; at r/W >∼ 1/3.5, all four components increase18

sharply as r/W increases.19

The change of Fx,p shown in Fig. 9a is a result of the modified pressure imbalance on the20

sphere’s four surfaces as r/W increases. When r/W increases, the three non-shaded walls in Fig.21

1a all move closer to the sphere. For r/W <∼ 1/3.5, such an enhanced confinement has a similar22

effect on F ix,p(i = 1 · · · 4) with the enhanced confinement of a sphere by the bottom wall (see Section23

3.1 and Fig. 5b). Specifically, an increase of the confinement of the sphere by these walls enhances24

the recirculation-induced pressure imbalance near the sphere’s surface facing the shaded vertical25

wall, which makes the negative F 3,4
x,p more negative (see Fig. 9b), reduces F 1,2

x,p and eventually26

makes it negative. Because the confinement by three walls is stronger than by one bottom wall of27

a channel corner, the variation of F ix,p is stronger in the present case. For example, F 2
x,p becomes28

negative at r/a ∼ 1/2.5 in Fig. 5b while F 2
x,p becomes negative at r/W ∼ 1/9 (i.e., r/a ∼ 1/4.5)29

in Fig. 9b. As r/W increases to ∼ 1/3.5, the non-shaded vertical wall in Fig. 1a approaches the30

sphere to a distance comparable to that of the purple-shaded vertical wall. Therefore, the pressure31

imbalance across the space between by the sphere and the non-shaded vertical wall (cf. pressure32

16



Figure 9: The hydrodynamic forces acting on a rotating sphere in square channels with different

W (a = W/2 and b = 1.5r). (a) The net force in the x−direction and its pressure and viscous

components, (b-c) The x−direction pressure (b) and viscous (c) forces acting on surface S1 to S4

labeled in the inset of panel (b) (see Fig. 1a for a 3D view).

imbalance between regions A’ and B’ in Fig. 8b) becomes more positive. Further increasing r/W1

enhances this pressure imbalance and eventually makes F 1,2
x,p positive as shown in Fig. 9b.2

Figure 9c shows the variation of F 1···4
x,v as a function of r/W . As r/W increases from 1/30 to3

1/3, F 3,4
x,v decreases first and the increases sharply as r/W grows larger than 1/3.5. Meanwhile,4

F 1,2
x,v generally becomes more negative as r/W increases but increases minutely at r/W >∼ 1/3.5.5

These trends are similar to those shown in Fig. 5c. As in Section 3.1, they can be attributed6

to the evolution of the velocity gradient near the sphere with the confinement by channel walls,7

which depends on the sphere’s proximity to the no-slip walls and is also regulated by the pressure8

gradient along the gaps between the sphere and its adjacent walls. At r/W = 1/3, when the two9

vertical walls are distributed symmetrically with respect to the sphere, F 1,2
x,v and F 3,4

x,v become equal10

as expected.11
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3.3 Sphere actuation near walls of a narrow channel1

In the previous section, we studied the actuation of a sphere in narrow channels by keeping2

the distance of the sphere to the top and bottom channel walls the same (i.e., a = W/2). Here, we3

relax this symmetric restriction by varying a and W independently (see Series 3 in Table 1). As4

before, b is fixed at 1.5r and the sphere rotates around the x−axis in the clockwise direction.5

Figure 10: Flow in a channel-particle system with a = 1.2r, b = 1.5r, and W = 3.5r. (a) Sample

3D streamlines. The sphere rotates around the z−axis in the clockwise direction. (b-c) Pressure

field and streamlines in the z = 0 plane (b) and y = 0 plane (c) passing through the sphere’s center.

p̄ = (p− pref )/µω.

We first investigate the flow field in a representative case with a = 1.2r and W = 3.5r. Figure6

10a shows sample streamlines near the sphere. Like the flow field of Series 2 shown in Fig. 8, a7

global flow is induced in the x−direction (marked by red arrows), the fluids drawn from the sphere’s8

one side are ejected onto the wall on the sphere’s other side, and the recirculation of fluids around9

the sphere’s surface (marked by an orange arrow) induces two horizontal recirculation bubbles10

(marked by two black arrows). However, unlike that shown in Fig. 8a, because the sphere is closer11

to the bottom wall than the top wall, a vertical recirculation (marked by a blue arrow) is created.12

Further, a recirculation around the sphere’s surface (marked by an orange arrow) is formed near13

the bottom wall. Because of this recirculation, compared to those shown in 8c, the streamlines near14

the top wall are shifted toward the bottom wall as they approach the sphere (see Fig. 10c).15

Figure 10b and 10c show the pressure field in the horizontal (z = 0) and vertical (y = 0)16
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planes passing through the sphere’s center. The pressure field is similar to that in Series 2 with the1

same W (see Fig. 8b and c) in that two kinds of pressure heterogeneities exist. First, a pressure2

imbalance arises due to the interactions between the recirculating fluids around the sphere and the3

vertical walls. This pressure imbalance is localized near the vertical walls (e.g., in regions marked4

by A, B, A’, and B’ in Fig. 10b) and is hardly noticeable at a distance ∼ r away from the vertical5

walls. Second, as shown in Fig. 10c, a pressure difference caused by the global flow is created6

along the channel so that the pressure upstream of the sphere is lower while the opposite occurs7

in downstream. As mentioned earlier, this pressure distribution generates a net force pushing the8

sphere in the negative x−direction.9

Figure 11: The hydrodynamic forces acting on a rotating sphere in square channels with different

r/a (W = 3.5r and b = 1.5r). (a) The net force in the x−direction and its pressure and viscous

components, (b-c) The x−direction pressure (b) and viscous (c) forces acting on surface S1 to S4

labeled in the inset of panel (b) (see Fig. 1a for a 3D view).

Figure 11a shows the evolution of the hydrodynamic force and its components due to pressure10

and viscous forces as a function of r/a when W is fixed at 3.5r. As r/a increases from 1/1.75 to11

1/1.2, Fx, Fx,p, and Fx,v all increase. The trend of these forces is opposite to that in the Series 112

study (where W = 30r) but is similar to that shown in the Series 2 study over the same range of13

19



r/a (i.e., in the range of 1/3.5 < r/W < 1/2.4 in Series 2 study). These differences highlight the1

importance of confinement by narrow channels on particle actuation. To understand the origins of2

the observed evolution of the hydrodynamic force as a function of r/a, we again decompose each3

force into that acting on the sphere’s four surfaces labeled in Fig. 1b (S1, . . . , S4).4

Figure 11b shows that, as r/a increases, F 1,2,4
x,p become less negative but F 3

x,p changes little.5

These changes originate from the different responses of pressure in different regions near the sphere6

as it is shifted toward the bottom wall. As r/a increases, the sphere is confined more by the bottom7

channel wall while less confined by the top channel wall. The pressure field in the gap between8

the purple-shaded vertical wall and surface S3 changes little, which is supported by the comparison9

of pressure fields in the z = −0.6r plane for r/a = 1/1.75 and 1/1.2 (see Fig. 12a and b). As10

such, F 3
x,p changes little. On the other hand, as r/a increases, the local pressure imbalance between11

regions A’ and B’ becomes stronger (see Fig. 12a and b) and thus F 2
x,p becomes less negative. A12

similar trend is found for the pressure imbalance along the gap between surface S1 and its adjacent13

wall (see region A’ and B’ in Fig. 12c and d, where the pressure fields in the z = 0.6r plane are14

compared). Thus F 1
x,p also becomes less negative as r/a increases. A comparison of the pressure15

along the gap between surface S4 and the purple-shaded wall shows that, as r/a increases, the16

pressure imbalance along the gap (e.g., between region A and B in Fig. 12c and d) decreases and17

hence F 4
x,p becomes less negative.18

Figure 11c shows the variation of F 1···4
x,v as r/a increases from 1/1.75 to 1/1.2. Similar to those19

shown in Section 3.1, as r/a increases, F 2
x,v becomes more negative and F 3

x,v becomes more positive.20

These behaviors and their origins are similar to those discussed in Section 3.1. Specifically, because21

the sphere is already very close to the no-slip bottom wall (r/a > 1/2), shifting the sphere closer22

to the no-slip bottom wall enhances the radial gradient of the x−velocity (∇rux) and thus the23

magnitude of the viscous shear stress and F 2
x,v and F 3

x,v. On the other hand, as r/a increases, F 1
x,v24

and F 4
x,v show little change. This is because, for the r/a considered here, ∇rux near and on the25

sphere surface is affected primarily by the no-slip non-shaded vertical wall rather than by the top26

wall (note that the sphere rotates around the z−axis). Since the distance between the sphere and27

the vertical wall is fixed as r/a increases, F 1
x,v and F 4

x,v show little variation.28
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Figure 12: (a-b) Pressure field and streamlines in the z = −0.6r plane when r/a = 1/1.75 (a)

and 1/1.2 (b). (c-d) Pressure field and streamlines in the z = 0.6r plane when r/a = 1/1.75 (c)

and 1/1.2 (d). W = 3.5r and b = 1.5r in all cases. p̄ = (p− pref )/µω.

4 CONCLUSIONS1

In summary, the actuation of magnetic spheres confined inside square channels by a rotating2

magnetic field is studied using immersed-boundary lattice Boltzmann simulations. The sphere is3

positioned at a fixed distance from one of the vertical channel walls and rotates around the z−axis4

with a small rotational Reynolds number. The hydrodynamic actuation force acting on the sphere5

in the x−direction, Fx, is computed as a function of the channel width and the sphere’s distance6

to the bottom channel wall.7

Our simulations show that, in very wide channels, when a sphere is away from top and bottom8

walls, Fx is positive. Fx decreases and eventually reverses its direction as the sphere is shifted toward9

the channel corner. The opposite trend is discovered in channels that are sufficiently narrow. When10

the sphere is positioned midway between top and bottom walls, Fx decreases to become negative11

as the channel width decreases but then recovers to zero when all four channel walls are symmetric12

with respect to the sphere. These different trends are traced to the modulation of the flow in13

the channel, which features both recirculation near the sphere and a more global flow across the14

entire channel, by the confinement of channel walls. Such modulation is more complicated than15

that encountered when a rotating sphere is confined between two parallel walls.46 In particular, the16

pressure heterogeneity near the sphere induced by fluid recirculation and global flow is modified17

21



greatly as the confinement by the four channel walls changes. The resulting pressure force can1

dominate the viscous force on the sphere and control the direction of Fx. The observed variations2

of Fx and their underlying mechanisms highlight the rich behavior of magnetic actuation inside3

microchannels and can be important for the application of magnetic actuation in microfluidic4

environment.5
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