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Abstract—This paper considers a noisy data structure recovery
problem. The goal is to investigate the following question: Given
a noisy observation of a permuted data set, according to which
permutation was the original data sorted? The focus is on
scenarios where data is generated according to an isotropic
Gaussian distribution, and the noise is additive Gaussian with
an arbitrary covariance matrix. This problem is posed within
a hypothesis testing framework. The objective is to study the
linear regime in which the optimal decoder has a polynomial
complexity in the data size, and it declares the permutation by
simply computing a permutation-independent linear function of
the noisy observations.

The main result of the paper is a complete characterization
of the linear regime in terms of the noise covariance matrix.
Specifically, it is shown that this matrix must have a very flat
spectrum with at most three distinct eigenvalues to induce the
linear regime. Several practically relevant implications of this
result are discussed, and the error probability incurred by the
decision criterion in the linear regime is also characterized. A
core technical component consists of using linear algebraic and
geometric tools, such as Steiner symmetrization.

I. INTRODUCTION

The problem of recovery of the original permutation from
noisy permuted data is a common task in modern communica-
tion and computing systems. For example, in the data analytics
realm, recommender systems are often more interested in
recovering the relative ranking of data points rather than the
values of the data itself. Furthermore, users may desire to
privatize their data before it is collected from an external
party. A suitable solution to privatize data and hence maintain
its confidentiality consists of perturbing it with noise. Upon
receiving the perturbed/noisy data, the recommender system
will then need to recover the data permutation (e.g., ranking of
users’ interests) in order to provide the next recommendation.

In this work, we investigate the following question on
noisy data structure recovery: Given a noisy observation of
a permuted data set, according to which permutation was the
original data sorted?
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A. Related Work

Data permutation recovery has recently gained significant
importance, and it is a problem studied in various fields [2]–
[12]. For instance, in the machine learning literature, the prob-
lem of feature matching in computer vision is often formulated
as a permutation estimation problem [2]. In particular, the goal
of [2] is to estimate the permutation that matches two sets of
features given noisy observations. As another example, in [3]
the authors propose a framework to estimate the values of
an original sorted vector, given a noisy sorted observation of
it. They show that, under certain symmetry conditions, the
minimum mean square error estimator can be characterized
by a linear combination of estimators on the unsorted data.

Studies on the permutation recovery problem have also
recently appeared in linear regression. In [4], the authors
analyze the permutation recovery problem and consider an
output given by an input that is permuted by an unknown
permutation matrix. They provide necessary and sufficient
conditions on the signal-to-noise ratio for exact permutation
recovery. The multivariate linear regression model with un-
known permutation is studied in [5]. The authors characterize
the minimax prediction error and analyze estimators. A similar
model with sparsely permuted data can be found in [6].
A study on isotonic regression without data labels, namely
the uncoupled isotonic regression, is discussed in [13]. In
particular, the goal consists of estimating a non-decreasing
regression function given unordered sets of data. A study
on the seriation problem, where the goal is to estimate a
pair of unknown permutation and data matrices from a noisy
observation, can be found in [14].

Estimating data given randomly selected measurements –
which is termed unlabeled sensing – is studied in [15]–[17].
A necessary condition on the dimension of the observation
vector for uniquely recovering the original data in the noiseless
case is provided in [15]. Design and discussion on recovery
algorithms can be found in [16], [18], [19]. A generalization of
the framework in [15] is provided in [20] and it considers any
invertible and diagonalizable matrix rather than the classical
permutation (selection) matrix. The authors in [21] and [22]
propose a framework - referred to as homomorphic sensing -
that encompasses the unlabeled sensing framework in [15].

Applications of permutation recovery on the biostatistics



area can be found in [23]. In particular, the exact and partial
recoveries for the microbiome growth dynamics are discussed.
Further, in [24] the authors characterize the fundamental limit
for the performance of a hypothesis testing problem with
unknown labels, and they propose suitable algorithms for the
problem.

B. Contributions

In this paper, we investigate the noisy data permutation re-
covery problem, which consists of recovering the permutation
of an original data vector of size n that has been perturbed by
noise. We consider a scenario where data is generated accord-
ing to an isotropic Gaussian distribution, and the perturbation
consists of adding Gaussian noise that can have an arbitrary
covariance matrix, i.e., noise can have memory. Our main
contributions can be summarized as follows:

1) We formulate the problem within a hypothesis testing
framework, which consists of n! hypotheses. The opti-
mal decision criterion for the hypothesis testing problem
is given by the celebrated Neyman-Pearson lemma,
which formulates the optimal decision regions in terms
of a ratio of some likelihood functions. We show that the
optimal decision regions of the considered hypothesis
testing problem must have a certain symmetry.

2) We show that the optimal decision regions may or may
not be a linear transformation of the corresponding
hypothesis regions depending on the noise covariance
matrix. We focus our study on the linear regime where
the optimal permutation decoding consists of a simple
linear transformation of the noisy observation, followed
by a sorting algorithm outputting the permutation along
which this linear transformation is sorted. The computed
linear transformation is the same across all permuta-
tions and hence, throughout the paper we refer to it
as permutation-independent. This regime is particularly
appealing as within it the optimal decoder has a com-
plexity that is at most polynomial in n, as opposed to a
brute force approach that would incur a computational
complexity of n!.

3) We characterize the optimal decision criterion for the
hypothesis testing problem in the linear regime, by
deriving the optimal decision regions. In particular, we
show that the optimal decoder declares the permutation
based only on a permutation-independent linear function
of the noisy observation. Our result provides both a
linear algebraic and a geometric interpretations of the
linear regime in terms of the noise covariance matrix.
Specifically, the linear algebraic viewpoint says that the
noise covariance matrix can have at most three distinct
eigenvalues. The geometric interpretation, instead says
that the n-dimensional ellipsoid, characterized by a func-
tion of the noise covariance matrix, when projected onto
a specific hyperplane has to be an (n− 1)-dimensional
ball. To derive these results, a core technical component
consists of using linear algebraic and geometric tools,

such as the Schur complement and Steiner symmetriza-
tion.

4) With the structure of the optimal decision regions in
the linear regime, we discuss several practically relevant
implications and special cases. For instance, we prove
that when n = 2 the linear regime is the only regime.
For the class of diagonal noise covariance matrices and
n > 2, we show that the noise covariance matrix must
have all equal diagonal elements to fall within the linear
regime, i.e, if the noise is memoryless, then it must
be isotropic. Finally, we characterize the probability of
error incurred by the decision criterion in the linear
regime. In particular, we express the probability of error
in terms of the volume of a region which consists of the
intersection of a cone with a permutation-independent
linear transformation of the unit radius 2n-dimensional
ball.

C. Paper Organization

Section II introduces the notation and formulates the hy-
pothesis testing problem. Section III discusses the optimal
decision regions for our hypothesis testing problem. Section IV
provides the main result of the paper, which consists of the
characterization of the optimal decision regions in the linear
regime. Section IV also discusses several implications of the
main result. Section V provides a detailed proof of the main
result. Finally, Section VI concludes the paper. Some of the
proofs can be found in the appendix. The paper contains
several 3D figures, the interactive versions of which can be
found in [25].

II. NOTATION AND PROBLEM FORMULATION

Notation. Boldface upper case letters X denote vector random
variables; the boldface lower case letter x indicates a specific
realization of X; [n1 : n2] is the set of integers from n1
to n2 ≥ n1; In is the identity matrix of dimension n; 0n
(respectively, 1n) is the column vector of dimension n of
all zeros (respectively, ones); 0n×k (respectively, 1n×k) is an
n × k matrix of all zeros (respectively, ones); det(A) is the
determinant of the matrix A; ‖x‖ is the `2 norm of x, and
xT is the transpose of x. Calligraphic letters indicate sets;
|A| denotes the cardinality of the set A; for two sets A and
B, A ∩ B is the set of elements that belong both to A and
B; ∅ is the empty set. For a set S ⊆ Rk, Volk(S) denotes
the volume, i.e., the k-dimensional Lebesgue measure, of S;
Bn(c, r) denotes the n-dimensional ball centered at c ∈ Rn
with radius r. Finally, the multiplication of a matrix A by a
set B is denoted and defined as AB = {Ax : x ∈ B}. �

We consider the framework in Fig. 1, where an n-
dimensional random vector X is generated according to an
isotropic Gaussian distribution, namely X ∼ N (0n, In). The
random vector X is then passed through an additive Gaussian
noise channel, the output of which is denoted as Y. In other
words, we have Y = X + N, with N ∼ N (0n,KN) where
KN denotes the covariance matrix of the additive noise N,
and where X and N are independent.



Generator

YData
<latexit sha1_base64="VOFa1TycBkHcEZ5nYVV0aLi+ufc=">AAAB9HicbVA9TwJBEN3DL8Qv1NJmI5hYkTsstCTRwhITARO4kL1lgA17e+fuHJFc+B02Fhpj64+x89+4wBUKvmSSl/dmMjMviKUw6LrfTm5tfWNzK79d2Nnd2z8oHh41TZRoDg0eyUg/BMyAFAoaKFDCQ6yBhYGEVjC6nvmtMWgjInWPkxj8kA2U6AvO0Ep+uYPwhOkNQzYtd4slt+LOQVeJl5ESyVDvFr86vYgnISjkkhnT9twY/ZRpFFzCtNBJDMSMj9gA2pYqFoLx0/nRU3pmlR7tR9qWQjpXf0+kLDRmEga2M2Q4NMveTPzPayfYv/JToeIEQfHFon4iKUZ0lgDtCQ0c5cQSxrWwt1I+ZJpxtDkVbAje8surpFmteBeV6l21VHOzOPLkhJySc+KRS1Ijt6ROGoSTR/JMXsmbM3ZenHfnY9Gac7KZY/IHzucPYD6Rxw==</latexit> �

<latexit sha1_base64="MbccYKNrhbW/nWsu2976eLvvlmk=">AAAB73icbVDLSgNBEOz1GeMr6tHLYCJ4CrvxYI4BLx4jmAckS5idzCZD5rHOzAphyU948aCIV3/Hm3/jJNmDJhY0FFXddHdFCWfG+v63t7G5tb2zW9gr7h8cHh2XTk7bRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyO/c7T1QbpuSDnSY0FHgkWcwItk7qVvoq4ampDEplv+ovgNZJkJMy5GgOSl/9oSKpoNISjo3pBX5iwwxrywins2I/NTTBZIJHtOeoxIKaMFvcO0OXThmiWGlX0qKF+nsiw8KYqYhcp8B2bFa9ufif10ttXA8zJpPUUkmWi+KUI6vQ/Hk0ZJoSy6eOYKKZuxWRMdaYWBdR0YUQrL68Ttq1anBdrd3Xyo16HkcBzuECriCAG2jAHTShBQQ4PMMrvHmP3ov37n0sWze8fOYM/sD7/AGIQo+Z</latexit>

N ⇠ N (0n, KN)
<latexit sha1_base64="+F1l7O7K/BHrwpxyN4IiOtw0mg4=">AAACI3icbVDLSgMxFM3UV62vqks3wVaoIGWmLhRXBTeCIBXsA9phyKSZNjTJDElGKMP8ixt/xY0Lpbhx4b+YaStq9UDg5Jx7ufceP2JUadt+t3JLyyura/n1wsbm1vZOcXevpcJYYtLEIQtlx0eKMCpIU1PNSCeSBHGfkbY/usz89j2RiobiTo8j4nI0EDSgGGkjecWLco8jPfSD5CaFPUU5nP4xYkaofHl26omTay/5rk2Py16xZFftKeBf4sxJCczR8IqTXj/EMSdCY4aU6jp2pN0ESU0xI2mhFysSITxCA9I1VCBOlJtMb0zhkVH6MAileULDqfqzI0FcqTH3TWW2pFr0MvE/rxvr4NxNqIhiTQSeDQpiBnUIs8Bgn0qCNRsbgrCkZleIh0girE2sBROCs3jyX9KqVZ3Tau22Vqrb8zjy4AAcggpwwBmogyvQAE2AwQN4Ai/g1Xq0nq2J9TYrzVnznn3wC9bHJzv0pJI=</latexit>

Ground
<latexit sha1_base64="L0D6la/NUfvhhPLXcEAvPQdFLLY=">AAAB+HicbVA9TwJBEN3DL8QPTi1tLoKJFbnDQksSCy0xETCBC9nbW2DD3u5ld9aIF36JjYXG2PpT7Pw3LnCFgi+Z5OW9mczMi1LONPj+t1NYW9/Y3Cpul3Z29/bL7sFhW0ujCG0RyaW6j7CmnAnaAgac3qeK4iTitBONr2Z+54EqzaS4g0lKwwQPBRswgsFKfbdc7QF9hOxaSSPiabXvVvyaP4e3SoKcVFCOZt/96sWSmIQKIBxr3Q38FMIMK2CE02mpZzRNMRnjIe1aKnBCdZjND596p1aJvYFUtgR4c/X3RIYTrSdJZDsTDCO97M3E/7yugcFlmDGRGqCCLBYNDPdAerMUvJgpSoBPLMFEMXurR0ZYYQI2q5INIVh+eZW067XgvFa/rVcafh5HER2jE3SGAnSBGugGNVELEWTQM3pFb86T8+K8Ox+L1oKTzxyhP3A+fwCgl5MB</latexit>

Truth
<latexit sha1_base64="hqcBXsUa5v3l+YYIz3VrdF+wR8M=">AAAB9XicbVA9TwJBEJ3zE/ELtbTZCCZW5A4LLUlsLDHhKwEke8sebNjbu+zOqeTC/7Cx0Bhb/4ud/8YFrlDwJZO8vDeTmXl+LIVB1/121tY3Nre2czv53b39g8PC0XHTRIlmvMEiGem2Tw2XQvEGCpS8HWtOQ1/ylj++mfmtB66NiFQdJzHvhXSoRCAYRSvdl7rInzCt6wRH01K/UHTL7hxklXgZKUKGWr/w1R1ELAm5QiapMR3PjbGXUo2CST7NdxPDY8rGdMg7lioactNL51dPyblVBiSItC2FZK7+nkhpaMwk9G1nSHFklr2Z+J/XSTC47qVCxQlyxRaLgkQSjMgsAjIQmjOUE0so08LeStiIasrQBpW3IXjLL6+SZqXsXZYrd5Vi1c3iyMEpnMEFeHAFVbiFGjSAgYZneIU359F5cd6dj0XrmpPNnMAfOJ8/eTmSbg==</latexit>

H⇡̂, ⇡̂ 2 P
<latexit sha1_base64="KQKi8yhZLe1oOiMw4+xuEkca1j0=">AAACHXicbVDLSsNAFJ3UV62vqEs3g63gQkpSBV0W3HRZwT6gCWEynbRDJ5MwMxFKyI+48VfcuFDEhRvxb5y0oWjrgYHDOecy9x4/ZlQqy/o2SmvrG5tb5e3Kzu7e/oF5eNSVUSIw6eCIRaLvI0kY5aSjqGKkHwuCQp+Rnj+5zf3eAxGSRvxeTWPihmjEaUAxUlryzKuaEyI1xoilrcxLnTFSqRPTLLuACw4dyuEi1s5qnlm16tYMcJXYBamCAm3P/HSGEU5CwhVmSMqBbcXKTZFQFDOSVZxEkhjhCRqRgaYchUS66ey6DJ5pZQiDSOjHFZypvydSFEo5DX2dzHeUy14u/ucNEhXcuCnlcaIIx/OPgoRBFcG8KjikgmDFppogLKjeFeIxEggrXWhFl2Avn7xKuo26fVlv3DWqTauoowxOwCk4Bza4Bk3QAm3QARg8gmfwCt6MJ+PFeDc+5tGSUcwcgz8wvn4AKVqigQ==</latexit>

H⇡? , ⇡? 2 P
<latexit sha1_base64="Daab5lhQPX6dGiyfMpbr22SoTh0=">AAACHXicbVDLSsNAFJ34rPUVdelmsBVcSEmqoMuCmy4r2Ac0MUymk3boZBJmJkIJ+RE3/oobF4q4cCP+jZM2FG09MHA451zm3uPHjEplWd/Gyura+sZmaau8vbO7t28eHHZklAhM2jhikej5SBJGOWkrqhjpxYKg0Gek649vcr/7QISkEb9Tk5i4IRpyGlCMlJY887LqhEiNMGJpM/NSJ6b3jlRIZOdwzqFDOZzHWlnVMytWzZoCLhO7IBVQoOWZn84gwklIuMIMSdm3rVi5KRKKYkayspNIEiM8RkPS15SjkEg3nV6XwVOtDGAQCf24glP190SKQiknoa+T+Y5y0cvF/7x+ooJrN6U8ThThePZRkDCoIphXBQdUEKzYRBOEBdW7QjxCAmGlCy3rEuzFk5dJp16zL2r123qlYRV1lMAxOAFnwAZXoAGaoAXaAINH8AxewZvxZLwY78bHLLpiFDNH4A+Mrx/Ls6JH</latexit>

X ⇠ N (0n, In)
<latexit sha1_base64="he5sl1f3Bv94yYypb/j5dpMWMK0=">AAACGHicbVDLSsNAFJ3UV62vqks3g61QQWpSF7osuNGNVLAPaEKYTCft0MkkzEyEEvIZbvwVNy4Ucdudf+OkjaCtBwbOnHMv997jRYxKZZpfRmFldW19o7hZ2tre2d0r7x90ZBgLTNo4ZKHoeUgSRjlpK6oY6UWCoMBjpOuNrzO/+0iEpCF/UJOIOAEacupTjJSW3PJ51Q6QGnl+0kuhLWkAZ3+MWHKX1n48M3X52a3LT6tuuWLWzRngMrFyUgE5Wm55ag9CHAeEK8yQlH3LjJSTIKEoZiQt2bEkEcJjNCR9TTkKiHSS2WEpPNHKAPqh0I8rOFN/dyQokHISeLoy21Quepn4n9ePlX/lJJRHsSIczwf5MYMqhFlKcEAFwYpNNEFYUL0rxCMkEFY6y5IOwVo8eZl0GnXrot64b1SaZh5HERyBY1ADFrgETXADWqANMHgCL+ANvBvPxqvxYXzOSwtG3nMI/sCYfgPVbZ+O</latexit> Decoder

<latexit sha1_base64="7PGYJ8cwERMn3M6IzVju7ZIzYco=">AAAB+XicbVDLTgJBEJzFF+Jr1aOXiWDiieziQY8kevCIiTwS2JDZ2QYmzD4y00skG/7EiweN8eqfePNvHGAPClbSSaWqO91dfiKFRsf5tgobm1vbO8Xd0t7+weGRfXzS0nGqODR5LGPV8ZkGKSJookAJnUQBC30JbX98O/fbE1BaxNEjThPwQjaMxEBwhkbq23alh/CE2R3wOAA1q/TtslN1FqDrxM1JmeRo9O2vXhDzNIQIuWRad10nQS9jCgWXMCv1Ug0J42M2hK6hEQtBe9ni8hm9MEpAB7EyFSFdqL8nMhZqPQ190xkyHOlVby7+53VTHNx4mYiSFCHiy0WDVFKM6TwGGggFHOXUEMaVMLdSPmKKcTRhlUwI7urL66RVq7pX1dpDrVx38jiK5Iyck0vikmtSJ/ekQZqEkwl5Jq/kzcqsF+vd+li2Fqx85pT8gfX5AzZ2k1I=</latexit>

Fig. 1: Graphical representation of the proposed framework.

In this work, we are interested in answering the following
question: Given the observation of Y, according to which
permutation - among the n! possible ones - was the vector
X sorted? Towards this end, we define P as the collection of
all permutations of the elements of [1 : n]; clearly |P| = n!.
We formulate a hypothesis testing problem with n! hypotheses
Hπ, π ∈ P , where Hπ is the hypothesis that X is an n-
dimensional vector sorted according to the permutation π ∈ P .
Formally, each hypothesis corresponds to the following set,

Hπ = {x ∈ Rn : xπ1 ≤ xπ2 ≤ · · · ≤ xπn}, (1)

where xπi , i ∈ [1 : n] is the πi-th element of x, and πi, i ∈
[1 : n] is the i-th element of π. Note that the hypotheses Hπ’s
divide the entire n-dimensional space into n! regions – referred
to as hypothesis regions – and each hypothesis is associated
to one of these regions. Moreover, due to the symmetry of X
we have that Pr (X ∈ Hπ) = 1

n! ,∀π ∈ P .
We seek to characterize the optimal decision criterion

among the n! hypotheses. In other words, with reference to
Fig. 1, we are interested in characterizing the decision rule
(decoder), so that its output Hπ̂, π̂ ∈ P is such that

Hπ̂ : π̂ = argmin
π∈P

{Pr (Hπ 6= Hπ?)}, (2)

where π? denotes the permutation according to which the
random vector X is sorted.
Example. Let n = 3, then we have |P| = 6 and hypotheses
Hπ, π ∈ P defined as

H{1,2,3} : X1 ≤ X2 ≤ X3, H{1,3,2} : X1 ≤ X3 ≤ X2,

H{2,1,3} : X2 ≤ X1 ≤ X3, H{2,3,1} : X2 ≤ X3 ≤ X1,

H{3,1,2} : X3 ≤ X1 ≤ X2, H{3,2,1} : X3 ≤ X2 ≤ X1,

where Xi, i ∈ [1 : 3] is the i-th element of X. Each hypothesis
is hence associated to a hypothesis region in the 3-dimensional
space, as also graphically represented in Fig. 2.

III. OPTIMAL DECISION REGIONS

In this section, using standard hypothesis testing tools we
characterize the optimal decision criterion. We also make
general statements about the structure of the decision re-
gions. Towards this end, we make use of the result in [26,

Fig. 2: Case n = 3. Graphical representation of the
hypothesis regions associated to each of the 6 hypotheses.

Appendix 3C], which shows that, for an observation y, the
optimal decision criterion in (2) is given by the maximum a
posterior probability (MAP) decoder, namely

Hπ̂ : π̂ = argmax
π∈P

{fY(y,Hπ)}, (3a)

fY(y,Hπ) = fY(y|Hπ) Pr(Hπ), π ∈ P, (3b)

where fY(y|Hπ) denotes the conditional probability density
function (PDF) of Y given that X ∈ Hπ . By defining the
likelihood functions L(y,Hπ) = fY(y|Hπ),∀π ∈ P , we have
that (3) can be equivalently formulated as

Hπ̂ :
L(y,Hπ̂)

L(y,Hπ)
≥ 1, ∀π 6= π̂, (4)

where we have used the fact that Pr(Hπ) =
Pr(Hτ ),∀(π, τ) ∈ P × P , which follows since
X ∼ N (0n, In). It is worth noting that, since X and N are
independent, then the likelihood function L(y,Hπ), π ∈ P
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Transformation
<latexit sha1_base64="ZoQS469f0sYjTP2imRqOeHsBC44=">AAACAHicbVC7TsNAEDzzDOFloKCgOZEgUUV2KKCMREMZpLykxIrOl3Vyyvls3Z0RkeWGX6GhACFaPoOOv+HiuICEkVYazexqd8ePOVPacb6ttfWNza3t0k55d2//4NA+Ou6oKJEU2jTikez5RAFnAtqaaQ69WAIJfQ5df3o797sPIBWLREvPYvBCMhYsYJRoIw3t0+pAw6NOW5IIFUQyzPWsOrQrTs3JgVeJW5AKKtAc2l+DUUSTEISmnCjVd51YeymRmlEOWXmQKIgJnZIx9A0VJATlpfkDGb4wygib9aaExrn6eyIloVKz0Ded5sCJWvbm4n9eP9HBjZcyEScaBF0sChKOdYTnaeARk0A1nxlCqGTmVkwnRBKqTWZlE4K7/PIq6dRr7lWtfl+vNJwijhI6Q+foErnoGjXQHWqiNqIoQ8/oFb1ZT9aL9W59LFrXrGLmBP2B9fkDMBWWuQ==</latexit>

of
<latexit sha1_base64="YsdJBcA3KRlFovsb1h44GBYzieU=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tFhPBKtzFQsuAjWUE8wHJEfY2e8mSvdtjd04MR36GjYUitv4aO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbVSqGW8xJZXuBtRwKWLeQoGSdxPNaRRI3gkmt3O/88i1ESp+wGnC/YiOYhEKRtFKvWof+RNmKpxVB+WKW3MXIOvEy0kFcjQH5a/+ULE04jEySY3peW6CfkY1Cib5rNRPDU8om9AR71ka04gbP1ucPCMXVhmSUGlbMZKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPRJykyGO2XBSmkqAi8//JUGjOUE4toUwLeythY6opQ5tSyYbgrb68Ttr1mndVq9/XKw03j6MIZ3AOl+DBNTTgDprQAgYKnuEV3hx0Xpx352PZWnDymVP4A+fzBxPMkQ4=</latexit>

H⇡̂, ⇡̂ 2 P
<latexit sha1_base64="j+EBG5EB7Q/czgCm+kGJoHPnwbM=">AAACG3icbVDLSsNAFJ34rPUVdelmsBVcSEniQpcFN11WsA9oQphMJ+3QySTMTIQS8h9u/BU3LhRxJbjwb5y0oWjrgYHDOecy954gYVQqy/o21tY3Nre2KzvV3b39g0Pz6Lgr41Rg0sExi0U/QJIwyklHUcVIPxEERQEjvWByW/i9ByIkjfm9mibEi9CI05BipLTkm07djZAaY8SyVu5n7hipzE1onl8uqEs5XITaed03a1bDmgGuErskNVCi7Zuf7jDGaUS4wgxJObCtRHkZEopiRvKqm0qSIDxBIzLQlKOISC+b3ZbDc60MYRgL/biCM/X3RIYiKadRoJPFjnLZK8T/vEGqwhsvozxJFeF4/lGYMqhiWBQFh1QQrNhUE4QF1btCPEYCYaXrrOoS7OWTV0nXadhXDefOqTWtso4KOAVn4ALY4Bo0QQu0QQdg8AiewSt4M56MF+Pd+JhH14xy5gT8gfH1A2Czoi0=</latexit>

Decoder
<latexit sha1_base64="7PGYJ8cwERMn3M6IzVju7ZIzYco=">AAAB+XicbVDLTgJBEJzFF+Jr1aOXiWDiieziQY8kevCIiTwS2JDZ2QYmzD4y00skG/7EiweN8eqfePNvHGAPClbSSaWqO91dfiKFRsf5tgobm1vbO8Xd0t7+weGRfXzS0nGqODR5LGPV8ZkGKSJookAJnUQBC30JbX98O/fbE1BaxNEjThPwQjaMxEBwhkbq23alh/CE2R3wOAA1q/TtslN1FqDrxM1JmeRo9O2vXhDzNIQIuWRad10nQS9jCgWXMCv1Ug0J42M2hK6hEQtBe9ni8hm9MEpAB7EyFSFdqL8nMhZqPQ190xkyHOlVby7+53VTHNx4mYiSFCHiy0WDVFKM6TwGGggFHOXUEMaVMLdSPmKKcTRhlUwI7urL66RVq7pX1dpDrVx38jiK5Iyck0vikmtSJ/ekQZqEkwl5Jq/kzcqsF+vd+li2Fqx85pT8gfX5AzZ2k1I=</latexit>

Ay + b
<latexit sha1_base64="rvByESGBgRQ+rEQ8W1xbEn/3KMs=">AAACA3icbVDLSsNAFL2pr1pfUXe6GWwFQShJXeiy4sZlBfuANpTJdNIOnTyYmQghBNz4K25cKOLWn3Dn3zhpI2j1wMCZc+7l3nvciDOpLOvTKC0tr6yuldcrG5tb2zvm7l5HhrEgtE1CHoqeiyXlLKBtxRSnvUhQ7Lucdt3pVe5376iQLAxuVRJRx8fjgHmMYKWloXlQuxz4WE1cL00ydIq+P25WG5pVq27NgP4SuyBVKNAamh+DUUhinwaKcCxl37Yi5aRYKEY4zSqDWNIIkyke076mAfapdNLZDRk61soIeaHQL1Bopv7sSLEvZeK7ujJfUS56ufif14+Vd+GkLIhiRQMyH+TFHKkQ5YGgEROUKJ5ogolgeldEJlhgonRsFR2CvXjyX9Jp1O2zeuOmUW1aRRxlOIQjOAEbzqEJ19CCNhC4h0d4hhfjwXgyXo23eWnJKHr24ReM9y/iyJb6</latexit>

Sorting
<latexit sha1_base64="ZlUkrMOcMRDUS6e3CcWcHsfVMIg=">AAAB+XicbVDLTgIxFO3gC/E16tJNI5i4IjO40CWJG5cY5ZHAhHRKBxo67aS9QyQT/sSNC41x65+4828sMAsFT3KTk3Pube89YSK4Ac/7dgobm1vbO8Xd0t7+weGRe3zSMirVlDWpEkp3QmKY4JI1gYNgnUQzEoeCtcPx7dxvT5g2XMlHmCYsiMlQ8ohTAlbqu26lB+wJsgelgcvhrNJ3y17VWwCvEz8nZZSj0Xe/egNF05hJoIIY0/W9BIKM2PeoYLNSLzUsIXRMhqxrqSQxM0G22HyGL6wywJHStiTghfp7IiOxMdM4tJ0xgZFZ9ebif143hegmyLhMUmCSLj+KUoFB4XkMeMA1oyCmlhCqud0V0xHRhIINq2RD8FdPXietWtW/qtbua+W6l8dRRGfoHF0iH12jOrpDDdREFE3QM3pFb07mvDjvzseyteDkM6foD5zPH4CAk4I=</latexit>

Algorithm
<latexit sha1_base64="k2hAaf0ii2gXIAuMMAI/NXwSmBQ=">AAAB+3icbVA9TwJBEN3DL8SvE0ubjWBiRe6w0BJjY4mJgAlcyN6yBxt29y67cwZy4a/YWGiMrX/Ezn/jAlco+JJJXt6bycy8MBHcgOd9O4WNza3tneJuaW//4PDIPS63TZxqylo0FrF+DIlhgivWAg6CPSaaERkK1gnHt3O/88S04bF6gGnCAkmGikecErBS3y1Xe8AmkN2IYaw5jOSs2ncrXs1bAK8TPycVlKPZd796g5imkimgghjT9b0Egoxo4FSwWamXGpYQOiZD1rVUEclMkC1un+FzqwxwFGtbCvBC/T2REWnMVIa2UxIYmVVvLv7ndVOIroOMqyQFpuhyUZQKDDGeB4EHXDMKYmoJofZ1TjEdEU0o2LhKNgR/9eV10q7X/Mta/b5eaXh5HEV0is7QBfLRFWqgO9RELUTRBD2jV/TmzJwX5935WLYWnHzmBP2B8/kD+7yUVw==</latexit>

Computing
<latexit sha1_base64="AFhlHaWJEE3dW4bcRgKOHmvS4CY=">AAAB+3icbVA9TwJBEN3DL8SvE0ubjWBiRe6w0JKExhITARO4kL1lDzbs7V525wzkwl+xsdAYW/+Inf/GBa5Q8CWTvLw3k5l5YSK4Ac/7dgpb2zu7e8X90sHh0fGJe1ruGJVqytpUCaUfQ2KY4JK1gYNgj4lmJA4F64aT5sLvPjFtuJIPMEtYEJOR5BGnBKw0cMvVPrApZE0VJylwOZpXB27Fq3lL4E3i56SCcrQG7ld/qGgaMwlUEGN6vpdAkBENnAo2L/VTwxJCJ2TEepZKEjMTZMvb5/jSKkMcKW1LAl6qvycyEhszi0PbGRMYm3VvIf7n9VKIboOMS/sWk3S1KEoFBoUXQeAh14yCmFlCqOb2VkzHRBMKNq6SDcFff3mTdOo1/7pWv69XGl4eRxGdowt0hXx0gxroDrVQG1E0Rc/oFb05c+fFeXc+Vq0FJ585Q3/gfP4AExCUZg==</latexit>

Fig. 3: Block diagram of the optimal decoder in the linear regime.

can be expressed by using the convolution between two PDFs
as

L(y,Hπ) = E [fN(y −X)|Hπ] , (5)

where fN(·) is the PDF of N.
With the formulation in (4), we can now define the optimal

decision regions Rπ,KN
, π ∈ P of our hypothesis testing

problem1. In particular, the decision criterion will leverage
these regions to output Hπ̂, π̂ ∈ P , namely if the observation
vector y ∈ Rπ,KN

, then the decoder would declare that the
input vector x ∈ Hπ . We have that the optimal decision region
Rπ,KN

corresponding to the hypothesis region Hπ, π ∈ P is
defined as

Rπ,KN
=

y ∈ Rn : fY(y,Hπ) ≥ max
τ∈P
τ 6=π

fY(y,Hτ )


=

{
y ∈ Rn :

L(y,Hπ)

L(y,Hτ )
≥ 1, ∀τ ∈ P, τ 6= π

}
. (6)

Remark 1. If y ∈ Rn belongs to the boundary between two
or more decision regions, then we arbitrarily select one of the
Hπ, π ∈ P associated to these candidate decision regions.

The objective of this work is to characterize sufficient and
necessary conditions on the noise covariance matrix KN such
that each optimal decision region Rπ,KN

, π ∈ P in (6)
is a permutation-independent linear transformation of the
corresponding hypothesis region Hπ (i.e., Rπ,KN

= AHπ+b
for some A ∈ Rn×n and b ∈ Rn, which are the same across
all permutations). In other words, we seek to characterize the
regime in which the optimal decoder consists of computing a
simple permutation-independent linear transformation of the
noisy observation y (i.e., Ay + b), followed by a sorting
algorithm (ascending order) outputting the permutation along
which the vector Ay+b is sorted – see also Fig. 3. We refer
to this regime as linear.

Characterizing the linear regime (if any) is important for
several reasons. First, it is a natural first step to characterizing
the complete solution of the problem. Second, in the linear
regime the optimal decoder has an appealing performance
from a computational complexity perspective. The block di-
agram of the optimal decoder in the linear regime is shown

1The notation Rπ,KN
indicates that, in general, the decision regions might

be functions of the noise covariance matrix KN.

in Fig. 3. The optimal decoder first computes a permutation-
independent linear transformation of y (first block in Fig. 3),
which is a polynomial in n complexity task (an expression
for this linear transformation is provided in Theorem 1 in
Section IV). Next, given this linear transformation, the optimal
decoder only needs to perform sorting on it (second block in
Fig. 3), which is a task of complexity O(n log n). Thus, in
the linear regime the optimal decoder has at most polynomial
in n complexity. This performance should be compared to the
brute force evaluation of the optimal test in (6), which has a
practically prohibitive complexity of n!.

Currently, finding a meaningful expression for the structure
ofRπ,KN

for all KN seems to be a challenging task. However,
some properties can be found on the structure of Rπ,KN

in
the general case. In particular, the following proposition, the
proof of which is provided in Appendix A, demonstrates that
the regions must have a certain symmetry. This property will
also be useful for the characterization of the linear regime.

Proposition 1. Let (π, τ) ∈ P × P be the index pair that
satisfies Hπ = −Hτ , that is τi = πn−i+1, i ∈ [1 : n], with
πi and τi indicating the i-th element of π and τ , respectively.
Then, Rπ,KN

= −Rτ,KN
, that is for any observation y ∈

Rπ,KN
it follows that −y ∈ Rτ,KN

.

Remark 2. We note that the result in Proposition 1 can be
generalized beyond the Gaussian assumption on X ∈ Rn. In
particular, it holds under the condition that X ∈ Rn is an
exchangeable2 random vector.

We conclude this section by providing an example of KN

that puts us outside of the linear regime. Consider n = 3 and
the following noise covariance matrix

KN =

1 0 0
0 1 0
0 0 2

 . (7)

By performing brute force comparisons in (6), Fig. 4 shows the
structure of the optimal decision regions for the choice of KN

in (7). We highlight that, for notational simplicity, in Fig. 4
we indicated Rπ,KN

as Rπ . Note that the Hπ’s, which have a

2A sequence of random variables U1, U2, . . . , Un is said to be exchange-
able if, for any permutation (π1, π2, . . . , πn) of the indices [1 : n], we have
that (U1, U2, . . . , Un)

d
= (Uπ1 , Uπ2 , . . . , Uπn ), where d

= denotes equality
in distribution.



Fig. 4: Monte Carlo simulation of the optimal decision
regions Rπ,KN

, π ∈ P where KN is defined in (7).

cone structure (see Fig. 2), cannot be a linear transformation
of the Rπ,KN

regions in Fig. 4. In Section IV, we will provide
a formal explanation on why the covariance matrix in (7) does
not induce a linear regime. Finally, observe that as expected,
in view of Proposition 1, the optimal decision regions in Fig. 4
have a point of symmetry with respect to the origin.

IV. MAIN RESULT AND DISCUSSION

We here provide our main result and discuss several practi-
cally relevant implications of it. In particular, our main result is
given by the following theorem, which is proved in Section V.

Theorem 1. The following conditions are equivalent:

1) Rπ,KN
is a permutation-independent linear transforma-

tion of Hπ;
2) 0n ∈

⋂
π∈P Rπ,KN

;

3) The ellipsoid
(
K−1N + In

)− 1
2 Bn (0n, 1) projected onto

the hyperplane W = {x ∈ Rn : 1Tnx = 0} is an (n −
1)-dimensional ball of radius γ for some constant γ ∈
(0, 1);

4) Let Q =
{
Q ∈ SO(n) : qn = 1√

n
1n

}
, where SO(n)

is the set of n × n real-valued orthonormal matrices,
and qn is the n-th column of Q. Then, there exist three
constants γ ∈ (0, 1), a ∈ (0, 1), and v ∈ R such that
v2 < min{aγ, (1− a)(1− γ)} and(

K−1N + In
)−1

= Q

[
γIn−2 0n−2×2
02×n−2 S

]
QT , (8)

where Q ∈ Q and S = [ γ vv a ]; and
5) Rπ,KN

= (KN + In)Hπ , for all π ∈ P .

Remark 3. Recall that for X ∼ N (0n, In), we have that

X|Y = y ∼ N (E [X|Y = y] ,Var(X|Y = y)) ,

Fig. 5: Graphical representation of the ellipsoid(
K−1N + In

)− 1
2 Bn (0n, 1), where KN satisfies (8) with
parameters defined in (10).

where E [X|Y = y] = (In + KN)−1y [27] and Var(X|Y =
y) = (In + K−1N )−1, ∀y ∈ Rn. It therefore follows that
condition 4) in Theorem 1 imposes a constraint for the
conditional covariance of X given Y. Moreover, recall that
the conditional expectation is the optimal mean squared error
estimator [27]. Therefore, the permutation-independent linear
transformation in condition 5) in Theorem 1 is, in fact, the
optimal linear estimator – see also first block in Fig. 3.

Remark 4. One interesting property of condition 4) in Theo-
rem 1 is the following. Let G = X|Y be the Gaussian random
vector that has properties as indicated in Remark 3. Then, it
can be shown that

{
1
i

∑i
k=1Gk −Gi+1

}
, i ∈ [1 : n− 1] are

independent. In particular, this follows by studying QTG that
has covariance given by

QTKGQ =

[
γIn−2 0n−2×2
02×n−2 S

]
, (9)

where Q ∈ Q is chosen such that its element Qi,j in the i-th
row and j-th column is

Qi,j =


(j2 + j)−

1
2 , j 6= n, i ≤ j,

−(1 + j−1)−
1
2 , j 6= n, i = j + 1,

n−
1
2 , j = n,

0, otherwise.

Remark 5. As discussed in Section III, the computational
complexity of the optimal decoder in the linear regime is at
most polynomial in n. It is also interesting to comment on the
computational complexity of verifying whether a given KN

induces a linear regime. Observe that the linearity condition
in (8) requires to perform matrix inversion, multiplication, and
eigendecomposition. All these are polynomial in n complexity
tasks. Therefore, verifying if the given KN satisfies (8) is a
polynomial in n complexity task.

An example of KN that induces the linear regime can be
obtained by considering n = 3 and

(γ, a, v) = (0.5, 0.5, 0.2) (10)



in (8). By taking the eigendecomposition of this KN, it can
be verified that it has three distinct eigenvalues given by
λ1 = 1, λ2 = 3/7 and λ3 = 7/3. The corresponding ellipsoid(
K−1N + In

)− 1
2 Bn (0n, 1) has three distinct radii and it is

shown in Fig. 5 (left). The projection of this ellipsoid onto
W = {x ∈ R3 : 1T3 x = 0} is equal to a 2-dimensional ball of
radius γ = 1/2 as also illustrated in Fig. 5 (right).

Fig. 6 shows that the corresponding optimal deci-
sion regions Rπ,KN

, π ∈ P , are indeed obtained as a
permutation-independent linear transformation of the corre-
sponding hypothesis regions in Fig. 2, namely as Rπ,KN

=
(KN + I3)Hπ . We highlight that, for notational simplicity, in
Fig. 6 we indicated Rπ,KN

as Rπ .

A. Sufficient and Necessary Conditions on the Spectrum and
on the Eigenvectors of KN

We here provide necessary and sufficient conditions on the
spectrum of KN, i.e., on the set of its eigenvalues, as well as
on its eigenvectors that need to be satisfied for (8) to hold. In
particular, we have the next proposition, the proof of which
can be found in Appendix B.

Proposition 2. A KN satisfies the condition in (8) if and
only if it has eigenvalues λi, i ∈ [1 : n] and eigenvectors
νi, i ∈ [1 : n] that are in either one of the two forms below:
• Case 1: All the n eigenvalues are the same; we have

λi =
γ

1− γ , νi = ti, (11)

where {ti, i ∈ [1 : n]} is any set of orthogonal vectors
in Rn, and γ ∈ (0, 1);

• Case 2: At least two eigenvalues are different; we have

λi =


γ

1−γ , i ∈ [1 : n− 2],
a+γ+

√
(a−γ)2+4v2

2−a−γ−
√

(a−γ)2+4v2
, i = n− 1,

a+γ−
√

(a−γ)2+4v2

2−a−γ+
√

(a−γ)2+4v2
, i = n,

(12a)

νi =

{
qi, i ∈ [1 : n− 2],(
v + a− λi

1+λi

)
qn−1 +

(
v + γ − λi

1+λi

)
qn, i ∈ [n− 1 : n],

(12b)

where γ ∈ (0, 1), a ∈ (0, 1), v ∈ R satisfying v2 <
min{aγ, (1 − a)(1 − γ)}, and qi, i ∈ [1 : n] is the i-th
column of Q ∈ Q.

Remark 6. Proposition 2 provides necessary and sufficient
conditions for KN to satisfy Theorem 1 in terms of its eigen-
values and eigenvectors. Specifically, Proposition 2 shows that
a KN that satisfies (8) has at most three distinct eigenvalues.

B. Case of n = 2 is Special

It is interesting to note that in the case of n = 2 the
condition in (8) is not restrictive, i.e., all covariance matrices
satisfy (8). To put it in other words, for n = 2 the linear

Fig. 6: Optimal decision regions of the KN that satisfies (8)
with parameters defined in (10).

regime is the only regime, and Theorem 1 gives a complete
characterization of the permutation recovery problem.

One intuitive explanation why this follows is given by
condition 3) in Theorem 1 which requires that the projection
of an n-dimensional ellipsoid onto the hyperplane W is an
(n − 1)-dimensional ball. When n = 2, this corresponds to
projecting an ellipse onto a line. The result of this operation
is a segment, which is indeed a 1-dimensional ball. Therefore,
for the case of n = 2 any KN satisfies (8). We next prove this
formally using condition 4) in Theorem 1.

Proposition 3. Let n = 2. Then, every positive definite
covariance matrix KN satisfies (8).

Proof: For n = 2 and any positive definite symmetric
KN, the left-had side of (8) can be represented by the triple
(w, q, z) as

(K−1N + In)−1 =

[
w q
q z

]
, (13)

where w > 0, z > 0, and wz > q2. Note also that the
eigenvalues of the left-hand side of (13) are smaller than one,
and hence the triple (w, q, z) has also to satisfy this constraint.
Hence, we would need to find a triple (a, γ, v) such that[

w q
q z

]
= Q

[
γ v
v a

]
QT , (14)

where the orthonormal matrix Q ∈ Q can be chosen as

Q =
1√
2

[
−1 1
1 1

]
. (15)

It is not difficult to see that the triple (a, γ, v) such that

a =
w + z + 2q

2
, γ =

w + z − 2q

2
, v =

z − w
2

,



satisfies all the constraints in condition 4) of Theorem 1. This
concludes the proof of Proposition 3.

C. For n > 2 Memoryless Noise Can Only be Isotropic

We here focus on the case n > 2, and we prove that if
the noise is memoryless, i.e., KN is a diagonal matrix, then
all its diagonal elements has to be equal to ensure that (8)
is satisfied, i.e., the noise has to be isotropic. We note that
this result justifies the fact that the KN defined in (7) puts
us outside of the linear regime (see Fig. 4). We also highlight
that such a restriction does not apply for the case n = 2
since, as we have shown in Proposition 3, for this case any
KN satisfies (8).

Proposition 4. Consider n > 2 and let KN be a diagonal
positive definite matrix. Then, KN satisfies (8) if and only if

KN =
γ

1− γ In, (16)

for some γ ∈ (0, 1).

Proof: Let KN ∈ Rn×n, n > 2 be a diagonal matrix with
σ2
i , i ∈ [1 : n] on its diagonal entries. We start by observing

that if KN is isotropic (i.e., KN = cIn for any constant c > 0),
then it has eigenvalues λi and eigenvectors νi as in (11) in
Proposition 2. Thus, if KN is isotropic, then it satisfies the
condition in (8).

We now show that any diagonal positive definite KN has
to be of the form as in (16) to satisfy (8). Towards this end,
assume that KN is non-isotropic. For i ∈ [1 : n], since KN is
a diagonal matrix, it has eigenvalues λi and eigenvectors νi
given by

λi = σ2
i , νi = ei, (17)

where ei ∈ Rn denotes an n-dimensional vector of all-zeros
except a non-zero element in the i-th position. However, from
Proposition 2, we know that there exists i ∈ [1 : n] for which
νi = γ−a√

n
1n (since v = 0), and hence a KN that is diagonal,

but non-isotropic does not satisfy the condition in (8). This
concludes the proof of Proposition 4.

D. On the Probability of Error

Although finding the probability of error is not the main
objective of this paper, we make a few comments about it.
Specifically, the structure of the optimal decision regions in
Theorem 1 can now be utilized to provide the following
geometric characterization of the error probability, the proof
of which can be found in Appendix C.

Proposition 5. Let KN satisfy the conditions in Theorem 1.
Then, the error probability is given by

Pe = 1− n!
Vol2n

(
CHπ ∩AB2n (02n, 1)

)
det
(
K

1
2

N

)
Vol2n (B2n (02n, 1))

, (18a)

where

A =

[
In 0n×n

In K
1
2

N

]
, CHπ = Hπ × (KN + In)Hπ, (18b)

and where π ∈ P can be chosen arbitrarily.

The result in Proposition 5 can now be used to derive
various upper and lower bounds on the probability of error,
and hence find impossibility results, i.e., properties on the
noise covariance matrix KN for which reasonable recovery is
not possible. This is an interesting direction, which we leave
for future work. The interested reader is referred to [1] for a
preliminary work in this direction that shows that the problem
considered in this work is noise limited.

E. Discussion on Possible Extensions

We here discuss a few possible future directions and ex-
tensions. Perhaps one of the most natural next directions is
to look beyond the linear regime. For example, it would be
interesting to understand whether the optimal decoder always
has a reasonable closed-form characterization. In particular,
Proposition 1 and the simulation results in Fig. 4 suggest that
the optimal decision regions have a symmetrical polyhedral
structure, and it would be interesting to see if the general struc-
ture of the optimal decision regions can be characterized. The
possibility that such a general characterization exists stems
from the following characterization of the optimal decoder:
given an observation y

π? = arg max
π∈P

Pr[X ∈ Hπ|Y = y]

= arg max
π∈P

Pr[(In+KN)−1y+(In+K−1N )−
1
2Z ∈ Hπ], (19)

where Z is a standard Gaussian random vector. The proof of
the second equality in (19) follows from the fact that X given
Y is Gaussian; see Remark 3 for more details.

It would also be interesting to study the probability of error
for the linear decoder proposed in this work and compare it
with the probability of error of the optimal decoder in the
regimes not covered by Theorem 1. Recall that the optimal
decoder in the linear regime consists of the optimal linear
estimator combined with a sorting operation (see Remark 3
and Fig. 3). This decoder is very attractive as it is relatively
easy to implement in practice. In particular, it is reasonable to
suspect that there exists a large set of noise covariance matrices
for which such a decoder will perform relatively well.

Another interesting direction is to consider whether the
results of this paper can be generalized beyond the assumption
that X ∈ Rn is Gaussian. One attractive direction to consider
is the case when X ∈ Rn is exchangeable. The assumption of
exchangeability still allows to use the symmetry argument, and
in particular, Proposition 1 holds under this assumption (see
Remark 2). Furthermore, let Xy ∈ Rn be the random variable
distributed according to fX|Y(·|y); then, from Proposition 1
it follows that the linear regime is optimal if and only if there
exists a constant c ∈ (0, 1) such that

Pr[X0 ∈ Hπ] = c,∀π ∈ P. (20)

In our preliminary work in [1], we have shown the optimality
of the linear regime when the noise is isotropic. Thus, an
interesting future direction would consist of identifying the



family of the noise covariance matrices for which (20) holds
when X ∈ Rn is exchangeable, but not necessarily Gaussian.

V. PROOF OF THEOREM 1

In this section, we prove the results in Theorem 1. In
particular, the proof follows the next sequence of implications

1)⇒ 2)⇔ 3)⇔ 4)⇒ 5)⇒ 1),

which are next analyzed in different subsections. Note that the
implication 5)⇒ 1) follows immediately.

A. Proof of the Implication 1)⇒ 2)

We here prove that 1) ⇒ 2), i.e., the fact that Rπ,KN
is a

permutation-independent linear transformation of Hπ implies
that 0n ∈

⋂
π∈P Rπ,KN

. Towards this end, we prove the
following lemma by leveraging the symmetry condition proved
in Proposition 1.

Lemma 1. Suppose that

Rπ,KN
= AHπ + b, ∀π ∈ P, (21)

where A is an n×n matrix, and b is an n-dimensional column
vector. Then, 0n ∈

⋂
π∈P Rπ,KN

. Moreover, b must be of the
form b = tA1n for some t ∈ R.

Proof: Let LH =
{
x ∈ Rn : x ∈ ⋂π∈P Hπ} be the set

of points that belong to the intersection of Hπ, ∀π ∈ P . Note
that this set of points forms a line in Rn, which is given by

LH = {x ∈ Rn : x = κ1n, κ ∈ R} . (22)

Similarly, let LR =
{
x ∈ Rn : x ∈ ⋂π∈P Rπ,KN

}
be the set

of points that belong to the intersection of Rπ,KN
, ∀π ∈

P . Note that this set is non-empty. From the assumption in
Lemma 1, we have that LR = ALH + b. Thus, LR is also a
line in Rn defined as

LR = {x ∈ Rn : x = κA1n + b, κ ∈ R} . (23)

Now let 0n 6= ỹ ∈ LR. Then, by Proposition 1 if ỹ ∈ LR,
we have that −ỹ ∈ LR. Since LR is a line that contains both
−ỹ and ỹ, it must contain also 0n. Finally, observe that the
only b that is allowed (i.e., that ensures that the line contains
both −ỹ and ỹ) is of the form b = tA1n for some t ∈ R.
This concludes the proof of Lemma 1.

Note that the fact that the shift vector b in Lemma 1 is of
the form b = tA1n, for some t ∈ R, implies that

LR = {x ∈ Rn : x = κA1n + b, κ ∈ R}
= {x ∈ Rn : x = (κ+ t)A1n, κ, t ∈ R} = ALH, (24)

and

Rπ,KN
= AHπ + b = A(Hπ + t1n) = AHπ. (25)

In other words, such a choice of b does not effect the shape
of the decision regions.

Fig. 7: Steiner symmetrization.

B. Proof of the Implication 2)⇔ 3)

We here prove that 2) ⇔ 3), i.e., the fact that the ellip-
soid

(
K−1N + In

)− 1
2 Bn (0n, 1) projected onto the hyperplane

W = {x ∈ Rn : 1Tnx = 0} is an (n− 1)-dimensional ball of
radius γ for some γ ∈ (0, 1) implies that 0n ∈

⋂
π∈P Rπ,KN

,
and vice versa.

In particular, the proofs 2)⇐ 3) and 2)⇒ 3) will leverage a
symmetrization method known as Steiner symmetrization [28],
which we next formally define.

Definition 1. Let S be a bounded set in Rn, and W be
an (n − 1)-dimensional vector subspace of Rn. The Steiner
symmetrization of S with respect to W is the operation that
associates the set stW(S) in Rn to the set S such that, for each
straight line ` perpendicular to W , we have that ` ∩ stW(S)
is either a closed line segment with center in W or is empty.
Moreover, the two following conditions need to be satisfied

length (` ∩ S) = length (` ∩ stW(S)) , (26a)

and

` ∩ stW(S) = ∅ if and only if ` ∩ S = ∅. (26b)

Fig. 7 illustrates the application of Steiner symmetrization
on the set S with respect to the lineW . We now provide some
properties of Steiner symmetrization that will be useful in the
upcoming proofs.

Proposition 6. The Steiner symmetrization stW(S) of the set
S with respect to W satisfies the following properties:
• Steiner symmetrization preserves convexity. Moreover,

Steiner symmetrization transforms ellipsoids into ellip-
soids [29].

• Steiner symmetrization preserves the volume, i.e.,
Voln (S) = Voln (stW(S)) [28].

• Steiner symmetrization preserves the orthogonal projec-
tion onto W , i.e., ProjW(S) = ProjW(stW(S)), where
ProjW(A) denotes the orthogonal projection of the set
A onto W [30].



Another result that we will leverage to prove 2) ⇔ 3) is
provided by the following lemma, the proof of which can be
found in Appendix D.

Lemma 2. Let U ∼ N (0n,KU), where KU is positive
definite. Then,

Pr(U ∈ Hπ) =

∣∣∣det
(
K
− 1

2

U

)∣∣∣Voln
(
Hπ ∩K

1
2

UBn (0n, 1)
)

Voln (Bn (0n, 1))
.

(27)

We are now ready to prove 2) ⇔ 3), the proof of which
consists of two parts. The first part is provided in the next
lemma, which leverages the observation in Remark 3 and is
proved in Appendix E.

Lemma 3. 0n ∈
⋂
π∈P Rπ,KN

if and only if there exists a
constant η > 0 such that

Voln
(
Hπ ∩

(
K−1N + In

)− 1
2 Bn (0n, 1)

)
= η, ∀π ∈ P.

(28)

The second part of the proof 2)⇔ 3) is given by the next
lemma, which characterizes the solution of (28) in terms of
KN and relies on the Steiner symmetrization technique.

Lemma 4. A KN is a solution for (28) if and only if
there exists a constant γ ∈ (0, 1) such that the ellip-
soid

(
K−1N + In

)− 1
2 Bn (0n, 1) projected onto the hyperplane

W = {x ∈ Rn : 1Tnx = 0} is an (n− 1)-dimensional ball of
radius γ.

Proof: Let LH =
{
x ∈ Rn : x ∈ ⋂π∈P Hπ} be the set

of points that belong to the intersection of Hπ, ∀π ∈ P .
From (22), we have that

LH = {x ∈ Rn : x = κ1n, κ ∈ R} , (29)

which is a line in Rn. From Lemma 3, we have that y = 0n
is a boundary point for all the optimal decision regions, i.e.,
0n ∈

⋂
π∈P Rπ,KN

, if and only if

Voln
(
Hπ ∩

(
K−1N + In

)− 1
2 Bn (0n, 1)

)
= η, ∀π ∈ P,

(30)

for some η > 0. In particular, with reference to (30), Hπ is
an n-dimensional cone, and

(
K−1N + In

)− 1
2 Bn(0n, 1) is an

n-dimensional ellipsoid centered at 0n. We also highlight that
Hπ, ∀π are all open sets along the direction LH, i.e., for any
π ∈ P and κ ∈ R, if x̃ ∈ Hπ , then x̃ + κ1n ∈ Hπ .

For ease of geometrical representation, we now apply
Steiner symmetrization (see Definition 1) on the ellipsoid(
K−1N + In

)− 1
2 Bn(0n, 1). In particular, with reference to

Definition 1, we consider the Steiner symmetrization with
respect to the hyperplane

W = {x ∈ Rn : 1Tnx = 0}, (31)

which is perpendicular to the line LH in (29). Note
that W is an (n − 1)-dimensional vector subspace of
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Fig. 8: Steiner symmetrization of the ellipsoid
K =

(
K−1N + I2

)− 1
2 B2(02, 1) with respect to W in (31)

where KN =
[

1
3 0
0 4

]
.

Rn. By applying Steiner symmetrization on the ellipsoid(
K−1N + In

)− 1
2 Bn(0n, 1) with respect to W in (31), we

obtain a new ellipsoid En (see Proposition 6) given by

En = stW

((
K−1N + In

)− 1
2 Bn(0n, 1)

)
, (32)

which has the same volume of the original ellipsoid (see
Proposition 6), namely

Voln
((
K−1N + In

)− 1
2 Bn(0n, 1)

)
= Voln (En) .

It is also worth noting that En is centered at 0n, it has LH
in (29) as an axis, and it is symmetric with respect to W .
These properties, together with the fact that Hπ’s with π ∈ P
are all open sets along the direction LH, imply that

Voln
(
Hπ ∩

(
K−1N + In

)− 1
2 Bn (0n, 1)

)
= Voln (Hπ ∩ En) .

(33)

A graphical representation of the procedure explained above
is provided in Fig. 8 for the 2-dimensional case. From the
analysis above, it therefore follows that the problem of finding
the family of KN’s that satisfies (30) is equivalent to finding
the family of KN’s such that there exists a constant η > 0 for
which

Voln (Hπ ∩ En) = η, ∀π ∈ P. (34)

We now leverage the following lemma, the proof of which
can be found in Appendix F, which provides sufficient and
necessary conditions for (34) to hold.



Lemma 5. Let En be an n-dimensional ellipsoid centered at
the origin and having one axis of the type ν = 1√

n
1n. Then,

there exists η > 0, such that

Voln (Hπ ∩ En) = η, ∀π ∈ P, (35)

if and only if En has equal radii for all axes except possibly
the axis ν.

The result in Lemma 5 says that, in order for (34) to hold,
the ellipsoid En has to have a special structure, namely it has
to have equal radii for all axes except possibly the axis LH
in (29). Mathematically, this special structure of the ellipsoid
En can be represented as

En ∩W = Bn−1(0n, γ), (36)

where γ ∈ (0, 1) is the radius of the (n − 1)-dimensional
ball Bn−1(0n, γ). Note that the fact that γ ∈ (0, 1)
follows from the structure of the original ellipsoid, i.e.,(
K−1N + In

)− 1
2 Bn (0n, 1) since, by taking the eigendecom-

position, we can write(
K−1N + In

)− 1
2 = V (Λ−1 + In)−

1
2V T ,

which implies γ < 1 since all elements of (Λ−1 + In)−
1
2 are

strictly smaller than one. We finally note that

En ∩W (a)
= ProjW(En)

(b)
= ProjW

((
K−1N + In

)− 1
2 Bn (0n, 1)

)
,

(37)

where the labeled equalities follow from: (a) the fact that En is
a convex set and is symmetric with respect to W; and (b) the
projection property of Steiner symmetrization in Proposition 6.
Thus, (36) becomes

ProjW

((
K−1N + In

)− 1
2 Bn (0n, 1)

)
= Bn−1(0n, γ),

where γ ∈ (0, 1). This concludes the proof of Lemma 4.

C. Proof of the Implication 3)⇔ 4)

We here prove that 3)⇔ 4), namely we prove the following
lemma.

Lemma 6. Let Q =
{
Q ∈ SO(n) : qn = 1√

n
1n

}
, where

SO(n) is the set of n × n real-valued orthonormal matri-
ces, and qn is the n-th column of Q. Then, a KN is a
solution for Lemma 4 if and only if there exists constants
(γ, a, v) such that γ ∈ (0, 1), a ∈ (0, 1), v ∈ R satisfying
v2 < min{aγ, (1− a)(1− γ)} and(

K−1N + In
)−1

= Q

[
γIn−2 0n−2×2
02×n−2 S

]
QT ,

where Q ∈ Q and S = [ γ vv a ].

Proof: We start by noting that any n-dimensional ellipsoid
can be represented in terms of a symmetric matrix. In par-
ticular, an n-dimensional ellipsoid defined as K

1
2Bn (0n, 1)

with K being a positive definite matrix, can be equivalently
represented as

K
1
2Bn (0n, 1) =

{
y ∈ Rn : yTK−1y ≤ 1

}
,

and hence

(
K−1N + In

)− 1
2 Bn (0n, 1) =

{
x ∈ Rn : xT

(
K−1N + In

)
x ≤ 1

}
.

Now, let C be any n × (n − 1) matrix whose columns form
an orthonormal basis of the hyperplane W = {x ∈ Rn :
1Tnx = 0}, which is an (n − 1)-dimensional vector subspace
of Rn. Then, from [31], the relationship between the original
ellipsoid

(
K−1N + In

)− 1
2 Bn (0n, 1), which is specified by the

matrix
(
K−1N + In

)−1
, and its projection on the hyperplaneW

namely ProjW((K−1N + In)−
1
2Bn (0n, 1)), which is specified

by B in the projection subspace, is given by the equation

B = CT
(
K−1N + In

)−1
C. (38)

We want to find the necessary and sufficient conditions
that ensure that the projection of the original ellipsoid(
K−1N + In

)− 1
2 Bn (0n, 1) on the hyperplane W is an n − 1

dimensional ball, i.e., in (38) we need B = γIn−1, where
γ is the radius of the n − 1 dimensional ball. We delegate
the derivation of such necessary and sufficient conditions to
Appendix G.

D. Proof of the Implication 4)⇒ 5)

We here prove that 4) ⇒ 5), i.e., a KN that satisfies
Lemma 6 implies that Rπ,KN

= (KN + In)Hπ , for all
π ∈ P . Towards this end, we leverage the following auxiliary
lemma, the proof of which is in Appendix H.

Lemma 7. Let Ỹ0 ∼ N
(
0n, K̃

)
with K̃ =

(
K−1N + In

)−1
that satisfies the condition in Lemma 6. Then, there exists some
β ∈ (0, 1) such that

Pr
(
Ỹ0 ∈ Hπ

)
= β, ∀π ∈ P. (39)

Moreover, if ỹ ∈ Hτ , then

Pr
(
Ỹ0 + ỹ ∈ Hτ

)
= max

π∈P

{
Pr(Ỹ0 + ỹ ∈ Hπ)

}
. (40)

We now leverage Lemma 7 to prove the implication 4) ⇒
5), and hence to conclude the proof of Theorem 1. In partic-
ular, we have the following lemma.

Lemma 8. Suppose that KN satisfies the conditions in
Lemma 6. Then,

Rπ,KN
= (KN + In)Hπ. (41)

Proof: Let Ỹ = Ỹ0 + ỹ where Ỹ0 ∼ N
(
0n, K̃

)
with

K̃ =
(
K−1N + In

)−1
, and ỹ = (In +KN)

−1
y. Next, note



that

fY(y,Hπ) =

∫
x∈Hπ

fN(y − x)fX(x) dx

=

∫
x∈Hπ

e−
1
2 (y−x)

TK−1
N (y−x)√

(2π)ndet(KN)
· e−

1
2x

Tx√
(2π)n

dx

=

∫
x∈Hπ

e−
1
2 (yTK−1

N y−2yTK−1
N x+xT (K−1

N +In)x)

(2π)n
√

det(KN)
dx

(a)
= Cy ·

∫
x∈Hπ

e−
1
2 (ỹ−x)

T (K−1
N +In)(ỹ−x)√

(2π)ndet
(
(K−1N + In)−1

) dx

(b)
= Cy · Pr(Ỹ ∈ Hπ)

= Cy · Pr(Ỹ0 + ỹ ∈ Hπ), (42)

where the labeled equalities follow from: (a) defining

Cy =

√
det
(
(K−1N + In)−1

)√
(2π)n det(KN)

e−
1
2y

TK−1
N y+ 1

2 ỹ
T (K−1

N +In)ỹ;

and (b) noting that the integrand is equal to the multivariate
Gaussian density fỸ(·).

Now if ỹ ∈ Hτ or equivalently if y ∈ (KN + In)Hτ , in
view of (42) and using Lemma 7, we have that

fY(y,Hτ ) = Cy · Pr(Ỹ0 + ỹ ∈ Hτ )

= Cy ·max
π∈P

{
Pr(Ỹ0 + ỹ ∈ Hπ)

}
= max

π∈P

{
Cy · Pr(Ỹ0 + ỹ ∈ Hπ)

}
= max

π∈P
{fY(y,Hπ)} . (43)

This indicates that Hτ is an optimal decision for all y ∈
(KN+In)Hτ . Consequently, when KN satisfies the conditions
in Lemma 6, we have that the optimal decision regions are
given by

Rπ,KN
= (KN + In)Hπ, ∀π ∈ P. (44)

This concludes the proof of Lemma 8, and also of Theorem 1.

VI. CONCLUSION

In this paper, we have considered a hypothesis testing frame-
work to study a problem of data permutation recovery from an
observation corrupted by correlated Gaussian noise. We have
shown that the optimal decision regions may or may not be a
linear transformation of the corresponding hypothesis regions
depending on the noise covariance matrix. We have focused
on the linear regime, which is appealing from a computational
perspective as within it the optimal decoding is of polynomial
complexity in the data size. We have characterized the optimal
decision regions in the linear regime and showed that they are
identical to the hypothesis of the observation multiplied by
a permutation-independent linear function of the covariance
matrix. We have discussed several practical implications of this
result. For instance, we have shown that when the data size is
equal to two, the linear regime is the only regime, and when

the data size is larger than two if the noise is memoryless then
it must be isotropic to induce the linear regime. By leveraging
the structure of the optimal decision regions, we have also
derived the probability of error in terms of a volume of a
region that consists of the intersection of a cone with a linear
transformation of the unit radius ball.
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APPENDIX A
PROOF OF PROPOSITION 1

We start by noting that any π1 ∈ P has its own unique
π2 ∈ P such that Hπ1 = −Hπ2 Then, for any observation y,
we have that

fY(y,Hπ1
) =

∫
x∈Hπ1

fN(y − x)fX(x) dx

(a)
=

∫
z∈−Hπ1

fN(y + z)fX(z) dz

(b)
=

∫
z∈Hπ2

fN(−y − z)fX(z) dz

= fY(−y,Hπ2
), (45)

where the labeled equalities follow from: (a) change of
variable z = −x; and (b) the fact that Hπ1

= −Hπ2
and

fN(n) = fN(−n).
From the relation in (45), it therefore follows that we can

map fY(y,Hπ1) to fY(−y,Hπ2) for all (π1, π2) index pairs
where π1 ∈ P and π2 ∈ P such that Hπ1 = −Hπ2 .
Assume now that y ∈ Rπ1,KN

, which from (6) implies that
fY(y,Hπ1

) is the maximum among all fY(y,Hτ ), τ ∈ P .
From (45) we then have that, among all fY(−y,Hτ ), τ ∈ P ,
the maximum joint density for −y is fY(−y,Hπ2) where π2
is such that Hπ2 = −Hπ1 . This, from (6), implies that

−y ∈ Rπ2,KN
. (46)

This concludes the proof of Proposition 1.

APPENDIX B
PROOF OF PROPOSITION 2

Let λi, i ∈ [1 : n] be the eigenvalues of KN and λ̃i, i ∈
[1 : n] be the eigenvalues of (K−1N + In)−1 in (8). Then, for
all i ∈ [1 : n], the relationship between λi and λ̃i is such that

λi =
λ̃i

1− λ̃i
. (47)

For the case when KN has n equal eigenvalues (i.e., either
KN is a diagonal matrix with equal elements on the diagonal,
or we take v = 0 and γ = a in (8)), it is not difficult to verify
that the eigenvalues and eigenvectors are of the form in (11).

We hence focus on the case when KN has at least two
distinct eigenvalues (i.e., the cases when either v = 0, γ 6= a
or when v 6= 0 in (8)). Since (K−1N + In)−1 in (8) consists of



an orthonormal matrix Q ∈ Q and a block diagonal matrix,
its eigenvalues can be found as the solution of the following
set of equations,

λ̃i = γ, i ∈ [1 : n− 2], (48a)

a = λ̃n−1 + λ̃n − γ, (48b)

v2 = (λ̃n−1 − γ)(γ − λ̃n), (48c)

where the second expression is due to the fact that γ + a =
λ̃n−1 + λ̃n and the last expression follows by computing the
determinant of S in (8) with (48b). By solving the above set of
linear equations and by using (47) we obtain the eigenvalues
in (12a) – see also Appendix J.

We now use the eigenvalues in (12a) to find the eigenvectors
νi of KN. We start by observing that νi’s are equal to the
eigenvectors of (K−1N + In)−1. Since the block matrix in (8)
has one isotropic matrix, we can easily find the first n − 2
eigenvectors of (K−1N + In)−1 (i.e., those associated to the
eigenvalue γ) as,

νi = qi, i ∈ [1 : n− 2], (49)

where qi is i-th column of Q ∈ Q. For νi, i ∈ [n − 1 :
n], by using the eigendecomposition of S and the fact that
(K−1N +In)−1 = QV Λ̃V TQT with Λ̃ being a diagonal matrix
and V being an orthonormal matrix, we obtain the following
two equations,

νi = (a− λ̃i)qn−1 + vqn, i ∈ [n− 1 : n], (50)

νi = vqn−1 + (γ − λ̃i)qn, i ∈ [n− 1 : n]. (51)

By combining (50) and (51), and by using (47) we obtain the
eigenvectors in (12b). This concludes the proof of Proposi-
tion 2.

APPENDIX C
PROOF OF PROPOSITION 5

Instead of working with the probability of error, it is more
convenient to work with the probability of correctness of
our hypothesis testing problem. Using the structure of the
optimal decision regions found in Theorem 1, the probability
of correctness can be written as

Pc =
∑
π∈P

Pr
(

(X,Y)
T ∈ Hπ ×Rπ,KN

)
(a)
=
∑
π∈P

Pr
(

(X,Y)
T ∈ Hπ × (KN + In)Hπ

)
(b)
=
∑
π∈P

Pr

((
X,X +K

1
2

NZ
)T
∈ Hπ × (KN + In)Hπ

)
(c)
=
∑
π∈P

Pr
(
A(X,Z)T ∈ Hπ × (KN + In)Hπ

)
(d)
=
∑
π∈P

Pr
(
(X,Z)T ∈ A−1CHπ

)
(e)
= n! Pr

(
(X,Z)T ∈ A−1CHπ

)
, (52)

where the labeled equalities follow from: (a) using the optimal
decision regions in Theorem 1; (b) letting Z be a standard

normal random vector, i.e., Z ∼ N (0n, In); (c) defining A =[
In 0n×n

In K
1
2

N

]
; (d) letting CHπ = Hπ× (KN +In)Hπ; and (e)

using the symmetry of (X,Z).
We observe that the shape of the region Hπ is an n-

dimensional cone (see Fig. 2 for a graphical representation
when n = 3). Thus, CHπ is a 2n-dimensional cone and so
is A−1CHπ . It therefore follows that we have to determine
the probability of (X,Z)T to fall within a cone. Using the
symmetry of the Gaussian distribution, the probability of a
pair (X,Z)T to fall within a cone is simply determined by
the angular measure of the cone. Now, the angular measure of
the cone A−1CHπ is given by

Pr
(
(X,Z)T ∈ A−1CHπ

)
=

Vol2n
(
A−1CHπ ∩ B2n (02n, 1)

)
Vol2n (B2n (02n, 1))

=
|det(A−1)|Vol2n

(
CHπ ∩AB2n (02n, 1)

)
Vol2n (B2n (02n, 1))

,

(53)

where in the last equality we have used the fact that
Volk (AS) = |det(A)|Volk (S) for any invertible matrix A
and any set S. By combining (52) and (53) we arrive at

Pc = n!
|det(A−1)|Vol2n

(
CHπ ∩AB2n (02n, 1)

)
Vol2n (B2n (02n, 1))

. (54)

The proof of Proposition 5 is concluded by noting that A is a
block matrix and hence |det(A)| = det

(
K

1
2

N

)
, and by using

the fact that Pe = 1− Pc.
APPENDIX D

PROOF OF LEMMA 2
We start by observing that, since KU is positive definite,

we have that

Pr(U ∈ Hπ) = Pr
(
K

1
2

UZ ∈ Hπ
)

= Pr
(
Z ∈ K−

1
2

U Hπ
)

=
Voln

(
K
− 1

2

U Hπ ∩ Bn (0n, 1)
)

Voln (Bn (0n, 1))
, (55)

where Z ∼ N (0n, In), and where the last equality follows by
representing the probability in terms of a ratio of two volumes.

We then obtain

Voln
(
K
− 1

2

U Hπ ∩ Bn (0n, 1)
)

=
∣∣∣det

(
K
− 1

2

U

)∣∣∣Voln
(
Hπ ∩K

1
2

UBn (0n, 1)
)
,

(56)

where the equality follows from the fact that, for an n × n
invertible matrix A and a set S ⊆ Rn, we have that
Voln(AS) = |det(A)|Voln(S). Finally, by substituting (56)
into (55) we obtain

Pr(U ∈ Hπ) =

∣∣∣det
(
K
− 1

2

U

)∣∣∣Voln
(
Hπ ∩K

1
2

UBn (0n, 1)
)

Voln (Bn (0n, 1))
.

(57)

This concludes the proof of Lemma 2.



APPENDIX E
PROOF OF LEMMA 3

We start by observing that, from the definition of the optimal
decision regions in (6), we have that 0n ∈

⋂
π∈P Rπ,KN

if
and only if

fY(0n,Hπ) = d, ∀π ∈ P, (58)

for some constant d > 0. Note that this implies that

Pr(X ∈ Hπ|Y = 0n) = d′, ∀π ∈ P, (59)

where d′ = d/fY(0n). Furthermore, recall that X|Y = y is
Gaussian (see Remark 3) and

Pr (X ∈ Hπ|Y=y)=Pr
((
In +K−1N

)−1
y +

(
In +K−1N

)− 1
2 Z ∈ Hπ

)
,∀π ∈ P,y ∈ Rn,

(60)

where Z is a standard Gaussian random vector. Now, by
evaluating (60) and combining it with Lemma 2, we have that

Pr(X ∈ Hπ|Y = 0n) =

∣∣∣det(K̊−
1
2 )
∣∣∣Voln

(
Hπ ∩ K̊

1
2Bn (0n, 1)

)
Voln (Bn (0n, 1))

,

(61)

where K̊ =
(
K−1N + In

)−1
. Finally, the sufficient and neces-

sary condition in (59) together with (61), imply that∣∣∣det(K̊−
1
2 )
∣∣∣Voln

(
Hπ ∩ K̊

1
2Bn (0n, 1)

)
Voln (Bn (0n, 1))

= d′, ∀π ∈ P,
(62)

which, after rescaling and substituting K̊ =
(
K−1N + In

)−1
,

reduces to (28) where

η = d′
Voln (Bn (0n, 1))∣∣∣det(K̊−

1
2 )
∣∣∣ .

This concludes the proof of Lemma 3.

APPENDIX F
PROOF OF LEMMA 5

We start by noting that the proof of Lemma 5 for the case
n = 2 is immediate, and hence we next focus on the case
n > 2. In particular, our proof will leverage an auxiliary result
presented in the next lemma, the proof of which can be found
in Appendix I.

Lemma 9. Let En be an n-dimensional ellipsoid centered at
the origin with unitary axes {ν1,ν2, . . . ,νn} and correspond-
ing radii equal to {r1, r2, . . . , rn}. Moreover, for r ∈ R, define
the following hyperplane and n− 1 dimensional ellipsoid:

W(r) = {x ∈ Rn : νTnx = r}, (63)

En−1W(r) = En ∩W(r). (64)

If νn = 1√
n
1n, then for every π ∈ P

Voln (Hπ ∩ En) = Voln−1
(
Hπ ∩ En−1W(0)

)
c(rn), (65)

where c(rn) is a constant that only depends on rn.

By leveraging Lemma 9, for a constant η > 0, we have that

Voln (Hπ ∩ En) = η, ∀π ∈ P, (66)

if and only if

Voln−1
(
Hπ ∩ En−1W(0)

)
= η̃, ∀π ∈ P, (67)

where En−1W(0) = En ∩ W(0), and where η̃ is some other
constant. Therefore, if (66) holds then so does (67) and
vice versa. Consequently, to prove Lemma 5, we need to
show that (67) holds if and only if En−1W(0) is an (n − 1)-
dimensional ball. Remember that En−1W(0) ⊂ W(0) has unitary
axes {ν1,ν2, . . . ,νn−1} with corresponding radii equal to
{r1, r2, . . . , rn−1}.

First, suppose that En−1W(0) is an (n − 1)-dimensional ball.
Then, from the symmetry of Hπ’s, it readily follows that (67)
holds (and hence (66) holds). Hence, the fact that En−1W(0) is
an (n − 1)-dimensional ball is a sufficient condition for (66)
to hold. We now show that it is also necessary. In particular,
our proof follows by using a contradiction argument where we
assume that En−1W(0) is not an (n− 1)-dimensional ball.

Assume that En−1W(0) has at least one radius that is differ-
ent from the others. Without loss of generality, let r1 =
maxi∈[1:n−1]{ri} and r2 = mini∈[1:n−1]{ri}. Note that
r1ν1 ∈ En−1W(0) and r2ν2 ∈ En−1W(0). Assume that r1ν1 ∈ Hα
and r2ν2 ∈ Hβ , for some α, β ∈ P . Note that α 6= β, i.e.,
when n > 2, there is no possibility for any of the Hπ’s
to contain more than one axis of En−1W(0). Next, observe that
Hα ∩W(0) and Hβ ∩W(0) have equal (n− 1)-dimensional
cone shapes (i.e., the angular measures of the two cones
are the same) in the subspace W(0). We let Bn−1W (0n, r) =
Bn(0n, r) ∩ W(0) be the (n − 1)-dimensional ball of radius
r. Because of the assumption of r1 6= r2, there exists some
value r̃, such that r1 > r̃ > r2 and

Voln−1
(
Hα ∩ En−1W(0)

)
(a)
= Voln−1

(
Hα ∩W(0) ∩ En−1W(0)

)
(b)
> Voln−1

(
Hα ∩W(0) ∩ Bn−1W (0n, r̃)

)
(c)
= Voln−1

(
Hβ ∩W(0) ∩ Bn−1W (0n, r̃)

)
(d)
> Voln−1

(
Hβ ∩W(0) ∩ En−1W(0)

)
= Voln−1

(
Hβ ∩ En−1W(0)

)
, (68)

where the labeled (in)equalities follow from: (a) the fact
that En−1W(0) ⊂ W(0); (b) the assumption that the cone
Hα ∩ W(0) contains the largest axis of the ellipsoid (i.e.,
r1ν1 ∈ Hα) and the assumption r̃ < r1; (c) using the fact that
Hβ ,Hα,Bn−1W (0n, r̃) and W(0) are permutation invariant;
and (d) the assumption that the cone Hβ ∩ W(0) contains
the smallest axis of the ellipsoid (i.e., r2ν2 ∈ Hβ) and the
assumption r̃ > r2.

This shows that, if r1 6= r2, then (67) (and hence (66))
can not hold. Therefore, for (67) (and hence (66)) to hold,



En−1W(0) must be an (n − 1)-dimensional ball, i.e., the radii
{r1, . . . , rn−1} of En must be all equal to each other. This
concludes the proof of Lemma 5.

APPENDIX G
NECESSARY AND SUFFICIENT CONDITIONS FOR LEMMA 6

We start by noting that, by substituting B = γIn−1
inside (38), we obtain

In−1γ = CT
(
K−1N + In

)−1
C. (69)

Moreover, we also note that

CCT
(a)
=
[
c1 c2 . . . cn−1

]


cT1
cT2
...

cTn−1


(b)
=
[
c1 c2 . . . cn

](
In −

[
0(n−1)×(n−1) 0n−1

0Tn−1 1

])
cT1
cT2
...
cTn


(c)
= In −

1

n
1n1

T
n = In −

1

n
1n×n, (70)

where the labeled equalities follow from: (a) letting ci, i ∈ [1 :
n− 1] be the i-th column of C; (b) letting cn = 1√

n
1n; and

(c) noting that cn is a unit vector that belongs to LH in (29)
and hence, it is perpendicular to W and to its orthonormal
basis formed by the n− 1 columns of C.

Now recall that the set Q is the set of n × n real-
valued orthonormal matrices with the n-th column equal to
1√
n
1n. Moreover, note that since the matrix C in (69) is any

orthonormal matrix the columns of which form a basis of the
hyperplane W , then the matrix Q ∈ Q can be chosen so as
to have C to populate its first n− 1 columns. In other words,
we can always find a pair (Q,C) with Q ∈ Q such that

Q =
[
C 1√

n
1n
]
. (71)

Without loss of generality, we assume the structure in (71) for
Q, and we let (

K−1N + In
)−1

= QAQT . (72)

Note that the matrix A in (72) is symmetric. This follows
from the fact that the left-hand side of (72) is positive definite,
and hence symmetric. This implies that QAQT = (QAQT )T ,
which leads to A = AT . Then, we obtain

CT
(
K−1N + In

)−1
C = CTQAQTC =

[
In−1 0n−1

]
A

[
In−1
0Tn−1

]
,

and hence from (69), we need

γIn−1 =
[
In−1 0n−1

]
A

[
In−1
0Tn−1

]
,

which implies that A has to have the form as

A =

[
γIn−1 v
vT a

]
,

for some constant a and column vector v of dimension n−1.
By substituting this back into (72), we obtain(

K−1N + In
)−1

= Q

[
γIn−1 v
vT a

]
QT , (73)

where Q ∈ Q. Moreover, since we can arbitrarily choose the
first n − 1 columns of Q ∈ Q, the expression in (73) can be
further simplified as(
K−1N + In

)−1
= Q

[
γIn−1 0n−1
0Tn−1 a

]
QT +Q

[
0n−1×n−1 v

vT 0

]
QT

(a)
= Q̃

[
γIn−1 0n−1
0Tn−1 a

]
Q̃T + Q̃

[
0n−2×n−2 0n−2×2

02×n−2 D

]
Q̃T

= Q̃

[
γIn−2 0n−2×2
02×n−2 S

]
Q̃T , (74)

where S = [ γ vv a ] with v ∈ R, and where the equality in (a)
follows since, for Q ∈ Q we have that

Q

[
0n−1×n−1 v

vT 0

]
QT =

[
c1 · · · cn−1

1√
n
1n
] [0n−1×n−1 v

vT 0

]
cT1
...

cTn−1
1√
n
1Tn


(a1)
=

1√
n
1n

(
n−1∑
i=1

vic
T
i

)
+

(
n−1∑
i=1

vici

)
1√
n
1Tn

(a2)
=

v√
n
1nc̃

T
n−1 +

v√
n
c̃n−11

T
n

(a3)
=
[
c̃1 · · · c̃n−1

1√
n
1n
] [0n−2×n−2 0n−2×n

02×n−2 D

]
c̃T1
...

c̃Tn−1
1√
n
1Tn


(a4)
= Q̃

[
0n−2×n−2 0n−2×2

02×n−2 D

]
Q̃T ,

(75)

where the labeled equalities follow from: (a1) letting vi, i ∈
[1 : n− 1] be the i-th element of v; (a2) noting that we can
express

∑n−1
i=1 vici = vc̃n−1 where v is a scalar and c̃n−1 ∈

W is a unit vector orthogonal to 1√
n
1n; (a3) the fact that

c̃1, . . . , c̃n−1 is an orthonormal basis of the hyperplane W
and using matrix form representation; and (a4) the fact that[
c̃1 · · · c̃n−1

1√
n
1n
]
∈ Q, and letting D = [ 0 vv 0 ].

Thus, from (74) we have that(
K−1N + In

)−1
= Q̃

[
γIn−2 0n−2×2
02×n−2 S

]
︸ ︷︷ ︸

B

Q̃T . (76)

Since
(
K−1N + In

)−1
is a positive definite matrix, we need to

ensure that the Schur complement [32] of the block γIn−2
of the matrix B, denoted as B/γIn−2, is positive definite.
Formally,

B/γIn−2 = S is positive definite =⇒ aγ > v2. (77)



We also need to find the conditions that ensure that KN is
positive definite. Towards this end, we perform the eigen-
decomposition of the matrix B, i.e., B = V ΛV T , and
rewrite (76) as(

K−1N + In
)−1

= QV ΛV TQT , (78)

where we highlight that the matrix QV is orthonormal. Thus,

K−1N + In = (QV ΛV TQT )−1 = QV Λ−1V TQT

=⇒ K−1N = QV Λ−1V TQT − In = QV (Λ−1 − In)V TQT

=⇒ KN = QV (Λ−1 − In)−1V TQT . (79)

In order to ensure that KN is positive definite, we compute
its eigenvalues, which are given by the diagonal elements of
the diagonal matrix (Λ−1− In)−1 and we find the conditions
under which these are positive. Note that these correspond to
the conditions for which Λ (i.e., the diagonal matrix with the
eigenvalues of B) has diagonal elements strictly smaller than
one. The eigenvalues of B are computed in Appendix J, where
we have shown that B has n− 2 eigenvalues equal to γ and
the remaining two eigenvalues equal to

λ =
a+ γ ±

√
(a− γ)2 + 4v2

2
.

These eigenvalues have to be strictly smaller than one, i.e., we
need

γ < 1, (80a)

and

a+ γ ±
√

(a− γ)2 + 4v2

2
< 1 =⇒

√
(a− γ)2 + 4v2 < 2− a− γ

=⇒ v2 < (1− a)(1− γ).
(80b)

Note also that since v2 ≥ 0, we need a < 1. The expression
in (76) together with the conditions in (77) and (80) conclude
the proof of Lemma 6.

APPENDIX H
PROOF OF LEMMA 7

From the result in Lemma 2, we have that

Pr
(
Ỹ0 ∈ Hπ

)
=

∣∣∣det
(
K̃−

1
2

)∣∣∣Voln
(
Hπ ∩ K̃

1
2Bn (0n, 1)

)
Voln (Bn (0n, 1))

, ∀π ∈ P,

which together with Lemma 3 lead to the proof of (39). Now,
note that (39) implies that

β = Pr
(
Ỹ0 ∈ Hπ

)
= Pr

(
Z ∈ K̃− 1

2Hπ
)

= Pr (Z ∈ Cπ) ,∀π ∈ P,
(81)

where Z ∼ N (0n, In) and Cπ = K̃−
1
2Hπ, ∀π ∈ P . This fur-

ther implies that Cπ, π ∈ P is a collection of congruent cones
(i.e., cones with the same angular measure) that symmetrically
partition Rn. Moreover, for every pair (τ, π) ∈ P × P there
exists a permutation matrix Pτ,π such that Pτ,πCτ = Cπ and

‖x− Pπ,τy‖ ≤ ‖x− y‖ , x ∈ Cτ ,y ∈ Cπ. (82)

The above inequality follows because of the three following
facts: (i) Pτ,πCτ = Cπ implies that Cπ is a reflection of Cτ
along some hyperplane T ; (ii) the hyperplane T bisects the
distance between Pπ,τy and y into equal segments; and (iii)
x and Pπ,τy are on the same side of the hyperplane and y is
on the opposite side of the hyperplane. Therefore, the distance
between x and Pπ,τy is smaller than the distance between x
and y.

Next, with some abuse of notation, we let fZ(‖z‖) denote
the PDF of Z. This notation highlights the fact that the PDF
of Z only depends on the norm. We also define µ = K̃−

1
2 ỹ

where µ ∈ Cτ since by assumption ỹ ∈ Hτ . With this, we
obtain

Pr
(
Ỹ0 + ỹ ∈ Hπ

)
= Pr

(
Z +

(
K−1N + In

)1/2
ỹ ∈

(
K−1N + In

)1/2Hπ)
(a)
= Pr(Z + µ ∈ Cπ)

=

∫
Cπ
fZ(‖z− µ‖) dz

(b)

≤
∫
Cπ
fZ(‖Pπ,τz− µ)‖) dz

(c)
=

∫
Pπ,τCπ

fZ(‖z− µ)‖) dz

(d)
=

∫
Cτ
fZ(‖z− µ)‖) dz

= Pr (Z + µ ∈ Cτ )

= Pr
(
Ỹ0 + ỹ ∈ Hτ

)
, (83)

where the labeled (in)equalities follow from: (a) letting µ =(
K−1N + In

)1/2
ỹ and remembering that Cπ = K̃−

1
2Hπ =(

K−1N + In
)1/2Hπ for all π ∈ P; (b) applying the bound

in (82) and noting that µ ∈ Cτ ; (c) using change of variable
and the fact that |det(Pτ,π)| = 1; and (d) the fact that Cτ =
Pπ,τCπ . The geometric interpretation of the inequality in (b)
is shown in Fig. 9. In particular, in Fig. 9 the view is taken
with respect to the axis of symmetry. The dashed ball centered
at µ is meant to represent a level set of the PDF of Z + µ.
The intersection of the dashed ball and a cone Cπ is the largest
for the cone in which µ lies, i.e., π = {1, 2, 3}. The proof of
Lemma 7 is concluded by noting that (83) holds with equality
if τ = π.

APPENDIX I
PROOF OF LEMMA 9

Let En be an n-dimensional ellipsoid centered at the origin
with unitary axes {ν1,ν2, . . . ,νn} and corresponding radii
equal to {r1, r2, . . . , rn}. Let one of the axes of En be
equal to 1√

n
1n. Specifically, without loss of generality, we

set νn = 1√
n
1n, which has rn as corresponding radius. Then,

by introducing the hyperplane W(r) = {x ∈ Rn : νTnx = r},
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Fig. 9: A pictorial depiction of the inequality in (83) for
n = 3 and τ = {1, 2, 3}.

for any π ∈ P , we can represent the volume of the intersection
between Hπ and En as

Voln (Hπ ∩ En) =

∫ rn

−rn
Voln−1 (Hπ ∩ En ∩W(r)) dr

=

∫ rn

−rn
Voln−1

(
Hπ ∩ En−1W(r)

)
dr, (84)

where En−1W(r) = En∩W(r) is an (n−1)-dimensional ellipsoid
in Rn.

Note that since En−1W(r) has νn as normal vector, which is
one of the axes of En, the ellipsoid En−1W(r) can be represented
as

En−1W(r) = m(r)In · En−1W(0) + rνn, (85)

where m(r) : [−rn, rn]→ (0, 1] is some magnitude function.
Then, we have

Voln (Hπ ∩ En)
(a)
=

∫ rn

−rn
Voln−1

(
Hπ ∩

{
m(r)In · En−1W(0) + rνn

})
dr

(b)
=

∫ rn

−rn
Voln−1

(
Hπ ∩m(r)In · En−1W(0)

)
dr

(c)
=

∫ rn

−rn
|det (m(r)In) |Voln−1

(
Hπ ∩ En−1W(0)

)
dr

= Voln−1
(
Hπ ∩ En−1W(0)

)∫ rn

−rn
m(r)ndr,

(86)

where the labeled equalities follow from: (a) substituting (85)
into (84); (b) the fact that Hπ, ∀π ∈ P is invariant to
adding aνn, where a ∈ R is any constant and remember
that νn = 1√

n
1n (i.e., Hπ = Hπ + aνn); and (c) the facts

that, for any invertible matrix A and any set S, Voln (AS) =
|det (A) |Voln (S) and Hπ = kInHπ , where k is any positive
number. We conclude the proof of Lemma 9 by defining
c(rn) =

∫ rn
−rn m(r)ndr.

APPENDIX J
EIGENVALUES OF B IN (76)

We seek to compute the eigenvalues of the matrix B defined
as

B =

[
γIn−2 0n−2×2
02×n−2 S

]
, (87)

where S = [ γ vv a ] is a 2 × 2 symmetric matrix. These can be
found as the values of λ that satisfy the equation

det(B − λIn) = 0 =⇒ det
([

(γ − λ)In−2 0n−2×2
02×n−2 S − λI2

])
= 0

=⇒ det ((γ − λ)In−2) det (S − λI2) = 0

=⇒ (γ − λ)n−2((a− λ)(γ − λ)− v2) = 0.

Hence the matrix B in (87) has n− 2 eigenvalues equal to γ
and the remaining two eigenvalues can be found as the solution
of

(a− λ)(γ − λ)− v2 = 0 =⇒ λ =
a+ γ ±

√
(a− γ)2 + 4v2

2
.

(88)
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