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ABSTRACT We report draft genomes of two bacterial strains in the genera
Hyphobacterium and Reichenbachiella, which are associated with the diatom Cyclotella
cryptica strain CCMP332. Genomes from these strains were 2,691,501 bp and 3,325,829
bp, respectively, and will be useful for understanding interactions between diatoms
and bacteria.

The phycosphere (1) describes the consortium of bacteria associated with diatoms
and other algae. We assembled and annotated draft genomes from two bacteria

associated with Cyclotella cryptica strain CCMP332, a diatom of longstanding interest
for its biology and promising biotechnological applications (2, 3).

We acquired strain CCMP332 from the National Center for Marine Algae and Microbiota.
CCMP332 was originally isolated in 1956 in Martha's Vineyard, Massachusetts, by R.
Guillard. We grew CCMP332 in L1 medium (4) at 22°C on a 12-h/12-h light/dark cycle.
We harvested cells by centrifugation and extracted DNA using the cetyltrimethylammo-
nium bromide (CTAB) protocol (5). We prepared one sequencing library using the Oxford
Nanopore Technologies (ONT) ligation sequencing kit (SQK-LSK108) for sequencing on
the ONT MinION platform. We prepared short-read Illumina libraries using the Kapa
HyperPlus kit (Roche) with 300- to 400-bp insert sizes for sequencing on the Illumina
HiSeq 4000 platform.

For all analyses, default software parameters were used unless noted otherwise.
We used Guppy (v.2.3.5) for base calling of the MinION reads and Canu (v.1.7) (6) for
error correction of the raw MinION reads. We assembled the raw MinION reads with
Flye (v.2.4.2, using the parameter --genome-size 165m) (7) and visualized the as-
sembly with BlobTools (v.1.1.1) (8) to identify the bacterial genomes (Fig. 1). We
mapped the corrected MinION reads to draft contigs with minimap2 (v.2.10-r761)
(9) for contig correction with Racon (v.1.3.3) (10). We then mapped the Illumina
reads to the contigs with BWA-MEM (v.0.7.17-r1188) (11) and performed three
rounds of contig polishing with Pilon (v.1.2.2, using the parameter “fix bases”) (12).
We confirmed the circularity of contig 298 with Circlator (v.1.5.5) (13) but could not
circularize contig 353. We used Prokka (v.1.14.6) (14) for genome annotation and
EPA-NG (v.0.3.5) (15) and Gappa (v.0.5.0) (16) for phylotaxonomic placement of
each genome. Genome completeness was assessed at each assembly stage with
benchmarking universal single-copy orthologs (BUSCO) (v.4.0.6, using the alphapro-
teobacteria_odb10 and bacteroidetes_odb10 data sets) (17).

Draft contig correction and polishing increased BUSCO completeness to 94.6%
and 98.0% for contigs 298 and 353, respectively. The characteristics and annotation
summaries for each genome are listed in Table 1. Contig 298 is closely related to an
undescribed species of Hyphobacterium (Alphaproteobacteria). This assignment is
plausible based on known environmental preferences of other Hyphobacterium spe-
cies (18, 19). Two 16S rRNA genes in contig 353 were 98.1% identical, and both
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were placed in the family Cyclobacteriaceae, with one assigned only at the family
level and the other assigned to the genus Reichenbachiella. Reichenbachiella species
live in marine habitats (20–23), and one species has been associated with the red
alga Gracilaria blodgettii (23). Low support for the placement of contig 353 in
Reichenbachiella might indicate that the genome belongs to an undescribed genus
that is closely related to Reichenbachiella.

FIG 1 Blob plot showing the taxon-annotated GC content and read coverage of the assembly contigs. Each circle represents one contig, and the circle size
corresponds to the contig length (in base pairs). Colors correspond to the taxonomic assignment of each contig via BLASTX searches against the UniProt
Reference Proteomes database. Histograms along each axis show the cumulative megabases for each phylum. Read coverage was calculated from the
alignment of both MinION and Illumina reads. The circles corresponding to contigs 298 and 353 are labeled and outlined. The data shown in the key have
the following format: phylum (number of contigs; length of contigs; contig N50 value).
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Data availability. Genome sequences have been deposited in GenBank under
accession numbers CP058669 and CP058647, as part of BioProject PRJNA642781.
Sequencing reads are available under BioProject PRJNA628076. Please note that the
Cyclobacteriaceae sp. is listed on NCBI as a Hyphobacterium sp.
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