- 1 Fundamentally different global marine nitrogen cycling in response to extreme
- 2 ocean deoxygenation

3

- 4 B. David A. Naafs^{1,*,+}, Fanny M. Monteiro^{2*}, Ann Pearson³, Meytal B. Higgins⁴, Rich
- 5 D. Pancost¹, and Andy Ridgwell^{2,5}

6

- ¹Organic Geochemistry Unit, School of Chemistry, School of Earth Sciences, the
- 8 Cabot Institute for the Environment, University of Bristol, Bristol, UK
- ⁹ School of Geographical Sciences, University of Bristol, Bristol, UK
- ³Department of Earth and Planetary Sciences, Harvard University, Cambridge, USA
- 11 ⁴ExxonMobil Research & Engineering, Annandale, USA
- 12 ⁵Department of Earth and Planetary Sciences, University of California-Riverside,
- 13 Riverside, CA, USA

- 15 *These authors contributed equally
- 16 *Corresponding author david.naafs@bristol.ac.uk (David Naafs)

Abstract

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

The present-day marine nitrogen (N) cycle is strongly regulated. Deficiencies in the availability of fixed and readily bioavailable nitrogen (N_{fixed}) relative to phosphate (P) in the surface ocean are largely corrected by the activity of N fixers. This feedback system, termed the "nitrostat", is thought to have provided close regulation of N_{fixed} speciation and inventory relative to P since the Proterozoic. In contrast, during intervals of intense deoxygenation such as Cretaceous Ocean Anoxic Event (OAE) 2, a few regional sedimentary $\delta^{15}N$ records hint at the existence of a different mode of marine N-cycling in which ammonium plays a major role in regulating export production. However, the global-scale dynamics during this time remain unknown. Here, using an Earth System model and taking the example of OAE 2, we provide new insights into the global marine nitrogen cycle under severe ocean deoxygenation. Specifically, we find that the ocean can exhibit fundamental transitions in the species of nitrogen dominating the N_{fixed} inventory – from NO₃⁻ to NH₄⁺ – and that as this transition occurs, the N_{fixed} inventory can partially collapse relative to P due to progressive spatial decoupling between the loci of NH₄⁺ oxidation, NO₃ reduction, and fixation of nitrogen. This finding is relatively independent of the specific state of ocean circulation and is consistent with nitrogen isotope and redox proxy data. The substantive reduction in the ocean N_{fixed} inventory at an intermediate state of deoxygenation may represent a biogeochemical vulnerability with potential implications for past and future (warmer) oceans.

38

39

Significance statement

The ratio of the dissolved inventories of readily bio-available (fixed) nitrogen (N) to
phosphorous (P) is regulated close to 16:1 in the modern, well-oxygenated ocean.

This situation – fixed nitrogen tracking P – is generally assumed to have operated for hundreds of millions of years. Here we use computer simulations combined with proxy data to instead demonstrate that the marine nitrogen cycle operates very

- differently when dissolved oxygen concentrations in the ocean are lower than
- present. Not only is nitrate replaced by ammonium as the dominant component of
- fixed nitrogen, but the total fixed inventory collapses relative to P. This makes the
- 48 strength and state of the biological pump in the ocean highly susceptible to
- disruption, with potential past and future implications.
- 50 /body

Introduction

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Nitrogen (N) is an essential nutrient for life, and in the modern ocean, small regional differences in the bioavailability of N induce large differences in primary productivity, ecosystem dynamics, and biogeochemical cycles (1-3). The ocean inventory of the readily bioavailable or 'fixed' forms of N, primarily nitrate (NO₃-) and ammonium (NH₄⁺), is ultimately governed by the balance between denitrification predominantly in oxygen minimum zones (OMZs) and N fixation by diazotrophs mainly in the (sub)tropical gyres (4-6). Importantly, these processes are connected on a global scale, as an increased loss of fixed N relative to phosphorus (P) favors organisms that perform the energetically costly process of N fixation. As such, the marine N cycle shapes modern nutrient and ecosystem dynamics and in this system of negative feedbacks, the N:P ratio and hence fixed N inventory of the ocean are tightly regulated. Known as the "nitrostat", these feedbacks are assumed to have been relatively stable since the proliferation of N fixers in the (late) Proterozoic (5). This assumption that strong negative feedbacks stabilize the oceanic N inventory, speciation, and productivity tends to frame our interpretation of future scenarios (7) and past events (8), including Oceanic Anoxic Events (OAEs). The OAEs occurred predominantly during the Mesozoic and are associated with widespread ocean deoxygenation and perturbations of major biogeochemical cycles, including the marine N cycle (9). For example, OAEs are associated with depleted bulk sediment nitrogen isotope ($\delta^{15}N_{\text{bulk}}$) values in some parts of the (proto-) Atlantic ocean (10, 11). The classical hypothesis for the operation of the marine N cycle in an extremely deoxygenated ocean – such as occurred during the OAEs – argues that primary production was dominated by N₂-fixing cyanobacteria (11, 12) to counter the high rates of N-loss in the expanded OMZs, resulting in low $\delta^{15}N_{bulk}$ values. This would be generally consistent with our understanding of a dominance of nitrostatdriven negative feedbacks between denitrification and N fixation in the modern oceans, stabilizing the oceanic inventory of fixed N (1, 2, 4).

However, the very negative (< -2 ‰) $\delta^{15}N_{bulk}$ and even more depleted (< -4 ‰) chlorophyll-derived porphyrin N isotopes ($\delta^{15}N_{por}$) from the (equatorial) Atlantic across OAE 2 suggest a contribution, potentially major, from eukaryotic primary producers assimilating recycled ammonium (10, 13, 14). This hints at a very different operation of the marine N cycle under conditions of extreme ocean deoxygenation, in which ammonium availability may be high enough to play a major role in regulating export production, at least in the equatorial Atlantic. Similarly, very depleted $\delta^{15}N_{bulk}$ (minima ~ -3 ‰) have been found in semi-restricted shelf basins of the Tethys Ocean during the Paleocene Eocene Thermal Maximum (PETM) (15), suggesting an important role for ammonium assimilation during this transient global warming event. Together, these observations suggest that ammonium assimilation might be inherent to deoxygenation events during the Phanerozoic and may reflect the changing balance in redox speciation of the major components of dissolved inorganic nitrogen (DIN), namely: NO₃- and NH₄+ (together: the fixed nitrogen pool).

However, these observations highlight a major challenge: resolving the role and strength of marine N cycle feedbacks is complicated by the fact that evidence recorded in the sediments is fragmented and reflects local, not global processes (16). For OAE 2, virtually all proxy data are from the (central) Atlantic and Tethys Ocean (10). In addition, the proxy record predominantly reflects surface ocean processes, limiting our understanding of N cycle dynamics in the ocean's interior and hence the dominant reservoir of N in the intermediate and deep ocean; upwelling of this deep reservoir supports much of primary production in modern systems, and presumably in ancient ones as well. Furthermore, although models have been used to study the marine N cycle during OAE 2 (10, 14), these models have tended to either focus on a regional scale, and the area of the (proto-) Atlantic and Tethys Ocean (11), or only on the average surface vs. average deep ocean (14). Assessment of the marine N cycle dynamics in a fully 3-dimensional and global context, as well as a more generalized understanding of how global N cycling responds to extreme ocean deoxygenation

events, is still needed. To elucidate global-scale marine N cycle dynamics as the ocean is progressively deoxygenated, here we used an Earth System model of intermediate complexity ('GENIE') (17) and as a case study used Cenomanian-Turonian OAE 2 (~93 Ma), one of the most extreme ocean deoxygenation events of the last 250 Ma.

Results

In our simulations, as the oceanic phosphorus inventory increases, the associated increase in export production causes the oxygen content of the ocean to decrease, leading to expanded anoxia, here defined as 0 μ mol/l O₂ (Fig. 1a). All simulations with more than 1 x PO₄³⁻ have enhanced export production and an expanded extent of photic zone euxinia (PZE) compared to modern, in agreement with previous box model studies (18, 19). In the highest (4 x PO₄³⁻) scenario, export production is more than four times higher than modern rates, and the upper depth boundaries of the OMZs impinge on the photic zone, leading to PZE in ~35% of the ocean (Fig. 1a). Within the euxinic OMZs, organic matter remineralization is predominantly mediated by sulfate reduction, contributing to 21% of total OM remineralization globally (SI Appendix, Fig. S3).

Our phosphate inventory-induced changes in the extent of ocean oxygenation have a profound impact on the marine N cycle, and in particular, on which species of N dominates the fixed nitrogen pool: nitrate or ammonium. In our model, an increase from 0.25 to 1 x PO_4^{3-} concentration enhances primary production ~4-fold, from 2.2 to 8.6 Gt C yr⁻¹, and leads to an increase in the fixed N inventory ($NO_3^{-} + NH_4^{+}$) of the ocean by around 200% due to a compensating increase in N_2 fixation (Fig. 1b-d). Notably, this is far short of the 400% increase that would have been necessary to maintain a mean N:P ocean inventory of 16:1, the reasons for which we discuss later. The marine N cycle in the 1 x PO_4^{3-} simulation (4 x CO_2 , and Cenomanian paleogeography) differs from the results for the modern (Table 1). In our

Cenomanian simulations, the fixed N inventory does not reach modern values until the 4 x PO_4^{3-} simulations (Fig. 1b), highlighting the role of atmospheric CO_2 and paleogeography (affecting temperature and ocean currents, respectively) in modulating the state of marine N cycling, in addition to changes in the oceanic phosphate inventory. In the Cenomanian simulation, higher temperatures and different ocean circulation deplete the N inventory compared to modern (Fig. 1c), implying that future warmer, deoxygenated conditions could also reduce the global ocean N inventory.

As phosphate concentrations increase towards 4 x PO₄ ³⁻, the fraction of the ocean that is anoxic expands, and denitrification rates increase, resulting in up to ~15% of global organic matter being remineralized via NO₃ respiration. The value of ~15% appears to be an inherent limit for the global contribution of denitrification to organic remineralization (SI Appendix, Fig. S3). This, in turn, places a limit on the loss of "fixed" N and ultimately leads to a maximum contribution of N fixation to export production of ~55-60% for an ocean with widespread anoxia but operating under an oxygen-rich atmosphere (Fig. 1d). This limit is due to geographic restriction of denitrification, which mainly occurs at the edge of the OMZs, where oxygen is low enough for denitrification, yet nitrification rates remain high enough to produce nitrate. As oxygen content in the ocean decreases, higher rates of denitrification, combined with lower nitrification rates, result in a sharp decline in nitrate concentration, reducing the eventual contribution of upwelled nitrate to export production (Fig. 1b-d).

Because nitrification of NH₄⁺ requires oxygen, NH₄⁺ accumulates in the ocean, mostly in the OMZs. In the 4 x PO₄³⁻ ocean, average NH₄⁺ concentrations reach up to two orders of magnitude higher than in the modern ocean (Fig. 1b), reaching values similar to those only observed in the modern in the OMZ of the Black Sea (20). In such an "ammonium ocean", NH₄⁺ assimilation does not dominate the source of nutrient nitrogen for export production globally, constituting at most 22% of

total export production (Fig. 1d). This is because most of the upwelled NH_4^+ is nitrified in oxygenated layers underlying the photic zone. However, where local NH_4^+ assimilation occurs, it can contribute > 30% of export production, for example in the tropical proto-Atlantic. The relative contribution of N_2 fixation and NH_4^+ assimilation to export production is thus controlled by the spatial structure of the OMZ relative to the base of the photic zone, which in turn is controlled by ocean circulation (i.e., upwelling regions). When the OMZ impinges the photic zone, NH_4^+ becomes available for direct assimilation by phytoplankton. When the OMZ is spatially separated from the photic zone, nitrification (and subsequent denitrification) reduce the availability of NH_4^+ to the photic zone.

However, our results collectively demonstrate that the system does not monotonically transition from a "nitrate" to an "ammonium" ocean as oxygen progressively declines. Under intermediate conditions in the transition (in our Cenomanian simulations: $2 \times PO_4^{3-}$), a unique state of N cycling occurs in which the ocean is not yet anoxic enough to develop extensive OMZs rich in ammonium. Relatively high rates of nitrification restrict the accumulation of NH_4^+ , yet at the same time, high rates of denitrification keep the ocean nitrate inventory low (Fig. 1d). As a result, the ocean becomes extremely depleted in all forms of fixed N (Fig. 1c).

Discussion

Contrary to earlier studies (21, 22), our results show how the deep ocean can become highly depleted in "fixed" N (Fig. 2b) relative to phosphate, leading to a biogeochemical state that contrasts markedly to the modern oxic ocean. As phosphate concentrations increase and anoxia expands, the ocean transitions from a feedback-balanced system where the nitrate inventory tracks phosphate (23), to a state in which the deep ocean becomes highly depleted in nitrogen relative to phosphorus (Fig. 1c). And rather than a NO₃-replete deep ocean (Fig. 3a), the dominant form of nitrogen becomes NH₄⁺, which is furthermore localized to expanded

OMZs and does not "fill" all of the deep ocean (Table 1 and Fig. 3b-c). This transformation occurs in the model despite high rates of N fixation at the surface and concomitantly high export production fluxes of particulate organic nitrogen into the ocean interior – both factors that should favor a large deep ocean N_{fixed} inventory of NH_4^+ released from organic matter remineralization.

But did this ocean state really develop? Proxy data for bottom water anoxia and photic zone euxinia during OAE 2 best match the 2 x PO₄³⁻ simulation (24). Although there are a number of uncertainties and caveats associated with both the model simulations and proxy data, the 2 x PO₄³⁻ scenario also is the same ocean phosphate scenario that yields a marine N cycle simulation with minimum total N_{fixed} inventory (Fig. 1c). In this simulation, 11% of the total volume of the ocean (Fig. 1a) and 16% of the sea floor is anoxic (defined here as 0 µmol/l O₂) (Table 1), consistent with uranium isotope data that indicate that 8-15% of the sea floor became anoxic during OAE 2 (25). We argue that the existence of an elevated oceanic phosphate inventory compared to the modern is consistent with calcium isotope measurements that indicate an increased weathering flux (26) and hence presumably, increased rate of PO₄³⁻ supply to the ocean. Together with the likelihood that phosphorous was more strongly regenerated from the ocean floor under anoxic conditions (27), an increased PO₄³- state is a reasonable outcome, and the relatively conservative 2 x PO₄³amplification (rather than 3 x or 4 x PO_4^{3-}) is the scenario that leads to the greatest reduction in N_{fixed} inventory.

In the 2 x PO_4^{3-} simulations, N fixation is the most intense in equatorial upwelling regions and in the Pacific sector of the Southern Ocean, where deep and denitrified waters with low N:P ratios reach the photic zone (Fig. 2). Globally, NH_4^{+-} assimilation is significant but is not the dominant source of nutrient nitrogen for marine production, contributing ~10% of total export production (Table 1). Regionally, however, NH_4^{+-} -assimilation is important in the most intensely anoxic and/or upwelling regions, such as the euxinic equatorial Atlantic (Fig. 2).

Available nitrogen stable isotope data for OAE 2 allow for comparison with our model simulations, although published data to date are restricted to the (proto)-Atlantic and Tethys Ocean. Firstly, records from the equatorial Atlantic (Demerara Rise sites and Site 367) show extremely depleted $\delta^{15}N_{\text{bulk}}$ values during OAE 2, with minima of < -3\% and average values around -2\% (12-14). These depleted $\delta^{15}N$ values are interpreted to reflect a region dominated by N fixation and/or NH₄⁺ assimilation, although it is difficult to detangle the individual importance of each process (14). Our model simulations are in concordance, with a relatively large contribution of N₂ fixation and especially NH₄⁺ assimilation (> 30 %), to export production in this region (Fig. 2a). By contrast, the continental margins of Europe and North America are characterized by enriched (δ¹⁵N_{bulk} values around 1‰), even during the peak of OAE 2 (10). This is also consistent with our simulations, which indicate a low contribution of N fixation and NH₄⁺ assimilation to export production on those particular margins, with productivity instead dominated by NO₃. Sites in the subtropical Atlantic (Sites 386, 1276, and 641) (10) are characterized by negative δ¹⁵N_{bulk} values (average values around -1‰), although less negative then those recorded in the equatorial Atlantic (averages around -2%). Our simulations are largely consistent with these intermediate $\delta^{15}N_{bulk}$ values, as the surface ocean at Sites 368 and 641 is characterized by a high contribution of N₋fixation to export production (> 70 %), but no major influence of ammonium assimilation. Site 1276 is an exception to the general agreement between our model simulations and published interpretations of $\delta^{15}N_{\text{bulk}}$ proxy data. In our simulations, this location is not characterized by high contributions of N fixation and/or NH₄⁺ assimilation that would lead to depleted $\delta^{15}N_{bulk}$, yet the available $\delta^{15}N_{bulk}$ values are negative. Overall our simulations compare well with the proxy record from the Atlantic and Tethys Ocean as well as regional box modelling studies (10, 13, 14, 28), providing additional confidence.

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

Both the proxy record and box modelling studies to date are limited to the Atlantic and Tethys Ocean. Our simulations also suggest that NH₄⁺-assimilation may have fueled export production in parts of the eastern equatorial Pacific, and that N-fixation was important across the equatorial Pacific and Indian Ocean and in the high-latitude southern Pacific Ocean. However, formal assessment of these model predictions will have to await new data from these basins.

If the marine N cycle of OAE 2 can maintain a fundamentally different structure from the modern version, one might expect comparably different N cycle states to occur at other times in Earth history. For example, late Devonian black shales (29) as well as Paleocene Eocene Thermal Maximum (PETM) black shales (15) are characterized by depleted $\delta^{15}N_{bulk}$ values similar to those reported for OAE 2. The climate state and paleogeography, which determine the specific sensitivity of the marine N cycle to changes in oxygenation state, were different during those events compared to OAE 2. However, the same mechanisms and feedback processes identified for the OAE 2 scenario presumably would operate. If the anoxia was intense enough, these events also may have promoted a depletion in bioavailable N; and incorporation of ammonium may have been important in euxinic (semi)-restricted basins (e.g., the Northeast Tethys during the PETM). A low- N_{fixed} inventory in the deep Proterozoic ocean has also been proposed (21, 30), but arises because of low productivity (low PO₄³⁻) and low atmospheric oxygen concentrations (pO₂); that scenario is in stark contrast to the Phanerozoic scenarios modeled here, in which ocean PO₄³⁻ concentrations and productivity are *higher* than modern.

Changing the global N inventories and spatial patterns of N cycling also has far-reaching implications for marine ecology and attendant proxies, and other biogeochemical cycles. For example, the habitat for ammonia-oxidizers (e.g., Thaumarchaeota) may have been very different in a reorganized, low-oxygen N cycle. These organisms may have moved to shallower depths if they were able to resist photoinhibition and other associated oxidative pressures. This shift in habitat

may then influence TEX₈₆-based temperature estimates in anoxic basins, as existing calibrations are based on modern systems in which the organisms primarily reside below the base of the photic zone. Marine N₂O production likely would also have increased during anoxic events due to elevated rates of both denitrification and nitrification (31), which characterize some of the main pathways of N₂O production in the ocean (32). If the N₂O cycle shifted closer to surface waters, thereby increasing gas evasion rates, N₂O could have provided a powerful positive feedback mechanism to sustain the OAE. N₂O is a potent greenhouse gas, 1000 times more effective than CO₂, and its release could partially offset the negative feedback on warming of the expansion in organic carbon burial. The interplay of such processes could account for the rather complex temperature changes observed across OAE 2 (33).

The scenarios modeled here may also have important implications for future climate change. Over the past 50 years the oxygen content of the ocean has declined (34) and is expected to accelerate with future ocean warming (35). Some regions of the ocean are already close to transitioning to full anoxia (36). Our results illuminate the sensitivity of the marine N cycle to changes in ocean oxygen content, implying that the future ocean may be more vulnerable to N loss than previously recognized, which will have far-reaching consequences for other biogeochemical processes and marine ecosystems.

Conclusions

Our understanding of the response of the marine N cycle to changes in ocean oxygenation largely comes from past perturbation events such as the Ocean Anoxic Events of the Mesozoic, with relatively sparse proxy records and regional models informing most of our understanding to date. Here, we applied a global 3D Earth system model (GENIE), upgraded with a more complete set of N cycle processes, to provide specific insights into the global marine N-cycle associated with OAE 2 as well as to provide generalized understanding of how the marine N cycle responds under

progressively extreme deoxygenation. We find that as phosphate concentrations increase and anoxia expands, the ocean transitions from an oxic state with high concentrations of nitrate to an anoxic/reducing state in which the deep ocean becomes highly depleted in nitrogen relative to phosphorus, with "fixed" nitrogen predominantly in the form of ammonium and mostly geographically restricted to expanded OMZs. These results point to potential breakdown in the feedbacks that were thought to keep global N marine inventories in balance, i.e., the "nitrostat".

Materials and Methods

All simulations were run using the GENIE model. The code for the version of the GENIE model used in this paper (technically: cGENIE) can be found here: https://svn.ggy.bris.ac.uk/subversion/genie/tags/cgenie-NaafsMonteiro.PNAS.2019 (svn revision 10275) and includes all configuration and boundary condition files (check genie-userconfigs/MS/PNAS2019.NaafsMonteiro for the specific userconfig files). The code on the SVN repository can be accessed with the username: *genie-user* and password: *g3n1e-user*. Documentation on running the cGENIE model can be found in the genie-docs directory of the code installation. As employed here, GENIE includes representations of the marine cycles of phosphorus, nitrogen, oxygen, and sulfur. To extend the applicability of GENIE to a poorly oxygenated ocean, we further developed the N cycle to include second-order substrate limitation of nitrification rates by both ammonium and oxygen rather than just ammonium (see SI Appendix).

We used the already published OAE 2 data-constrained Cenomanian paleogeography configuration of the GENIE model (24), with simulations conducted at 4x pre-industrial atmospheric CO_2 concentrations, and a range of different oceanic phosphate inventories (0.25 to 4 times modern PO_4^{3-}). Although we could have explored the effects of other biogeochemical variables such as imposing changes on atmospheric pO_2 and hence ocean dissolved oxygen concentrations directly, OAEs are widely regarded as being characterized by high levels of pCO_2 (37) and are inferred to be characterized by a higher-than-modern oceanic phosphate. This increased P inventory resulted from extensive submarine volcanism (37, 38) and hence increased terrestrial rock (and apatite mineral) weathering rates (39), in combination with a decreased ocean sink as a consequence of benthic P regeneration under sedimentary anoxia (27). All model scenarios were run for 20 kyr to steady state.

337 **Acknowledgments**

- 338 We thank Sarah Greene for providing the paleolocations of the sites used in this
- 339 study. B.D.A.N. is funded through a Royal Society Tata University Research
- 340 Fellowship. F.M.M. is supported by a NERC research fellowship (NE/J019062/1) and
- 341 a NERC standard grant (NE/N011112/1). A.P. acknowledges support from the
- 342 Gordon and Betty Moore Foundation, the NASA Astrobiology Institute, and a
- 343 Benjamin Meaker Visiting Professorship, University of Bristol. R.D.P. acknowledges
- 344 the Royal Society Wolfson Research Merit Award. This material is based on work
- 345 supported by the National Science Foundation under Grant Number 1736771 (to
- A.R.). A.R. also acknowledges funding from the European Research Council as part 346
- 347 of the "PALEOGENIE" project (ERC-2013-CoG-617313).

348

349

References

- Voss M, et al. (2013) The marine nitrogen cycle: recent discoveries, 350 1.
- 351 uncertainties and the potential relevance of climate change. Phil. Trans. R. 352 Soc. B 368(20130121).
- 353 Moore CM, et al. (2013) Processes and patterns of oceanic nutrient limitation. 2. Nature Geoscience 6(9):701-710. 354
- 355 3.
- Falkowski PG, Barber RT, & Smetacek V (1998) Biogeochemical Controls 356 and Feedbacks on Ocean Primary Production. Science 281(5374):200.
- Redfield AC (1958) The biological control of chemical factors in the 357 4. 358 environment. American Scientist 46(3):230A-221.
- 359 5. Tyrrell T (1999) The relative influences of nitrogen and phosphorus on 360 oceanic primary production. Nature 400(6744):525-531.
- 361 6. Deutsch C, Sarmiento JL, Sigman DM, Gruber N, & Dunne JP (2007) Spatial 362 coupling of nitrogen inputs and losses in the ocean. Nature 445(7124):163-363 167.
- 364 7. Gruber N & Galloway JN (2008) An Earth-system perspective of the global 365 nitrogen cycle. Nature 451:293.
- 366 Boyle RA, et al. (2013) Nitrogen cycle feedbacks as a control on euxinia in 8. 367 the mid-Proterozoic ocean. Nature Communications 4:1533.
- 368 9. Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochemistry 369 Geophysics Geosystems 11(3):Q03004.
- 370 Ruvalcaba Baroni I, van Helmond NAGM, Tsandev I, Middelburg JJ, & 10. 371 Slomp CP (2015) The nitrogen isotope composition of sediments from the
- 372 proto-North Atlantic during Oceanic Anoxic Event 2. Paleoceanography 30(7):923-937. 373
- Rau GH, Arthur MA, & Dean WE (1987) ¹⁵N/¹⁴N variations in Cretaceous 374 11. Atlantic sedimentary sequences: implication for past changes in marine 375

- nitrogen biogeochemistry. *Earth and Planetary Science Letters* 82(3–4):269-279.
- Kuypers MMM, van Breugel Y, Schouten S, Erba E, & Sinninghe Damsté JS
 (2004) N₂-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic
 anoxic events. *Geology* 32(10):853-856.
- Junium CK & Arthur MA (2007) Nitrogen cycling during the Cretaceous,
 Cenomanian-Turonian Oceanic Anoxic Event II. *Geochemistry, Geophysics, Geosystems* 8(3):Q03002.
- Higgins MB, Robinson RS, Husson JM, Carter SJ, & Pearson A (2012)
 Dominant eukaryotic export production during ocean anoxic events reflects
 the importance of recycled NH₄⁺. *Proceedings of the National Academy of*Sciences of the United States of America 109(7):2269-2274.
- Junium CK, Dickson AJ, & Uveges BT (2018) Perturbation to the nitrogen cycle during rapid Early Eocene global warming. *Nature Communications* 9(1):3186.
- Trabucho-Alexandre J, *et al.* (2010) The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. *Paleoceanography* 25(4):PA4201.
- 393 17. Ridgwell A, *et al.* (2007) Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. *Biogeosciences* 4(1):87-104.
- Tsandev I & Slomp CP (2009) Modeling phosphorus cycling and carbon
 burial during Cretaceous Oceanic Anoxic Events. *Earth and Planetary Science Letters* 286(1):71-79.
- Flögel S, et al. (2011) Simulating the biogeochemical effects of volcanic CO₂
 degassing on the oxygen-state of the deep ocean during the
 Cenomanian/Turonian Anoxic Event (OAE 2). Earth and Planetary Science

402 *Letters* 305(3-4):371-384.

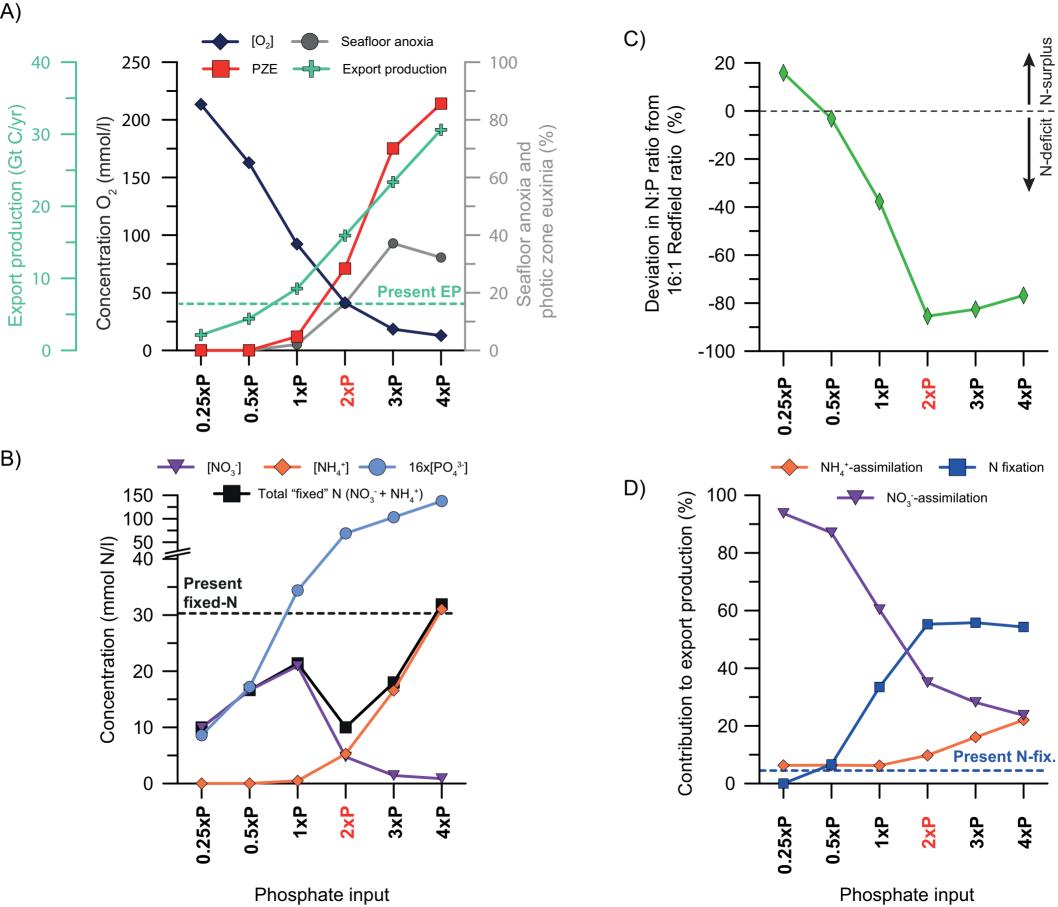
- 403 20. Konovalov SK, Ivanov LI, & Samodurov AS (2000) Oxygen, nitrogen and sulphide fluxes in the Black Sea. *Mediter. Mar. Sci.* 1(2):41-59.
- 405 21. Fennel K, Follows M, & Falkowski PG (2005) The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. *American Journal of Science* 305(6-8):526-545.
- 408 22. Saltzman MR (2005) Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. *Geology* 33(7):573-576.
- 410 23. Lenton TM & Watson AJ (2000) Redfield revisited: 1. Regulation of nitrate, 411 phosphate, and oxygen in the ocean. *Global Biogeochemical Cycles* 412 14(1):225-248.
- 413 24. Monteiro FM, Pancost RD, Ridgwell A, & Donnadieu Y (2012) Nutrients as 414 the dominant control on the spread of anoxia and euxinia across the 415 Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison.

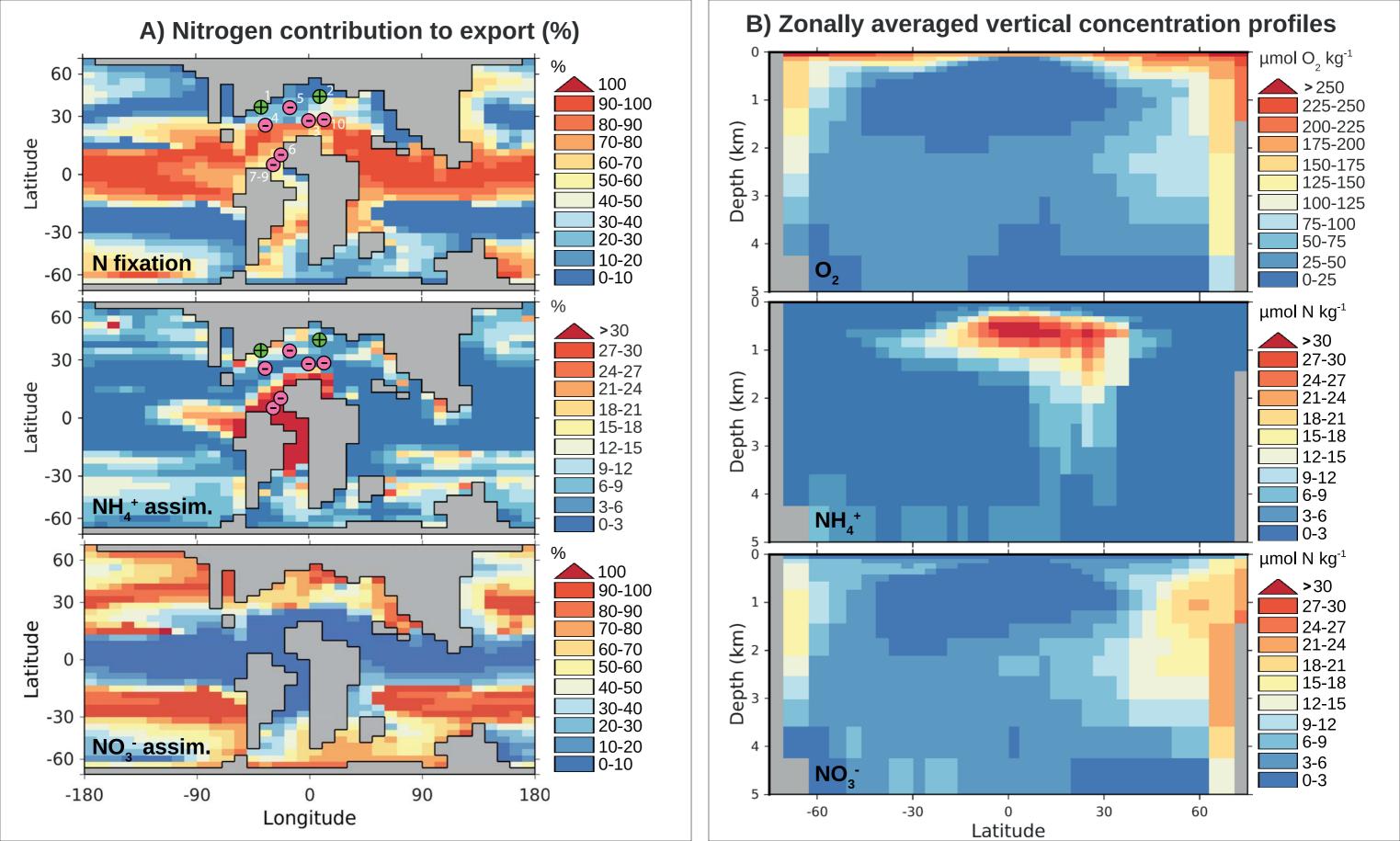
416 Paleoceanography 27(4):PA4209.

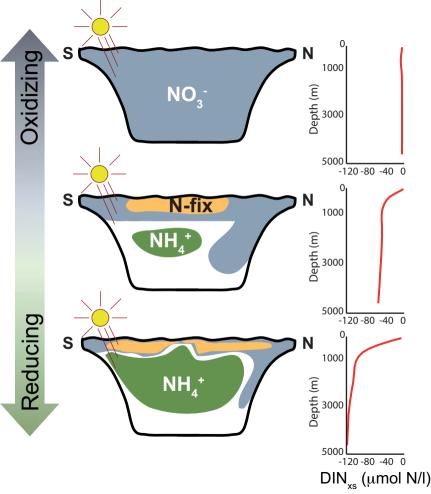
- Clarkson MO, *et al.* (2018) Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. *Proceedings of the National Academy of Sciences* 115(12):2918-2923.
- 420 26. Blättler CL, Jenkyns HC, Reynard LM, & Henderson GM (2011) Significant increases in global weathering during Oceanic Anoxic Events 1a and 2

indicated by calcium isotopes. *Earth and Planetary Science Letters* 309(1-423 2):77-88.

Van Cappellen P & Ingall ED (1994) Benthic phosphorus regeneration, net
 primary production, and ocean anoxia: A model of the coupled marine


- biogeochemical cycles of carbon and phosphorus. *Paleoceanography* 9(5):677-692.
- 428 28. Ruvalcaba Baroni I, Tsandev I, & Slomp CP (2014) Enhanced N₂-fixation and 429 NH⁴⁺ recycling during oceanic anoxic event 2 in the proto-North Atlantic.
 430 Geochemistry, Geophysics, Geosystems 15:GC005453.
- Tuite ML, Jr. & Macko SA (2013) Basinward nitrogen limitation demonstrates
 role of terrestrial nitrogen and redox control of δ15N in a Late Devonian black
 shale. *Geology* 41(10):1079-1082.
- 434 30. Lenton TM & Daines SJ (2017) Biogeochemical Transformations in the History of the Ocean. *Annual Review of Marine Science* 9(1):31-58.
- 436 31. Buick R (2007) Did the Proterozoic 'Canfield Ocean' cause a laughing gas greenhouse? *Geobiology* 5(2):97-100.
- 438 32. Freing A, Wallace DWR, & Bange HW (2012) Global oceanic production of nitrous oxide. *Philosophical transactions of the Royal Society of London.* 440 Series B, Biological sciences 367(1593):1245-1255.
- Heimhofer U, *et al.* (2018) Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2. *Nature Communications* 9(1):3832.
- Schmidtko S, Stramma L, & Visbeck M (2017) Decline in global oceanic oxygen content during the past five decades. *Nature* 542:335.
- Bopp L, *et al.* (2013) Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. *Biogeosciences* 10(10):6225-6245.
- 36. Bristow LA, *et al.* (2016) N₂ production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. *Nature Geoscience* 10:24.
- 449 37. Naafs BDA, *et al.* (2016) Gradual and sustained carbon dioxide release during 450 Aptian Oceanic Anoxic Event 1a. *Nature Geoscience* 9(2):135-139.
- Turgeon SC & Creaser RA (2008) Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. *Nature* 454(7202):323-326.
- 453 39. Lechler M, Pogge von Strandmann PAE, Jenkyns HC, Prosser G, & Parente M
 454 (2015) Lithium-isotope evidence for enhanced silicate weathering during OAE
 455 1a (Early Aptian Selli event). *Earth and Planetary Science Letters* 432:210456 222.
- 457 40. Hansell DA, Bates NR, & Olson DB (2004) Excess nitrate and nitrogen fixation in the North Atlantic Ocean. *Marine Chemistry* 84(3–4):243-265.


460 Figure Legends


- Figure 1: Response of marine biogeochemistry to changes in ocean
- 462 oxygenation
- 463 Response of biogeochemical processes to an increase in oceanic phosphate
- inventory for the Cenomanian simulations (pCO₂ at 1,120 ppmv). A) Ocean redox
- state with total oxygen content (O₂) of the ocean, extent of photic zone euxinia (PZE),
- 466 extent of oceanic anoxia (0 μmol/l O₂), and rate of export production; B)
- 467 Concentration of nitrate, ammonium, total fixed nitrogen ($NO_3^- + NH_4^+$), and
- 468 phosphate concentration (in μmol N Γ^1 ; multiplied by the Redfield N:P ratio); C)

470 ratio, and D) Contribution of nitrogen fixation, ammonium assimilation, and nitrate 471 assimilation to export production. Dashed lines represent values in modern-day 472 simulation (1 x CO₂ 1 x PO₄³⁻, and modern geography, ocean circulation and temperature). The 2 x PO₄³⁻ simulation is highlighted in red as this scenario has the 473 474 best fit with proxy data for bottom water anoxia and photic zone euxinia (24). 475 476 Figure 2: Marine N-cycle during OAE 2 (4 x CO_2 ; 2 x PO_4^{3-}) 477 A) Spatial distribution of the relative contribution to export production of N fixation 478 (top), NH_4^+ assimilation (middle), and NO_3^- assimilation (bottom). Green \oplus symbols 479 reflect proxy records with a positive average $\delta^{15}N_{bulk}$ value across OAE 2, while pink Θ symbols reflect a negative average $\delta^{15}N_{bulk}$ value (see SI appendix for details); and 480 481 B) Zonally averaged vertical concentration profiles of O₂ (top), NH₄⁺ (middle), and 482 NO₃ (bottom). Both panels present model results using the OAE 2 analog simulation (Cenomanian paleography, $4 \times CO_2$; $2 \times PO_4^{3-}$). 483 484 485 Figure 3: Schematic of the marine nitrogen cycle's response to oceanic de-486 oxygenation 487 Schematic response of the marine N-cycle to a change in ocean oxygenation state, 488 showing the transition from an oxic, nitrate-dominated ocean to an anoxic, ammonium-dominated ocean. Also shown is DIN_{xs} ($DIN_{xs} = NO_3^- + NH_4^+ - 16 \times PO_4^{3-}$) 489 490 (40). During OAE 2, the intermediate N-deficit state may have prevailed in which the 491 ocean is anoxic enough to have lost most nitrate but has not yet developed very 492 extensive OMZs rich in ammonium.

Deviation of total fixed nitrogen to phosphate (N:P ratio) away from the 16:1 Redfield

