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ABSTRACT: Although widely used in catalysis, the multi-step syntheses and high loadings typically employed are limiting 
broader implementation of highly active tailor-made arylborane Lewis acids and Lewis pairs. Attempts at developing recy-
clable systems have thus far met with limited success, as general and versatile platforms are yet to be developed. We demon-
strate a novel approach that is based on the excellent control and functional group tolerance of ring-opening metathesis 
polymerization (ROMP). The ROMP of highly Lewis acidic borane-functionalized phenylnorbornenes afforded both a sol-
uble linear copolymer and a crosslinked organogel. The polymers proved highly efficient as recyclable catalysts in the re-
ductive N-alkylation of arylamines under mild conditions and at exceptionally low catalyst loadings. The modular design 
presented herein can be readily adapted to other finely tuned triarylboranes, enabling wide applications of ROMP-borane 
polymers as well-defined supported organocatalysts. 

The remarkable success of main-group Lewis acids (LA) in 
general, and electron-deficient triarylboranes (BAr3) such 
as B(C6F5)3 in particular, is clearly evident in the wide vari-
ety of chemical transformations they have been applied to,1 
many of them associated with the concept of “frustrated” 
Lewis pairs (FLPs).2 Striking examples include hydrogena-
tion,3 hydrosilylation,4 CO2 reduction,5 defunctionaliza-
tion,6 C-H bond activation,7 and Lewis pair (LP) polymeri-
zation.8 Although these reactions no longer require the use 
of costly, scarce, and oftentimes toxic transition-metal cat-
alysts, as homogeneous catalysts the boranes cannot be 
easily recycled and require separation from the products. 
This is exacerbated by the need for multi-step syntheses to 
prepare tailored halogenated BAr3 catalysts and the high 
loadings typically employed in catalytic processes.9 
Immobilization of organoboranes is essential to overcome 
these problems,10 but so far very few solid supports are 
available, among them modified silica,11 metal-organic 
frameworks (MOFs),12 transient micelles,13 and covalent 
polymer networks.14 Limitations arise due to difficult ma-
terial syntheses and manipulations, complex or inadequate 
characterizations, underperforming stability, catalyst 
leaching, and/or insufficient understanding of the true 
molecular environment around the catalytic site. Contra-
rily, polymeric materials obtained by controlled conver-
sion of functional monomers offer access to well-defined 
and tunable (“homogeneous-like”) catalytic sites, conven-
ient characterization, and facile manipulations.15 In the 
rich field of boron-containing polymers, both (intrinsically 
less perfect) polymer modification and direct polymeriza-
tion routes are commonly employed.16 However, the direct 
polymerization of highly Lewis acidic BAr3 monomers is 

challenging and has remained largely limited to vinyl-ad-
dition methods (Figure 1, top).13, 17 

 

Figure 1. Selected examples of poly(triarylborane)s and 
poly(borate)s obtained by direct polymerization methods. 

Despite the great success of ROMP for immobilizing other 
homogeneous organocatalysts,18 and unlike the case of 
tetracoordinated borates (Figure 1, bottom right),19 the 
ROMP of triarylboranes remains unexplored to the best of 
our knowledge. Herein, we propose a versatile new ap-
proach to polymeric Lewis acids and Lewis pairs by ROMP 
of functional norbornenes that offers the following benefits 
(Figure 1, bottom left): (a) a modular monomer platform, 
allowing facile tuning of the steric/electronic environment 
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at boron, (b) perfect compatibility between the growing 
site of the polymer main-chain and the LA, (c) retention of 
structural integrity and catalytic activity after polymeriza-
tion, and (d) facile manipulation of the polymer architec-
ture to impart recyclability. 
The synthesis of the tricoordinate organoborane monomer 
B1, inspired by other 2:1 hetero-tri(aryl)boranes with en-
hanced H2O tolerance,20 was accomplished on gram scale 
and in 48% combined yield as illustrated in Scheme S1 (SI). 
The Lewis acidity of B1 (acceptor number, AN = 73, as de-
termined by the Gutmann-Beckett method in CDCl3) is 
close to that of B(C6F5)3 (AN = 81.8)21. As expected, B1 forms 
classical LPs with coordinating solvents, such as MeCN or 
THF, and the corresponding hydroxo complexes 
[H·Solv]+[B1·OH]− in the presence of air and moisture (Fig-
ures S30-S33). Importantly, these species remain stable at 
room temperature for >10 days in MeCN, enabling bench-
top manipulations, and even at 80°C show less than ~25% 
degradation over 72 hours (Figures S12-S19). We also veri-
fied that, in combination with the appropriate LB, B1 is 
competent to engage in an FLP-mediated intermolecular 
activation of H2 (Scheme 1 and Figures S41-S43). First, a 
stoichiometric mixture of B1 and 1,4-diazabicyclo[2.2.2]oc-
tane (DABCO) forms a non-interacting pair in C6D6 as in-
dicated by 1H, 19F, and 11B NMR spectra that are identical to 
those of the isolated species. Second, a solution of 
B1/DABCO rapidly and irreversibly activates H2O to form 
the [H·DABCO]+[B1·OH]− ion pair via deprotonation of the 
Brønsted acidic B1-aqua complex (Figures S37-S40). Fi-
nally, replacing an inert atmosphere of N2 with H2 fur-
nishes the ammonium hydridoborate [H·DABCO]+[B1·H]− 
in 85% yield after 3 days at room temperature. A doublet at 
−19.8 ppm in the 11B NMR, an upfield shift of the 19F NMR 
resonances, and a characteristic B-H broad signal at 3.64 
ppm in the 1H NMR all corroborate this archetypal FLP-
mediated transformation. 
Scheme 1. Reactivity of norbornene monomer B1 and 
its polymerization to generate ROMP-boranes. 

 
 

Encouraged by the high Lewis acidity and FLP activity of 
B1, as well as the premise of recyclability based on the fa-
vorable stability, we pursued the ROMP with Grubbs’ 3rd 
generation catalyst (G3). Using a [G3]/[M] ratio of 1:100 in 
anhydrous THF, a linear random copolymer PB1 was ob-
tained containing 90 mol% of (exo)-5-phenyl-2-nor-
bornene (NBEPh) and 10 mol% of B1 (Scheme 1 and SI). 1H 
NMR analyses of reaction aliquots indicated full monomer 
conversion within less than 3 min (Figure S22), thus 
polymerizations were quenched after 5 min with excess vi-
nylene carbonate (VC) as terminating agent.22 The fast 
polymerization kinetics are attributed to both the favora-
ble exo-geometry of the norbornene moiety (endo-isomers 
polymerize more slowly) and the high Lewis acidity of the 
monomer itself. As such, B1 acts as a scavenger for 3-bro-
mopyridine, Br-py (the dissociating L-type ligand on G3), 
and thus accelerates the ROMP propagation rate. Indeed, 
a stoichiometric mixture of B1 and Br-py in C6D6 confirmed 
the instantaneous formation of the LP B1·Br-py (Scheme 1, 
and Figures S34-S36). Subsequent addition of excess 
BF3·OEt2 regenerated the free borane B1 almost quantita-
tively. Based on these findings, BF3·OEt2 was injected into 
the polymerization mixture prior to isolation to remove Br-
py. Then, precipitation in wet MeCN on the benchtop un-
der air yielded the polymers in the form of white colloidal 
suspensions. Spectroscopic analyses of PB1 by 1H, 19F, and 
11B NMR confirmed the presence of stabilized triarylborane 
moieties as a mixture of solvent (MeCN/THF) adducts and 
hydroxylated species (Figures S23-S25). 
Next, we set out to explore the catalytic performance of the 
molecular and ROMP-boranes. We selected the reductive 
amination of carbonyls as a convenient model reaction to 
probe their utility as recyclable catalysts in the presence of 
H2O.23 At the outset, using 5 mol% of B1 and 1.2 eq of 
PhMe2SiH as reducing agent, the reductive N-alkylation of 
aniline with benzaldehyde under inert conditions pro-
duced N-benzylaniline in quantitative yield within 24 h at 
20 °C (Table S3, entries 1-4).24 This is remarkable as neither 
BPh3 nor B(C6F5)3 display any catalytic activity at room 
temperature and are only effective at 100 °C.23a, 23c Increas-
ing the temperature to 60 °C (80 °C) in THF (MeCN) low-
ered the reaction time to a matter of minutes (Table S3, 
entries 5-6). Importantly, these reactions can be performed 
by simple manipulation on the benchtop using undried 
solvents and reagents (Table S3, entries 7-8), and regard-
less of the MeCN/THF vol:vol content (Table S4). To inves-
tigate whether B1 remains active, competence checks were 
performed by replenishing the testing NMR tubes with a 
second load of all the reagents 24 h after the first reaction 
was completed (Table S3). Under identical reaction condi-
tions, B1 showed no loss of activity regardless of the reac-
tion temperature and exposure to moisture and air.25 Fur-
thermore, up to 6 consecutive refilling cycles in wet CD3CN 
furnished quantitative yields with only 1 mol% of B1 (Fig-
ures S109-S110).26 Gratifyingly, the polymeric ROMP-
borane catalyst PB1 performed similarly well under homo-
geneous conditions in a wet MeCN/THF solvent mixture, 
rapidly yielding 100% of N-benzylaniline with only 1.2 eq of 
hydrosilane (see SI). 
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Having confirmed the catalytic proficiency in the N-alkyl-
ation of aniline, we further explored the substrate scope of 
the molecular and polymer-bound catalysts. Anilines con-
taining electron-withdrawing and donating groups, as well 
as secondary arylamines, underwent reductive amination 
in quantitative yields with loadings of B1 and PB1 as low as 
0.5 mol% (Table 1, entries 1-6). Conversions could be ex-
traordinarily fast, as exemplified by the reaction between 
benzocaine and benzaldehyde (turn-over-frequency, TOF 
= 2400 h−1, entry 3). An exception is the reductive amina-
tion of the more basic benzylamine which did not proceed 
even with a large hydrosilane excess, likely due to irrevers-
ibly deactivation of the [BenzNH3]+[LA·OH]− species (entry 
7).23a Variation of the keto component also gave excellent 
results as acetophenone, 5-methylfurfural and substituted 
benzaldehydes were converted to product in high yield by 
only 0.5 mol% of B1 or PB1 as the catalyst (Table 1, entries 
8-13). The lower reactivity of benzophenone is attributed 
to steric effects. 
The remarkable similarities between the molecular and 
polymer-bound catalysts reflected in Table 1 suggests that 
the structure/reactivity dependence of the LA was retained 
when embedded in the polymer framework. Direct step-
wise monitoring of the model catalytic reaction by NMR 
spectroscopy in wet THF-d8 provided further evidence 
(Figure 2). The resonances in the 19F and 11B NMR spectra 
of PB1 matched almost perfectly with those of B1, except 
for the expected broadening of the polymer signals. These 
signals indicated that the triarylborane moieties engaged 
in Lewis and Brønsted acid/base equilibria prior to the ad-
dition of the reducing agent. However, a dominant boro-
hydride complex, ([P/B1–H]−), characterized by a doublet 
at −20.9 ppm in the 11B NMR, was systematically found at 
the end of the catalytic process regardless of the solvent 
and moisture content (Figures S60-S77). This is in good 
agreement with the expected hydrosilylation mechanism 
(Scheme S2). The catalyst resting state, although not pre-
viously reported for other BAr3,23a, 23c was remarkably stable 
in wet MeCN over seven days at room temperature, which 
bodes well for developing recyclable catalyst systems.27  

Table 1. Substrate scope for reductive amination. a 

 
Entry 
# Product Time 

(min) 
PhMe2SiH 
(eq.) 

Yield (%) b  
B1 

Yield (%) b 
PB1 

1 2a 60 1.2 100 100 

2 2b 30 1.2 99 99 

3 2c 5 1.2 100 100 

4 2d 60 3.5 100 100 

5 2e 1440 1.2 100 100 

6 2f 60 1.2 100 100 

7 2g 1440 3.5 0 0 

8 2h 1440 3.5 67.1 c 62.2 c 

9 2i 1440 3.5 2.8 c 1.1 c 

10 2j 60 3.5 100 100 

11 2k 30 1.2 100 100 

12 2l 1440 1.2 100 73.3 

13 2m 1440 1.2 100 100 

aAmine = 2.88 mmol; ketone = 2.40 mmol; catalyst = 0.012 mmol; PhMe2SiH 
= 2.88 or 8.40 mmol; solv. = 2 mL (MeCN for B1; MeCN/THF 75:25 for PB1); 
[mesitylene] = 0.6 M (IS). bDetermined by 1H NMR. cDetermined by GC/MS. 

 

Figure 2. Sequential 19F NMR and 11B NMR spectra (wet THF-d8, 25 °C) during the in-situ model reductive N-alkylation: (a) 5 mol% 
of catalysts B1 (black line) and PB1 (dark cyan line); (b) 1.2 eq. of aniline; (c) 1.0 eq. of benzaldehyde; (d) 1.2 eq. of dimethylphen-
ylsilane, 60 °C, 10 min. (e) Schematic structures of borane species detected in solution (▼) C6F5H; (♠) Ar2BOH and ArB(OH)2. 
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In an effort at developing a more general recycling ap-
proach, polymer resin PB2 containing 3.33 × 10−4 mol/g of 
borane units was synthesized by addition of a crosslinking 
agent (1,4-di(norbornen-2-yl)benzene, NBE2Ph) during a 
second block copolymer chain extension by ROMP 
(Scheme 1 and SI). The crosslinker was added in the second 
block to ensure full conversion of B1 before gelation takes 
place and because the expected architecture with grafted 
triarylborane chains should provide favorable access for 
substrates and reagents. The ROMP-resin successfully pro-
moted the reductive N-alkylation of aniline with benzalde-
hyde in quantitative yields either as swollen organogel 
(80% THF) or as heterogeneous particles (100% MeCN) in 
bench-top reactions (Figures 3 and S111-S116). Excitingly, 
high yield of N-benzylaniline (94.1%) was obtained with 
just 0.5 mol% catalyst and in the absence of solvent, hint-
ing at a path to greener and easier alternatives that avoid 
wasteful product purifications (Figures S117-S119). How-
ever, a more rapid decrease in activity with neat reagents 
in consecutive cycles compared with THF/MeCN solutions 
points to a beneficial stabilizing effect of coordinating sol-
vents under open-air conditions. Thus, further improve-
ments are expected from optimization of the recycling pro-
cedure and implementation of continuous-flow methods. 
In comparison, a control polynorbornene resin prepared 
without B1 monomer was unable to catalyze this reaction 
(Figure S120). 

 

Figure 3. (a) SEM of swollen resin PB2. (b) Photograph of 
ROMP-borane gel PB2 in 80:20 (v:v) THF/MeCN. (c) Consec-
utive reaction yields in the reductive amination of ani-
line/benzaldehyde catalyzed by recycled 5 mol% PB2 (for de-
tails of reaction conditions see SI). 

In summary, the attachment of a chemically and sterically 
tuned triarylborane to a solid support was realized by 
ROMP of a functionalized phenylnorbornene. Outstand-
ing catalytic performance was achieved as exemplified in 
the bench-top reductive N-alkylation of arylamines, re-
quiring far lower temperatures and catalyst loadings than 
previously reported. The immobilization and recycling of 
the organocatalyst was accomplished by integration into a 
covalently crosslinked polymer network. The modular syn-

thetic strategy lends itself to constructing other heterogen-
ized BAr3 whose FLP activity and scope can be tailored by 
design. Further development of ROMP-boranes is also ex-
pected to offer access to boron-containing materials with 
desirable stimuli-responsive, self-healing, and optoelec-
tronic properties.16b, 17e, 28 
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