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Summary

We consider the problem of optimal placement of concentrated masses along a
massless elastic column that is clamped at one end and loaded by a nonconservative
follower force at the free end. The goal is to find the largest possible interval
such that the variation in the loading parameter within this interval preserves
stability of the structure. The stability constraint is nonconvex and nonsmooth,
making the optimization problem quite challenging. We give a detailed analytical
treatment for the case of two masses, arguing that the optimal parameter
configuration approaches the flutter and divergence boundaries of the stability region
simultaneously. Furthermore, we conjecture that this property holds for any number
of masses, which in turn suggests a simple formula for the maximal load interval
for n masses. This conjecture is strongly supported by extensive computational
results, obtained using the recently developed open-source software package granso
(GRadient-based Algorithm for Non-Smooth Optimization) to maximize the load
interval subject to an appropriate formulation of the nonsmooth stability constraint.
We hope that our work will provide a foundation for new approaches to classical
long-standing problems of stability optimization for nonconservative elastic systems
arising in civil and mechanical engineering.

1. Introduction

Consider an elastic Euler-Bernoulli beam clamped at one end and loaded at the tip by a
follower force (1, 2). The follower force is defined as a force with the line of action that
always coincides with the tangent line to the neutral axis of the deformed beam at its free
end, much like a rocket thrust (3). The follower force does not depend on the velocity of
the beam. However, it cannot be derived from a potential: the work done by the follower
force along a closed contour is non-zero (4, 5). This structure is frequently called the Beck
column (1, 2). A straight form of the Beck column is in a stable equilibrium when the
follower force is absent or relatively small. Nevertheless, at some sufficiently large value
the follower force excites exponentially growing oscillations of the beam that are known as
flutter instability (6, 7).
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Flutter is critically important both for safety of engineering structures interacting with
fluid flows and for efficiency of energy harvesting devices that are based on the fluid-structure
interactions. Recent years have seen an increasing interest in the Beck column in the
modelling of biological filaments and their artificial biomimetic analogues, i.e., hair-like
slender microscale structures that play an important part in such biological processes as
swimming, pumping, mixing, and cytoplasmic streaming by performing rhythmic, wave-like
motion that usually sets in via flutter instability (8, 9, 10, 11, 12).

Structural optimization of the Beck column against instabilities, including flutter and
buckling (or divergence instability), is usually formulated as a problem on a redistribution
of the material of the column of a given density under an isoperimetric constraint fixing
the volume of the column in order to maximize the range of variation of the follower load
corresponding to the stable structure. In the literature many specific numerically optimized
shapes of the Beck column have been reported (29, 30, 31, 32, 33, 34) with the maximal
critical dimensionless load reaching the values of p ≈ 100.00 (33), p ≈ 139.30 (35), p ≈
143.59 (36), and p ≈ 148.62 (37), which significantly improve upon the critical load p ≈
20.05 of the uniform column with a constant cross-section (see Appendix A for the definition
of p). Nevertheless, none of these designs is proven to be a global or even a local optimizer.
Such a proof would be difficult to obtain because the problem of structural optimization
of the critical flutter load for the elastic Beck column is both nonconvex and nonsmooth
(38, 39).

Indeed, the elastic Beck column is a time-reversible dynamical system in which the
transition from stability to flutter instability generically happens via the reversible-Hopf
bifurcation, i.e., through the formation of a double imaginary eigenvalue with a Jordan block
at the stability boundary and its subsequent splitting when parameters enter the instability
region (40). Codimension-1 parts of the stability boundary are thus smooth hypersurfaces
corresponding to double imaginary eigenvalues with a Jordan block (provided that the
remaining eigenvalues are simple and imaginary) (7, 41, 42). These hypersurfaces can meet
each other at sets of higher codimension such as intersections, cuspidal edges and points,
conical points etc.; see (7) for a full classification of generic singularities on the stability
boundary of mechanical systems with non-potential positional forces. The unavoidable
singularities linked to multiple eigenvalues is the main reason for nonsmoothness of the
merit functionals in the optimization of such systems, including the Beck column, with
respect to stability criteria (43, 44).

Many studies report on the phenomenon of overlapping of eigenvalue curves that
accompanies the process of optimization of the Beck column. The eigenfrequencies plotted
as functions of the load exhibit sudden crossings during the optimization that lead to
transfer of instability between modes and to a discontinuous change in the merit functional
(17, 30, 31, 32, 33, 34, 36, 37, 45, 46, 47). The high sensitivity of the optimized design
to variation of parameters is caused by the nonconvexity of the stability domain (38, 39).
For this reason the unambiguous determination of the optimal design of the Beck column by
numerical procedures typically used in civil and mechanical engineering remains a challenge
(33, 36, 37).

All of the phenomena described above were also observed in simplified settings with the
uniform Beck column carrying relocatable lumped masses (24, 47, 48, 49, 50, 51, 52, 53).
Nevertheless, to the best of our knowledge, no rigorously proven local or global optimal
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solutions or credible numerical guesses exist in the literature even in the problems of optimal
localization of point masses along elastic beams loaded by the follower force.

Structures loaded by follower forces have long been questioned for their practical
realization (13, 14), despite an evident example given by flexible missiles (15, 16, 17). In
the 1970-90s, Sugiyama et al. used solid rocket motors to demonstrate flutter of cantilevers
under a follower thrust on relatively short (several seconds) time intervals (3, 18, 19).
A mechanism recently invented by Bigoni and Noselli produces a frictional follower force
(20, 54) and enables experimental realization of fluttering cantilevered rods under follower
loads on virtually infinite time intervals (21, 22). These practical realizations differ from
the classical Beck column, however, by the presence of a finite-size loading unit at the tip
of the cantilever and therefore are better described by the model of the Pflüger column
(23, 24), which is the Beck column with a point mass at the loaded end; see the left panel
of Fig. A in Appendix A.

In recent mechanical laboratory experiments with follower forces (21, 22), the ratio of
the end mass to the mass of the column was chosen to be very large, approaching the so-
called Dzhanelidze limit corresponding to a massless column (6). The instability thresholds
obtained in these experiments were in a very good agreement with the theoretical predictions
based on the Pflüger model. In the Dzhanelidze limit, the mathematical model is reduced
to a system of ordinary differential equations (55, 56, 57, 58). The works (6, 24, 47)
considered stability of a massless Pflüger column with an additional relocatable mass. A
recent work (58) corrected some of the results reported in (6) and proposed extending the
model to incorporate several relocatable masses.

The primary purpose of our paper is to study this last variant, the Pflüger model in the
Dzhanelidze massless limit with relocatable point masses, in detail. One reason is that this
comparatively simple but still mechanically meaningful model allows a detailed analytical
treatment of the case of two masses, providing a benchmark for numerical optimization
carried out for n masses. A second advantage of studying the discrete mass model instead of
the classical Beck column is that it does not require Galerkin or finite element discretization,
and hence the number of optimization variables is small (only 2n − 1). Nonetheless, the
problem of maximizing the load interval subject to the stability constraint is far from
trivial because of the nonconvexity and nonsmoothness (in fact, non-Lipschitzness) of the
constraint, so even this simplified model provides a good test of how much insight we
can obtain using nonsmooth optimization techniques. Our first contribution, presented in
Section 3, is to give a detailed analytical treatment for the case of two masses, arguing
that the optimal parameter configuration approaches the flutter and divergence boundaries
simultaneously. Furthermore, we conjecture that this property holds for any number of
masses, which in turn suggests a simple formula for the optimal load interval for n masses.
Our second contribution, in Section 4, is to present a practical numerical formulation
of the stability constraint and to maximize the load interval subject to this constraint
using modern techniques for nonsmooth, nonconvex optimization, employing a recently
developed open-source software package, granso (GRadient-based Algorithm for Non-
Smooth Optimization) (59, 60). As well as verifying our analytical solution for two masses,
these computations strongly support the formula for the conjectured optimal load interval
for n masses. We hope that our techniques and results will provide a foundation and
inspiration for new approaches to classical long-standing problems of stability optimization
for nonconservative elastic systems arising in civil and mechanical engineering.
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2. A massless elastic column with n concentrated masses

It is convenient to first consider the simple model of the Pflüger column without relocatable
masses, with zero mass per unit length and zero point mass at the free end of the column
(see Appendix A for details). Then, the boundary value problem (A.5), (A.6) takes the
form

∂4ξf + κ2∂2ξf = 0, (2.1)

f(0) = 0, ∂ξf(0) = 0, ∂2ξf(1) = 0, ∂3ξf(1) = 0, (2.2)

where
κ2 = p, (2.3)

with p given in (A.4).
Following (6, 24, 58), consider the case when a concentrated constant force F is acting

in a direction perpendicular to the non-deformed column at the point s = αl. Introducing

the dimensionless version of the force parameter, φ = Fl2

EI , we seek the general solution to
the equation (2.1) in the form (6, 24, 58)

f(ξ) = u(ξ) +

 0, ξ ∈ [0, α)

v(ξ), ξ ∈ [α, 1]
(2.4)

where
u(ξ) = A sinκξ +B cosκξ + Cξ +D

and
v(ξ) = A1 sinκξ +B1 cosκξ + C1ξ +D1.

To determine the coefficients A1, B1, C1, and D1, we require that

u(α) = f(α), ∂ξu(α) = ∂ξf(α),

∂2ξu(α) = ∂2ξf(α), ∂3ξf(α)− ∂3ξu(α) = φ. (2.5)

This yields

v(ξ) =
(ξ − α)κ− sin((ξ − α)κ)

κ3
φ. (2.6)

Taking (2.6) into account in the general solution (2.4) and then substituting f(ξ) into the
boundary conditions (2.2), we find the coefficients A, B, C, and D to obtain

u(ξ) =
sin(κα)− ξκ cos(κα) + sin((ξ − α)κ)

κ3
φ. (2.7)

Let us now assume that the massless cantilevered column loaded by the follower force at
its free end carries n concentrated masses with the mass Mn > 0 fixed at the loaded end;
see Fig. 1. The masses Mi ≥ 0, i = 1, . . . , n−1, are located at the distances si < l from the
clamped end of the column. Let vi be a transversal displacement of the mass Mi from the
equilibrium configuration, as shown in Fig. 1. Introducing the dimensionless displacements
of the masses, wi, the distances, αi, and the mass ratios, µi, as

wi =
vi
l
, αi =

si
l
, µi =

Mi

Mn
, i = 1, . . . , n, (2.8)
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n

i

1

si

vi

Fig. 1 The massless Beck column loaded by the follower force P with n concentrated masses M1,
. . ., Mi, . . ., Mn attached (53, 58).

we write the equations of motion of the masses (6, 24, 58)

w1 = −γ11µ1
d2w1

dτ2
− γ12µ2

d2w2

dτ2
− . . .− γ1nµn

d2wn
dτ2

,

w2 = −γ21µ1
d2w1

dτ2
− γ22µ2

d2w2

dτ2
− . . .− γ2nµn

d2wn
dτ2

,

...

wi = −γi1µ1
d2w1

dτ2
− γi2µ2

d2w2

dτ2
− . . .− γinµn

d2wn
dτ2

,

...

wn = −γn1µ1
d2w1

dτ2
− γn2µ2

d2w2

dτ2
− . . .− γnnµn

d2wn
dτ2

, (2.9)

where the dimensionless time τ is defined now as

τ = t

√
EI

Mnl3
. (2.10)

Note that α1 6 α2 6 . . . 6 αn = 1 and µn = 1. The coefficient γij is the displacement of
the mass µi as a result of application to the column of a unit force φ = 1 at the point αj .
According to (2.4) with the functions (2.6) and (2.7) the coefficient γij is given by δij/κ

3,
where

δij = sin(καj)− αiκ cos(καj) + sin((αi − αj)κ)

+

 0, i 6 j

(αi − αj)κ− sin((αi − αj)κ), i > j.
(2.11)

Separating time with the ansatz wi = uie
σκ3/2τ we arrive at the eigenvalue problem

(Mσ2 + K)u = 0, (2.12)
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where u = (u1, u2, . . . , un), K is the n× n unit matrix, and

M =


µ1δ11 µ2δ12 · · · µnδ1n

µ1δ21 µ2δ22 · · · µnδ2n
...

...
. . .

...

µ1δn1 µ2δn2 · · · µnδnn

 , (2.13)

where, as already noted, µn = 1. The eigenvalues σk are given by

σk = ±
√
−λ−1k (2.14)

where the λk are the eigenvalues of the matrix M.
The trivial equilibrium of the circulatory system (2.9) is stable if and only if the

eigenvalues σk are imaginary and semisimple (i.e., the algebraic and geometric multiplicity
are equal), or equivalently, the λk are real, positive and semisimple. Cases with a multiple
imaginary eigenvalue σk with a Jordan block (i.e., with the algebraic multiplicity exceeding
the geometric multiplicity) lie on the boundary between the stability and flutter domains.
In the generic case the crossing of this stability boundary is accompanied by merging of
two simple imaginary eigenvalues into a double imaginary eigenvalue with a Jordan block,
indicating the onset of the reversible-Hopf bifurcation or flutter (6, 7, 41, 42). Non-
oscillatory instability or divergence corresponds to one or more positive real eigenvalues
σk and in this model it generically sets in when two conjugate simple imaginary eigenvalues
meet at infinity, split and turn back towards the origin along the real axis in the complex
plane (26, 27, 58).

Summarizing, for a given number of masses n, the eigenvalue problem (2.12) is defined
by (2.11) and (2.13), which depend on the given load κ and the parameters αi and µi, i =
1, . . . , n− 1, defined in (2.8) (as αn = µn = 1). It is convenient to use the parameterization

µi = tanβi, βi ∈ [0, π/2), i = 1, . . . , n− 1. (2.15)

Given αi, βi, i = 1, . . . , n−1, let us define κα,βcrit as the largest value such that the eigenvalues

σk (which depend on αi, βi and κ) are imaginary for all κ ∈ [0, κα,βcrit ]. Our goal is to find

the supremum of κα,βcrit over all parameters αi ∈ [0, 1] and βi ∈ [0, π/2), i = 1, . . . , n− 1. We
begin with the case n = 2, where we propose an analytical solution.

3. Analytical derivation of the supremal load interval for the massless column
carrying two concentrated masses

When n = 2, the massless column carries a relocatable mass M1 between the clamped end
and the free end of the rod with mass M2 fixed at the free end. There are two parameters,
α1 and β1. Expression (2.11) allows us to find the coefficients δij in the explicit form, cf.
(6, 58),

δ11 = sin(κα1)− κα1 cos(κα1)

δ12 = sin(κ)− κα1 cos(κ)− sin(κ(1− α1))

δ21 = sin(κα1)− κ cos(κα1) + κ(1− α1)

δ22 = sin(κ)− κ cos(κ). (3.1)
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Fig. 2 The case of n = 2 concentrated masses. (Left) the flutter domain is a finite solid set in
the (α1, β1, κ) space, enclosed within the singular surface defined by (3.4). (Right) The divergence
domain lies above the boundary set defined by (3.3). For a given (α1, β1), the critical value of
the load parameter, κα1,β1

crit , is the minimal value of κ that satisfies either (3.4) or (3.3), as this is
the length of the longest vertical line segment rising from the point (α1, β1, 0) that does not enter
either the flutter or divergence domain. Consequently, this is the largest value κ̃ such that the
column is stable for all κ ∈ [0, κ̃). The optimization problem to be solved is to find the supremum
of κα1,β1

crit over all α1 ∈ [0, 1], β1 ∈ [0, π/2).

As we will see, already in this simplest possible mechanical system, the subdivision of the
parameter space into the domains of stability, flutter instability, and divergence instability
is highly nontrivial. However, we will be able to explore it completely and find an apparent
supremum of the critical load parameter defining the longest stability interval [0, κα1,β1

crit ] in
the space of parameters α1 ∈ [0, 1], β1 ∈ [0, π/2).

In general, the stability map for a mechanical system with the characteristic polynomial
p(σ) = det(Mσ2 + K) can be obtained with the use of the Gallina criterion (7, 61, 62)
that is based on the investigation of the discriminant of the polynomial. For n = 2, p(σ) is
a biquadratic function

p(σ) = σ4 tanβ1 {κ(α1 − 1)(sinκ− κα1 cosκ+ sin(κα1 − κ))

− sin(κ(α1 − 1))(sin(κα1)− κ cos(κα1)− κ(α1 − 1))}
+ σ2 [tanβ1 (sin(κα1)− κα1 cos(κα1))− κ cosκ+ sinκ] + 1. (3.2)

Notice that the coefficient at the leading power of σ in the polynomial (3.2) is nothing
else but det M; see (7). The system loses stability by divergence as soon as det M = 0,
which yields the following equation determining the divergence boundary:

sinκ− κα1 cosκ+ sin(κα1 − κ)

sin(κα1)− κ cos(κα1)− κ(α1 − 1)
=

sin(κ(α1 − 1))

κ(α1 − 1)
. (3.3)
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Fig. 3 Stability diagrams for (left) β1 = β̂ =1.450234089 in the (α1, κ)-plane and (right) for α1 =
α̂ =0.4947347666 in the (β1, κ)-plane. The solid blue curves designate the divergence boundary
(3.3) and the solid green curves mark the flutter boundary (3.4). The flutter boundary in the
left panel has a crossing at the saddle point located at α1 = α̂ and κ = 5.591633160. The black
dashed curves in the left panel correspond to the flutter boundaries at (upper and lower curves)
β1 = β̂−0.01 and (left and right curves) β1 = β̂+0.01. In the right panel, the divergence boundary
is a horizontal blue line with height κ = κ̂ = 7.113918994.

Note that this equation is independent of β1. The right panel of Fig. 2 shows the divergence
boundary (3.3) in the (α1, β1, κ)-space.

The roots of the characteristic polynomial (3.2) are double imaginary if the discriminant
of the biquadratic function vanishes:

(sin(κα1)− κα1 cos(κα1))2(tanβ1)2

+ 2α1κ
2 tanβ1 cosκ [cos(κα1) + 2(α1 − 1)]

+ 2 tanβ1 sin(κα1) [2 sin(κ(α1 − 1)) + sinκ]

− κ tanβ1 [7 sin(κ(α1 − 1))(α1 − 1) + sin(κ(α1 + 1))(α1 + 1)]

− 2κ tanβ1 [(2α1 − 3) sinκ+ sin(κ(2α1 − 1))]

+ (sinκ− κ cosκ)2 = 0. (3.4)

For this reason (6, 7, 42) equation (3.4) determines the boundary of the flutter domain
that is shown in the left panel of Fig. 2.

For a given (α1, β1), the critical value of the load parameter is given by

κα1,β1

crit = min{κ : (κ, α1, β1) satisfies either (3.3) or (3.4)},

as this is the length of the longest vertical line segment rising from the point (α1, β1, 0) that
does not enter either the flutter or the divergence domain. Consequently, the quantity

κ∗ = sup{κα1,β1

crit : α1 ∈ [0, 1], β1 ∈ [0, π/2)} (3.5)
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Fig. 4 (Left) imaginary and (right) real roots of the characteristic polynomial (3.2) for α1 = α̂ =
0.4947347666 and (green, solid) β1 = β̂ = 1.450234089 and (black, dashed) β̂ ± 0.01. A bubble of
complex eigenvalues appears for β1 = 1.450234089−0.01 and corresponds to flutter instability. The
black dotted vertical line at κ = κ̂ = 7.113918994 is the onset of divergence instability. Increase
in β1 from β̂ − 0.01 to β̂ + 0.01 results in the disappearance of the complex eigenvalues and hence
is accompanied by the transition from the overlapping eigenvalue branches to an avoided crossing
that yields a jump in the critical load parameter to the maximal value that is reached at κ = κ̂ on
the divergence boundary (58); see also the right panel of Fig. 3.

is the supremum of all loads associated with a stable column. Note that although the
divergence boundary (3.3) is smooth, the boundary of the flutter domain (3.4) is nonsmooth.

Fig. 3 shows cross-sections of the flutter boundary and the divergence boundary in the
(α1, κ)- and (β1, κ)-planes. In the left panel, for which β1 is fixed to β̂ ≈ 1.45, we see that the
flutter boundary has a saddle point in the (α1, κ)-plane at α1 = α̂ ≈ 0.495, κ ≈ 5.59. On the
other hand, when α1 is fixed to α̂, the flutter boundary has a vertical tangent in the (β1, κ)-

plane at β1 = β̂, as is visible in the right panel of Fig. 3. Consequently, when α1 = α̂, the
maximal stable load κα1,β1

crit varies smoothly for β1 ∈ (0, β̂), but when β1 reaches β̂ it jumps
up discontinuously from the flutter boundary to the divergence boundary. For the system
under study such jumps were first described in the work (58) that corrected the classical
result of Bolotin (6), whose plot in the (β1, κ)-plane did not contain the divergence boundary
at all, but provided a correct shape for the flutter boundary. Notice that such overlapping
of eigenvalue branches typically accompanies optimization of nonconservative systems and
was reported in numerous studies (6, 17, 19, 27, 30, 31, 32, 33, 34, 35, 36, 37). The
general theory of this effect has been developed in (7, 38, 39).

We can obtain a clearer picture of the jump discontinuity by plotting the real and
imaginary parts of the eigenvalues σ which describe the flutter boundary, as is done in
Fig. 4. For α1 = α̂, when β1 is decreased from the value β̂, a bubble of complex eigenvalues
corresponding to flutter appears, but this vanishes for β1 > β̂, resulting in the transition of
the critical load from the flutter boundary to the divergence boundary.
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Fig. 5 Stability diagrams for (left) β1 = β̃ = 0.4342999969 in the (α1, κ)-plane and (right)
for α1 = α̃ = 0.5810701268 in the (β1, κ)-plane. The solid blue curves designate the divergence
boundary (3.3), and the solid green curves mark the flutter boundary (3.4). The flutter boundary
in the left panel has a crossing at the saddle point located at α1 = α̃ and κ = 6.600674669. The
black dashed curves in the left panel correspond to the flutter boundaries at (upper and lower
curves) β1 = β̃ − 0.05 and (left and right curves) β1 = β̃ + 0.05. In the right panel, the divergence
boundary is the horizontal blue line with height κ = 7.607584259. The horizontal red line in the
left panel shows the value κ0 given in (3.8) which is the smallest positive root of (3.6): the flutter
boundary for the case β1 = 0. The other red solid curve in the left panel is the solution to (3.7):
the flutter boundary for the case β1 = π/2.

Looking at the discriminant (3.4) we notice that it degenerates into the equation

κ cos(κ)− sin(κ) = 0 (3.6)

for β1 = 0 (i.e., when µ1 = 0) and reduces to the equation

sin(κα1)− κα1 cos(κα1) = 0 (3.7)

in the limit β1 → π/2 (i.e., µ1 → ∞). The sets defined by equations (3.6) and (3.7) are
shown by the solid red line and curve, respectively, in the left panel of Fig. 5. The flutter
boundary is tangent to the planes β1 = 0 and β1 = π/2 along this line and curve. Note
that the height of the red line is the smallest positive root of (3.6), which we denote by κ0,
with

κ0 ≈ 4.493409458. (3.8)

Since β1 = 0 is the case where the mass M1 = 0, κ0 is the square root of the critical load
for the Dzhanelidze column (in view of (A.9) and (2.3)). The lines κ = κ0 at α1 = 0 and
α1 = 1 form singularities (edges) of the flutter domain.

As soon as β1 starts deviating from zero, a closed region of flutter instability appears
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Fig. 6 Stability diagrams in the (α1, κ)-plane for (upper left) β1 = π/2 − 0.5, (upper right)
β1 = π/2 − 0.15, (middle left) β1 = π/2 − 0.1, (middle right) β1 = π/2 − 0.05, (lower left)
β1 = π/2− 0.01, and (lower right) β1 = π/2− 0.001. The black dashed lines intersect at the point
with the coordinates of the optimal solution: α∗

1 ≈ 0.588527598 and κ∗ ≈ 7.635002111.
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Fig. 7 Stability diagrams for (left) α1 = α∗
1 − 0.1 , (center) α1 = α∗

1 ≈ 0.5885275986 and (right)
α1 = α∗

1 + 0.1. The green and blue curves respectively show the flutter and divergence boundaries.
In the left and center panels, the critical load reaches the divergence boundary, but this is higher in
the center panel, and there it is reached only if β1 = π/2. In the right panel, the flutter boundary
prevents the critical load from reaching the divergence boundary.

around the horizontal red line κ = κ0 in the (α1, κ)-plane. Furthermore, another region
of flutter originates above it that touches the divergence boundary. These two regions
coalesce when β1 reaches β̃ ≈ 0.434; see the left panel of Fig. 5, which shows another
resulting saddle point on the flutter boundary defined by (3.4). With further growth in
β1 the flutter region in the (α1, κ)-plane is simply connected, as shown in the two upper
panels of Fig. 6 corresponding to β1 = π/2 − 0.5 and β1 = π/2 − 0.15, respectively, until
this parameter passes the value β1 ≈ 1.45, after which the flutter domain bifurcates into
two parts; see the middle and the lower panels in Fig. 6.

As β1 approaches π/2, the upper portion of the flutter region concentrates around the
red curve defined by (3.7), as shown in the lower panels of Fig. 6, and coincides with this
curve exactly at β1 = π/2. At this very limit the critical load κ reaches its supremal value
κ∗, defined in (3.5), which can be obtained by finding the intersection point of the red
curve defined by (3.7) and blue curve defined by the divergence boundary (3.3). Solving
the equations (3.3) and (3.7) simultaneously, we find

κ∗ ≈ 7.635002112, α∗1 ≈ 0.5885275986, (3.9)

and we write
β∗1 =

π

2
(3.10)

to indicate that the supremum occurs in the limit β1 → π/2.
Stability diagrams in Fig. 7 presented in the (β1, κ)-plane show the decrease in the critical

load κ when α1 deviates from the value α∗1, indicating that the value κ∗ is a local supremum
in the parameter space α1 ∈ [0, 1], β1 ∈ [0, π/2). Experiments reported in the next section
strongly indicate that κ∗ is actually the global supremum. However, note that M is not
defined at β∗1 = π/2, since then the mass ratio µ1 = M1/M2 is infinite, so the supremum is
not attained. Furthermore, as (κ, α1, β1)→ (κ∗, α∗1, π/2), the matrix element M21 diverges
to ∞ and M12 converges to 0 (see (3.3)), but M11 is the product of two quantities, one
diverging to ∞ and the other converging to 0 (see (3.7)). For this reason it is difficult
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Fig. 8 Graphs of (red) equation (3.7) defining the flutter boundary in the limit β1 → π/2 as a
function of α1 and (blue) equation (3.3) defining the divergence boundary as a function of α1. The
intersection points are given by the expressions (3.12) and (3.13).

to rigorously state limiting properties of the eigenvalues λk of M as the supremum is
approached, though based on both our symbolic and numerical calculations, it seems that,
under the appropriate assumptions, the eigenvalues converge to a double zero eigenvalue
with a Jordan block, indicating that the parameters are on the boundary of both the flutter
and divergence domains, and that the limiting eigenvalues σk of (2.12) coalesce into a
quadruple eigenvalue at ∞.

A key point in the derivation above is that the supremal value of κα,βcrit occurs when the
divergence boundary meets the flutter boundary in the limit β1 → π/2. We conjecture that
this property holds for all n, not just for n = 2. If we substitute (3.7), which is the equation
for the flutter boundary in the limit β1 → π/2, into the divergence boundary equation (3.3),
the latter can be simplified and reduced to

κ(α1 − 1) sin(κ(α1 − 1))(cos(κα1)− 1)2 = 0. (3.11)

Writing sin(κ(α1− 1)) = 0 yields κα1− κ+ kπ = 0, k ∈ Z. On the other hand, the relation
(3.7) can be written as κα1 = tan(κα1), yielding κα1 = κ0, where κ0, given by (3.8), is
the smallest positive root of the equation tan κ = κ. Combining the results, we obtain
κ = κ0 + πk, with k ∈ Z. For k = 0, we obtain κ = κ0, the optimal load when the mass
M1 is absent (and the square root of the critical load for the Dzhanelidze column), while
for k = 1, we obtain κ = κ0 + π, the supremum in (3.9) just obtained for the optimal load
for two concentrated masses M1 and M2. Let us therefore set k = n− 1, giving

κ = κ0 + (n− 1)π, (3.12)

and hence, using κα1 = κ0,

α1 =
κ0

κ0 + (n− 1)π
. (3.13)

For n = 1, the expression (3.13) yields α1 = 1, and for n = 2, we have α1 = κ0(κ0 + π)−1,



14 Kirillov and Overton

which is the optimal value α∗1 given in (3.9). This suggests a conjecture that (3.12) and
(3.13) are respectively the supremal value κ∗ and the corresponding limiting value α∗1 for all
n, with the corresponding limiting value β∗1 equal to π/2. Fig. 8 shows the values (3.12) and
(3.13) as defined by the intersections of equations (3.3) and (3.7), the divergence boundary
equation and the flutter boundary equation in the limit β1 = π/2, respectively. (It’s perhaps
worth noting that, for all n, we have tan(κ0 + (n− 1)π) = tan(κ0) = κ0.)

Remarkably, the numerical computations reported in the next section for n concentrated
masses, with n = 2, 3, 4, 5, strongly indicate that the supremal load κ∗ and the corresponding
limiting value α∗1 are precisely the values given in (3.12) and (3.13) and illustrated in Fig. 8,
with the corresponding limiting value β∗1 equal to π/2. While we do not have conjectured
formulas for the limiting values α∗i for i > 1 and n > 2, we conjecture that the corresponding
limiting values β∗i are all π/2. Indeed, the property β∗1 = π/2 implies that the mass ratio
µ1 = M1/Mn → ∞ as κ → κ∗, which implies, assuming that M1 is bounded above,
that Mn → 0. Consequently, if the other masses are nonzero in the limit, all mass ratios
µi = Mi/Mn must diverge to infinity as κ→ κ∗.

4. Numerical derivation of the optimal load for the massless column carrying
multiple relocatable masses

Recall that, as discussed in Section 2, for a given number of masses n, our stability constraint
is defined by the eigenvalue problem (Mσ2+K)u = 0 (see (2.12)). Here K is the unit matrix
while M is defined by (2.11) and (2.13), which depend on the dimensionless parameters αi
and µi = tanβi, i = 1, . . . , n − 1, defined in (2.8), as well as a given load κ. Let us write
M(α, β, κ) for the matrix M defined by α = [α1, . . . , αn−1]T , β = [β1, . . . , βn−1]T and κ.
As noted in (2.14), the eigenvalues σk of (M(α, β, κ)σ2 + K)u = 0 are related to λk, the
eigenvalues of the matrix M(α, β, κ), by σk = ±(−λ−1k )1/2.

The stability constraint requires that, for given (α, β, κ), all eigenvalues σk should be
imaginary, or equivalently, that all eigenvalue reciprocals λ−1k are real and nonnegative.
Clearly, another equivalent condition is that all eigenvalues λk are real and nonnegative,
interpreting 1/0 as +∞. Consequently, we define a stability violation function ṽ : R2n−1 →
R+ by (

α, β, κ
)
7→ max

(
Re
√
−λk

)
, (4.1)

where the maximum is taken over all eigenvalues of M(α, β, κ), using the principal square
root, hence implying that ṽ cannot take negative values. Besides avoiding the nonlinearity in
the reciprocal, the stability violation function ṽ has the virtue that it is continuous, though
not Lipschitz continuous, at points in parameter space where a positive eigenvalue λk passes
through the origin to the negative real axis, and hence ṽ changes continuously from the value
zero to a positive value that grows like the square root function at zero. In this case, the
parameters cross the divergence boundary, since a conjugate pair of imaginary eigenvalues
σk coalesce at∞ and split along the real axis. The function ṽ is also continuous, though not
Lipschitz continuous, at points in parameter space where two positive real eigenvalues λk, λ`
coalesce and split into a complex conjugate pair, and hence again ṽ increases from zero to a
positive quantity that, generically, increases with the square root of the perturbation. In this
case, the parameters cross the flutter boundary, because two simple imaginary eigenvalues
σk, σ` (and also their conjugates) coalesce on the imaginary axis and split into a complex
pair.
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We argued in Section 3 that, in the case n = 2, the optimal parameter configuration
is simultaneously at both the flutter boundary and the divergence boundary, likely with
a double eigenvalue λ at zero (equivalently, a quadruple eigenvalue σ at ∞) and, if this
is the case, generically, the stability violation function ṽ would grow at nearby parameter
configurations with the fourth root of the perturbation.

To compensate for this non-Lipschitz behavior of ṽ, we define a modified stability violation
function v : R2n−1 → R by

v(α, β, κ) =

 ṽ(α, β, κ)ρ, ṽ(α, β, κ) ∈ [0, 1]

ρṽ(α, β, κ)− (ρ− 1), ṽ(α, β, κ) ∈ [1,∞]
(4.2)

where ρ is a positive integer. In the situations just discussed, the choice ρ = 2 is sufficient
to make v generically Lipschitz continuous at points where the parameters cross either
the divergence or the flutter boundary separately, and ρ = 4 is sufficient to make v
Lipschitz continuous even when the parameters cross the divergence and flutter boundaries
simultaneously, at least at the proposed optimal configuration (3.9), (3.10) for n = 2. In our
computations, we experimented with choices of ρ from 1 to 5 and we found that ρ = 4 gave
significantly better results than ρ < 4, but that setting ρ = 5 made no further improvement.
Consequently, we chose to use ρ = 4. Note that the specific form of v is chosen so that it
does not cause blow-up when ṽ(α, β, κ) is large, and so that it is continuously differentiable
where ṽ(α, β, κ) = 1.

However, what makes this problem particularly difficult is that as any βi → π/2, the
coefficient µi → ∞ in (2.12). Consider the case n = 2. We already mentioned in Section
3 that as α1 → α∗1, β1 → π/2 and κ → κ∗, we have M21 → ∞ and M12 → 0, while M11

is a product of tan(β1) with a second factor that converges to zero. If this second factor
converges to zero more slowly than (tan(β1))−1 does, so that |M11| → ∞, a change in its
sign causes an eigenvalue λk to discontinuously pass through ∞ from the positive real to
the negative real axis, implying infinitely large growth in the stability violation v as the
parameters cross the divergence boundary. This presents a serious difficulty as we shall see.

In order to solve our optimization problem, we need to impose the stability constraint
not only at a given point (α, β, κ), but also at all points (α, β, ν) with ν ∈ [0, κ]. Although
we could construct an approximation to v(α, β, ·) on the interval [0, κ] using approximation
software such as Chebfun (63), this is computationally expensive. In our optimization
computations, we found that a more effective approach is to impose the stability constraint
on a coarse grid of q̃ logarithmically spaced points on (0, κ], defining

c(α, β, κ) = max
06j6q̃

(v(α, β, νj) : ν0 = κ, νj = (1− 2−j)κ, j = 1, . . . , q̃) (4.3)

and imposing the constraint c(α, β, κ) 6 0, or equivalently, c(α, β, κ) = 0. Then, after a
potential solution is obtained by optimization, we check its stability on a much finer grid
of q � q̃ uniformly spaced points on (0, κ), rejecting it if this test is not passed. We found
that using a coarse grid with q̃ = 10 points and a fine grid with q = 10, 000 points worked
well, typically with the majority of the solutions obtained by optimization that are feasible
for the coarse grid also passing the fine grid test.
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We then pose our optimization problem as

sup
α∈Rn−1,β∈Rn−1,κ∈R

κ (4.4)

subject to c(α, β, κ) 6 0,

0 6 α1 6 . . . 6 αn−1 6 1,

0 6 βi 6 π/2, i = 1, . . . , n− 1,

This is not an easy problem to solve, since the stability constraint is nonconvex and
nonsmooth, as well as discontinuous as βi → π/2. We tackled it using granso (GRadient-
based Algorithm for Non-Smooth Optimization), a recently developed open-source software
package for nonsmooth constrained optimization (59, 60).

As its name suggests, the algorithm implemented in granso is based on employing
user-supplied gradients. This might seem contradictory since it is intended for nonsmooth
optimization problems, but although the constraints are not differentiable everywhere,
they are differentiable almost everywhere. Specifically, the stability violation function v
is differentiable at (α, β, κ) if the following conditions hold:

(i) the maximum in (4.3) is attained only at one index j ∈ (0, . . . , q̃)

(ii) the maximum in (4.1) is attained only at one eigenvalue λk of M(α, β, νj)

(iii) this eigenvalue λk is simple and nonzero.

Thus, evaluating the gradient of v makes sense almost everywhere in parameter space. Of
course, the gradient does not vary continuously, but granso is designed to exploit gradient
difference information, even near points where the gradient varies discontinuously, building
a model of the constraint function on the parameter space using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton updating method. For more details, see (59), and
for application of BFGS in other stability optimization problems, see (64) and the papers
cited there.

To derive the gradient of v, we need to differentiate an eigenvalue λk with respect to
changes in the matrix M. Let us write M(t) = M + t(∆M) and let λ(t) denote the
eigenvalues of M(t). It is well known (65) that, if λk = λ(0) is a simple eigenvalue of
M = M(0) satisfying the right and left eigenvector equations Mu = λu and w∗M∗ = λw∗,
where the asterisk denotes complex conjugate transpose, then

d

dt
λ(t)

∣∣∣∣
t=0

=
w∗(∆M)u

w∗u
.

With this in mind, deriving the gradient of v with respect to the 2n − 1 parameters given
by (α, β, κ) is straightforward, employing the chain rule to incorporate the variation in the
power function in (4.2), the square root in (4.1), and the formulas (2.13), (2.11) and (2.15).

We now describe our experiments using granso (version 1.6.4), running in matlab
(release R2020a) on a MacBook Air laptop, to solve (4.4). We used the default choice of
parameters with the following exceptions: we set maxit, the limit on the iteration count, to
500, and we set the tolerances opt_tol and feas_tol to zero, to obtain the highest possible
accuracy. We added bound constraints on the load variable formulated as 0 6 κ 6 κmax
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with κmax = 1.1× (κ0 + (n− 1)π), that is, with a lower bound of zero and an upper bound
set to 10% higher than the proposed optimal value of κ given in (3.12). Since granso
may generate iterates violating these bounds or the other bound constraints in (4.4), we
defined v to be zero if κ 6 0 and replaced βi in (2.15) by pi/2, the 16 digit rounded value
of π/2, if βi exceeds pi/2, to avoid the discontinuity in the tangent function at π/2 (note
that tan(pi/2) ≈ 1.6 × 1016 has the desired positive sign). Because of the difficulty of
the problem, we ran the code from many randomly generated starting points, with the
initial values for κ, αi and βi generated from the uniform distribution on [0, κmax], [0, 1]
and [0, π/2] respectively, with the αi then sorted into increasing order.

4.1 Results for n = 2

Our analytical discussion of the case n = 2 was given in Section 3; the results here strongly
support our claim that the optimal configuration is given by (3.9), (3.10). Fig. 9 shows
the results obtained by running granso from 1000 randomly generated starting points. Of
the 1000 candidate solutions generated by granso, 734 satisfied the bound and coarse grid
stability constraints imposed by granso, and of these, 691 also passed the fine grid stability
test described above. The top panel in the figure shows the computed optimal loads κ for
the best 500 of these feasible solutions, sorted into decreasing order, while the second and
third panels show the associated final values of α1 and β1 computed by these same 500
runs. The fourth panel shows the eigenvalues of the final associated matrix M(α1, β1, κ).
The highest two final values of κ agree with each other, and with the value κ0 + π given in
(3.9) and (3.12), to 10 digits. The final values for α1 and β1 for these same two best results
agree with the value κ0[κ0 + π]−1 (given in (3.9) and (3.13)) and π/2, to 10 and 12 digits,
respectively. It’s also worth noting that the top 100 final values for the computed optimal
load agree with κ0 + π to 4 digits.

Looking at all four panels of Fig. 9, we see that the top 500 results come in several
clearly distinct flavours. The first flavour is exhibited by the best 180 or so runs which
all give good approximations to κ0 + π. However, starting with the 284th result, we
find a very different second flavour: many runs find that the computed optimal load
is about κ = 4.493, which agrees with κ0, the square root of the critical load for the
Dzhanelidze column, to four digits. Clearly, this is a locally maximal value for (4.4);
otherwise, it would not be found so frequently. If we look at the associated computed
α1 and β1 values, usually α1 is close to zero, but if not, then β1 is close to zero. It
is easily checked that, regardless of the value of β1, if α1 = 0 then M(α1, β, κ0) is the
zero matrix, with a double semisimple zero eigenvalue, so this locally optimal parameter
configuration, like the apparent globally optimal configuration (3.9), (3.10), is on both the
flutter and divergence boundaries. Physically, this corresponds to the mass M1 being fixed
at the clamped end of the column. On the other hand, regardless of the value of α1, if
β1 = 0, then M(α1, β1, κ0) has all zero entries except for M12, and hence has a double zero
eigenvalue with a Jordan block. Again, this parameter configuration is on both the flutter
and divergence boundaries, and physically, it corresponds to the mass M1 being zero. Note
that the computed eigenvalues for this second flavour of solutions are relatively small.

The third flavour of results is exhibited by the results numbered approximately 180 to
280. In these cases, granso terminated prematurely, without approximating a globally or
locally maximal value, and we can see also that, on average, the larger κ is, the closer α1 is
to κ0[κ0 + π]−1. Investigation of these cases shows that termination occurs because of the
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Fig. 9 Summary of results for solving (4.4) with n = 2, running granso from 1000 randomly
generated starting points. Of the 1000 candidate solutions obtained, 734 satisfied the bound and
coarse grid stability constraints imposed by granso, and of these, 691 also passed the fine grid
stability test. The top panel in the figure shows the computed optimal loads κ for the best 500 of
these feasible solutions, sorted into decreasing order; the top 100 final values all agree with κ0 + π
to 4 digits, while the top two final values agree with κ0 + π to ten digits. The second and third
panels show the associated final values of α1 and β1 computed by these same 500 runs. The fourth
panel shows the eigenvalues of the final associated matrix M(α1, β1, κ). The computed solutions
clearly separate into four flavours; see the text for details.

discontinuity in the stability constraint that we described above. This is also supported by
the enormous associated eigenvalues of M shown in the fourth panel. Note also that as κ
increases towards its optimal value, these eigenvalues decrease, but they neither converge
to specific values, nor do they become very small. In fact, the matrix M associated with
the best computed optimal κ is[

5.4382× 101 −4.0893× 10−10

1.3020× 1012 −6.8246× 10−1

]
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Fig. 10 Solving (4.4) for n = 2 with the additional constraint (left) β1 6 arctan(100) and
(right) β1 6 arctan(10). The best computed optimal loads are respectively just 0.1% and 2% lower
than the apparent unconstrained supremum κ0 + π. Note the dramatic reduction in the size of
the eigenvalues of the final computed M compared to Fig. 9. See the caption of Fig. 9 and the
accompanying text for more details.

Although its eigenvalues are not close to each other or to zero, they are small relative to the
norm of the matrix, and their associated right eigenvectors are almost identical, indicating
the nearby presence of a double eigenvalue. Furthermore, the diagonal and upper triangular
elements are very small compared to the norm of the matrix, implying that a relatively small
perturbation removing them yields a Jordan block with a double zero eigenvalue.

Finally there is a fourth flavour of results: those that did not even reach a good
approximation to the locally optimal value κ0.

A final comment on Fig. 9: the granso termination codes are plotted at the bottom
of the first panel. The value 1 means that granso terminated because the limit of 500
iterations was reached, while the value 2 means that it terminated because it could not find
a higher feasible value for the load. Observe that the latter termination always occurred
for the runs which approximated the apparent globally optimal load κ0 + π well (the first
flavour) and the runs that obtained loads higher than κ0 but terminated without reaching
a good approximation to κ0 + π (the third flavour). Thus, increasing the iteration limit
would not have improved any of these values. On the other hand, the runs that provided
a good approximation to the locally maximal value κ0 (the second flavour) or terminated
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Fig. 11 Solving (4.4) for n = 3 with (left) no additional constraints and (right) with the constraints
α1 = α∗

1 = κ0[κ0 + 2π]−1, β1 = pi/2. See the accompanying text for more details.

before reaching that value (the fourth flavour) sometimes, but not always, terminated by
exceeding the maximum iteration limit.

The physical interpretation of the proposed supremum (3.9), (3.10) is that the mass M2

mounted on the free end of the column is zero in the limit κ → κ∗ (assuming that M1 is
bounded above). It’s interesting to consider what happens if we disallow this case, putting
an upper limit on µ1 = M1/M2. Fig. 10 shows the results when we introduce the constraint
µ1 6 100 (left) or µ1 6 10 (right) by limiting β1 to arctan(100) or arctan(10) respectively.
For µ1 6 100, we now find an optimal load of 7.6287, and for µ1 6 10, we find the optimal
load 7.4666, which are respectively just 0.1% and 2% lower than the apparent unconstrained
supremum κ0 + π. The biggest difference we observe from comparing Fig. 10 with Fig. 9
is that the eigenvalues of the final computed M are now dramatically reduced, from more
than 1016 to less than 100 and 15 respectively. Thus, we obtain an only slightly reduced
optimal load while introducing a much more physically reasonable model with much better
numerical properties.

4.2 Results for n = 3

The left panel in Fig. 11 shows the results for solving (4.4) for n = 3. There are five variables:
α1, α2, β1, β2 and κ. Of the 1000 candidate solutions generated by granso, 517 satisfied the
bound and coarse grid stability constraints imposed by granso, and of these, 416 passed the
fine grid test. We see immediately that the problem for n = 3 is significantly harder than for
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Fig. 12 Solving (4.4) for n = 3 with the additional constraints (left) βi 6 arctan(100), i = 1, 2
and (right) βi 6 arctan(10), i = 1, 2.

n = 2, with not many runs approximating the conjectured optimal value well. Nonetheless,
the two best runs generate κ ≈ 1.0776, which agrees with the conjectured optimal value
κ0 + 2π to five digits. These two runs also generate α1 ≈ 0.4169 and β1 ≈ 1.570796 which
agree with the conjectured optimal values α∗1 = κ0[κ0 + 2π]−1 and π/2 to 4 and 7 digits,
respectively. The right panel in the same figure shows the results when we fix α1 = α∗1
and β1 = pi/2 (the 16 digit rounded value of π/2) and optimize over the remaining three
variables α2, β2 and κ. Then the best two runs generate κ agreeing with κ0 + 2π to 12
digits, and the best 100 runs agree with this to 10 digits. Together, the results reported in
the left and right panels of Fig. 11 make a convincing argument that the values shown in
(3.12) and (3.13) are indeed the supremal value κ∗ and the corresponding limiting value α∗1
when n = 3, and that the corresponding limiting value β∗1 is again π/2. Although we do
not have a conjectured formula for α∗2, its computed optimal value is 0.7085. Furthermore,
the limiting value β∗2 is again apparently π/2, meaning the mass ratio µ2 = M2/M3 → ∞
as κ → κ∗, which indeed must be the case assuming the limiting value of M2 is nonzero
and M1 is bounded above, since then β1 → π/2 implies that M3 → 0.

Fig. 12 shows the results when we introduce the mass ratio constraint µi 6 100 (left)
or µi 6 10 (right) by limiting βi 6 arctan(100), i = 1, 2 or βi 6 arctan(10), i = 1, 2
respectively. For µi 6 100, we now find an optimal load of 10.589, which is only 0.5% lower
than κ0+2π. However, when we constrain µi 6 10, the best optimal load found is only 7.59,
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Fig. 13 (Left) solving (4.4) for n = 4 with the constraints α1 = α∗
1 = κ0[κ0 + 3π]−1 , β1 = pi/2

and (right) solving (4.4) for n = 5 with the constraints α1 = α∗
1 = κ0[κ0 + 4π]−1, β1 = pi/2.

which is a 30% reduction from κ0 + 2π. When we repeat these runs with 10,000 starting
points instead of 1000, these numbers are only slightly improved.

4.3 Results for n = 4 and n = 5

The optimization problem is so much harder for n = 4 and n = 5 that we needed 10,000
starting points to get good results, even when we set α1 to its conjectured optimal value in
(3.13) and β1 to pi/2, optimizing over the remaining 5 and 7 variables, respectively. The
results are shown in the left and right panels of Fig. 13. For n = 4, the best 5 results agree
with our conjectured optimal load κ0 + 3π to 8 digits, while for n = 5, the best 25 results
agree with κ0 + 4π to 7 digits. These results strongly support our conjecture regarding the
supremal load κ for n masses given in (3.12).

5. Concluding Remarks

We believe we have made a convincing case that the supremal load for the strongest stable
massless column with a follower load and n relocatable masses is, in the dimensionless model
defined in Section 2, κ0 + (n − 1)π, where κ0 is the smallest positive root of tan(κ) = κ.
This conjecture has not previously appeared in the literature as far as we know, except in
the case n = 1 where it has been known to be true for decades (6). We have given a detailed
analytical derivation of this result for n = 2, and presented extensive computational results
that support it for n = 2, 3, 4, 5, using numerical nonsmooth optimization.
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With this model problem effectively solved, we believe it would be interesting to apply
our nonsmooth optimization techniques to more realistic columns with follower loads (29),
such as the Beck, Pflüger and Leipholz columns with a single free end as well as to free-free
beams both with distributed and concentrated masses to get new insights about the nature
of the optimal solution to these long-standing optimization problems. We believe it is also
important to consider extending traditional stability constraints to more robust stability
constraints based on pseudospectra (66), a topic that is beyond the scope of this paper.
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APPENDIX A

Pflüger’s column

To model the Pflüger column we consider an elastic beam of length l, with Young’s modulus
E and mass per unit length m, clamped at one end and loaded by a tangential follower force P
at the other end, where a point mass M is mounted. The moment of inertia of a cross-section of
the column is denoted by I. Small lateral vibrations of the Pflüger column near the undeformed
equilibrium are described by the linear partial differential equation (23, 25)

EI
∂4y

∂s4
+ P

∂2y

∂s2
+m

∂2y

∂t2
= 0 (A.1)

where y(s, t), is the amplitude of the vibrations and s ∈ [0, l] is a coordinate along the column. At
the clamped end (s = 0) equation (A.1) satisfies the boundary conditions

y = 0,
∂y

∂s
= 0, s = 0, (A.2)

while at the loaded end (s = l), the boundary conditions are

EI
∂2y

∂s2
= 0, EI

∂3y

∂s3
= M

∂2y

∂t2
, s = l. (A.3)

Introducing the dimensionless quantities

ξ =
s

l
, τ =

t

l2

√
EI

m
, p =

Pl2

EI
, µ =

M

ml
, (A.4)

and separating the time variable through y(ξ, τ) = lf(ξ) exp(λτ), we obtain the dimensionless
boundary eigenvalue problem

∂4
ξf + p∂2

ξf + λ2f = 0, (A.5)

∂2
ξf(1) = 0, ∂3

ξf(1) = µλ2f(1),

f(0) = 0, ∂ξf(0) = 0 (A.6)
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Fig. A The Pflüger column and its stability diagram. The ratio of the end mass to the mass of
the column, µ = M/(ml), is parameterized by µ = tanβ. The Beck column corresponds to the
vanishing end mass (M = 0, so β = 0) and the massless Pflüger column (or Dzhanelidze’s column
(6)) to the vanishing mass of the rod (m = 0, so β = π/2). The vertical axis of the stability

diagram shows the dimensionless load p = Pl2

EI
, where E is Young’s modulus, I is the moment of

inertia of a cross-section of the column and l is the the length of the column.

defined on the interval ξ ∈ [0, 1]. A solution to the equation (A.5) with boundary conditions (A.6)
is (23, 25)

f(ξ) = A(cosh(g2ξ)− cos(g1ξ)) +B(g1 sinh(g2ξ)− g2 sin(g1ξ)) (A.7)

with

g1,2 =

√√
p2 − 4λ2 ± p

2
,

where the subscripts 1 and 2 correspond to the signs + and −, respectively. Imposing the
boundary conditions (A.6) on the solution (A.7) yields the characteristic equation ∆(λ) = 0 for
the determination of the eigenvalues λ, where

∆(λ) = ∆1 −∆2µλ
2

and

∆1 = g1g2(g41 + g42 + 2g21g
2
2 cosh g2 cos g1 + g1g2(g21 − g22) sinh g2 sin g1)

∆2 = (g21 + g22)(g1 sinh g2 cos g1 − g2 cosh g2 sin g1). (A.8)

Parameterizing the mass ratio in (A.4) by µ = tanβ with β ∈ [0, π/2] enables the exploration
of all possible ratios µ = M/(ml) of the end mass to the mass of the column from zero (β = 0) to
infinity (β = π/2). The former case, without the end mass, corresponds to the Beck column,
whereas the latter corresponds to a massless rod with an end mass, which is known as the
Dzhanelidze column (6).

It is well-established that the uniform Beck column is stable against flutter if the dimensionless
follower force, p, is such that 0 ≤ p . 20.05, (1, 2, 6, 7). In contrast, the Dzhanelidze column
becomes unstable at p ≈ 20.19, which is the smallest positive root of the equation (6)

tan
√
p =
√
p. (A.9)
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These values, representing two extreme situations, are connected by a marginal stability curve in
the (β, p)-plane (6, 23, 25, 26, 27, 28); see the right panel of Fig. A.

For every fixed value β ∈ [0, π/2), the Pflüger column loses stability via flutter when an increase
in p causes the imaginary eigenvalues of two different modes to approach each other and merge
into a double imaginary eigenvalue with a Jordan block (i.e., with algebraic multiplicity two and
geometric multiplicity one). When p crosses the threshold, the double eigenvalue splits into two
complex eigenvalues, one with positive real part, which determines a flutter-unstable mode.

At β = π/2 the stability boundary of the Pflüger column has a vertical tangent and the type of
instability changes from flutter to divergence, i.e., non-oscillatory growth of a mode corresponding
to a positive real eigenvalue, for p & 20.19; see (6, 26, 27).


