
6342 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

Decentralized Function Approximated Q-Learning in
Multi-Robot Systems For Predator Avoidance

Revanth Konda , Hung Manh La, and Jun Zhang

Abstract—The nature-inspired behavior of collective motion is
found to be an optimal solution in swarming systems for predator
avoidance and survival. In this work, we propose a two-level control
architecture for multi-robot systems (MRS), which leverages the
advantages of flocking control and function approximated rein-
forcement learning for predator avoidance task. Reinforcement
learning in multi-agent systems has gained a tremendous amount
of interest in recent few years. Computationally intensive archi-
tectures such as deep reinforcement learning and actor-critic ap-
proaches have been extensively developed and have proved to be
extremely efficient. The proposed approach, comprising of coop-
erative function approximated Q-learning, is applied such that it
ensures formation maintenance in MRS while predator avoidance.
A consensus filter is incorporated into the control architecture, to
sense predators in close vicinity in a distributed and cooperative
fashion to ensure consensus on states among the robots in the
system. The proposed approach is proved to be convergent and
results in superior performance in unexplored states and reduced
number of variables. Simulation results confirm the effectiveness
of the proposed approach over existing methods. We expect that the
proposed approach can be conveniently applied to many other areas
with little modifications, such as fire-fighting robots, surveillance
and patrolling robots.

Index Terms—Multi-robot systems, obstacle avoidance,
reinforcement learning.

I. INTRODUCTION

NATURE has presented various forms of swarm behaviors,
such as bird flocking, tetrapod herding, and fish school-

ing [1]. These swarm behaviors often involve collective motions
of a large number of animals and are critical for foraging benefits
and safety from predation [2]. By analyzing and utilizing the in-
telligence in animal’s coordination and cooperation, multi-robot
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systems significantly enhance their capabilities in coordination
and control to solve team-level and global tasks based on local
interaction rules [3], [4]. Multi-robot systems (MRS) can be
robustly deployed to complete complex tasks in a wide varieties
of areas, such as fire fighting [5], [6], environmental monitoring
and exploration [7], home surveillance [8], search and rescue [9],
industrial purposes [10], precision agriculture [11], and predator
avoidance [12]. For example, when a team of unmanned aerial
vehicles is deployed to implement a surveillance task, the robot
team can coordinate their individual motions and tasks. When
under attack, the robot team can avoid the attack by collectively
moving to a safe location.
There have been a lot of successful demonstrations and
developments on the modeling, coordination, and control of
MRS [4], [13]. Topics on flocking and coordination model-
ing [14], formation control [15], [16], coverage control [17], task
allocation [18] and learning [12] have been studied extensively.
While different approaches on coordination, cooperation, and
consensus for MRS exist, it is often extremely difficult to find
an optimal solution for a given problem [13]. The application
of multi-agent reinforcement learning (MARL) techniques in
MRS is highly suitable and has sparked lot of interest mainly
because of its efficiency in finding an optimal solution [19],
[20]. Research on MARL has mainly focused on policy selec-
tion [21], credit assignment [22] and cooperative learning [23].
MARL has been applied in many fields including multi-agent
game theory [24], differential and stochastic games [25], and
multi-robot systems [26].
By using reinforcement learning (RL), it has been proved
that flocking and collective motion is the optimal solution for
survival and predator avoidance in swarming system [27]. Using
this information, we propose a two-level control architecture
which leverages the advantages of flocking control and function
approximated learning. We apply it for predator avoidance in
MRS such that they maintain full connectivity while avoiding
predators by choosing an appropriate safe place. Maintaining
formation enables the robots in the system to have a wider
sensing range and facilitates accurate sensing of the environ-
ment [27], [28]. Most of the current algorithms do not focus
on formation maintenance while predator avoidance. To tackle
this problem, the cooperative Q-learning was proposed in our
previous study [12], however, it was found that the size of
the state-space increased exponentially with the number of
predators and discretization of the direction. A consensus fil-
ter [28] can be designed in MRS to sense the presence of a
predator in close vicinity of the system in a cooperative and
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decentralized way. This is presented as cooperative predator
sensing algorithm (CPSA) in this letter. With the combination of
function approximation learning, flocking control and CPSA, in
this work, a novel control architecture is proposed and applied
for MRS. The high-level controller realized based on function
approximated reinforcement learning algorithm makes the entire
control framework capable of working in a continuous mode.
The learning approach in the proposed architecture is similar to
state-of-the-art methods; however, there are notable differences,
which have been highlighted below.
Firstly, MARL has been predominantly applied in the clas-

sic form of Q-learning [29], whose accurate performance is
heavily relied on dense discretization of the state space. Based
on the state, the agent selects an action by using a look-
up table called Q-table [30]. For many applications involv-
ing large scale scenarios, the discretization process leads to
a huge state-space, consequently resulting in storage of many
variables and computationally intensive RL architectures. Fur-
thermore, the approach demands the exploration of all states.
Secondly, in recent times, many state-of-the-art algorithms
have been developed using actor-critic reinforcement learn-
ing (ACRL) and deep reinforcement learning (DRL) meth-
ods [31], [32] for multi-agent systems. These frameworks have
been applied as function approximators [33], [34] to overcome
huge state-space while maintaining good performance in unex-
plored states. Function approximation has been realized in rein-
forcement learning scenario [35], where accurate performance
and low data storage and computation can be simultaneously
achieved.
The need for computationally intensive frameworks such as

DRL and ACRL arises from the problem of huge state-space
with many dimensions. The algorithm presented in [22] uses
centralized critic and decentralized actors. The method pre-
sented in [36] is close to what we propose, the difference
being that they used actor-critic approach while we use function
approximated Q-learning. Also, in [36], the agents always rely
on RL to take the necessary actions and thus do not require
consensus on states. The proposed method utilizes only local
rewards and local information for learning. In our previous
work [12], the state-space was huge due to many dimensions.
However, in the present work, the CPSA plays a critical role
in reducing the state-space by reducing its dimensionality. This
makes the problem relatively simple and leads to the use of a
simpler RL mechanism such as linear function approximated
Q-learning.
The main contributions of this letter are as follows:
Development of a two-level control architecture which
includes a distributed RL algorithm and its application
in MRS for predator avoidance. The convergence of the
proposed learning algorithm is derived.
Integration of a consensus filter (CPSA) to the proposed
algorithm for ensuring state consensus among all robots
in the system, which proves to be critical for learning
convergence as well as use of simple RL architecture.
Confirmed effectiveness of the proposed algorithm for
predator avoidance in MRS over existing methods.

Fig. 1. Architecture of the proposed FA-MARL algorithm.

Fig. 2. Illustration ofα-lattice formation in a MRS with 15 robots, and the
possible motions of the system when under attack by a predator.

II. SYSTEMOVERVIEW

Besides ensuring full connectivity during predator avoidance
maneuver, the main goal of the proposed function approximated
MARL (FA-MARL) algorithm is to consume less space for data
storage compared to traditional cooperative learning. To achieve
this goal, cooperative learning based on function approximation,
which enables learning in a continuous form, is proposed.
The control architecture, as shown in Fig. 1, consists of
two levels: In the low-level, a proportional–derivative (PD)
controller drives the robots to maintain a specified formation
whilst tracking a target and avoiding collision with each other
and external agents. In the high-level, a function approximated
reinforcement learning assigns safe place when a predator is
detected and ensures full connectivity of robots which avoiding
the predator.
While different formation profiles can be used, without loss
of generality, this study considers anα-lattice formation with
15 robots, as shown in Fig. 2. In this paper, we consider a
stationary target: the control algorithm generates stationary safe
places for the system. Hence the target positions are a set of
constant coordinates in space and target velocities are zero. Also,
the safe places are generated by the system when a predator is
detected. The safe places are generated based on the position of
the predator relative to the system.
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The avoidance logic is implemented such that once the preda-
tor is detected by the system, the robots in the system try to
move to a safe place. However, if the predator comes into close
proximity of the system, then the robots try to avoid it through
the usage of repulsive artificial potential fields, under which case
there is a possibility of the connectivity to be broken. Therefore,
the learning and flocking algorithms should be implemented
simultaneously to ensure full connectivity while also avoiding
the predator. The higher level reinforcement learning module is
a critical part. The goal is to achieve consensus on one of the safe
places for the flocking controller. By retrieving the states and the
action selection of a robot and its neighbors, the reinforcement
learning module selects the appropriate action (safe place), such
that the connectivity is maintained. This is depicted in Fig. 2.

III. REVIEW OFMULTI-ROBOTCOOPERATIVECONTROL AND
Q-LEARNING

A. Flocking Control

Flocking control in MRS, describes the motion of each robot
in the system by considering the target position, the position
of its neighbours, and the position of obstacles. The dynamic
model of each robotiin the system is described as

ṗi=qi
q̇i=ui,i=1,2,...,n,

(1)

wherepiandqiare the position and velocity of the roboti,
respectively,nis the number of robots, anduiis the control
input to roboti.
The system of all robots is modeled as a dynamic graphG

with a set of verticesV={1,2,...,n}and an edge setE=
{(i, j):i, j∈V, i=j}. Each vertex in the graph corresponds
to a robot in the system and each edge depicts that the two
robots are connected and can communicate with each other. If
the robotjis within the sensing rangeR1of roboti, then the
robotjis a neighbour of roboti. For robotiin the system, the
neighbourhood set at a given timetis defined as

Nδi(t)={j∈V:||pj−pi|| ≤R1,V={1,2,...,n},j=i},
(2)

where the superscriptδindicates the actual neighbours of a
roboti, and|| · ||is the Euclidean distance. Similarly, virtual
neighbours can be defined in the case of predator and/or obstacle
avoidance. For robotiin the system, the set of virtual neighbours
set at a given timetis defined as

Nβi(t)={k∈Vβ:||̂pi,k−pi|| ≤R2,Vβ={1,2,...,k}},
(3)

where superscriptβindicates virtual neighbours,R2is the
obstacle/predator sensing range,Vβis a set of obstacles, and
p̂i,kis the position of the virtual neighbour projected by roboti
on predatork. These projections are used to generate repulsive
forces by the robots in the system from the obstacles. Dynamic
obstacles which are not stationary are considered to be predators.

Finally, the control inputuifor each robotiin the system can
be expressed based on the computed parameters as

ui=c
δ
1

j∈Nδi

Fδ(||pj−pi||σ)nij+c
δ
2

j∈Nδi

(qj−qi)aij(p)

+cβ1
k∈Nβi

Fβ(||̂pi,k−pi||)̂ni,k+c
β
2

k∈Nβi

(̂qi,k−qi)bi,k(p)

−ct1(pi−pt)−c
t
2(qi−qt), (4)

wherecδ1,c
δ
2,c
β
1,c

β
2,c

t
1, andc

t
2are positive constants, andptand

qtare the target position and target velocity, respectively. In this
study, these parameters denote the safe places which the agents
choose to avoid the predators. More details about the flocking
control in MRS can be found in [14].

B. Q-Learning

Q-learning [30] is a commonly used technique to apply re-
inforcement learning to a system. In this technique, the agent
seeks to learn the expected reward it can get when choosing a
particular action under a particular state. This value is called the
state-action Q-value. During the learning phase, the agent stores
the Q-values of all state-action pairs in a Q-table, which it later
uses as a look-up table for taking an action. For a particular
state-action pair, the update law of Q-value is given by the
following equation:

Qk+1(s, a)←−Qk(s, a)+α[rk+1+γmax
a∈A
Qk(s,a)

−Qk(s, a)], (5)

wheresandaare the current state and action respectively,r
is the reward acquired by the agent,sandaare the state and
action at the next iteration respectively,αis the learning rate,k
is the iteration index, andγis the discount factor. The details
on application of cooperative learning through Q-learning can
be found in [12]. In function approximation, these Q-values
are approximated by a function, and this function is used to
predict the expected reward for a given state-action pair. For
more details, readers are referred to [37].

IV. PROPOSEDMULTI-ROBOTCOOPERATIVELEARNING

When a team of agents are under attack by a predator, it
is advantageous to move collectively to one place than move
independently [27], [38]. In this section, a FA-MARL algorithm
is proposed, such that when under attack, all the agents move
to the same safe place and they not only avoid collision with
the predator but also maintain full connectivity. Based on the
movement of the predator and the choice made by its neighbours,
each agent chooses an action to move to one of multiple safe
places generated by the system in real-time.

A. Predator Detection

A cooperative predator detection algorithm is described,
which enables collective sensing of predators in a distributed
fashion within the system at each instance of time. Each robot
has two sensing rangesR1andR2, as shown in Fig. 3, such that

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on May 24,2021 at 16:58:23 UTC from IEEE Xplore.  Restrictions apply. 



KONDAet al.: DECENTRALIZED FUNCTION APPROXIMATED Q-LEARNING IN MULTI-ROBOT SYSTEMS FOR PREDATOR AVOIDANCE 6345

Fig. 3. Depiction of the robot with two sensing rangesR1andR2.

the former is greater than the latter. The collective sensing of
predator is enabled when the predator enters the sensing range
R1. At the instant shown in Fig. 3, the reinforcement learning is
activated and each robot chooses a safe place. Once the predator
enters the sensing rangeR2, the robots start moving based on
the repulsive force generated by the flocking algorithm.
1) Cooperative Predator Sensing Algorithm (CPSA):The
CPSA is based on the algorithms presented in [28]. The purpose
of the CPSA is two-fold: firstly, it enables a switching mech-
anism in the system to go between level one and level two of
the control architecture. Secondly, it combines the directions of
multiple predators into a single predator. At each iteration, this
algorithm runs numerous sub-iterations to achieve consensus on
predator sensing. This plays an important role in ensuring that
all the robots in the system are in consensus of their respective
states, consequently strengthening collective motion when the
system is under attack.
Let the measurement, through which each robotiis able

to sense the presence of predator, be a measurementmliat a
time-stepl. Typically, this measurement is coupled with noise.
To reduce the effect of noise, CPSA runs multiple sub-iterations
through which a consensus on the predator position measure-
ment is achieved. The following equation describes this opera-
tion:

ml,k+1i =vml,ki +
(1−v)

|Nδi|

|Nδi|

j=1

ml,kj , (6)

where the indexkis the index of sub-iteration at a given iteration
l,|Nδi|is the number of neighbours of roboti, andvis a
confidence weight designed such that0≤v≤1. Suppose that
only a subset of robots are able to sense the predator. In that
case,|Nδi|is replaced with the number of neighbours with a
measurement. Under different cases,

ml,k+1i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ml,ki ,if|N
δ,m
i |=0;

|N
δ,m
i

|

j=1 ml,kj

|Nδ,mi |
,ifml,ki =NA;

vml,ki +
(1−v)

|Nδ,mi |

|Nδ,mi |
j=1 ml,kj ,ifm

l,k
i =NA,

(7)
whereNδ,mi denotes the number of neighbours with a measure-
ment atk-th sub-iteration,NAdenotes “not available”.
In this work, CPSA is used to gain consensus on presence

of predator and the direction in which it is attacking, and both
noisy and without noise cases are considered. (7) is capable of
handling both cases. The CPSA is summarized in Algorithm 1.

Algorithm 1:Cooperative Predator Sensing Algorithm
(CPSA) [28].

Setmax number of iterations
foreach iterationkdo
foreach robotido
Countnumber of neighbours|Nδ,mi |

if|Nδ,mi | =0then
ifmki=NAthen
withmkj=NA

mki=
|N
δ,m
i

|

j=1 mk−1j

|Nδ,mi |

else

mki=vm
k−1
i + (1−v)

|Nδ,mi |

|Nδ,mi |
j=1 mk−1j

end if
else
mki=m

k−1
i

end if
end for

end for

B. Proposed Learning Algorithm

The proposed reinforcement learning framework is applied
for predator avoidance in MRS. The current approach is based on
consensus between each agent in the network and its neighbours.
Before getting into the details of cooperative learning, the state,
action, reward and traditional independent learning approach are
described.
1) Independent Learning:For every reinforcement learning
problem, the state of the learning agent, the actions it can choose,
and the rewards it gets based on its current state and the action
it selected are described. It is noted that the performance of the
independent learning algorithm will be compared to that of the
proposed cooperative learning algorithms in Section VI.
The state is mapped into a continuous space using a mapping

function. The commonly used mapping functions are linear
mapping, fixed sparse representation, radial basis functions and
coarse coding [33], [34]. In this work, linear mapping is used
and the state is described by the direction in which the predator
is attacking. The direction is represented by a unit vector. This
mapping is continuous and not discrete – unlike Q-learning,
the direction is not categorized into four categories [12] but
represented in a continuous form. The state mapping function is
represented asψ(s):

ψ(s)=CPSA(d1,d2,...,di,...,dn), (8)

wherediis the direction of attack of the predator detected by
i-th robot in the system. The actions which an agent can choose
are the safe places to which it can go to escape from the predator.
In this study, four safe places in different directions are chosen,
namely, left, right, up, and down. It is noted that other choices of
safe places are also feasible. Hence the action set is expressed as
{“1”, “2”, “3”, “4”} , where each element in the vector denotes a
safe place. In the case of function approximation, a state-action
vectorφ(ψ(s),a)is constructed, whose magnitude and length
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are expressed as

|φ(ψ(s),a)|=1,

length ofφ(ψ(s),a)=2×(number of action choices).(9)

It is noted that in simulation, two-dimensional analysis is con-
sidered. The length of the state-action vector can be changed
accordingly when higher-dimensional analysis is conducted. For
example, if we have four actions and one predator, then the
length ofφwould be 8; If the direction in which the predator is
attacking is(−0.92,0.37), action is “1”, then the following can
be obtained [30]:

ψ(s)=[−0.92,0.37],and

φ(ψ(s),a)=[−0.92,0.37,0,0,0,0,0,0].

The reward which a robotigets at the end of each iteration is
as follows. Once a predator gets withinR1, the RL is. triggered.
At this point the reward of a robotiis the number of neighbors
it has. The formation control portion of the flocking control
algorithm enables the system to achieve anα-lattice structure
in which, ideally, each robot has a maximum of six neighbors
forming a perfect hexagonal structure around itself. Hence, in
order to force the robots in the network to maintain anα-lattice
formation, the maximum reward it can get is 6 – if|Nδi|≤6,
thenri=|N

δ
i|; otherwise,ri=6, whereriis the reward for

roboti. Using CPSA, the robots share information about the
position of a predator. If a predator enters sensing rangeR2of
a robotiin the system, then the robots which are directly or
indirectly connected with robotiare assigned a reward of−5.If
the network is fully connected, then all the robots in the system
will attain this reward.
Finally, based on the state, action and reward, the independent

learning algorithm is described. Each robot selects actions and
updates its learning variables only based on the reward secured
by itself and does not take into consideration the learning vari-
ables or actions taken by its neighbours. Function approximation
is mainly used to minimize the number of variables required to be
stored for the learning algorithms to work. The function approxi-
mation version of reinforcement learning consists of a parameter
vectorθwhich is analogous to the Q-table in Q-learning [37].
Furthermore, the length ofθis equal to the length ofφ(ψ(s),a).
The general form of learning through function approximation is
given by the following equation [37]:

θk+1i ←−θki+αφ(ψ(s
k
i),a

k
i)[r

k+1
i +γ max

ak+1i ∈Ai

φT(ψ(sk+1i ),

ak+1i )θki−φ
T(ψ(ski),a

k
i)θ
k
i], (10)

whereθiis the parameter vector of roboti,a
k
i,a

k+1
i are the

current and next action respectively, both belonging to the action
listAi,si,siare the current and next states respectively.
Each robotiin the system has its own set of variablesθiand

chooses its actions based on itsθivalues for a given state-action
φ. Eq. (10) describes howθvalues in function approximation
are updated at each iteration.
2) Cooperative Learning:Unlike independent learning, in

cooperative learning, theθi-value update for each robotitakes

place in two stages: In the first stage, the update is done based on
Eq. (10) to obtain an intermediate update; In the second stage,
the intermediate update is used along with theθ-values of its
neighbours to obtain the final update. The intuition behind doing
this procedure is the fact that each robot chooses an action based
on itsθ-vector. Hence, if consensus on action selection has to be
achieved, the robotimust take into account theθ-vector which
its neighbours are using to select an action. The update law is
thus expressed as

ζk+1i ←−θki+αφ(ψ(s
k
i),a

k
i)[r

k+1
i +γ max

ak+1i ∈Ai

φT(ψ(sk+1i ),

ak+1i )θki−φ
T(ψ(ski),a

k
i)θ
k
i],

θk+1i ←−wζk+1i +
(1−w)

|Nδi|

|Nδi|

j=1

θkj, (11)

whereζk+1i denotes the intermediate update in the parameter
vector for robotiat time stepk+1,wis a weight and0≤w≤
1.Bothζandθdenote the same parameter vector. Different
symbols are used to differentiate between intermediate update
and the final update. In other words, the update for each robot is
done by taking a fraction ofθ-vector obtained through Eq. (10)
and a fraction of the average value ofθ-vectors of its neighbours.
Through this mode of learning, each agent learns based on the
experience of its neighbours and the experience it gained in the
previous iteration. The confidence it has on its own experience
compared to its neighbours’ experience is determined byw.
The action selection of each robot is usually done through the
greedy policy. In function approximation approach, the action
which yields the maximum value of [φT(ψ(ski),a

k
i)θi]isse-

lected. The proposed method will require significantly less data
storage and number of variables when compared to Q-learning.
The entire training algorithm with function approximation is
summarized in Algorithm 2.

V. CONVERGENCEANALYSIS

In this section, we present the proof to show that the learning
algorithm (Algorithm 2 in Section IV.B) converges to an optimal
solution. For the learning to converge, we need to show that the
system does not update anymore: i.e., the mean of the difference
betweenθvalues at time stepskandk+1eventually goes to 0.
Consider a simple MRS with two robots. Without lose of
generality, the findings from the analysis of this simple system
can be lifted and applied to a more complex system withnrobots.
For simplicity, it is assumed thatα, γ, wvalues for all robots are
the same. At two consecutive time steps, the difference inθfor
robotiis expressed as

Δθk+1i =θk+1i −θki.

From Eq. (11), the above equation can be written as

Δθk+1i =w(ζk+1i −ζki)+(1−w)(θ
k
j−θ

k−1
j )

=w(Δθki+αφ[Δr
k+1
i +γφTΔθki−φ

TΔθki])

+(1−w)Δθkj.
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Algorithm 2:Proposed Training Algorithm.

Selectα, γ, wvalues
Initializeθvalues
foreach episode edo
Initializerobots’ positions
InitializePredators’ position and direction
foreach iteration kdo
foreach robot ido
RunCPSA
Checkpredators’ presence
ifPredator is presentthen
-Computeψ(ski)andφ(ψ(s

k
i),a

k
i)

-Select Actionbased on
max[θkφT(ψ(ski),a

k
i)]

-Computerewardsrki
-Computeintermediate update:
ζk+1i ←−θki+α[r

k+1
i +γmaxak+1i ∈Ai

θki

φT(ψ(si)
k+1,ak+1i )−φT(ψ(ski),a

k
i)θ
k
i]

φ(ψ(ski),a
k
i)

-Obtainfinal update based on neighbours:

θk+1i ←−wζk+1i +(1−w)|Nαi|

|Nαi|
j=1 θ

k
j

end if
end for

end for
Training is terminated whenθvalues converge
end for

Sincerk+1i andrkiwill be the same as an optimal policy is
selected,Δrk+1i will be zero. Further simplification leads to the
following equation:

Δθk+1i =w(I−αφφT+αγφφT)Δθki+(1−w)Δθ
k
j,

whereIis the identity matrix with dimensions suitable to
perform matrix multiplication withΔθki. Due to consensus, the
state-action vectorφwill be same for all robots. The equation
for robotjcan be written as

Δθk+1j =w(I−αφφT+αγφφT)Δθkj+(1−w)Δθ
k
i.

For the learning algorithm to converge, it is sufficient to show
that the sum ofΔθvalues of all robots in the system goes to 0.
This value is denoted byΔΘ, and

Δθk+1i +Δθk+1j =(I−wαφφT+wαγφφT)(Δθki+Δθ
k
j),

ΔΘk+1=(I−wαφφT+wαγφφT)ΔΘk,

ΔΘk+1=ΦΔΘk. (12)

Eq. (12) forms a dynamic map for the variableΘwithΦbeing
the state transition matrix. For the map to be stable, the absolute
values of the eigenvalues ofΦmust be less than or equal to 1.

|1−wα+wαγ|≤1,

γ≤1. (13)

Eq. (13) illustrates the condition for the learning to converge.
Besides this condition, one other important condition to ensure

Fig. 4. The number of robots with information about the predator at every
sub-iteration.

learning convergence is consensus on states. Hence, the appli-
cation of CPSA becomes critical. As stated earlier, without lose
of generality, Eq. (13) can be derived for system withnrobots
with any type of state-mapping functionψ.

VI. SIMULATIONRESULTS

This section comprises of the results obtained through sim-
ulation. The results include the performance analysis of CPSA
and cooperative learning and comparison between independent
learning and cooperative learning in terms of convergence of
rewards obtained. First the performance of CPSA is discussed.
Fig. 4 shows how the CPSA works in enabling all the robots in
the system to stay informed about the presence of a predator
and its direction of attack, by running a predefined number
of sub-iterations at each iteration. The X-axis of the plot is
the number of sub-iterations at the instant when one of the
robots detects the predator. Once the predator enters the predator
sensing rangeR1of any of the robot in the system, CPSA starts
running predefined number of sub-iterations at the instant. At
the first sub-iteration, only one robot is aware of the predator’s
presence, this is denoted by the ‘on’ signal represented by ‘1’. In
the subsequent 2-nd to 4-th iterations, all robots become aware
and their signal changes from ‘0’ to ‘1’. As it can be seen after
the 5-th iteration, all robots are aware of the predator.
Fig. 5(a) shows the action selection of the robots during a

sample trial. The sum of the actions taken by each robot is plotted
against iteration. For example, if all the 15 robots choose action
“3, then the sum of all the actions would be 45. The training
consists of approximately twelve cycles of episodes, each cycle
consisting of four episodes. Hence a total of 50 episodes are
run. The four episodes in each cycle are designed such that in
each of these four episodes, the predator attacks the system in
a different direction. Each episode consists of 800 iterations.
The total number of episodes required for the system is selected
as a large number. As it can be noticed from the Fig. 5, the
cooperative learning converges on optimal action selection such
that it avoids the predator irrespective of which direction it is
attacking. The independent learning never selects an optimal
action within the range of chosen episodes.
Figs. 5(b) and 6 show theΔθvalues at the end of each
iteration and the rewards attained by the system at the end
of each episode. The data presented was obtained by running
100 trials, each trial consisting of 50 episodes. For each trial,
the initial learning variables were chosen randomly and at the
beginning of each episode, the initial position of the robots
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Fig. 5. (a) Sum of action selection of all robots at the end of each iteration
with Cooperative Learning (b) MeanΔθvalues at the end of each iteration with
Cooperative Learning.

Fig. 6. Total reward attained at the end of each episode with (a) Independent
Learning and (b) Cooperative Learning.

was assigned randomly. The results show how our algorithm
is robust to different variations coming in the form of different
initial positions during different episodes and different initial
learning variables values for different trials. It shows that the
proposed method’s parameters converge at around 15 episodes.
It was observed that the independent learning variables exhib-
ited evident fluctuations over different episodes. This is likely
because the independent learning approach requires additional
constraints, such as a central unit, to assign rewards based on
the overall state of the system, a different reward scheme, more
initial exploration or more training scenarios. The current reward
scheme scrutinizes the agent if it does not avoid collision. Out of
the available safe-places, for a given predator direction, there are
more than one optimal safe-places. Under these circumstances,
without the consensus term, it is highly unlikely for the agents
to agree upon one safe-place for a given predator direction.

To further validate the FA-MARL approach, the proposed
algorithm is tested under multiple scenarios, including single
predator attacking in directions different from that in training,
two predators continuously attacking the system, noisy predator-
detection measurements and two predators attacking the system
at the same instant of time. While details can be found in the
submitted video, in all the cases, the proposed algorithm exhibits
good performance in terms of choosing an action such that the
network does not break. The success rate for single predator sce-
nario in testing was82% with a standard deviation of14.2% and
the success rate for two-predator scenario was71% with standard
deviation of15.1%. Often times, due to the predator moving at
higher speeds, the network tends to break. In simulation, this
problem can be easily solved by simply increasing the gains
in Eq. (4). However, in real-time situation due to constraints
on maximum energy generated by the system, there is a good
chance of the network to break when the predators move at a very
high speed. Based on the type of system considered in the study,
the conditions leading to network breakage may be determined
experimentally.

VII. CONCLUSION ANDFUTUREWORK

In this work, the proposed two-level control architecture,
consisting of a FA-MARL algorithm and flocking control, is
successfully applied to a MRS for predator avoidance. Analysis
is conducted by simulating multiple training scenarios in which
a MRS is attacked by a predator from different directions.
Besides the obtained good performance, the proposed algo-
rithm guarantees learning convergence under the conditions of
state-consensus among robots and a discount factor less than
or equal to 1. To achieve consensus on states, CPSA has been
incorporated in the system. For testing purposes, the MRS is
put in situations different from the ones in the training period.
Even under untested circumstances, the system is able to perform
equally well. Also, with the proposed method, the number of
variables stored is a fixed number of 8, where as with Q-learning,
the number of variables increase exponentially with further
discretization of states and number of predators attacking the
system.
The function approximation helps the system in approxi-
mating the unknown scenarios well and choose an appropriate
action by eliminating the need for discretization of the state
space. It also results in a low training period since not all
combinations of the states in state space and the actions in
action space need to be explored. The proposed algorithm shows
promising performance in MRS where robots need to perform
actions to achieve a common goal. We expect that the proposed
approach can be conveniently applied to many other areas with
little modifications, such as fire-fighting robots, surveillance and
patrolling robots, search and rescue robots, and industrial robots.
The limitations of this study and future potential improvements
are briefly discussed:

Firstly, the proposed algorithm enables the system to func-
tion in a continuous fashion by efficiently approximating
the state space. However, the action space stills demands
the need to be discretized. This limits the performance
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of the system under scenarios where the network break-
age becomes inevitable due to limited choices of actions.
Hence, the algorithm can be further enhanced to consider
continuous output actions.
Secondly, we used less sophisticated predators for illus-
tration purposes of our proposed controller and algorithm.
If we consider more sophisticated predators which exhibit
certain nature-inspired behaviors to attack the system, then
the optimal solution will no longer be moving to a station-
ary safe-place. Hence, we plan to look at continuous action
space scenario, where we consider this type of setting. For
this purpose we believe actor-critic RL frameworks similar
to [22] will be appropriate.
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