W) Check for updates

INTERNATIONAL JOURNAL OF

Research Article ADVANCED ROBOTIC SYSTEMS

International Journal of Advanced
Robotic Systems
September-October 2020: 1-19
© The Author(s) 2020

DOI: 10.1177/172988 1420960342
journals sagepub.com/home/arx

®SAGE

Consensus, cooperative learning, and
flocking for multiagent predator avoidance

Zachary Young and Hung Manh La

Abstract

Multiagent coordination is highly desirable with many uses in a variety of tasks. In nature, the phenomenon of
coordinated flocking is highly common with applications related to defending or escaping from predators. In this
article, a hybrid multiagent system that integrates consensus, cooperative learning, and flocking control to determine
the direction of attacking predators and learns to flock away from them in a coordinated manner is proposed. This
system is entirely distributed requiring only communication between neighboring agents. The fusion of consensus
and collaborative reinforcement learning allows agents to cooperatively learn in a variety of multiagent coordination
tasks, but this article focuses on flocking away from attacking predators. The results of the flocking show that the
agents are able to effectively flock to a target without collision with each other or obstacles. Multiple reinforcement
learning methods are evaluated for the task with cooperative learning utilizing function approximation for state-space
reduction performing the best The results of the proposed consensus algorithm show that it provides quick and
accurate transmission of information between agents in the flock. Simulations are conducted to show and validate the
proposed hybrid system in both one and two predator environments, resulting in an efficient cooperative learning
behavior. In the future, the system of using consensus to determine the state and reinforcement learning to learn the
states can be applied to additional multiagent tasks.

Keywords
Distributed algorithms for multirobot coordination, mobile robots and multirobot systems, multiagent robot teams,
mobile sensor networks, swarm robotics, multiagent learning, function approximation, consensus, flocking control

Date received: 6 May 2020; accepted: 18 August 2020

Topic Area: Mobile Robots and Multirobot Systems
Associate Editor: Changjoo Nam
Topic Editor: Nak-Young Chong

multiagent predator avoidance®® with an intelligent
hybrid system.

Most current multiagent research incorporates some
form of consensus, 10 movement control,'! or reinforcement

Introduction

Motivation

Multiagent cooperative learning has been continuing to be
alarge research interest in the field of robotics with a wide
range of applications.' Tracking wildfires using multi-

ple agents communicating together to better handle the
fire, so it does not destroy as much, is one such possibil-
ity.*> Another one is that using multiple agents to better
map the structure of a pipeline that if it structurally fails
could cause large damage and loss of money.® An addi-
tional possibility is mapping and exploring unknown
environments.” This article aims to solve the task of

Department of Computer Science and Engineering, Advanced Robotics
and Automation (ARA) Laboratory, University of Nevada, Reno, NV, USA

Corresponding author:

Hung Manh La, Department of Computer Science and Engineering,
Advanced Robotics and Automation (ARA) Laboratory, University of
Mevada, Reno, NV 89557, USA.

Email: ha@unr.edu

@ @ | Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without
further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0003-2183-2634
https://orcid.org/0000-0003-2183-2634
mailto:hla@unr.edu
https://doi.org/10.1177/1729881420960342
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881420960342&domain=pdf&date_stamp=2020-09-24

International Journal of Advanced Robotic Systems

learning,'? but a combination of all three to achieve an
efficient cooperative learning behavior is largely unex-
plored. Some uses of consensus are to determine the loca-
tion of obstacles'® or to make measurements in a scalar
field."*"'® Movement control of multiagent systems can
come in the form of cooperatively doing path planning as
in the literature.'” ' Alternatively, there are means of con-
trol through flocking in varying formations®® > to achieve
a variety of tasks.”>?* Reinforcement learning has been
implemented cooperatively in a variety of ways for multia-
gent environments, such as a GridWorld*>*® and box push-
ing.?” Although all of these use for consensus, movement
control, and reinforcement learning that are good in their
own right, this article aims to make a more intelligent
hybrid system.

In nature, flocking has long been observed in many
environments®* > with one possible goal being to defend
from predators as can be seen with schools of fish. Even
simulated environments®'? that reward individuals for
their own survival result in flocking like formations of the
agents. It is thus clear that flocking for survival has clear
benefits in both natural and simulated environments. The
goal of this article is then to create a hybrid system that
combines consensus, flocking, and multiagent reinforce-
ment learning into one intelligent system that can sense
and learn to escape from attacking predators.

Literature review

Flocking background. Methods of ensuring agents flocking
have been proposed and studied in the literature.*>=’
Inspired by the natural world of birds and fish flocking
together,>® flocking algorithms have been formed. The
algorithms allow agents to flock in different patterns in a
distributed manner that requires on communication
between direct neighbors rather than the entire flock. The
main rules that define flocking are that flockmates maintain
a distance from each other without getting too close or far
from each other and match the velocity of the other flock-
mates. Reinforcement learning approaches have also been
applied to flocking in which agents individually or coop-
eratively learn to flock without the use of specific algo-
rithms.>**’ There are also cases in which reinforcement
learning is implemented to teach agents to go to specific
targets, but in cases where learning fails, a flocking algo-
rithm to avoid obstacles is used.*' Flocking by itself is not
particularly useful if the agents flock directly to a predator
so this work aims to combine learning with flocking to
effectively escape from predators. Other flocking imple-
mentations such as that proposed in the literature** allow
agents to flock together with minimal information transfer,
but the formation is not ideal for quickly avoiding a pre-
dator. Additional flocking features can be added, such as
handling faulty robots,* time delay for information trans-
fer between robots,” or change of formation.*> For this

article, these are not the focus but could potentially be
added in the future.

Reinforcement learning background. Cooperation is an impor-
tant part of a flock learning to do a task together. In the
literature,*® agents are not necessarily flocking together,
but through cooperation, they are completing their task
effectively. Cooperation is already a large part of flocking
algorithms so that they can be done in a distributed manner.
Cooperation must also be used to effectively learn in a
distributed manner. Using simple Q-learning®’ does not
achieve the necessary amounts of cooperation required,
S0 a more cooperative approachq""3 is required. Unfortu-
nately, the number of agents increases the state space that
grows and requires longer amounts of training to effec-
tively learn to flock together to the same destination. For
this, function approximation techniques**>° are useful.
However, in current research, function approximation in
combination with cooperative learning is largely
unexplored.*'*

Consensus background. Partial observability of the state
space is another issue for purposes of escaping attacking
predators. For a school of fish, not all fish will be able to see
an attacking predator yet they manage to utilize flocking to
maximize their safety anyway. For our agents, this is the
same case in that only agents on the outside of a flock will
be able to see an oncoming predator. A method of commu-
nicating to the other agents that a predator is approaching is
thus necessary. This can be seen as a sort of event-triggered
consensus such as that proposed in the literature.” Algo-
rithms have been proposed to allow multiagent systems to
come to a consensus on measurements from multiple
agents that do not necessarily agree with each other.>*>*
Many uses of consensus, however, are for estimating some
kinds of measurements.**>’ This work intends to use con-
sensus in combination with reinforcement learning to make
a more intelligent system. Some works, such as by Zhang
et al.>! and Xu et al.,** implement a hybrid system of con-
sensus and reinforcement learning, but they use consensus
to determine the global reward of the system. This work
uses consensus to determine the state relying on local
rewards instead.

Contributions

In this article, we combine the benefits of consensus, flock-
ing, and reinforcement learning to create a hybrid system,
as shown in Figure 1. This system assumes partial obser-
vability in that only agents on the outside of the flock near
an approaching predator are able to see the attacking direc-
tion of the predator. They must use consensus to inform the
rest of the flock about the attacking direction of the pre-
dator, which is then used with reinforcement learning to
learn a target (a safe place) to move toward. That target is
then used by a flocking algorithm to give each agent a

Young and La 3
IControl
One or More)
iract Multi-agent : Input
Agents | Direction State | " Target | Flocking |Agent Control
Detects * Consensus - renl'l;grrcn?rr;nem "1 contral System
Predator g
Figure |. Block diagram of the hybrid system.
control input to move each agent toward the target in a a4 =P
flocking formation. { : (1)
Pi =1

The contributions of this article are then as follows:

e Utilization of consensus between agents for state
approximation in reinforcement learning.

e Cooperative learning with a large number of agents.

e Implementation of function approximation to reduce
state space for a large number of agents used.

e Integration of reinforcement learning and flocking to
learn where to flock.

e A fast and accurate consensus algorithm for a large
number of agents.

e An entirely distributed system.

Paper organization

The organization of the remainder of this article is as fol-
lows. In “Flocking control” section, a method for flocking
is introduced. The “Multiagent learning™ section goes over
the multiagent learning that used to ensure the agents flock
together to the same target. The “Consensus for multiagent
state approximation” section details a method of state
approximation called consensus for the agents. This is fol-
lowed by “Simulation and results” section, which details
the combination of flocking, reinforcement learning, and
consensus into a hybrid system for the agents to learn to
flock away from a predator. Lastly, “Conclusion and future
work™ section covers the conclusion with analysis and
potential future development.

Flocking control

Flocking control algorithm

In this section, the flocking algorithm used for the hybrid
system is presented. To learn to avoid predators, the agents
must be able to flock together. Using flocking methodolo-
gies presented in the literature,®® a network topology con-
sisting of a graph G that is a pair (¥, E) with a set of vertices
V={1,2,...,n}and edgesE C {(i,j) :i,j € V,j #i}.In
this graph, the agents are considered vertices, and the edges
are communication links between neighboring agents. Using
agents modeled as particles, the equations of motion are
given by

where (; is the position of agent i, p; is the velocity, and u;
is the acceleration or the control input.
The neighbors of an agent can be determined by

Ni={jeV:|lq—qll<r} (2)

where ||.|| is the Euclidean norm and r is the interaction
range of an agent.

There are many formations that flocking can take, but
the formation used here is an a-lattice formation in which

llgy —q;||=d Yj€Ni(q) 3)

for desired distance d, where d = r/k for a scale factor k.
In flocking, each agent determines its control input with

a gradient-based term f¥ given by’
ff = ci Zﬁ%(”l’j = pill,)ny) (4)

JEN:
where c; is a positive constant, n; = o.(q; — q;) =

(4, —q;)/ 1+5||‘1;—‘1.-||2: and ¢,(.) is a pairwise
attractive/repulsive force to maintain the desired distance
d between agents. With o-norm, ||.[|, is given by

|||, = 1/e[y/1 + €||x||* — 1] that is differentiable every-
where for ¢ > 0. An obstacle avoidance term is given by f?¢
that is the repulsive force of f¥ using points on obstacles as
virtual neighbors N7 given by

£/ = by(q)(p; —) (5)

e
JjeN!

where b;;(q) = p,(||lq; — qill,/||7]|,) is an element at row i
and column j of an adjacency matrix over the interval [0, 1)
for virtual neighbors j. A velocity consensus term f is
given by

f? = CZZ“!}'(‘]) (P —P) (6)

JENi

where a;(q) = p,(llg; — qill,/|I[l,) is an adjacency
matrix over the interval [0,1), and ¢, is a positive constant.
pi(.) is a bump function that smoothly varies between 0
and 1. One possible definition is given by

International Journal of Advanced Robotic Systems

150

100

50

0 & 260 400
400
0
.
g
e
=0 s 2= _.Er Ny
[i S
% "‘3"&
200 O
150
100
50
0 50 100 160 200 260 300 360 400

ann
350
00 b > . >
>
»> h."" > »
230 B oPel ¥, »
e = o
LA = W
[= 1
20t P R,
e S s
» L
150
100
S0F
"
o 50 100 150 200 250 30 S 420
400
350
300 gty
u’;".h:*':.‘
L e
250 ';92 e e
e
Ay
200
150
100
Sr
3 . L L . .
[50 00 160 w W/ e & 100

Figure 2. (a—d) Fifty agents flocking to the green target.

1 ze [0,h)
pi(z) = %[1 + cos(m gzl :2)))] ze 1] (7)
0 otherwise

where i € (0,1). A navigational term, f], that determines
the direction the agents should be moving toward, is given
by

(8)

where ¢y, and ¢y are positive constants, and q, and p, are
the position and velocity of the target, respectively. These
equations can be combined to find the control input for
each agent u; given by

w=1f + 1] +1] +17

f] = —cu(q; — q,) — cu(p; — p,)

©)

This method allows the agents to flock together in an
a-lattice formation toward a target location.

Results of flocking algorithm

The results of this flocking algorithm (u;) can be seen in
Figure 2, where the agents are flocking to the green dot
without an obstacle, and in Figure 3 with an obstacle. The

agents are initialized randomly over a 120 x 120 area and
flock toward the green target. The blue lines represent
communication links between agents. It can be seen that
the agents maintain their distance from each other without
getting too far away from each other and eventually con-
verging to an ov-lattice formation. In the case of an obstacle,
the agents manage to avoid colliding with it. This flocking
algorithm thus provides a viable method of escaping from
predators as well as provides a communication structure
between agents to use for communications required to
cooperatively learn.

Multiagent learning

In this section, an entirely decentralized reinforcement
learning method for a network to learn to flock together
to specified targets is presented. Independent and coopera-
tive learning methods are presented. In addition to this, a
method of cooperative learning with function approxima-
tion is evaluated against standard cooperative leaming.

Learning model

The model of the learning algorithm is similar to that pro-
posed in the literature.” Using a state, action, and reward

Young and La

%0
200
150
100 []
L 3
50 5 » .bb’ >
> v
» n,:‘t\t,.
s b —p >
» .: ¥ -4
[L~ 2N
1 by > L
=100 -
10 50 0 50 100 50 200 260
w0l
20 bh »
K
I = N~
- "
150 *’___'h‘_.’..;:.
(g W
100 & [y
> rk' >
%0
o
50
=100 :
120 5 o 50 100 50 200 280

250
20t
150 ok,
[1 L d
»E
1w0of >)y b
L 3 >R
> e, »r
h »
53 L
ok
50
100 -
100 50 o 50 100 50 200 0
360 > b.}
2 »
<"
s P
ZEP
>
"~ r:‘;:i’rwb
150} LA A
105 e
50
]
50
-100 -
100 &0 (4] 50 100 50 200 280

Figure 3. (a—d) Fifty agents flocking to the green target while avoiding the red obstacle.

model for an agent i, let current state, action, and reward be
s;, a;, and r; with the next state and next action as s'; and @'},
respectively.

State. The state can be defined as s; = [dir,, |N;||, where
dir, is the direction of a predator if detected, and |N;| is the
number of neighbors in range for agent i. The state dir, is
setto1,2,3,4,5, 6,7, or 8 for the directions east, northeast,
north, northwest, west, southwest, south, and southeast,
respectively. The directions can further be divided into a
larger space or smaller space if desired. In the case of
multiple predators, this state space can be expanded by
adding a dir, state for each predator.

Action. For actions, the agents want to move in one of eight
cardinal directions to escape a predator depending on the
direction the predator is coming from. These actions can be
encoded as 1, 2, 3, 4, 5, 6, 7, and 8 mirroring the possible
directions in the state defined above. The action list can
then be defined as 4; = [1,2,3,4,5,6,7, 8]. These actions
interact with the flocking algorithm in that the actions are
targets in the respective direction that the agents then flock
toward if chosen. If no predator is detected, the agents
perform no action and stay where they are. The actions are

represented as targets that an agent can choose to flock
toward.

Reward. The flocking algorithm used provides flocking in
an a-lattice formation. This formation ensures that agents
on the inside of the formation have up to six neighbors
while agents on the outside have one to five neighbors.
To match this formation, the reward is then defined as

{INI-’I .D, |NjJ<6
Fi =

6-D, otherwise
so that the max reward that an agent can get is 6 if it has all
six neighbors to encourage flocking.

The reward is then scaled depending on the direction of
the predator. The scaling factor is split into five categories
consisting of the best target, good targets, average targets,
bad targets, and the worst target, which can be visualized in
Figure 4. Agents choosing the action corresponding to the
best target have their reward equal to the reward defined in
equation (10). D, is a scale factor that is determined as
follows: Actions corresponding to good targets are scaled
down to 75% of the reward above, average targets to 50%,
bad targets to 25%, and the worst target to 0%. This is done
to encourage the agents to learn the optimal target to go
toward while maintaining the importance of flocking

(10)

International Journal of Advanced Robotic Systems

@

Figure 4. Visualization of the direction classifications. The large
red circle represents the predator while the triangle represents
the agent. The blue circle represents the best target, green circles
are good targets, yellow circles are average targets, orange circles
are bad targets, and the small red circle is the worst target in this
scenario.

together. The addition of more predators multiplicatively
scales the reward. For example, if there are two predators and
an agent chooses an action that is a good direction for both of
them, the reward will be scaled down by 75% twice. This
would fail if there are eight predators with one in each direc-
tion, but in that case, there is no safe space for the agents to go.

Cooperative learning

To learn to flock to the same target together, a cooperative
learning method is implemented. Agents learning indepen-
dently in this environment will take many learning episodes
to converge or never converge at all which can be seen in
the literature.” However, to cooperatively learn, each agent
must first do independent learning*” for an individual table,
0, as follows:

O (si, @) — Of (si, @) + ofrf + Y max Of(s's,a")
i i

- Q(Si:ai)]
(11)

where « is a learning rate and -y is a discounting factor. This
independent learning is not capable of converging in any
reasonable amount of time for this application, so coopera-
tive learning must be used. After performing independent
learning, the Q-table of each agent is further updated by
communicating with its neighbors using the following’:

|Ni|
(s a)
Qn"H_] (siyai) — “’Qf(Si,ai) +(1- W)ZI_T
(12)

where w is a weight, such that 0 < w < 1 to determine how
much an agent should trust neighbors versus itself. It can be
seen w = 1 would mean the agent only trusts itself, and
w = 0 would mean the agent only trusts its neighbors. The
weight chosen can either be a static value or in this appli-

cation, the weight is defined as w = ;7 so that each agent

equally trusts each other agent. Dividing the sum by |N;| is
required so that over the course of the learning, the

Q-values do not converge to infinity too quickly. Note that
the update from the neighbors is based on the neighbors
state s; and the agents own action a;.

Action selection

The action selection of an agent is based on the maximum
Q-value approach*®** in which the action with the highest
Q-value for a given state is the action chosen. This method
of choosing the action is highly exploitative with no explo-
ration. To introduce exploration, we use e-greedy.*” We
use a small probability 0 < ¢, <1 in which to ignore the
highest Q-value and instead select an action at random.
This can be modeled as follows

{ Amax = A!'

a; =

@random € A;
This random action selection allows an agent to explore

a new action that might return a higher reward. The same

action selection can be used for function approximation
learning replacing the Q-value with the 8 parameter vector.

g, < random(0,...,1)

(13)

otherwise

Function approximation

Despite the cooperative Q learning algorithm performing
better than independent learning, as seen in the literature,”
it still can be improved upon to get better results and faster
convergence. The direction of the predator dir, is already
discretized into eight directions, however, the number of
neighbors |N;| grows in size with the number of agents
used. Due to the random initialization of agents at the start
of each episode, it is possible for each agent to be a neigh-
bor of each other agent. However, as the episode pro-
gresses and the a-lattice formation is achieved, this state
will have one of seven values for either no neighbor or one
to six neighbors. This state size is not particularly large,
but the Q values for higher neighbor amounts are ideally
found to ensure smooth flocking to the target. A radial
basis function (RBF) method of function approximation
is used to achieve quicker learning. A fixed sparse repre-
sentation method was explored, but RBF was found to
perform better. The state, action, and reward representa-
tions remain the same, but the number of neighbors |N;| is
now being approximated using RBF.

Radial basis function. Function approximation allows to
approximate a state space rather than just discretize it.
There are many methods of doing function approximation,
but the method that seemed most applicable was a simple
RBF approach. The RBF scheme maps the original O table
to a parameter vector 0 as*”>°

Oi(si,a;) = Z¢f (51,@:)0;1 = &" (s1,a;)0;

where the RBF kernel ¢ is a column vector of length
[-|{A4}|- The output of the / 'th RBF kernel is given as

(14)

Young and La

_ ||.v—.72t| |2
pi(s) =e i (15)
where s is the current state, 5; is the center of the RBF
kernel /, and y; is the radius of the RBF kernel / producing

the shape of a Gaussian bell. A larger y; thus produces a
flatter RBF.

Function approximation learning. The cooperative learning
algorithm from equations (11) and (12) is still used to learn,
however, it is modified to account for the parameter vector
@ and RBF kernel ¢ in equation (15) rather than Q-val-
ues.*” The independent part of RBF learning is then given
as

0F+! — 0f + alr + v max (¢ (s, a',)0})
a'ie4;
— ((bT(S;}a;)oﬂ(b(Si:ai)

with the same learning rate o and discount factor as
before. The cooperative portion is as follows

IV
28

|V

(16)

Ot =wol + (1 —w) (17)

The key difference here is that each agent must now com-
municate a @ vector rather than just a single Q table value
since the entire @ vector approximates the state. In standard
reinforcement learning, the learning is conducted over mul-
tiple episodes. The episodes here consist of iterations of
agents flocking toward the targets corresponding to their
actions. Learning is concluded when the agents all learn the
same action for each given state. After learning all states,
the agents will have a learned @ table that can be used to guide
the agents in a flock to safe locations away from predators.
The algorithm for this learning is then given in Algorithm 1.

Comparison of learning algorithms

If we use 50 agents n = 50 with eight discrete directions
|dir,| = 8 and eight actions corresponding to those direc-
tions |[{4}| =8, the Q table would be of size
50 x 8-50 x 8 =1.6 x 10°. Since the directions are
already discretized and the number of actions and agents
cannot be reduced, only the neighbor dimension |N;| can be
reduced. For this application, eight RBF kernels were used
to approximate the space although less or more will prob-
ably perform similarly. The # table is then of size
50 x 8-8 x 8=2.56 x 10, which is approximately
one-sixth of the original size. In a state space in which the
direction of predators is ignored |dir,| = 1, the Q size is
2 x 10* while is 3.2 x 10°. The results of this learning
in this state space are shown in Figure 5. It is clear that
using cooperative learning with function approximation,
the performance is significantly better than without in both
space and training time required. Because of this large gap
in learning effectiveness, only cooperative learning with

Algorithm 1. Function approximated distributed cooperative
learning.

Initialization

Set parameters «, v, €4

Initialize @ and position of static targets

for each episode do

Initialize position of agents and predator
for each iteration k do

for each agent i do
Initialization Phase: Observe current

state s;
Select action based on eq. (13)
Action Phase: Each agent performs it’s
action updating the states by eq. (9)
Update Phase: Observe next state ($;)
Select next action (d;) based on max 8;
Compute Reward (r;)
Compute 8; value using eq. (16)
Update @; based on its neighbors using eq.
a7

end

The number of iterations % is determined by
the number of iterations required for the
agents to flock to a target.

end
Training is terminated after all agents choose the
same target for all predator directions.

end

Output a learned @ table that agents use to know
which target to go to depending on the direction of
the predator.

function approximation is used for the larger state space,
where |dir,| = 8.

Consensus for multiagent state
approximation

In this section, a way of sensing and communicating the
direction of a predator is presented. Each agent has a pre-
dator sensing radius r,, that allows them to sense a predator.
If a predator is within that radius, then the agent is able to
know its relative angle to the predator. These angles can be
used to determine the direction the predator is coming
from. However, not every agent will be in range of the
predator to see the direction that it is coming from and not
every agent that is in range will agree on which direction
the predator is coming from. To solve this, a weighted
voting method is introduced for agents to share and achieve
a consensus on the direction of the predator.

Predator sensing

A method of agents achieving consensus proposed in the
literature™® is used as a start point for the weighted voting
procedure. The algorithm is split into two components: a

International Journal of Advanced Robotic Systems

.—Umla‘.lm with HEF

= =Cogpestive without RBF
Independant with REF

= ==Indapandent without REF |

Mumber of Agents

Figure 5. Comparison of convergence between RBF and Q

learning with and without cooperative learning. All four algorithms
were run |0 times for 20 episodes, and the results were averaged.
Over the course of these runs, cooperative RBF was able to con-
verge within four episodes while cooperative Q learning was

unsuccessful in fully converging within 20 episodes. Both indepen-
dent algorithms were not able to learn. RBF: radial basis function.

measurement step and a consensus step. For the measure-
ment step, if an agent is in range of the predator, then it
performs a measurement of the relative direction of the
predator. As mentioned previously, the direction is discre-
tized into eight evenly split directions. These directions are
assigned to an information vector info; as
0 <wp, < 22.5,337.5 < w, <360
225 <w, <675
67.5 <w, < 112.5
1125 <w, < 1575
157.5 <w), < 202.5
202.5 < w, < 247.5

7 2475<w, <2925
L8 2925 <w, <3375

.

il'lfO.‘ = {

(= IV I R S

where w, is the angle between the agent and the predator
such that 0 < w, < 360. These directions are visualized in
Figure 6. These directions do not have to be symmetrical or
positioned, as have been positioned here. There can also be
more or less directions as desired. However, the directions

Figure 6. Direction and associated information values for an
agent observing a predator. Each color corresponds to an infor-
mation value | through 8 with | representing east, 3 representing
north, and so forth.

for this application were chosen as eight evenly divided
directions such that they are all 45° in width,
360/8 = 45, and they are aligned to the cardinal directions.

Each agent’s information vector is assigned a weight or
a belief factor weight, ;. This weight vector is of size num-
ber of agents by the number of directions # - |dir,| and is
determined from an agent’s measurement given by equa-
tion (19), where w,, is the middle angle of the direction
measured, info; + 1 is the next direction counterclockwise,
and info; — 1 is the next direction clockwise. For example,

if info; = 1, then info, — 1 = 8. The scale factor “”"—_:fi
Il Il

splits the distance weight 1 — % into two directions of
the weight vector. This scale factor is between 0 and 1, and
is determined by where the measured angle is relative to the
center of the direction. For example, the center of direction
one wy, is 0°, and if the measured angle w, is 0°, then

2t _ 1 Thus, the weight,, = (1 —1%=%). 1 1f
the measured angle w, was 22.5, then 22224 _ 0 5

and 1—22=22%% — 0.5, Thus, weight,; = weight,, =

1 II%;W_") % 0.5. The idea here is to assign weight based

on closeness to the predator and closeness to the center of
the directions. Once the information and weight has been
found for all agents, we can then run a consensus based on
weighted voting

d = info,

(
ﬂ(

||q., q| Wi — Wy + 45
45

—w,+ 45
—_—)nq.,—q,-nmp‘h

Ian q:ll | Mm
45

||& q; || ”"E Wiy + 45 7
7 L]
1 45 ||qp q:ll <rp,d =

) llg, —ail <7

info; 4 1, wp > W

(19)

info; — 1, wp < W

otherwise

Young and La

Consensus

For consensus, each agent updates its information info; and
weight weight; ; based on its neighbors N;. The goal is for all
agents to agree on the same info; and for that info; to be as
accurate as possible, thus achieving consensus on the direc-
tion of the predator. To do this, a weighted voting method is
implemented, where the weights for an agent and its neigh-
bors are summed together into the weighted direction vector
weight,, such that weight; = weight, + /" weight,. The
info; is then set to the direction that has a maximum weight
info; = max,(weight; ;). The weight and information are
updated for all agents for a set amount of iterations ¢, in
this manner, and then, the weight for each agent is updated to
the maximum weight among itself and its neighbors such
that weight, = maxcign:(weighty, U weight;). Sharing the
maximum weight after the set amount of iterations allows
for all agents to converge to the same predator direction in a
quick manner. The measurement and consensus steps can be
combined, as seen in Algorithm 2.

Using this algorithm, info; is found for each agent, and
given enough iterations, the proposed consensus will con-
verge to the same value for all agents. This value is used to
determine the state dir, in the reinforcement learning
component.

Validation

Algorithm 2 is tested in an environment, where 50 agents
are flocking to a static position while seeing a predator,
denoted by a large red circle, moving in a circle around the
flock over 900 iterations, as can be seen in Figure 7.
Visually, the agents that are represented by the triangles
change color in association with the direction they perceive
the predator to be in after consensus. The consensus com-
ponent was allowed to run for 20 consensus iterations and
was found that all agents converged to the same info;
within that duration. The number 20 was arbitrarily cho-
sen as a large number to ensure that the agents have
enough iterations to achieve a consensus. One run of the
average time it took to converge for each of the 900 itera-
tions can be seen in Figure 8. Figure 9 shows the compar-
ison of the state found through consensus to the actual
state relative to the center of mass of the flock. It can be
seen that it is not always perfectly accurate, but this can be
attributed to a lack of full observability and lack of sym-
metry in the flock. It was always able to fully converge for
varying values of ¢,,, which can be seen in Table 1. How-
ever, if one does not do the maximum weight sharing by
setting ¢,, to an arbitrarily high value, the algorithm will
not fully converge even given up to 40 iterations, as can be
seen in Figures 10 and 11.

From Table 1, we can see that if the largest measured
weight is spread from one side of the flock to the other,
cm =0, it takes 8.2 iterations to completely reach every
agent in the flock. That amount of iterations to achieve a

Algorithm 2. Consensus on direction of predator.

Initialize r,
Initialize ¢,
Measurement Phase:
for Each agent i do

if ||qp — qu/| <rp then

Find in fo; from eq. (18)
Find weight; 4 from eq. (19)
else
| weight; =0

end
end
Consensus Phase:
for Each Consensus Iteration c do
for Each agent i do
Update the weighted direction vector
if ¢ < ¢,, then

‘ weight; = weight; + zg‘ll weight ;
else
weight; =
MATyeight(Weight y, U weight;)

end
Update the in fo;
info; = maxy(weight; q)

end
end

consensus is thus not able to be made smaller due to the
network communication limitations and size of the flock.
By adding additional weighted voting iterations c,,, we can
see that it takes additional iterations to converge for each
weighted voting iteration added. It is also clear that adding
more weighted voting iterations does not necessarily
increase the accuracy of the consensus as can be seen by
comparing ¢,, = 2 and ¢,, = 3. By letting ¢,, = 10, it can
be seen that there is about an 1.5% increase in performance
compared to ¢,, = 2 but at a much higher computational
cost. The error in accuracy can be attributed to the forma-
tion of the flock, as can be seen in Figure 12. Despite the
predator being east of the flock as a whole, the agents will
converge to northeast due to only one agent being in range
of the predator to sense it. Using this data going forward to
the hybrid system, we let ¢,, = 2 and let the number of
consensus iterations be 12 to allow some margin of error
to account for a poor flocking structure.

Through testing alternate consensus methods, one was
able to achieve a higher accuracy. This method involved
using consensus to determine the center of mass of the
flock and absolute position of the predator. When each
agent has that center of mass position and the position of
the predator, it can then determine for itself the direction of
the predator, but this approach is not used for a few reasons.
First and foremost, the time it takes to reach a consensus is
at least two to three times the number of iterations that the

International Journal of Advanced Robotic Systems

150 ! ' T 150 v v v
100 100 .
» » > >
- >
50 - LR . S0 L .- .
L] > > > ¥ > » L
L * - L b B
s » > » L > r L
e o » > » > » "
> - - » 0 b, > - [3
» LS " » » [» >
- » Py b »
- - 5 L
L S S LI S »
5 - 50
o o » > e, T
-100 [-0 b
-150 . A . 150 . . .
150 100 50 0 50 100 150 150 100 50 ¢ 50 100 150
150 ! v T T 150 v v v
100 100 .
s [e 13
50 F B s " . 50 F > L L
B = L b B " &
B L4 . -3 B
» S L o » B
[. -3 > b - by N N -
[» B] = > » o
Py L ! Py kP
P > >
P ey - [L [B
L b i oy B B
50 B » B sof -] " -3
DL > BB b
-100 -100
150 . -150 . .
150 o 50 o 0 100 150 150 100 50 [} =0 1o 150

Figure 7. (a—d) Predator moving in circle around flock with consensus updating the state of the agents based on the direction of the

predator.

Consensus Iterations To Converge

Mean Agent State

9
50 — Consensus Slale
4 Col State
45
a 40 F
=
w . /
g 35 !
e
8
525
[=]
i
20r
16
wr f
o
2 4] 8 10 12 14 16 18 20 100 200 300 400 500 GO0 700 8OO 900
Consensus llerations Iterations

Figure 8. The number of consensus iterations for all agents to
converge to the same state.

proposed approach uses, thus making it take much longer to
both learn and later use practically for predator detection.
Secondly, it requires that each agent has an absolute coor-
dinate for itself and the predator rather than relative direc-
tions for those agents in range of the predator. In many
environments, this may not be known or if it may have a

Figure 9. The average info; for the agents in each iteration. Some
states occur for a longer duration due to the shape of the flock.

large amount of noise associated with it, so this approach
was not used.
Simulation and results

In this section, we go over implementation details and
results found for the hybrid learning system. We use

Young and La

Table I. The iterations to converge and number of incorrect directions found over 900 iterations. ¢,, = 2 produces the best results.

Effects of change in ¢,

Iterations to converge 8.2 8.8 9.8 10.6 | 16.2
Incorrect directions 114 (12.7%) 75.2 (8.4%) 68.6 (7.6%) 73.8 (8.2%) 704 (7.8%) 54.4 (6.04%)
. Num Agents in Same State
3l
50
] I
mﬁ a5 > » 1
g
& a0t 0 > > > .
§ . > . |
g/ _
2 >
; il
- 100 200 300 400 500 600 700 800 900] 2 9 1] 1 ; 3 4 5 6
lteration

Figure 10. The number of agents in the same state when ¢, is
arbitrarily high. There are multiple predator positions that result
in the agents not fully converging even given 40 iterations.

Consensus Iterations Te Converge

Agents in Same State
L
o (-] h [=1 <] [=] i]

=]

5 10 15 20 25 30 35

Consensus Iterations

Figure | |. The convergence of the agents state when ¢, is
arbitrarily high. Given 40 consensus iterations, it is not able to fully
converge.

consensus to determine the direction of the predator dir,.
This state is then used in the multiagent learning for the 6
table. The multiagent learning then produces an action,
which is a target to flock toward that is used by the flocking
algorithm for the agents. Finally, the flocking algorithm
produces a control input for each agent to flock to its cho-
sen target. Using this system, we can teach agents to detect
and flock away from predators. The simulation was devel-
oped using MATLAB. Each learning episode consists of a

Figure 12. The cause of error of the consensus algorithm.
Despite the predator being east of the flock as a whole the only
agent in range senses it as northeast causing the error seen in
Table I.

certain time duration that is long enough for agents to flock
to the determined target. Within each episode, the number
ofiterations that it is run for is determined by the time step.
A smaller time step gives longer episodes but faster learn-
ing due to more communications occurring over the epi-
sode. Smaller time steps also provide for smoother
flocking. Each agent is represented by plotting its position
as a triangle at each time step in a two-dimensional
MATLARB plot.

Simulation environment

The learning environment is set up in a manner, as shown in
Figure 13, where the triangles represent the agents, and the
large red circle represents the predator. The eight smaller
green circles around the edge represent the eight static
targets for the eight actions. Each episode begins by ran-
domly initializing 50 agents in a 120 x 120 area and the
predator in one of eight directions. The predator then
moves toward the center of mass of the agents. The pre-
dator is placed far enough away that the agents will be fully
connected to each other but not necessarily in perfect flock-
ing formation by the time the predator gets in range. This is
done to ensure that each agent is able to get the direction of
the predator through consensus so that an agent does not get
left behind due to being initialized too far away from the
rest of the agents.

International Journal of Advanced Robotic Systems

4N)

300 - 4

400 L
=400 =300 200 -1 o 100 200 00 400

Figure 13. Initialization of an episode with agents randomly
distributed.

Learning configuration. For the single predator environment,
the direction of the predator is initially east, then northeast,
and so on, in a counter-clockwise rotation so that ideally
every possible state dir, is encountered once every eight
episodes. The learning is conducted over 56 episodes and
the results can be seen below. For the two-predator envi-
ronment, the learning is conducted over 216 episodes with
the reason explained below. For the e-greedy action selec-
tion in equation (13), an ¢ value of 0.1 is chosen to allow
the agents to explore other actions more quickly while not
hindering the smoothness of flocking too extremely.

Results

Single direction state. We first look at a scenario in which all
agents are in the same direction state with the use of con-
sensus. The average results of 10 runs over eight episodes
canbe seen in Figures 14 and 15. We can see that the agents
are able to fully converge for a single direction state in four
episodes. Thus, the theoretical number of episodes required
to learn is 8 directions times 4 episodes required or 32.
However, due to the nature of flocks not being perfect, it
is possible for each direction to not be seen four times
within those 32 episodes, so 56 episodes are used to learn
for the single predator and 216 for the two-predator envi-
ronment to account for slower learning due to consensus.

Single predator. Six runs were conducted and averaged for
the single predator environment. In Figure 16, it can be
seen that by episode 32, or the predator coming from each
direction four times, the agents have mostly converged to
the same target, but there are a few cases in which it is not
fully converged until approximately episode 48 or each
direction occurring six times, which is expected due to
potential consensus inaccuracies.

The position of agents during the first learning episode
canbe seen in Figure 17. Some agents are in different states

Of Agents Taking Same Action

1 2 3 4 5] T 8
Episode

Figure |14. The number of agents choosing the same action for
each episode for a single direction state by episode. The agents
are able to fully converge by four episodes.

of Agents Ct
-

ing Same Action By Iteration
. T ———

Number of Agenis
g

T T
| I
¥ T
| I
| I
| I
| I
| I
| I
1 I
| I
| I
| I
| I
I I
I I
| I
| I
I I
| I
| I
| 1

T T

I | |

T T T
| I | I
| I | |
| I | |
| I | I
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	
I	I
I	
I	
I	
I L I I

1000 2000 3000 4000 8000 6000 7000
Iteration

Figure |15. The number of agents choosing the same action for
each episode for a single direction state by iteration with the
dashed lines representing the start of an episode. It can be seen
that most learning is done in the beginning of an episode while the
flock is connected.

and the agents in the same state have not learned to go to
the same target yet. This produces the messy flocking shape
that can be seen. In Figure 18, the agents are all in the same
state and have learned to go to the same target in an o-
lattice formation.

In Figure 19, we have the trajectory the agents take in
the final learning episode, where the pink triangles are the
random initialization of the agents. By the last episode, it
can be seen that all agents have converged to the same
target flocking in a relatively smooth manner despite the
random action selection of e-greedy.

Two predators. Two predators have also been tested to per-
form well with an expanded information vector to account
for the extra predator and thus a larger state space as well.
The addition of a second predator increases the number of

Young and La

13

predator starting positions by a factor of eight from 8
positions to 64. In addition to longer computation times
for handling a second predator, there is now eight times
the amount of episodes that must be performed for all

Number of Agents Choosing Same Action

MNumber of Agents

2 W 40 45 50 55
Episode

5 10 15 20

Figure 16. The number of agents choosing the same action for
each episode for a single predator environment averaged over six
runs. It can be seen that the agents converge by each direction
being encountered six times.

direction combinations to be encountered. Unfortunately,
this cannot be reduced, without reducing the problem size,
by applying a function approximation approach to the
learning process. However, there is a way to lower
the amount of direction combinations. Instead of learning
the direction of the two predators separately, we treat both
predators as the same predator. This way if the first pre-
dator is detected in direction 1 and the second predator is
detected in direction 2, it is the same as if the first predator
is in direction 2 and the second predator is in direction 1.
Thus, the system learns two state combinations simulta-
neously. However, there are eight direction combinations,
where both predators are detected in the same direction,
which is not reducible. This reduces the number of direc-
tion combinations from 64 down to 36, which reduces the
number of episodes and thus the time it takes to learn from
8 times that of a single predator to 4.5 times. For this
reason, the two-predator learning is done over 216 epi-
sodes, and the results of which can be seen in one run in
Figure 20. It can be seen that by 144 episodes, or all
combinations of directions being encountered four times
the agents have almost converged. By 180 episodes or
each direction being seen five times, the agents have com-
pletely converged to the same action for each state.

200

A0
P

(c)

e

(b)

40

Figure 17. (a—d) Fifty agents flocking away from one predator before learning the same target.

International Journal of Advanced Robotic Systems

(a)
400
00 &
®
200
100 o 200 « [} 1] & X 400
(¢)
400
100 ¢+
o)
200 |
o a [} 100 O x l-:O

Figure 18. (a—d) Fifty agents flocking away from one predator after learning the same target.

Trajectory of last episode

=100

-400 -350 -300 -250 -200 -150 -100 50 0 50 100

Figure 19. Trajectory the agents take in the last episode
where the triangles are the initial position of the agents. The
flocking can be seen to be smooth to the target after agents
get into flocking formation despite the s-greedy random action
selection.

Number of Agents Choosing Sama Action

20

| | M L
oA |(hl

Mumber of Agents

il o 80 80 100 120
Episode

140 160 180 200

Figure 20. Number of agents choosing the same action for two
predators over 216 episodes. It can be seen that after 180 epi-
sodes, all agents choose the same action for each state.

Young and La

(2)

200}

300 400

(b)

a0

200 -

400

200 Wl

''''''

AN r -
40 200 200

400

Figure 21. (a—d) Fifty agents flocking away from two predators before learning the same target.

The movement of the agents flocking away from the two
predators before they have learned and after they have
learned to flock away from the predators can be seen in
Figures 21 and 22, respectively, which looks similar to that
of the single predator.

Discussion

In Figure 21, it can be seen that the agents split into two
subgroups. This was a fairly common occurrence for
unlearned episodes caused by the communication between
neighbors. In this case, a lot of the agents may have found
the west direction to be the best while others may have found
the northwest direction to be best. Eventually, their close
neighbors would agree with them and move with them to
those targets but not enough to cause the other majority to
agree. In this case, the neighborhoods are pretty split
between the top half and the bottom half visually with agents
on the border picking one or the other depending on the -
greedy learning algorithm. The best direction is then learned

in later episodes when the agents are randomly positioned so
that the neighborhoods become mixed together.

Another aspect to consider is what would happen if
agents were surrounding a predator. In particular, if agents
were equally distributed around the predator, then the pre-
dator is not in any particular cardinal direction relative to
the flock. Currently, there is no check for that occurring but
that would be easily adaptable to stop the agents from
moving until the predator moves into a position, where
there is a cardinal direction. Alternatively, currently, the
agents will move in either the first or last direction depend-
ing on implementation at which point the predator will
likely obtain a direction after one time step.

Conclusion and future work

Conclusion

This article presented a hybrid system that achieves an
efficient cooperative learning behavior. The system is

International Journal of Advanced Robotic Systems

00 - —————
300+
200 +
100 ¢
»
.,
. ot
Fl
il b
L Eee
150 |
200
S r g
o— _ —_ - —_ n|
400 o0 200 {i+] o 100 0 30 400
400 ¢
N0 +
200 |
W00
L
Rralees
PP
P M
e
A
" .‘,'..- .
S
1% I
ax}
axl
axl . . |
400 -300 00 {1+ o 100 0 0 00

00t

00

(d)

200 “100 o 100 200 g

300

Figure 22. (a—d) Fifty agents flocking away from two predators after learning the same target.

applied to the task of escaping attacking predators while
maintaining a flocking formation.

Flocking is used to move the agents in an «-lattice for-
mation to a target location. Then, multiple reinforcement
learning methods were presented utilizing the flocking tar-
gets as actions in the learning algorithm. Independent learn-
ing with and without function approximation proved to be
unreliable in learning to flock together to the same target.
Cooperative learning without function approximation was
shown to be better than both independent learning methods
but still took a considerable amount of episodes to learn.
Cooperative learning with function approximation was
shown to perform the best, requiring very few episodes for
the agents to converge to the same target.

Finally, a method of detecting predators is used to deter-
mine the direction of attacking predators. The method pro-
posed was shown to be very accurate, requiring only a few
more iterations than it takes to transmit information from
one edge of the flock to the other. The direction of the

detected predators is used for determining the state of the
system for the reinforcement leaming component.

The hybrid system was then developed consisting of
flocking control, function approximated cooperative learn-
ing, and consensus to allow agents to learn the location of a
predator and where to flock away from it. The system was
tested in one and two predator environments with results
showing the success of the system as an efficient coopera-
tive learning method.

Future work

Although the hybrid-system proposed here was used to
solve the task of avoiding predators by agents flocking
together to targets, it is generic enough to be used in a
variety of multiagent tasks. Applying this hybrid system
of using consensus to determine the states and reinforce-
ment learning to learn the states is something that can be
looked further into in the future to achieve efficient

Young and La

17

learning for a variety of tasks. A possible improvement to
this work is to create a more parallelized framework for the
simulation to allow for faster learning particularly for
increased amounts of predators that grow the state space
and learning configuration. Further testing can be done
with an expanded state size of more predators and a
three-dimensional simulation environment. In addition to
this, implementing smarter predators and different types of
agents are also tasks that could be looked into in the future.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
material was based upon work partially supported by the National
Aeronautics and Space Administration (NASA) under grant RRR
no. 8O0NSSC19M0170 and grant no. NNX15AI02H issued
through the NVSGC-RI program under subaward no. 19-21, the
RID program under subaward no. 19-29, and the NVSGC-CD
program under subaward no. 18-54. This work was supported
by the U.S. National Science Foundation (NSF) under grant nos
NSF-CAREER: 1846513 and NSF-PFI-TT: 1919127 and the U.S.
Department of Transportation, Office of the Assistant Secretary
for Research and Technology (USDOT/OST-R) under grant no.
69A3551747126 through INSPIRE University Transportation
Center. The views, opinions, findings, and conclusions reflected
in this publication are solely those of the authors and do not
represent the official policy or position of the NSF, NASA, and
USDOT/OST-R.

ORCID iD
Hung Manh La @ https://orcid.org/0000-0003-2183-2634

Supplemental material

Supplemental material for this article is available online.

References

1. JinL, Li §, La HM, et al. Dynamic task allocation in multi-
robot coordination for moving target tracking: a distributed
approach. Automatica 2019; 100: 75-81.

2. Harris N, Liu 8, Louis 8], et al. A genetic algorithm for
multirobot routing in automated bridge inspection. In: Pro-
ceedings of the genetic and evolutionary computation confer-
ence companion, Prague, Czech Republic, 2019, pp.
369-370. New York, NY, USA: Association for Computing
Machinery.

3. Konda R, La HM, and Zhang J. Decentralized function
approximated g-learning in multi-robot systems for predator
avoidance. [EEE Robot Autom Lett 2020; 5(4): 6342—6349.

4. Pham HX, La HM, Feil-Seifer D, et al. A distributed control
framework for a team of unmanned aerial vehicles for
dynamic wildfire tracking. In: 2017 IEEE/RSJ international
conference on intelligent robots and systems (IROS).

10.

11.

12.

13.

14.

15.

16.

17.

18.

Vancouver, BC, Canada, 24-28 September 2017, pp.
6648—66353. IEEE.

. Pham HX, La HM, Feil-Seifer D, et al. A distributed control

framework of multiple unmanned aerial vehicles for dynamic
wildfire tracking. /EEE Trans Syst Man Cyber: Syst 2020;
50(4): 1537-1548.

. Tavakoli M, Cabrita G, Faria R, et al. Cooperative multi-

agent mapping of three-dimensional structures for pipeline
inspection applications. Int J Robot Res 2012; 31(12):
1489-1503.

. Fox D, Ko J, Konolige K, et al. Distributed multirobot explo-

ration and mapping. Proc IEEE 2006; 94(7): 1325-1339.

. La HM, Lim RS, Sheng W, et al. Cooperative flocking and

learning in multi-robot systems for predator avoidance. In:
2013 IEEE international conference on cyber technology in
automation, control and intelligent systems. Nanjing, China,
26-29 May 2013, pp. 337-342. IEEE.

. LaHM, Lim R, and Sheng W. Multirobot cooperative learn-

ing for predator avoidance. /EEE Trans Control Syst Technol
2014; 23(1): 52-63.

Muiioz F, Espinoza Quesada ES, La HM, et al. Adaptive
consensus algorithms for real-time operation of multi-agent
systems affected by switching network events. Int J Robust
Nonlinear Control 2017; 27(9): 1566—1588.

Dang AD, La HM, Nguyen T, et al. Formation control for
autonomous robots with collision and obstacle avoidance
using a rotational and repulsive force-based approach. Int J
Adv Robot Syst 2019; 16(3): 1729881419847897.

Nguyen H and La HM. Review of deep reinforcement learn-
ing for robot manipulation. In: 2019 Third IEEE international
conference on robotic computing (IRC). Naples, Italy, 25-27
February 2019, pp. 590-595. IEEE.

Nguyen MT, La HM, and Teague KA. Compressive and col-
laborative mobile sensing for scalar field mapping in robotic
networks. In: 2015 53rd annual allerton conference on com-
munication, control, and computing (allerton), Monticello,
IL, 2015, pp. 873-880.

La HM. (2020). Multi-Robot Swarm for Cooperative Scalar
Field Mapping. In: Management Association, I. (Eds.),
Robotic Systems: Concepts, Methodologies, Tools, and Appli-
cations. 1GI Global, 2020, pp. 208-223.

La HM, Sheng W, and Chen J. Cooperative and active sen-
sing in mobile sensor networks for scalar field mapping.
IEEE Trans Syst Man Cybernet: Syst 2015; 45(1): 1-12.
Nguyen MT, La HM, and Teague KA. Collaborative and
compressed mobile sensing for data collection in distributed
robotic networks. IEEE Trans Control Network Syst 2018;
5(4): 1729-1740.

Le C, Pham AQ, La HM, et al. A multi-robotic system for
environmental dirt cleaning. In: 2020 IEEE/SICE interna-
tional symposium on system integration (S11), Honolulu, HI,
USA, 2020, pp. 1294-1299.

Connell D and La HM. Extended rapidly exploring random
tree—based dynamic path planning and replanning for mobile
robots. Int J Adv Robot Syst 2018; 15(3): 1729881418773874.

https://orcid.org/0000-0003-2183-2634
https://orcid.org/0000-0003-2183-2634
https://orcid.org/0000-0003-2183-2634

International Journal of Advanced Robotic Systems

19.

20.

21.

23.

24,

25.

26.

27.

28.

29.

30.

31.

Connell D and La HM. Dynamic path planning and replan-
ning for mobile robots using RRT. In: 2017 IEEE interna-
tional conference on systems, man, and cybernetics (SMC).
Banff, AB, Canada, 58 October 2017, pp. 1429-1434. [EEE.
Dang AD, La HM, and Horn J. Distributed formation control
for autonomous robots following desired shapes in noisy
environment. In: 2016 IEEE international conference on
multisensor fusion and integration for intelligent systems
(MF1). Baden-Baden, Germany, 1921 September 2016, pp.
285-290. IEEE.

Nguyen T and La HM. Formation control of multiple rectan-
gular agents with limited communication ranges. In: G Bebis,
R Boyle, B Parvin, et al. (eds) Advances in visual computing.
Cham: Springer International Publishing, 2014, pp. 915-924.
ISBN 978-3-319-14364-4

. Han T, La HM, and Dinh BH. Flocking of mobile robots by

bounded feedback. In: 2016 IEEE international conference
on automation science and engineering (CASE). Fort Worth,
TX, USA, 21-25 August 2016, pp. 689—694. IEEE.

Hung PD, La HM, and Ngo TD. Adaptive hierarchical dis-
tributed control with cooperative task allocation for robot
swarms. In: 2020 IEEE/SICE international symposium on
system integration (SII). Honolulu, HI, USA, 12-15 January
2020, pp. 1300-1305. IEEE.

Jafari M, Sengupta S, and La H. Adaptive flocking control of
multiple unmanned ground vehicles by using a UAV. Adv
Visual Computing 2015; 9475: 628—637.

Pham HX, La H, Feil-Seifer D, et al. Performance compari-
son of function approximation-based Q learning algorithms
for autonomous UAV navigation. In: The 15th International
Conference on Ubiguitous Robots (UR), Hawaii, USA, 26-30
June 2018, pp. 1-3.

Pham HX, La HM, Feil-Seifer D, et al. Reinforcement learn-
ing for autonomous UAV navigation using function approx-
imation. In: 2018 IEEE international symposium on safety,
security, and rescue robotics (SSRR). Philadelphia, PA, USA,
68 August 2018, pp. 1-6. IEEE.

Rahimi M, Gibb S, Shen Y, et al. A comparison of various
approaches to reinforcement learning algorithms for multi-
robot box pushing. In: Fujita H, Nguyen DC, and Vu NP (eds)
Advances in engineering research and application. Cham:
Springer International Publishing, 2018, pp. 16-30. ISBN
978-3-030-04792-4

Roberts G. Why individual vigilance declines as group size
increases. Animal Behav 1996; 51: 1077-1086. DOI:10.1006/
anbe.1996.0109.

Krause J, Ruxton GD, and Rubenstein D. Is there always an
influence of shoal size on predator hunting success? J Fish
Biol 1998; 52(3): 494-501.

Milinski M and Heller R. Influence of a predator on the
optimal foraging behaviour of sticklebacks (Gasterosteus
aculeatus L.). Nature 1978; 275(5681): 642—644.

Hahn C, Phan T, Gabor T, Belzner L, and Linnhoff-Popien C.
Emergent escape-based flocking behavior using multi-agent
reinforcement learning. In: Artificial life conference proceed-
ings, July 2019, pp. 598—605. Cambridge, MA: MIT Press.

32

33.

34.

35.

36.

37.

38.

39.

41.

42.

43.

45.

Sunehag P, Lever G, Liu S, et al. Reinforcement learning agents
acquire flocking and symbiotic behaviour in simulated ecosys-
tems. In: Artificial life conference proceedings, 2019, pp.
103-110.

Olfati-Saber R. Flocking for multi-agent dynamic systems:
algorithms and theory. [EEE Trans Autom Control 2006;
51(3): 401-420.

Singh P, Tiwari R, and Bhattacharya M. Navigation in
multi robot system using cooperative learning: a survey.
In: 2016 international conference on computational tech-
niques in information and communication technologies
(ICCTICT). New Delhi, India, 11-13 March 2010, pp.
145-150. IEEE.

La HM and Sheng W. Flocking control of multiple agents in
noisy environments. In 2010 IEEE international conference
on robotics and automation. Anchorage, AK, USA, 3-7 May
2010, pp. 4964-4969. IEEE.

La HM and Sheng W. Flocking control of a mobile sensor
network to track and observe a moving target. In: 2009 IEEE
international conference on robotics and automation. Kobe,
Japan, 12-17 May 2009, pp. 3129-3134. IEEE.

La HM, Nguyen TH, Nguyen CH, et al. Optimal flocking
control for a mobile sensor network based a moving target
tracking. In: 2009 IEEE international conference on systems,
man and cybernetics. San Antonio, TX, USA, 11-14 October
2009, pp. 4801—4806. IEEE.

Reynolds CW. Flocks, herds and schools: a distributed beha-
vioral model. SIGGRAPH Comput Graph 1987; 21(4):
25-34.

Durve M, Peruani F, and Celani A. Learning to flock through
reinforcement. Phys Rev E 2019; 102: 012601.

. Semnani SH, Liu H, Everett M, et al. Multi-agent motion

planning for dense and dynamic environments via deep rein-
forcement leamning. In: IEEE Robotics and Automation Let-
ters, (vol. 5, no. 2), April 2020, pp. 3221-3226.

Mehmood U, Roy S, Grosu R, Smolka SA, Stoller SD, and
Tiwari A. Neural flocking: MPC-based supervised learning of
flocking controllers. In: International conference on founda-
tions of software science and computation structures, 25
April 2020, pp. 1-16. Cham: Springer.

Martnez-Clark R, Cruz-Herandez C, Pliego-Jimenez J, et al.
Control algorithms for the emergence of self-organized beha-
viours in swarms of differential-traction wheeled mobile
robots. Int J Adv Robot Syst 2018; 15(6): 1729881418806435.
Shiliang S, Ting W, Chen Y, et al. Distributed fault detection
and isolation for flocking in a multi-robot system with imper-
fect communication. Int J Adv Robot Syst 2014; 11.

. Jiang L and Zhang R. Stable formation control of multi-robot

system with communication delay. Int J Adv Robot Syst 2012;
9(1): 4.

La HM and Sheng W. Adaptive flocking control for dynamic
target tracking in mobile sensor networks. In: 2009 IEEE/RSJ
international conference on intelligent robots and systems.
St. Louis, MO, USA, 10-15 October 2009, pp. 4843—4848.
IEEE.

Young and La

19

46.

47.

48.

49.

50.

51.

Afifi AM, Alhosainy OH, Elias CM, et al. Deep policy-
gradient based path planning and reinforcement cooperative
Q-learning behavior of multi-vehicle systems. In: 2019 IEEE
international conference on vehicular electronics and safety
(ICVES). Cairo, Egypt, 46 September 2019, pp. 1-7. IEEE.
Sutton RS and Barto AG. Reinforcement learning: an intro-
duction. Cambridge, MA, USA: MIT Press, 2018.

Busoniu L, Babuska R, and De Schutter B. A comprehensive
survey of multiagent reinforcement leamning. IEEE Trans Syst
Man Cyber Part C (Appl Rev) 2008; 38(2): 156-172.
Busoniu L, Babuska R, De Schutter B, et al. Reinforcement
learning and dynamic programming using function approx-
imators. Cleveland, OH, USA: CRC Press, 2010. ISBN
1439821089.

Geramifard A, Walsh TJ, Tellex S, et al. A tutorial on linear
function approximators for dynamic programming and rein-
forcement learning. Foundation and TrendsO in Machine
Learning 2013; 6(4): 375-451.

Zhang K, Yang Z, and Basar T. Networked multi-agent
reinforcement learning in continuous spaces. In: 2018 IEEE
conference on decision and control (CDC). Miami Beach,
FL, USA, 17-19 December 2018, pp. 2771-2776. IEEE.

52.

53.

54.

55.

56.

57.

58.

Xu Y, Zhang W, Liu W, et al. Multiagent-based reinforce-
ment learning for optimal reactive power dispatch. [EEE
Trans Syst Man Cyber Part C (Appl Rev) 2012; 42(6):
1742-1751.

Nowzari C, Garcia E, and Cortés J. Event-triggered commu-
nication and control of networked systems for multi-agent
consensus. Automatica 2019; 105: 1-27.

Olfati-Saber R, Fax JA, and Murray RM. Consensus and
cooperation in networked multi-agent systems. Proc IEEE
2007; 95(1): 215-233.

Kokiopoulou E and Frossard P. Distributed classification of
multiple observation sets by consensus. /[EEE Trans Signal
Process 2011; 59(1): 104-114.

La HM and Sheng W. Distributed sensor fusion for scalar
field mapping using mobile sensor networks. /EEE Trans
Cyber 2013; 43(2): 766-778.

La HM and Sheng W. Cooperative sensing in mobile sensor
networks based on distributed consensus. In: Drummond OE
(ed) Signal and data processing of small targets 2011, Vol.
8137. SPIE, 2011, pp. 328-341.

Kaelbling LP, Littman ML, and Moore AW. Reinforcement
learning: a survey. J Art Intell Res 1996; 4: 237-285.

