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Abstract

Programming with logic for sophisticated applications must deal with recursion
and negation, which together have created significant challenges in logic, leading to
many different, conflicting semantics of rules. This paper describes a unified language,
DA logic, for design and analysis logic, based on the unifying founded semantics and
constraint semantics, that supports the power and ease of programming with different
intended semantics. The key idea is to provide meta-constraints, support the use of
uncertain information in the form of either undefined values or possible combinations
of values or both, and promote the use of knowledge units that can be instantiated by
any new predicates, including predicates with additional arguments.

1 Introduction

Programming with logic has allowed many design and analysis problems to be expressed
more easily and clearly at a high level. Examples include problems in program analysis,
network management, security frameworks, and decision support |[Liul8]. However, when
sophisticated problems require reasoning with negation and recursion, possibly causing con-
tradiction in cyclic reasoning, programming with logic has been a challenge. Many languages
and semantics have been proposed, e.g., [Fit85, GL88, VRS91|, but they have different un-
derlying assumptions that are conflicting and subtle, and each is suitable for only certain
kinds of problems.

This paper describes a unified language, DA logic, for design and analysis logic, for
programming with logic using logical constraints. It supports logic rules with unrestricted
negation in recursion, as well as unrestricted universal and existential quantification. It
is based on the unifying founded semantics and constraint semantics [LS18, LS20al, and
it supports the power and ease of programming with different intended semantics without
causing contradictions in cyclic reasoning.
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11S-1447549, and ONR under grant N00014-20-1-2751.



e The language provides meta-constraints on predicates. These meta-constraints capture
the different underlying assumptions of different logic language semantics.

e The language supports the use of uncertain information in the results of different se-
mantics, in the form of either undefined values or possible combinations of values or
both.

e The language further supports the use of knowledge units that can be instantiated by
any new predicates, including predicates with additional arguments.

Together, the language allows complex problems to be expressed clearly and easily, where
different assumptions can be easily used, combined, and compared for expressing and solving
a problem modularly, unit by unit.

We present examples for different games that show the power and ease of programming
with DA logic. We use games because interdependent winning and losing positions taken by
competing players naturally give rise to negation in recursion. We also discuss and describe
support for restricted parameters and recursive uses of knowledge units.

The rest of the paper is organized as follows. Section 2 discusses the need of easier
programming with logic when faced with negation in recursion. Section 3 describes the
unified language, DA logic. Section 4 presents the formal definition of the semantics of DA
logic, as well as its consistency, correctness, and decidability. Section 5 develops additional
examples for different games. Section 6 explains restricted parameters and recursive uses of
knowledge units. Section 7 discusses related work and concludes.

This paper is a revised and extended version of Liu and Stoller [LS20b|. The revisions
include many expanded explanations to make the paper more self-contained and easier to
read, as well as general improvements throughout. The extension is mainly the new Section 6
on support for restricted parameters and recursive uses of knowledge units.

2 Need of easier programming with logic

We discuss the challenges of programming with negation and recursion and the need of
easier programming with logic. We explain the basic ideas of well-known previous language
semantics as well as founded semantics and constraint semantics, and give an overview of
the proposed solutions. We use a small well-known example, the win-not-win game, for
illustration.

Win-not-win game. Given a set of moves for a game, consider the following rule, called
the win rule. It says that x is a winning position if there is a move from x to y and y is not
a winning position.

win(x) < move(x,y) A — win(y)

This seems to be a reasonable rule, because, besides giving the conditions for x to be a
winning position, it also suggests that, if there is no move from x, then x is a losing position,



and if x is neither a winning nor a losing position, then x is a draw position. This captures
the rule for winning and losing for many games, including in chess for the King to not be
captured, giving winning, losing, and draw positions.

However, there could be problems. For example if there is a move(1,1) for some position 1,
then the win rule would give win(1) <« — win(1), and thus the truth value of win(1) becomes
unclear.

Inductive definitions. Instead of the single win rule, one could use the following three
rules to determine the winning, losing, and draw positions.

win(x) < 3 y | move(x,y) A lose(y)
lose(x) < V y | = move(x,y) V win(y)
draw(x) < — win(x) A — lose(x)

The first two rules are used [HDCD10, DVAHJD15] to form inductive definitions [Mos74].
avoiding the potential problems of the single win rule. The base case is the set of positions
that have no moves to any other position and thus are losing positions based on the second
rule.

With winning and losing positions defined, the draw positions are the remaining positions,
which are those in cycles of moves that have no moves to losing positions.

These three rules spell out the intended meaning of winning, losing, and draw as implied
by the single win rule. However, clearly, these rules are much more cumbersome than the
single win rule.

Well-founded semantics. Indeed, with well-founded semantics (WFS) [VRS91], which
computes a 3-valued model, the single win rule above gives win(x) being true, false, or
unknown for each x, corresponding exactly to x being a winning, losing, or draw position,
respectively.

WFEFS is highly non-trivial—informally, it is defined by the least fixed point of a trans-
formation that combines what is usually called the one-step derivability operator, T,,, and
the element-wise negation of the operator U, for computing what is called the greated un-
founded set, yielding a single 3-valued model [VRS91]; it involves computing an alternating
fixed point or an iterated fixed point.

However, win(x) being 3-valued in WFS does not allow the three outcomes to be used
as three predicates or sets for further computation; the three predicates defined by the three
rules do allow this.

For example, there is no way to use draw positions (that is, positions for which win is
unknown) explicitly, say to find all reachable nodes following another kind of moves from
draw positions. One might try to do this by adding the following two additional rules to the
single win rule:

lose(x) + — win(x)
draw(x) < — win(x) A — lose(x)



However, the result is that draw(x) is false for all positions for which win(x) is true or false,
and draw(x) is unknown for all draw positions.

Stable model semantics. Stable model semantics (SMS) [GL88| computes a set of 2-
valued models, instead of a single 3-valued model. It has been used for solving many con-
straint problems in answer set programming (ASP), because its set of 2-valued models can
provide the set of satisfying solutions.

SMS is also highly non-trivial—informally, it is defined by guessing a truth assignment,
expanding each rule into all possible instances, computing what is called the reduct by
deleting rules whose negated conditions cannot be satisfied and deleting negated conditions
in remaining rules, and then computing a minimum model of the resulting rules, yielding one
model in a set of 2-valued models [GL88|; in general, the number of guesses and resulting
models can be exponential.

For the single win rule, if besides some winning and losing positions, there is a sep-
arate cycle of even length, say move(1,2) and move(2,1), then the win rule would give
win(1) < - win(2) and win(2) + - win(1). Instead of win being unknown for positions 1
and 2 as in WFS, SMS returns two models: one with win being true for 1 and false for 2,
and one with win being true for 2 and false for 1. This is a very different interpretation of
the win rule.

For the single win rule above, when there are draw positions, SMS may also return just
the empty set, that is, the set with no models at all. For example, if besides some winning
and losing positions, there is a separate cycle of moves of odd length, say simply move(1,1),
then SMS returns just the empty set. This is clearly not the desired semantics for the
win-not-win game.

Founded semantics and constraint semantics. Founded semantics and constraint
semantics [LS18, LS20a| unify different prior semantics. They define a 3-valued model and
a set of 2-valued models, respectively. They allow different underlying assumptions to be
specified for each predicate. Specifically:

1. Each predicate can be declared certain (that is, everything about the predicate being
true (7') are given or can be inferred by following the rules, and the rest are false (F'))
or uncertain (that is, everything about the predicate being T" or F' are given or can
be inferred, and the rest are undefined (U)), except a predicate must be uncertain if it
depends on negation in recursion or on uncertain predicates.

2. Each uncertain predicate can be further declared complete (that is, all rules with the
predicate in the conclusion are given, and thus before inferring 7" and F', completion
rules can be added to define the negation of the predicate using the negation of the
conditions of those given rules) or not, except a predicate must be not complete if it
depends on predicates that are uncertain and not complete.

3. Each uncertain and complete predicate can be declared closed (that is, an assertion of
the predicate is made F, called self-false, if inferring it to be T" requires assuming itself



to be T') or not. Being closed is needed to match WFS and SMS theoretically, but is not
needed to give the desired meaning for any example we found in previous literature.

Founded semantics infers 7', F', and U using a simple least fixed point, with additionally
computing self-false assertions for closed predicates, if any, in each iteration. Constraint
semantics then extends everything U to be combinations of 7" and F' that satisfy everything
given as constraints.

For the win-not-win game, one can write the single win rule, with the default assumption
that win is complete, that is, the win rule is the only rule that infers win, which is an implicit
assumption underlying WFS and SMS.

e With founded semantics, the three rules that use inductive definitions can be automati-
cally derived, and true, false, and undefined positions for win are inferred, corresponding
to the three predicates from inductive definitions and the 3-valued results from WFS.

e Then constraint semantics, if desired, computes all combinations of true and false values
for the undefined values for the draw positions, that satisfy all the rules as constraints.
It equals SMS for the single win rule.

Explicit declaration in founded semantics and constraint semantics makes programming
and understanding much easier. For example, in WFS and SMS, if nothing is said about
some p, then p is false. When this is not desired, some programming tricks are used to get
around it. For example, with SMS, to allow p to be possibly true in some models, one could
introduce some new q and two new rules, p + - q and q «+ - p, to make it possible that,
in some models, p is true and q is false. Founded semantics and constraint semantics allow
p to be explicitly declared uncertain and not complete.

Founded semantics and constraint semantics also allow unrestricted universal and exis-
tential quantifications and unrestricted nesting of Boolean operators; these are not supported
in WFS and SMS.

However, founded semantics and constraint semantics alone do not address how to use
different semantics seamlessly in a single logic program.

Programming with logical constraints. Because different assumptions and semantics
help solve different problems or different parts of a problem, easier programming with logic
requires supporting all assumptions and semantics in a simple and integrated design.

This paper treats different assumptions as different meta-constraints for expressing a
problem or parts of a problem, and support results from different semantics to be used easily
and directly. For the win-not-win game:

e The positions for which win is true, false, and undefined in founded semantics are cap-
tured using three automatically derived predicates, win.T, win.F, and win.U, respectively,
corresponding exactly to the inductively defined win, lose, and draw, respectively. These
predicates can be used explicitly and directly for further reasoning, unlike with the truth
values in WFS or founded semantics.



e The constraint semantics of the given rule for win and facts for move is captured using
an automatically derived predicate CS. For a model m in the constraint semantics, CS(m)
is true, also denoted asm € CS, and we use m.win(x) to denote the truth value of win(x)
in model m. Predicate CS can be used directly for further reasoning, unlike the set of
models in SMS or constraint semantics.

More fundamentally, we must enable easy specification of problems with reusable parts
and where different parts may use different assumptions and semantics. To that end, we
introduce knowledge units. DA logic supports instantiation and re-use of existing units,
and allows predicates in any existing units to be bound to other given predicates, including
predicates with additional arguments.

Even with all this power, DA logic is decidable, because it does not include function
symbols and is over finite domains.

Table 1 summarizes the meta-constraints that can be used to express different assump-
tions, corresponding declarations and resulting predicates in founded semantics and con-
straint semantics, and corresponding other prior semantics if all predicates use the same
meta-constraint. Columns 2 and 4 are presented and proved in our prior work [LS20a).
Columns 1 and 3 are introduced in DA logic:

e Fach meta-constraint in column 1 specifies the corresponding declarations in column
2. For example, complete(P) specifies that P is declared uncertain, complete, and
not closed. Note that the four meta-constraints capture all possible combinations of
declarations.

e In column 3, P.T, P.F, and P.U are predicates that are true for a tuple of arguments
if and only if P is T, F', and U, respectively, for that tuple of arguments in founded
semantics. K denotes a knowledge unit, and K .CS denotes the constraint semantics
of K; for a model m in K.CS, m.P is a predicate that has the same truth values as
predicate P in model m.

These will be described precisely in Sections 3 and 4.

3 DA logic

This section presents the syntax and informal meaning of DA logic, for design and analysis
logic. The rule form described under “Conjunctive rules with unrestricted negation” is the
same as the core language in our prior work on founded semantics and constraint semantics,
for which we gave a precise semantics [LS18, L.S20a]. Disjunction and quantification are
mentioned as extensions in our prior work [LS18, LS20a]. The other features are new.

Knowledge unit. A program is a set of knowledge units. A knowledge unit, abbreviated
as kunit, is a set of rules, facts, and meta-constraints, defined below. The definition of a
kunit has the following form, where K is the name of the kunit, and body is a set of rules,
facts, meta-constraints, and instantiations of other kunits:



Meta-constraint Founded/Constraint Semantics Other Prior Semantics
on Predicate P | Declarations on P \ Resulting Predicates

certain(P) certain P.1, P.F Stratified (Perfect,
Inductive Definition)
open(P) uncertain, P.T, P.F, P.U
not complete m.P form € K.cS | First-Order Logic
complete (P) uncertain, as above Fitting (Kripke-Kleene)
complete, not closed Supported
closed(P) uncertain, as above WFS
complete, closed SMS

Table 1: Meta-constraints and corresponding prior semantics.

kunit K:
body

The scope of a predicate is the kunit in which it appears. Predicates with the same name,
but appearing in different kunits, are distinct.

Ezxample. A kunit for the single win rule is

kunit win_unit:

win(x) <« move(x,y) A — win(y)
[ |

Kunits provide structure and allow knowledge to be re-used in other contexts by instan-
tiation, as described below.

Conjunctive rules with unrestricted negation. We first present a simple core form of
logic rules and then describe additional constructs that can appear in rules. The core form
of a rule is the following, where any P; may be preceded with —:

Q(Xl, ...7Xa) < Pl(X117 ...,Xlal) VANRVAN Ph(Xhla---7Xhah> (1)

Symbols <—, A, and — indicate backward implication, conjunction, and negation, respectively.
h is a natural number. Each P; (respectively @) is a predicate of finite number a; (respectively
a) of arguments. Each argument X} and X;; is a constant or a variable, and each variable
in the arguments of ) must also be in the arguments of some P;. In arguments of predicates
in example programs, we use numbers for constants and letters for variables.

If h = 0, there is no P; or X;;, and each X} must be a constant, in which case Q(X7, ..., X,)
is called a fact. For the rest of the paper, “rule” refers only to the case where h > 1, in which
case the left side of the backward implication is called the conclusion, the right side is called
the body, and each conjunct in the body is called a hypothesis.

These rules have the same syntax as in Datalog with negation, but are used here in a
more general setting, because variables can range over complex values, such as constraint
models, as described below.



Predicates as sets. We use a syntactic sugar in which a predicate P is also regarded
as the set of x such that P(x) holds. For example, we may write move = {(1,2), (1,3)}
instead of the facts move(1,2) and move(1,3); to ensure the equality holds, this shorthand is
used only when there are no other facts or rules defining the predicate.

Disjunction. The hypotheses of a rule may be combined using disjunction as well as
conjunction. Conjunction and disjunction may be nested arbitrarily.

Quantification. Existential and universal quantifications in the hypotheses of rules are
written using the following notations:

3 Xy, ..., X, |'Y  existential quantification
V Xq, ..., X, |'Y  universal quantification

(2)

In quantifications of this form, the domain of each quantified variable X} is the set of all
constants in the containing kunit.

As syntactic sugar, a domain can be specified for a quantified variable, using a unary
predicate regarded as a set. For example, 3 x € win | move(x,x) is syntactic sugar for
J x | win(x) A move(x,x), and V x in win | move(x,x) is syntactic sugar for
V x | = win(x) V move(x,x).

Meta-constraints. Assumptions about predicates are indicated in programs using the
meta-constraints in column 1 of Table 1. Each meta-constraint specifies the declarations
listed in column 2 of Table 1. For example, if a kunit contains open(P), we say that P is
declared uncertain and not complete in that kunit. In each kunit, exactly one meta-constraint
must be given for each predicate.

Meta-constraint certain(P) means that each assertion of P has a unique true (7") or
false (F') value. Meta-constraint uncertain(P) means that each assertion of P has a unique
true, false, or undefined (U) value. Meta-constraint complete (P) means that all rules with
P in the conclusion are given in the containing kunit. Meta-constraint closed(P) means
that an assertion of P is made false, called self-false, if inferring it to be true using the given
rules and facts requires assuming itself to be true.

A predicate in the conclusion of a rule is said to be defined using the predicates or their
negation in the hypotheses of the rule, and this defined-ness relation is transitive. If a
predicate P is not defined transitively using its own negation and is not defined transitively
using a predicate that is defined transitively using its own negation, then it is given the
meta-constraint certain(P) by default. Otherwise, it is given complete (P) by default.

Using kunits with instantiation. The body of a kunit K, can use another kunit K
using an instantiation of the form:

use K (Pl == Ql(}/l,la "'7}/1,()1)7 ceey P’rl - Qn(Yn,h '~-7Yn,bn)) (3)

By definition, this has the effect of applying the following substitution to the body of K and
inlining the result in the body of Kj: for each ¢ in 1..n, replace each occurrence P;( X7, ..., X,)
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of predicate P; with Q;(X, ..., X4, Yi1, ..., Yip,). Note that arguments of ); specified in the
use construct are appended to the argument list of each occurrence of P; in K, hence the
number of such arguments must be arity(Q);) — arity(P;). When P; and @; have the same
arity, we simply write P, = (); in the use construct.

The determination of default meta-constraints, and the check for having exactly one
meta-constraint per predicate, are performed after expansion of all use constructs.

A kunit K> has a use-dependency on kunit K if K5 uses K. The use-dependency relation
must be acyclic. We have not found intrinsically good reasons for uses to be cyclic. However,
there is no real difficulty in supporting circular uses. Section 6 discusses pros and cons of
circular uses and extensions to support circular uses.

Example. For the example kunit win_unit given earlier in this section, the following
kunit is an instantiation of the win-not-win game with different predicates for moving and
winning;:

kunit win2_unit:
use win_unit (move = move2, win = win2)

[ |

In many logic languages, including our prior work on founded semantics [LS18, 1.S20a],

a program is an unstructured set of rules and facts. The structure and re-use provided by

kunits is vital for expressing knowledge modularly, building large conceptual models, and
developing large practical applications.

Referencing founded semantics. The founded semantics of a predicate P in a kunit
K (formally defined in Section 4.2) can be referenced in K using special predicates P.T,
P.F, and P.U, one for each of the three truth values T, F', and U. For each truth value t,
Pit(cq, ..., cq) is true if P(ey, ..., ¢,) has truth value ¢, and is false otherwise.

Note that the founded semantics of K can be referenced in another kunit K, by simply
adding use K, i.e., instantiating K in K, without replacing any predicate, when predicates
of K and K are disjoint. Otherwise, an instantiation with predicate replacements can be
used to avoid name collisions. Our could also add a language feature for referencing the
founded semantics of K using predicates of the form K.P.T, K.P.F, and K.P.U, instead of
using instantiation.

To ensure that the semantics of P is fully determined before these predicates are used,
P cannot be defined transitively using these predicates. Predicates that reference founded
semantics are implicitly given the meta-constraint certain and can appear only in rule
bodies.

When referencing the undefined part of a predicate, it is sometimes desirable to prune
uninteresting values. For example, consider the rule draw(x) < win.U(x). If the kunit
contains constants representing players as well as positions, win(X) is undefined when X is
a player, and the user wants draw to hold only for positions, then the user could add to the
rule a conjunct move (x,y) Vmove(y,x), to select x that are positions in moves.

Referencing constraint semantics. The constraint semantics of a kunit K (formally
defined in Section 4.2) can be referenced in another kunit K5 using the special predicate
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K .cs. Using this special predicate in any rule in K, has the effect of adding each constraint
model of K as an element in the domain (that is, set of constants) of Ks. In other words,
the possible values of variables in K5 include the constraint models of K. The assertion
K .cs(m) is true when m is a constraint model of K and is false for all other constants.

Note that the constraint semantics of K cannot be referenced from within K'; this ensures
that the set of constraint models is fully defined before it is referenced. The constraint
semantics of K cannot be referenced by instantiating K; this is why we need to introduce a
language feature for referencing it using predicates of the form K .CS.

The constraint models of a kunit K can be referenced using K .CS only if K does not
reference its own founded semantics (using predicates such as P.U). This restriction is needed
to prevent constraint models from containing contradictions such as the following: suppose
P.U(0) is true in the founded model of a kunit K, and K has at least one constraint model
m; then P.U(0) must also be true in m, but P(0) must be true or false, not undefined, in m,
because m is 2-valued. A kunit K5 has a CS-dependency on another kunit K if K, uses K .CS.
The CS-dependency relation must be acyclic.

When the value of a variable X is a constraint model of K, a predicate P of K can be
referenced using the notation X.P. If the value of X is not a constraint model, or P is not
a predicate defined in that constraint model, then X.P is undefined for all arguments.

Predicates that reference constraint semantics are implicitly given the meta-constraint
certain and can appear only in rule bodies.

4 Formal definition of semantics of DA logic

This section extends the definitions of founded semantics and constraint semantics in [LS18,
LS20a| to handle the new features of DA logic.

Handling kunits is relatively straightforward. Because each kunit defines a distinct set
of predicates, the founded semantics of the program is simply a collection of the founded
semantics of its kunits, and similarly for the constraint semantics. All use constructs in a
kunit are expanded, as described in Section 3, before considering its semantics. Therefore, the
constants, facts, rules, and meta-constraints of a kunit include the corresponding elements
(appropriately instantiated) of the kunits it uses.

Handling references to founded semantics and constraint semantics requires changes in
the definitions of domain, literal, interpretation, and dependency graph.

Handling disjunction, which is mentioned as an extension in [LS18, LS20a] but not con-
sidered in the detailed definitions, requires changes in the definition of completion rules and
the handling of closed predicates.

The paragraphs “Founded semantics of DA logic without closed declarations”, “Least fixed
point”, and “Constraint semantics of DA logic” are essentially the same as in [LS18, L.S20al;
they are included for completeness.

When we say that a predicate is certain, complete, or closed, we mean that it has that
declaration in column 2 of Table 1 from its meta-constraint.

10



4.1 Preliminary definitions

Atoms, literals, and projection. Let 7 be a program. Let K be a kunit in 7. A
predicate is intensional in K if it appears in the conclusion of at least one rule in K; otherwise,
it is extensionalin K. The domain of K is the union of the following sets: the set of constants
in K, and for each kunit K7 such that K;.CS appears in K, the set of constraint models
of K;. Constraint models are formally defined in the last paragraph of Section 4.2. The
requirement that the CS-dependency relation is acyclic ensures the constraint models of K3
are determined before the semantics of K is considered.

An atom of K is a formula P(cy, ..., ¢,) formed by applying a predicate P in K with arity
a to a constants in the domain of K. A literal of K is a formula of the form P(cy,...,¢,) or
P.F(cy, ..., ¢q), for any atom P(cy, ..., c,) of K where P is a predicate that does not reference
founded semantics or constraint semantics. These are called positive literals and negative
literals for P(cy,...,c,), respectively. A set of literals is consistent if it does not contain
positive and negative literals for the same atom. The projection of a kunit K onto a set S
of predicates, denoted Proj(K,S), contains all facts of K for predicates in S and all rules of
K whose conclusions contain predicates in S.

Interpretations, ground instances, models, and derivability. An interpretation I
of K is a consistent set of literals of K. Interpretations are generally 3-valued.

e For a predicate P that does not reference founded or constraint semantics, P(cq, ..., ¢q)
is true (7') in I if I contains P(cy, ..., ¢,), is false (F') in [ if I contains P.F(cy, ..., Cq),
and is undefined (U) in I if I contains neither P(cy, ..., ¢,) nor P.F(cy, ..., ¢q).

e For the predicates that reference founded semantics, for each of the three truth values t,
Pit(ey, ... cq) is true in I if P(cq, ..., ¢,) has truth value ¢ in I, and is false otherwise.

e For the predicates that reference constraint semantics, K;.CS(c) is true in I if ¢ is a model
in the constraint semantics of K7, and is false otherwise; the requirement that the CS-
dependency relation is acyclic ensures that the constraint models of K; are determined
before the semantics of K;.CS(c) is considered.

e If ¢ is a constraint model that provides a truth value for P(cy, ..., ¢,), then ¢.P(cq, ..., ¢4)
has the same truth value in I that P(cy, ..., c,) has in ¢, otherwise it is undefined.

An interpretation I of K is 2-valued if every atom of K is true or false in I, that is, no atom
is undefined. Interpretations are ordered by set inclusion C.

A ground instance of a rule R is any rule that can be obtained from R by expanding
universal quantifications into conjunctions over all constants in the domain, instantiating
existential quantifications with constants, and instantiating the remaining variables with
constants.

An interpretation is a model of a kunit if it contains all facts in the kunit and satisfies
all rules of the kunit (that is, for each ground instance of each rule, if the body is true,
then so is the conclusion), when the rules are interpreted as formulas in 3-valued logic
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[Fit85]. A collection of interpretations, one per kunit in a program =, is a model of 7 if each
interpretation is a model of the corresponding kunit.

The one-step derivability operator Tk performs one step of inference using rules of K,
starting from a given interpretation. Formally, C' € T (I) iff C' is a fact of K or there is a
ground instance R of a rule in K with conclusion C' such that the body of R is true in I.

Dependency graph. The dependency graph DG(K) of kunit K is a directed graph with
a node for each predicate of K that does not reference founded semantics and constraint
semantics (including these predicates is unnecessary, because they cannot appear in con-
clusions), and an edge from @ to P labeled + (respectively, —) if a rule whose conclusion
contains () has a positive (respectively, negative) hypothesis that contains P. If the node
for predicate P is in a cycle containing only positive edges, then P has circular positive
dependency in K; if it is in a cycle containing a negative edge, then P has circular negative
dependency in K.

4.2 Founded semantics and constraint semantics of DA logic

This subsection first defines founded semantics of DA logic without meta-constraint closed,
then extends the founded semantics to handle meta-constraint closed, and then defines the
constraint semantics of DA logic.

Founded semantics of DA logic without meta-constraint closed. Intuitively, the
founded model of a kunit K without meta-constraint closed, denoted Foundedy(K), is the
least set of literals that are given as facts or can be inferred by repeated use of the rules. We
define Foundedy(K) = LFPbySCC(NameNeg(Cmpl(K))), where functions Cmpl, NameNeg,
and LFPbySCC, are defined as follows.

Completion. The completion function, Cmpl(K), returns the completed version of K.
Formally, Cmpl(K) = AddInv(Combine(K)), where Combine and AddInv are defined as
follows.

The function Combine(K) returns the kunit obtained from K by replacing the facts
and rules defining each uncertain and complete predicate ) with a single combined rule
for @, defined as follows. (1) Transform the facts and rules defining @) so they all have
the same conclusion Q(V4,...,V,), by replacing each fact or rule Q(Xj,..., X,) < B with
QWVi, ... Vo) « @ Y,.... Y| Vi =XgA--- AV, = X, AB), where V1,...,V, are fresh
variables (i.e., not occurring in the given rules defining @), and Y7, ..., Y} are all variables
occurring in Xj, ..., X,, B, where B denotes the entire body of the rule. (2) Combine the
resulting rules for @) into a single rule defining () whose body is the disjunction of the bodies
of those rules. This combined rule for () is logically equivalent to the original facts and rules
for Q. This definition is the same as given for the core language in [LS18, L.S20al, except
generalized to allow rule bodies that may contain disjunction. Similar completion rules are
used in Clark completion [Cla78] and Fitting semantics [Fit85].
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The function AddInv(K) returns the kunit obtained from K by adding, for each uncer-
tain and complete predicate (), a completion rule that derives negative literals for (). The
completion rule for ) is obtained from the inverse of the combined rule defining @) (recall
that the inverse of C' «— B is =C' <— = B), by putting the body of the rule in negation normal
form, that is, using equivalences of predicate logic to move negation inwards and eliminate
double negations, so that negation is applied only to atoms.

Least fixed point. FExplicit use of negation is eliminated before the least fixed point is
computed, by applying the function NameNeg. The function NameNeg(K') returns the kunit
obtained from K by replacing each =P (X7, ..., X,,) with P.F(Xy,..., X,).

The function LFPbySCC(K) uses a least fixed point to infer facts for each strongly
connected component (SCC) in the dependency graph of K, as follows. Let Si,...,S, be
a list of the SCCs in dependency order, so earlier SCCs do not depend on later ones; it is
easy to show that any linearization of the dependency order leads to the same result for
LFPbySCC'. For convenience, we overload S; to also denote the set of predicates in the SCC
Si~

Define LFPbySCC(K) = I,,, where Iy = () and I; = AddNeg(LFP (T}, ,uproj(k,s;)), Si) for
i € 1.n. LFP(f) is the least fixed point of function f. The least fixed point is well-defined,
because T7, ,uprj(k,s,) 15 monotonic, because the kunit K was transformed by NameNeg and
hence does not contain negation. The function AddNeg(I,S) returns the union of I and the
set of completion facts for predicates in S that have meta-constraint certain; specifically,
for each such predicate P, and for each combination of values cy, ..., ¢, of arguments of P, if
I does not contain P(cy, ..., c,), then P.F(cy, ..., ¢c,) is added as a completion fact.

Founded semantics of DA logic with meta-constraint closed. Informally, when a
predicate of kunit K has meta-constraint closed, an atom A of the predicate is false in an
interpretation I, called self-false in I, if every ground instance of rules that concludes A, or
recursively concludes some hypothesis of that rule instance, has a hypothesis that is false or,
recursively, is self-false in 1.

To formally define the set of self-false atoms, we first transform the rules of K so that they
do not contain disjunction, by putting the body of each rule R containing disjunction into
disjunctive normal form (DNF) and then replacing R with multiple rules, one per disjunct of
the DNF; this allows direct re-use of the following definitions of unfounded set and self-false
atom from |LS18, 1.S20a|, which do not take disjunction into account.

A set U of atoms of kunit K is an unfounded set of K with respect to an interpretation [
of K iff, for each atom A in U, for each ground instance R of a rule of K with conclusion A,
either (1) some hypothesis of R is false in I or (2) some positive hypothesis of R for a closed
predicate is in U; this is the usual definition of unfounded set [VRS91|, except we inserted
“for a closed predicate”. SelfFalse, (I), the set of self-false atoms of kunit K with respect to
interpretation I, is the greatest unfounded set of K with respect to I.

The founded semantics is defined by repeatedly computing the semantics given by Founded,
(the founded semantics without meta-constraint closed) and then setting self-false atoms
to false, until a least fixed point is reached. For a set S of positive literals, let = -5 =
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{P.F(c1,...,ca) | P(c1,...,ca) € S}. For a kunit K and an interpretation I, let K U I
denote K with the literals in / added to its body. Formally, the founded semantics is
Founded(K) = LFP(Fk), where Fx(I) = Foundedy(KUI)U=-SelfFalse ;- (Foundedo(KUT)).

Constraint semantics of DA logic. Constraint semantics is a set of 2-valued models
based on founded semantics. A constraint model of K is a consistent 2-valued interpre-
tation I of K such that I is a model of Cmpl(K) and such that Founded(K) C I and
— - SelfFalse (I) C I. Let Constraint(K) denote the set of constraint models of K. Con-
straint models can be computed from Founded(K') by iterating over all assignments of true
and false to atoms that are undefined in Founded(K'), and checking which of the resulting
interpretations satisfy all rules in Cmpl(K') and satisfy — - SelfFalse, (1) C I.

4.3 Properties of DA logic semantics

The following theorems express important properties of the semantics.
Theorem 1. The founded model and constraint models of a program 7 are consistent.

Proof: First we consider founded semantics. Each kunit in the program defines a distinct
set of predicates, so consistency can be established one kunit at a time. For each kunit K,
the proof of consistency is a straightforward extension of the proof of consistency of founded
semantics |LS20a, Theorem 1]|. The extension is to show that consistency holds for the new
predicates that reference founded semantics and constraint semantics.

For predicates in K that reference founded semantics, we prove this for each SCC S; in
the dependency graph for K; the proof is by induction on 7. The predicates used in SCC
S; to reference founded semantics have the same truth values as the referenced predicates
in earlier SCCs. These truth values are consistent because, by the induction hypothesis, the
interpretation computed for predicates in earlier SCCs is consistent.

For predicates in K that reference constraint semantics, they have the same truth values
as the referenced predicates in the constraint models of the referenced kunits, and constraint
models are consistent by definition.

Next we consider constraint semantics. Again note that constraint models are consistent
by definition. [ |

Theorem 2. The founded model of a kunit K is a model of K and Cmpl(K). The constraint
models of K are 2-valued models of K and Cmpl(K).

Proof: The proof that Founded(K) is a model of Cmpl(K) is essentially the same as
the proof that Founded(w) is a model of Cmpl(7) |LS20a, Theorem 2|, because the proof
primarily depends on the behavior of Cmpl, AddNeg, and the one-step derivability opera-
tor, and they handle atoms of predicates that reference founded semantics and constraint
semantics in exactly the same way as other atoms. Constraint models are 2-valued models of
Cmpl(K) by definition. Any model of Cmpl(K) is also a model of K, because K is logically
equivalent to the subset of Cmpl(K) obtained by removing the completion rules added by
AddInv. |
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Theorem 3. DA logic is decidable.

Proof: DA logic has a finite number of constants from given facts, and has sets of finite
nesting depths bounded by the depths of CS-dependencies. In particular, it has no function
symbols to build infinite domains in recursive rules. Thus, DA logic is over finite domains
and is decidable. [ |

Proving decidability of DA Logic is straightforward, but stating it explicitly is important,
because DA logic supports recursion and allows nested constraint models to be used as
constants.

5 Additional examples

We present additional examples that show the power of our language. They are challenging
or impossible to express and solve using prior languages and semantics. For each example,
we spell out the default meta-constraint for each predicate, in a topological-sort dependency
order. We use - - to prefix comments.

5.1 Same different games

The same win-not-win game can be over different kinds of moves, forming different games,
using kunit instantiation. However, the fundamental winning, losing, and draw situations
stay the same, parameterized by the moves. The moves could also be defined easily using
another kunit instantiation.

Ezxample. Consider the following kunits. First, path_unit defines path recursively using
edge: there is a path from x to y if there is a sequence of connected edges leading from x
to y. Then, win_path_unit defines link, uses path_unit to infer path with edge bound to
link, and finally uses win_unit in Section 2 to determine winning, losing, and draw positions
except with move bound to path. With default meta-constraints, edge and path are certain,
link is certain, and win is complete.

kunit path_unit:
path(x,y) < edge(x,y)
path(x,y) < edge(x,z) A path(z,y)

kunit win_path_unit:

link = {(1,2), (1,3), ...} -- shorthand for 1ink(1,2), 1ink(1,3),
use path_unit (edge = link) -- instantiate path_unit with edge replaced by link
use win_unit (move = path) -- instantiate win_unit with move replaced by path

Alternatively, in win_path_unit, one could define edge instead of 1ink, and then use path_unit
without replacing the name edge to link, as follows.

kunit win_path_unit:
edge = {(1,2), (1,3), ...} -- define edge in place of link
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use path_unit O -- use path_unit without replacing edge to link
use win_unit (move = path)

5.2 Defined from undefined positions

Sets and predicates can be defined using the set of values of arguments for which a given
predicate is undefined. This is not possible in previous 3-valued logic like WFS, because
anything depending on undefined can only be undefined.

Example. Consider the following draw_unit. It defines move and uses win_unit. Then,
using the result of win-not-win game, predicate move_to_draw defines the set of positions that
have a move to a draw position, and predicate reach_from_draw defines the set of positions
that are reachable by following a path of special moves from a draw position. With default
meta-constraints, move is certain, win is complete, and move_to_draw, special_move, path,
and reach_from_draw are certain.

kunit draw_unit:
move = {(1,1), (2,3), (3,1}
use win_unit ()

move_to_draw(x) < move(x,y) A win.U(y)

special_move = {(1,4), (4,2)}
use path_unit (edge = special_move)

reach_from_draw(y) < win.U(x) A path(x,y)

In draw_unit, we have win.U(1), that is, 1 is a draw position. Then we have move_to_draw(3)
to be true, and we have reach_from_draw(4) and reach_from_draw(2) to be true.

Note that we could copy the single win rule here in place of use win_unit () and obtain
an equivalent draw_unit. We avoid copying when possible because this is a good principle,
and in general, a kunit may contain many rules and facts. [ |

5.3 Unique undefined positions

Among the most critical information is assertions that have a unique true or false value in
all possible ways of satisfying given constraints but cannot be determined to be true by just
following founded reasoning. Having both founded semantics and constraint semantics at
the same time allows one to find such information.

Example. Consider the following two kunits. First, pa_unit defines prolog, asp, and
move and uses win_unit. Then, cmp_unit uses pa_unit and defines unique(x) to be true if
(1) win(x) is undefined in founded semantics, (2) a constraint model of pa_unit exists, and
(3) win(x) is true in all models in the constraint semantics. With default meta-constraints,
predicates prolog and asp are complete, move is specified to be closed, win is complete, and
predicate unique is certain. Note that prolog, asp, and move cannot be certain because
prolog and asp are defined with negation in recursion, and move depends on prolog and asp.
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kunit pa_unit:
prolog < — asp
asp < — prolog
move(1,0) <« prolog
move(1,0) < asp
closed(move)
use win_unit ()

kunit cmp_unit:
use pa_unit ()

unique(x) <+ win.U(x) A 3 m € pa_unit.C3 A Vm € pa_unit.CS | m.win(x)

In pa_unit, founded semantics gives move.U(1,0) (because prolog and asp are undefined),
win.F(0) (because there is no move from 0), and win.U(1) (because win(1) cannot be true
or false).

Constraint semantics pa_unit.CS has two models: {prolog, move(1,0), win(1)} and
{asp, move(1,0), win(1)}. We see that win(1) is true in all two models. So win.U(1)
from founded semantics is imprecise.

In cmp_unit, unique(1) is true. That is, win(1) is undefined in founded semantics, a
constraint model exists, and win(1) is true in all models in the constraint semantics. [

5.4 Multiple uncertain worlds

Given multiple worlds each corresponding to a different model, different uncertainties can
arise from different worlds, yielding multiple uncertain worlds. It is simple to represent this
using predicates that are possibly 3-valued and that are parameterized by a 2-valued model.
Exzample. Consider the following two kunits. The game in win_unit2 uses win_unit on
a set of moves. The game in win_set_unit has its own moves, but a move is valid if and only
if it starts from a position that is a winning position in a model in the constraint semantics of
win_unit2. With default meta-constraints, move in both kunits are certain, win is complete,
valid_move is certain, valid_win is complete, and win_some and win_each are certain.

kunit win_unit2:
move = {(1,4),(4,1)}
use win_unit ()

kunit win_set_unit:
move = {(1,2),(2,3),(3,1),(4,4),(5,6)%
valid_move(x,y,m) < move(x,y), win_unit2.CS(m), m.win(x)

use win_unit (move = valid_move(m), win = valid_win(m))

win_some(x) < valid_win.T(x,m)
win_each(x) < win_some(x) AV m € win_unit2.CS | valid_win.T(x,m)
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In win_unit2, there is a 2-move cycle. The constraint semantics win_unit2.CS is a set of two
models, say {m1,m2}, where m1.win = {1} and m2.win = {4}. That is, in m1, position 1 is
winning, and position 4 is not, and in m2, the situation is the opposite.

In win_set_unit, each model m in win_unit2.CS leads to a separately defined valid_move
under argument m. In mi, only move(1,2) starts from the winning position 1, and in
m2, only move(4,4) starts from the winning position 4. So valid_move is true for only
valid_move(1,2,m1) and valid_move(4,4,m2).

The separate valid_move under argument m is then used to define a separate valid_win un-
der argument m, by instantiating win_unit with predicates move and win bound to valid_move
and valid_win, respectively, with the additional argument m. This yields valid_win being
true for only valid_win(1,m1).

Finally, win_some (x) is true for any position x such that valid_win(x,m) is true for some
model m, and win_each(x) is true if win_some(x) is true and valid_win(x,m) is true for all
models m in win_unit2.CS. The result is that win_some is true for only win_some(1) and is
false for all other positions, and win_each is false for all positions. [ |

6 Restricted parameters and circular uses of kunits

Knowledge units are similar to modules in that they provide a means to organize the knowl-
edge expressed as logic rules and constraints. We discuss extensions that allow knowledge
units to have specially specified parameters, and have circular uses. We describe the pros
and cons of supporting them and show that there is no real difficulty in supporting them.

6.1 Units with restricted parameters

Knowledge units as described in Section 3 do not need specially specified parameters. Any
predicate in a kunit is in fact a parameter that can be instantiated with any predicate of the
same number of arguments, or even with additional arguments if desired.

Some people may be accustomed to using modules or components with a specially spec-
ified set of parameters, where all uses of the module or component must instantiate exactly
this restricted set of parameters. This is straightforward to add to DA logic, by simply
specifying some of the predicates in a kunit as this restricted set of parameters of the kunit.

There are both pros and cons with specially specified parameters.

e The advantage is that one can hide the remaining predicates of the kunit from uses of
the kunit. Changes to the hidden predicates will not affect uses of the kunit so long as
the changes do not affect the specially specified parameters.

e The disadvantage is that if a hidden predicate becomes useful outside the kunit, the
predicate must be added to the specially specified parameters to be used. Furthermore,
this change is not limited to new uses of this kunit, but requires changes to all previous
uses of the kunit.
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Knowledge units with no restriction on parameters are more general and powerful for
knowledge representation, for at least two reasons.

1. They can be used in any way that is easy and clear, with any combination of instantiated
predicates that is needed, without changing the kunit or any previous uses of the kunit.

2. They encourage all predicates in a kunit to be carefully defined for clarity and reusability,
eliminating the need to hide predicates that are not externally used.

Procedural programming benefits greatly from hiding internal details, because additional
variables and parameters are most often used for efficiency reasons. In DA Logic, rules are
declarative specifications, and hiding such specifications is generally unnecessary.

Nevertheless, to support hiding certain predicates, a kunit can specially specify which
predicates can be externally used, as follows:

kunit K (preds):
body

where preds is a set of predicates in K that can be instantiated or can be used outside K.
The use clause

use K (Pl = Ql(le,la '-'7}/1,171)7 L) Pn = Qn(Yn,b "'7Yn,bn))

does not need any change. The semantics is extended to check that each predicate P; is
in the set preds of specially specified predicates of kunit K, and to ensure that there is no
external use of predicates not in preds.

Note that this extension still allows each use of a kunit to instantiate any subset of the
specially specified predicates of the kunit. This design is more general than parameterized
module systems in which each module has a fixed set of parameters, all of which must be
instantiated at every use.

6.2 Units with circular uses

Uses of knowledge units as described in Section 3 must form acyclic dependencies.
Some people may be accustomed to module systems that allow circular uses of modules.
Allowing circular uses has both pros and cons.

e The advantage is that modules could be smaller and more flexible, and could use one
another recursively.

e The disadvantage is that the dependencies between predicates in modules with circular
uses may be difficult to determine and understand.

Knowledge units with no circular uses are easier to understand, for at least two reasons.
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1. Dependencies between predicates defined in the knowledge units are clearer at a high
level, because they must follow the tree of dependencies between kunits. With circular
uses of kunits, all predicates defined in those kunits potentially depend on each other,
depending on the details of their definitions.

2. Within a kunit, predicates easily capture any structure including cyclic graphs and the
trivial case of recursive structures like trees, and recursive rules can easily define mutually
dependent predicates.

Nevertheless, to support circular uses of kunits in DA logic, we can eliminate the require-
ment that the use-dependency relation is acyclic, and extend the semantics of use to handle
circularity as follows. Recall from Section 3 that using a kunit has the effect of instantiating
the body using the specified substitution and then inlining the result at the use. To support
circular uses, the algorithm is extended to keep track of which uses of kunits have already
been instantiated and inlined. The effect of using a kunit is to check whether the same
use of the kunit has already been instantiated and inlined, and if so, do nothing, otherwise
instantiate and inline it.

DA logic with this extension is still decidable, because there is only a finite number of
possible uses of kunits in a program.

7 Related work and conclusion

Many logic languages and semantics have been proposed. Several overview articles [AB94,
Prz94, RU95, Fit02, Trul8| give a good sense of the complications and challenges when
there is unrestricted negation in recursion. Notable different semantics include Clark com-
pletion [Cla78| and similar additions, e.g., [LT84, ST84, JLM86, Cha88, FRTW88, Stu9l|,
Fitting semantics or Kripke-Kleene semantics [Fit85], supported model semantics [ABW88|,
stratified semantics [VG86, ABWS88|, WFS [VGRS88, VRSI1|, and SMS |GLS88|. Note that
these semantics disagree, in contrast to different styles of semantics that agree [EGS87|.

There are also a variety of works on relating and unifying different semantics. These
include Dung’s study of relationships [Dun92|, partial stable models, also called stationary
models [Prz94], Loop formulas [LZ04|, FO(ID) [DT08|, and founded semantics and constraint
semantics [LS18, LS20a]. FO(ID) is more powerful than works prior to it, by supporting both
first-order logic and inductive definitions while also being similar to SMS [BDT16]. However,
it does not support any 3-valued semantics. Founded semantics and constraint semantics
uniquely unify different semantics, by capturing their different assumptions using predicates
declared to be certain, complete, and closed, or not.

However, founded semantics and constraint semantics by themselves do not provide a
way for different semantics to be used for solving different parts of a problem or even the
same part of the problem. DA logic supports these, and supports everything completely
declaratively, in a unified language.

Specifically, DA logic allows different assumptions under different semantics to be speci-
fied easily as meta-constraints, and allows the results of different semantics to be built upon,
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including defining predicates using atoms that have truth value undefined in a 3-valued
model and using models in a set of 2-valued models, and parameterizing predicates by a
set of 2-valued models. More fundamentally, DA logic allows different parts of a problem
to be solved with different knowledge units, where every predicate is a parameter that can
be instantiated with new predicates, including new predicates with additional arguments.
These are not supported in prior languages.

Among many directions for future work, one particularly important and intriguing prob-
lem is to study optimal algorithms and precise complexity guarantees, similar to [LS09], for
inference and queries for DA logic.
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