
Learning Attribute-Based and Relationship-Based
Access Control Policies with Unknown Values?

Thang Bui and Scott D. Stoller

Department of Computer Science, Stony Brook University, USA

Abstract. Attribute-Based Access Control (ABAC) and Relationship-based
access control (ReBAC) provide a high level of expressiveness and flexibility
that promote security and information sharing, by allowing policies to be
expressed in terms of attributes of and chains of relationships between entities.
Algorithms for learning ABAC and ReBAC policies from legacy access control
information have the potential to significantly reduce the cost of migration
to ABAC or ReBAC.
This paper presents the first algorithms for mining ABAC and ReBAC policies
from access control lists (ACLs) and incomplete information about entities,
where the values of some attributes of some entities are unknown. We show
that the core of this problem can be viewed as learning a concise three-valued
logic formula from a set of labeled feature vectors containing unknowns, and
we give the first algorithm (to the best of our knowledge) for that problem.

1 Introduction

Relationship-based access control (ReBAC) extends the well-known attribute-based
access control (ABAC) framework by allowing access control policies to be expressed
in terms of chains of relationships between entities, as well as attributes of entities.
This significantly increases the expressiveness and often allows supporting more
natural policies. High-level access control policy models such as ABAC and ReBAC
are becoming increasingly widely adopted, as security policies become more dynamic
and more complex, and because they promise long-term cost savings through reduced
management effort. ABAC is already supported by many enterprise software products.
Forms of ReBAC are supported in popular online social network systems and are
being studied and adapted for use in more general software systems as well.

The up-front cost of developing an ABAC or ReBAC policy can be a significant
barrier to adoption. Policy mining (a.k.a. policy learning) algorithms have the poten-
tial to greatly reduce this cost, by automatically producing a draft high-level policy
from existing lower-level data, such as access control lists or access logs. There is a
substantial amount of research on role mining and a small but growing literature on
ABAC policy mining, surveyed in [10], and ReBAC policy mining [4,5,6,3,15,2,16].

The basic ABAC (or ReBAC) policy mining problem is: Given information
about the attributes of entities in the system, and the set of currently granted

? This material is based on work supported in part by NSF grant CCF-1954837 and ONR
grant N00014-20-1-2751.

2

permissions; Find an ABAC (or ReBAC) policy that grants the same permissions
using concise, high-level ReBAC rules. Several papers consider a variant of this problem
where the information about permissions is incomplete [21,5,9,16,18]. However, all
existing works on ABAC and ReBAC policy mining assume that the attribute (and
relationship) information is complete, i.e., all attributes of all entities have known
values. Unfortunately, in most real-world data, some attribute values are unknown
(a.k.a. missing). Bui et al. [4,5,6,3] allow an attribute to have the special value
“bottom”, which is analogous to None in Python. It is different from unknown. For
example, for a field Student.advisor with type Faculty, bottom (or None) means the
student lacks an advisor, while unknownmeans we don’t know whether the student has
an advisor or, if they have one, who it is. Xu and Stoller [22] consider ABAC mining
from noisy attribute data, where some of the given attribute values are incorrect;
this is also different, because the input does not specify which ones are incorrect.

This paper proposes the first algorithms for mining ABAC or ReBAC policies
when some attribute values are unknown. We present our algorithm in the context
of ReBAC mining because ReBAC is more general than ABAC. Our algorithm can
easily be restricted to mine ABAC policies instead, simply by limiting the length of
path expressions that it considers.

Our main algorithm, called DTRMU− (Decision-Tree ReBAC Miner with Un-
known values and negation), produces policies in ORAL2−, an object-oriented ReBAC
language introduced by Bui and Stoller [2]. We chose ORAL2− because it is more ex-
pressive than other policy languages that have been used in work on ReBACmining. In
ORAL2−, relationships are expressed using object attributes (fields) that refer to other
objects, and chains of relationships between objects are described by path expressions,
which are sequences of attribute dereferences. A policy is a set of rules. A rule is essen-
tially a conjunction of conditions on the subject (an object representing the issuer of the
access request), conditions on the resource (an object representing the resource to be
accessed), and constraints relating the subject and resource; the subject may perform
a specified action on the resource if the conditions and constraints are satisfied. An
example of a condition is subject.employer = LargeBank; an example of a constraint is
subject.department ∈ resource.project.departments. ORAL2− also supports negation,
so conditions and constraints can be negated, e.g., subject.employer 6= LargeBank. We
also give an algorithm, called DTRMU, that mines policies in ORAL2, which is the
same as ORAL2− except without negation. Deciding whether to include negation in
the policy language involves a trade-off between safety and conciseness, as discussed
in [2]; different organizations might make different decisions, and we support both.

A policy can be viewed, roughly speaking, as a logical formula in disjunctive normal
form (DNF), namely, the disjunction of the conjunctions (of conditions and constraints)
in the rules. Bui and Stoller [2] exploited this view to reduce the core of the ReBAC pol-
icy mining problem to decision-tree learning; note that a decision tree compactly repre-
sents a logical formula in DNF, where each conjunction contains the conditions labeling
the nodes on a path from the root to a leaf labeled “true” (corresponding to “permit”).

Our algorithms are built on the insight that the core of the ReBAC policy mining
problem in the presence of unknown attribute values can be reduced to the general
problem of learning a formula in Kleene’s three-valued logic [17,20], rather than

3

traditional Boolean logic. Three-valued logic allows three truth values: true (T), false
(F), and unknown (U). With three-valued logic, we can assign the truth value U to
conditions and constraints involving unknown attribute values. Could the need for
three-valued logic be avoided by regarding them as false instead? No, because if we
stick with Boolean logic, and declare that (say) the condition subject.employer =
LargeBank is false when the employer is unknown, then we are forced to conclude
that its negation, ¬(subject.employer = LargeBank), is true when the employer is
unknown, and this is clearly unsafe. Note that SQL uses three-valued logic to deal
with null (i.e., missing) values for similar reasons.

Surprisingly, we could not find an existing algorithm for learning a concise three-
valued logic formula from a set of labeled feature vectors containing unknowns.
Therefore, we developed an algorithm to solve this general problem, based on learning
multi-way decision trees, and then adapted Bui and Stoller’s Decision-Tree ReBAC
Mining algorithms (DTRM and DTRM−) to use that algorithm. We adopted their
decision-tree based approach, because their algorithms are significantly faster, achieve
comparable policy quality, and can mine policies in a richer language than other
ReBAC mining algorithms such as FS-SEA* [3] and Iyer et al.’s algorithm [15], as
demonstrated by their experiments [2].

We performed two series of experiments on several ReBAC policies. The first
series of experiments compares our algorithms with Bui and Stoller’s DTRM and
DTRM− algorithms, and shows that, on policies where all attribute values are known,
our algorithms are equally effective at discovering the desired ReBAC rules, produce
policies with the same quality, and have comparable running time. The second series
of experiments, on policies containing a varying percentage of unknown values, shows
that our algorithms are effective at discovering the desired ReBAC rules, even when
a significant percentage of attribute values are unknown.

In summary, the main contributions of this paper are the first ABAC and ReBAC
policy mining algorithms that can handle unknown attribute values, and, to the
best of our knowledge, the first algorithm for learning a concise three-valued logic
formula from a set of labeled feature vectors containing unknowns. Directions for
future work include extending our algorithms to deal with incomplete information
about permissions and extending them to “fill in” missing attribute values, guided by
the permissions. Another is developing incremental algorithms to efficiently handle
policy changes. Note that, as usual in ABAC and ReBAC policy mining, changes to
attribute data (known values changing, or unknown values becoming known) do not
require learning a new policy, except in the infrequent case that the current policy
does not grant the desired permissions.

2 Learning Three-Valued Logic Formulas

2.1 Problem Definition

We consider the problem of learning a formula in Kleene’s three-valued logic from
a set of labeled feature vectors. The feature values and the labels are truth values in
three-valued logic, namely, true (T), false (F), and unknown (U). In this setting, the

4

features would usually be called “propositions”, and the feature vectors would usually
be called “interpretations”, but we prefer to use more general terminology. The
conjunction, disjunction, and negation operators are extended to handle unknown, in
a natural way [17,20]. For example, T ∨U evaluates to T , while T ∧U evaluates to U .

We require that the set of labeled feature vectors is monotonic, in the sense
defined below, otherwise there would be no three-valued logic formula that represents
it. For a feature vector v and feature f, let v(f) denote the value of feature f in v.
For a formula φ, let φ(v) denote the truth value of φ for v, i.e., the result of evaluating
φ using the truth values in v.

For truth values t1 and t2, t1 ≤ t2 iff t1 = t2 or t1 = U . This is sometimes called
the information ordering; it captures the idea that U provides less information than
T and F . For feature vectors v1 and v2, v1 ≤ v2 iff v1(f) ≤ v2(f) for every feature
f. A basic fact of three-valued logic is that every formula, regarded as a function
from feature vectors to truth values, is monotonic with respect to the information
ordering, i.e., for all feature vectors v1 and v2, if v1 ≤ v2 then φ(v1) ≤ φ(v2).

A set S of labeled feature vectors is monotonic iff, for all (v1, `1) and (v2, `2) in
S, if v1 ≤ v2 then `1 ≤ `2. This ensures S can be represented by a formula.

The three-valued logic formula learning problem is: given a monotonic set S
of labeled feature vectors, where the feature values and labels are truth values in
three-valued logic, find a three-valued logic formula φ in disjunctive normal form
(DNF) that exactly characterizes the feature vectors labeled T , i.e., for all (v, `) in
S, φ(v) = T iff ` = T .

A stricter variant of this problem requires that φ preserve all three truth values,
i.e., for all (v, `) in S, φ(v) = `. We adopt the looser requirement above, because when
a formula ultimately evaluates to unknown, this outcome is conservatively treated
the same as false in many application domains including security policies and SQL
queries, and adopting the looser requirement allows smaller and simpler formulas.
Note that distinguishing U and F is still critical during evaluation of formulas and
their subformulas, for the reasons discussed in Section 1. The stricter variant of the
problem would be relevant in a security policy framework, such as XACML, that
allows policies to return indeterminate results; this is relevant mainly when composing
policies, since an indeterminate result typically still results in a denial at the top level.

2.2 Learning a Multi-Way Decision Tree

Since we are dealing with three truth values, we need multi-way decision trees, instead
of binary trees. Each internal node is labeled with a feature. Each outgoing edge of an
internal node corresponds to a possible value of the feature. Each leaf node is labeled
with a classification label, which in our setting are also truth values. A feature vector
is classified by testing the feature in the root node, following the edge corresponding
to the value of the feature to reach a subtree, and then repeating this procedure until
a leaf node is reached. A sample decision tree is shown in Section 5.

Our algorithm uses C4.5 [7], a well-known decision tree learning algorithm, to
build a multi-way decision tree that correctly classifies a given set S of labeled feature
vectors. It builds a decision tree by recursively partitioning feature vectors in the
dataset S, starting from a root node associated with the entire dataset. It chooses

5

(as described below) a feature to test at the root node, creates a child node for each
possible outcome of the test, partitions the set of feature vectors associated with
the root node among the children, based on the outcome of the test, and recursively
applies this procedure to each child. The recursion stops when all of the feature
vectors associated with a node have the same classification label or when there is no
feature vector associated with a node (the leaf node is labeled with False in this case).
At each node n, the algorithm evaluates a scoring criteria for each of the remaining
features (i.e., features that have not been used for splitting at an ancestor of n) and
then chooses the top-ranked feature. C4.5 uses information gain as the scoring criteria.

2.3 Algorithm for Learning a Three-Valued Logic Formula

The algorithm is presented as pseudocode in Figure 1, with explanations inlined
in comments. It iterates to build a formula D in DNF satisfying the requirements.
For convenience, we represent D as a set of conjunctions; the desired formula is the
disjunction of the conjunctions in D. For a path p through a decision tree from the
root to a leaf, let conj(p) be a conjunction of conditions on the features associated with
internal nodes on that path; specifically, if the path passes through a node labeled
with feature f and follows the out-edge labeled T , F or U, then f, ¬f, or f = U,
respectively, is included as a conjunct. Although the algorithm uses conditions of the
form f = U in intermediate conjunctions, they need to be eliminated, because f = U
is not a formula in three-valued logic; furthermore, three-valued logic does not contain
any formula equivalent to f = U , because this condition is not monotonic (in other
words, it does not satisfy the monotonicity property of formulas stated above). A
formula φ is valid with respect to a set S of labeled feature vectors, denoted valid(φ,S),
if it does not mis-evaluate any feature vectors as true, i.e., for every feature vector v in
S labeled F or U , φ(v) is F or U . A formula φ covers S if φ(v) is T for every feature
vector in S labeled T . An example of how the algorithm works appears in Section 5.

3 Policy Language with Unknown Attribute Values

We adopt Bui et al.’s ORAL2− [2] ReBAC policy language and modify it to handle
unknown attribute values. It contains common ABAC constructs, similar to those in
[22], plus path expressions. ORAL2− can easily be restricted to express ABAC policies
by limiting the maximum length of path expressions to 1. We give a brief overview
of the language (for details, see [2]) and focus on describing the changes to handle
unknown values. The largest changes are to the definitions of path dereferencing (see
the definition of nav) and the definitions of truth values of conditions and constraints.

A ReBAC policy is a tuple π = 〈CM ,OM ,Act,Rules〉, where CM is a class
model, OM is an object model, Act is a set of actions, and Rules is a set of rules.

A class model is a set of class declarations. Each field has a type, which is a class
name or “Boolean”, and a multiplicity, which specifies how many values may be stored
in the field and is “one” (also denoted “1”), “optional” (also denoted “?”), or “many”
(also denoted “*”, meaning any number). Boolean fields always have multiplicity 1.
Every class implicitly contains a field “id” with type String and multiplicity 1.

6

S = the given set of labeled feature vectors
D = ∅ // the desired formula in DNF, represented as a set of conjunctions
B = ∅ // set of black-listed features
iter = 0 // number of iterations of tree learning
while D does not cover S and iter < max iter
// add disjuncts until D covers S or max iter is reached
S′ = S \ {(v,T) | D(v) = T} // remove feature vectors covered by D
Use C4.5 to learn a multi-way decision tree dt for S′, without using features in B
D′ = set containing conj(p) for each path p through dt from the root to a leaf labeled T
// eliminate conjuncts of the form f = U
for each conjunction c in D′ that contains a condition of the form f = U
c′ = c; remove c from D′

for each condition fu of the form f = U in c′

c′′ = formula obtained from c′ by removing fu
if valid(c′′, S) then c′ = c′′ // successfully removed fu
else
// fu cannot simply be removed; try to replace it with another condition
Fr = set containing features not used in c, and the negations of those features
for each f1 in Fr

c′′ = formula obtained from c′ by replacing fu with f1
if valid(c′′, S) ∧ (D′ ∪ {c′′} covers S′)
c′ = c′′ // successfully replaced fu with f1
break

if c′ does not contain any conditions of the form f = U then add c′ to D′

else
// some f = U conditions in c couldn’t be eliminated or replaced.
// discard c, and blacklist features used in its f = U conditions.
for each condition of the form f = U in c
add f to B

D = D ∪D′

iter = iter+ 1
if D does not cover S
// max iterations was exceeded. cover the remaining feature vectors one at a time.
uncov = {v | (v,T) ∈ S ∧D(v) 6= T} // uncovered feature vectors
for each feature vector v in uncov
c = conjunction containing the conjunct f for each feature f s.t. v(f) = T
and the conjunct ¬f for each feature f s.t. v(f) = F

// note that c(v) = T , and monotonicity of S ensures valid(c,S) holds
add c to D

// remove redundant disjuncts from D
for each conjunction c in D
if the set of conjuncts in c is a superset of the set of conjuncts in another element of D
remove c from D

Fig. 1. Algorithm for learning a three-valued logic formula.

An object model is a set of objects whose types are consistent with the class model
and with unique values in the id fields. Let type(o) denote the type of object o. The
value of a field with multiplicity “many” is a set of values. The value of a field with

7

multiplicity “one” or “optional” is a single value. The value of a field with multiplicity
“optional” is a value of the specified type or None (called “bottom” in [2]). The value
of any field can also be the special value unknown, indicating that the actual value is
unknown (missing). The difference between None and unknown is explained in Section
1. unknown cannot appear in a set of values in the object model, but it may appear
in sets of values constructed by our algorithm. Note that we distinguish unknown (a
placeholder used in object models) from U (a truth value in three-valued logic).

A path is a sequence of field names, written with “.” as a separator. A condition
is a set, interpreted as a conjunction, of atomic conditions or their negations. An
atomic condition is a tuple 〈p,op, val〉, where p is a non-empty path, op is an operator,
either “in” or “contains”, and val is a constant value, either an atomic value (if op
is “contains”) or a set of atomic values (if op is “in”). For example, an object o
satisfies 〈dept.id, in,{CompSci}〉 if the value obtained starting from o and following
(dereferencing) the dept field and then the id field equals CompSci. In examples,
conditions are usually written using mathematical notation as syntactic sugar, with
“∈” for “in” and “3” for “contains”. For example, 〈dept.id, in,{CompSci}〉 is more
nicely written as dept ∈ {CompSci}. Note that the path is simplified by omitting
the “id” field since all non-Boolean paths end with “id” field. Also, “=” is used
as syntactic sugar for “in” when the constant is a singleton set; thus, the previous
example may be written as dept=CompSci.

A constraint is a set, interpreted as a conjunction, of atomic constraints or their
negations. Informally, an atomic constraint expresses a relationship between the
requesting subject and the requested resource, by relating the values of paths starting
from each of them. An atomic constraint is a tuple 〈p1,op, p2〉, where p1 and p2 are
paths (possibly the empty sequence), and op is one of the following five operators:
equal, in, contains, supseteq, subseteq. Implicitly, the first path is relative to the
requesting subject, and the second path is relative to the requested resource. The
empty path represents the subject or resource itself. For example, a subject s and
resource r satisfy 〈specialties, contains, topic〉 if the set s.specialties contains the value
r.topic. In examples, constraints are written using mathematical notation as syntactic
sugar, with “=” for “equal”,“⊇” for “supseteq”, and “⊆” for “subseteq”.

A rule is a tuple 〈subjectType, subjectCondition, resourceType, resourceCondition,
constraint, actions〉, where subjectType and resourceType are class names, subjectCon-
dition and resourceCondition are conditions, constraint is a constraint, actions is a set
of actions. A rule must satisfy several well-formedness requirements [6]. For a rule ρ =
〈st, sc, rt, rc, c,A〉, let sCond(ρ) = sc, rCond(ρ) = rc, con(ρ) = c, and acts(ρ) = A.

In the example rules, we prefix paths in conditions and constraints that start
from the subject and resource with “subject” and “resource”, respectively, to im-
prove readability. For example, the e-document case study [6,11] involves a bank
whose policy contains the rule: A project member can read all sent documents
regarding the project. Using syntactic sugar, this is written as 〈Employee, sub-
ject.employer = LargeBank, Document, true, subject.workOn.relatedDoc 3 resource,
{read}〉, where Employee.workOn is the set of projects the employee is working on,
and Project.relatedDoc is the set of sent documents related to the project.

8

The type of a path p is the type of the last field in the path. The multiplicity of
a path p is “one” if all fields on the path have multiplicity one, is many if any field
on the path has multiplicity many, and is optional otherwise. Given a class model,
object model, object o, and path p, let nav(o, p) be the result of navigating (a.k.a.
following or dereferencing) path p starting from object o. If the navigation encounters
unknown, the result is unknown if p has multiplicity one or optional, and is a set of
values containing unknown (and possibly other values) if p has multiplicity many.
Otherwise, the result might be None, an atomic value, or (if p has multiplicity many)
a set of values. Aside from the extension to handle unknown, this is like the semantics
of path navigation in UML’s Object Constraint Language1.

The truth value of an atomic condition ac = 〈p,op, val〉 for an object o, denoted
tval(o, ac), is defined as follows. If p has multiplicity one (or optional) and nav(o, p) is
unknown, then tval(o, ac) = U . If p has multiplicity one (or optional) and nav(o, p) is
known, then tval(o, ac) = T if nav(o, p) ∈ val, and tval(o, ac) = F otherwise. If p has
multiplicity many, then tval(o, ac) = T if nav(o, p) 3 val; otherwise, tval(o, ac) = F
if nav(o, p) does not contain unknown, and tval(o, ac) = U if it does. Note that the
operator op is not used explicitly in this definition, because op is uniquely deter-
mined by the multiplicity of p. Next, we define tval for negated atomic conditions. If
tval(o, ac) = T and nav(o, p) is a set containing unknown, then tval(o,¬ac) = U ; oth-
erwise, tval(o,¬ac) = ¬tval(o, ac), where ¬ denotes negation in three-valued logic [20].

The truth value of an atomic constraint ac = 〈p1,op, p2〉 for a pair of objects o1, o2,
denoted tval(o1, o2, ac), is defined as follows. If no unknown value is encountered dur-
ing navigation, then tval(o1, o2, ac) = T if (op = equal∧ nav(o1, p1) = nav(o2, p2))∨
(op = in ∧ nav(o1, p1) ∈ nav(o2, p2)) ∨ (op = contains ∧ nav(o1, p1) 3 nav(o2, p2)) ∨
(op = supseteq ∧ nav(o1, p1) ⊇ nav(o2, p2)) ∨ (op = subseteq ∧ nav(o1, p1) ⊆
nav(o2, p2)), otherwise tval(o1, o2, ac) = F . If nav(o1, p1) and nav(o2, p2) both
equal unknown, then tval(o1, o2, ac) = U. If either of them is unknown and op ∈
{equal, subseteq, supseteq}, then tval(o1, o2, ac) = U. If either of them is unknown

and op ∈ {in, contains} (hence the other one is a set possibly containing unknown),
the truth value is defined similarly as in the corresponding case for atomic conditions.
The truth value of negated atomic constraints is defined similarly as for negated
atomic conditions.

We extend tval from atomic conditions to conditions using conjunction (in three-
valued logic): tval(o,{ac1, . . . , acn}) = tval(o, ac1)∧ · · · ∧ tval(o, acn). We extend tval
from atomic constraints to constraints in the same way. An object or pair of objects
satisfies a condition or constraint if c has truth value T for it.

An SRA-tuple is a tuple 〈s, r, a〉, where the subject s and resource r are objects,
and a is an action, representing (depending on the context) authorization for s to per-
form a on r or a request to perform that access. An SRA-tuple 〈s, r, a〉 satisfies a rule
ρ = 〈st, sc, rt, rc, c,A〉 if type(s) = st∧ tval(s, sc) = T ∧ type(r) = rt∧ tval(r, rc) =
T ∧ tval(〈s, r〉, c) = T ∧ a ∈ A. The meaning of a rule ρ, denoted [[ρ]], is the set of
SRA-tuples that satisfy it. The meaning of a ReBAC policy π, denoted [[π]], is the
union of the meanings of its rules.

1 http://www.omg.org/spec/OCL/

http://www.omg.org/spec/OCL/

9

4 The Problem: ReBAC Policy Mining with Unknowns

We adopt Bui et al.’s definition of the ReBAC policy mining problem and extend it
to include unknown attribute values. The ABAC policy mining problem is the same
except it requires the mined policy to contain paths of length at most 1.

An access control list (ACL) policy is a tuple 〈CM ,OM ,Act,AU 〉, where CM
is a class model, OM is an object model that might contains unknown attribute
values, Act is a set of actions, and AU ⊆ OM ×OM ×Act is a set of SRA tuples
representing authorizations. Conceptually, AU is the union of ACLs. An ReBAC
policy π is consistent with an ACL policy 〈CM ,OM , Act, AU 〉 if they have the
same class model, object model, actions, and [[π]] = AU .

Among the ReBAC policies consistent with a given ACL policy π0, the most
desirable ones are those that satisfy the following two criteria. (1) The “id” field
should be used only when necessary, i.e., only when every ReBAC policy consistent
with π0 uses it, because uses of it make policies identity-based and less general. (2)
The policy should have the best quality as measured by a given policy quality metric
Qpol, expressed as a function from ReBAC policies to natural numbers, with small
numbers indicating high quality.

The ReBAC policy mining problem with unknown attribute values is: given an
ACL policy π0 = 〈CM ,OM , Act,AU 〉, where the object model OM might contain
unknown attribute values, and a policy quality metric Qpol, find a set Rules of rules
such that the ReBAC policy π = 〈CM ,OM ,Act,Rules〉 is consistent with π0, uses
the “id” field only when necessary, and has the best quality, according to Qpol, among
such policies.

The policy quality metric that our algorithm aims to optimize is weighted struc-
tural complexity (WSC), a generalization of policy size [6]. WSC is a weighted sum of
the numbers of primitive elements of various kinds that appear in a rule or policy. It is
defined bottom-up. The WSC of an atomic condition 〈p,op, val〉 is |p|+ |val|, where
|p| is the length of path p, and |val| is 1 if val is an atomic value and is the cardinality
of val if val is a set. The WSC of an atomic constraint 〈p1,op, p2〉 is |p1|+ |p2|. The
WSC of a negated atomic condition or constraint c is 1 + WSC(c). The WSC of
a rule ρ, denoted WSC(ρ), is the sum of the WSCs of the atomic conditions and
atomic constraints in it, plus the cardinality of the action set (more generally, it is
a weighted sum of those numbers, but we take all of the weights to be 1). The WSC
of a ReBAC policy π, denoted WSC(π), is the sum of the WSC of its rules.

5 ReBAC Policy Mining Algorithm

This section presents our ReBAC policy mining algorithms, DTRMU− and DTRMU.
They have two main phases. The first phase learns a decision tree that classifies
authorization requests as permitted or denied, and then constructs a set of candidate
rules from the decision tree. The second phase improves the policy by merging
and simplifying the candidate rules and optionally removing negative atomic condi-
tions/constraints from them.

10

5.1 Phase 1: Learn Decision Tree and Extract Rules

Problem decomposition. We decompose the problem based on the subject type,
resource type, and action. Specifically, for each type Cs, type Cr, and action a such
that AU contains some SRA tuple with a subject of type Cs, a resource of type
Cr, and action a, we learn a separate DNF formula φCs,Cr,a to classify SRA tuples
with subject type Cs, resource type Cr, and action a. The decomposition by type
is justified by the fact that all SRA tuples authorized by a rule contain subjects with
the same subject type and resources with the same resource type. Regarding the
decomposition by action, the first phase of our algorithm generates rules that each
contain a single action, but the second phase merges similar rules and can produce
rules that authorize multiple actions.

Construct labeled feature vectors. To apply our formula-learning algorithm, we
first need to extract sets of features and feature vectors from an input ACL policy.
We use the same approach as described in [2].

A feature is an atomic condition (on the subject or resource) or atomic constraint
satisfying user-specified limits on lengths of paths in conditions and constraints. We
define a mapping from feature vectors to three-valued logic labels: given an SRA
tuple 〈s, r, a〉, we create a feature vector (i.e., a vector of the three-valued logic truth
values of features evaluated for subject s and resource r) and map it to T if the SRA
tuple is permitted (i.e., is in AU) and to F otherwise. We do not label any feature
vector with U , since the set of authorizations AU in the input ACL policy is assumed
to be complete, according to the problem definition in Section 4.

FV id sub id res id
Features

Label
sub.dept = res.dept sub.dept = CS res.dept = CS res.type = Handbook

1 CS-student-1 CS-doc-1 U T U T T

2 CS-student-1 CS-doc-2 T T T U T

3 CS-student-1 CS-doc-3 U T U U F

4 EE-student-1 CS-doc-1 U U U T T

5 EE-student-1 CS-doc-2 U U T U F

6 EE-student-1 CS-doc-3 U U U U F

Table 1. Extracted features and feature vectors for the sample policy. FV id is a unique
ID assigned to the feature vector. sub id and res id are the subject ID and resource ID,
respectively. Features that are conditions on sub id or res id are not shown. The labels
specify whether a student has permission to read a document (T=permit, F=deny).

Table 1 shows a set of labeled feature vectors for our running example, which
is a ReBAC policy containing two student objects, with IDs CS-student-1 and EE-
student-1, and three document objects, with IDs CS-doc-1, CS-doc-2 and CS-doc-3.
Each student object has a field “dept” specifying the student’s department. Each
document object has a field “dept” specifying which department it belongs to, and a
field “type” specifying the document type. The field values are CS-student-1.dept =

11

CS, EE-student-1.dept = unknown, CS-doc-1.dept = CS-doc-3.dept = unknown, CS-
doc-2.dept = CS, CS-doc-1.type = Handbook, and CS-doc-2.type = CS-doc-3.type =
unknown. The labels are consistent with the ReBAC policy containing these two rules:
(1) A student can read a document if the document belongs to the same department
as the student, and (2) every student can read handbook documents. Formally, the
rules are (1) 〈Student, true, Document, true, subject.dept = resource.dept,{read}〉,
and (2) 〈Student, true, Document, resource.type = Handbook, true,{read}〉. Note
that this is also an ABAC policy, since all paths have length 1.

The feature vectors constructed to learn φCs,Cr,a include only features appropriate
for subject type Cs and resource type Cr, e.g., the path in the subject condition
starts with a field in class Cs. The set of labeled feature vectors used to learn φCs,Cr,a

contains one feature vector generated from each possible combination of a subject
of type Cs (in the given object model) and a resource of type Cr. We also use the
optimizations described in [2, Section 5.1] to discard some “useless” features, namely,
features that have the same value in all feature vectors, and sets of features equivalent
to simpler sets of features. For the running example, Table 1 shows the feature vectors
for Cs = Student,Cr = Document, a = read.

Learn a formula. After generating the labeled feature vectors, we apply the formula-
learning algorithm in Section 2.3. We do not explicitly check the monotonicity of the
set of labeled feature vectors. Instead, after constructing each formula, we directly
check whether it is valid (it will always cover the given set of labeled feature vectors);
this is necessary because, if the set of labeled feature vectors is not monotonic,
disjuncts added by the loop over uncov might be invalid. This approach has two
benefits: it is computationally cheaper because it requires iterating over feature vectors
(or, equivalently, subject-resource-action tuples) individually, whereas monotonicity
requires considering pairs of feature vectors; and it provides an end-to-end correctness
check as well as an implicit monotonicity check.

To help the formula-learning algorithm produce formulas that lead to rules with
lower WSC, we specialize the scoring metric used to choose a feature to test at each
node. Specifically, we use information gain as the primary metric, but we extend the
metric to use WSC (recall that WSC of atomic conditions and atomic constraints is de-
fined in Section 4) as a tie-breaker for features that provide the same information gain.

Specialized treatment of conditions on the “id” attribute, e.g., subject.id =
CS-student-1 is also beneficial. Recall from Section 4 that such conditions should be
used only when needed. Also, we expect that they are rarely needed. We consider two
approaches to handling them. In the first approach, we first run the formula-learning
algorithm on feature vectors that do not contain entries for these conditions; this
ensures those conditions are not used unnecessarily, and it can significantly reduce
the running time, since there are many such conditions for large object models. That
set of feature vectors is not necessarily monotonic, so the learned formula might not
be valid; this will be detected by the validity check mentioned above. If it is not
valid, we generate new feature vectors that include these conditions and run the
formula-learning algorithm on them.

12

In the second approach, we run a modified version of the formula-learning al-
gorithm on feature vectors that do not contain entries for these conditions. The
modification is to the loop over uncov: for each feature vector v in uncov, it adds
the conjunction subject.id = ids ∧ resource.id = idr to D, where s and r are the
subject and resource, respectively, for which v was generated, and ids and idr are
their respective IDs. The disadvantage of this approach is that it can sometimes use
conditions on id when they are not strictly needed; the advantage of this approach
is that it can sometimes produce policies with smaller WSC, because the modified
version of the loop over uncov produces conjunctions with few conjuncts, while the
original version of the loop over uncov produces conjunctions with many conjuncts
(though some conjuncts may be removed by simplifications in phase 2).

In practice, both approaches usually produce the same result, because, even
when conditions on ”id” are omitted, the first top-level loop in the formula-learning
algorithm usually succeeds in covering all feature vectors.

Fig. 2. Multi-way decision tree for the running example.

Figure 2 shows the learned multi-way decision tree for the set of labeled feature
vectors in Table 1. Internal nodes and leaf nodes are represented by unfilled and filled
boxes, respectively. The conjunctions conj(p) generated from paths from the root
to a leaf labeled T are (1) res.type = Handbook and (2) 〈res.type = Handbook〉 =
U ∧ sub.dept = res.dept. Note that, for convenience, a formula containing a single
condition is considered to be a (degenerate) kind of conjunction.

The algorithm tries to eliminate the condition 〈res.type = Handbook〉 = U
in conjunction (2). Removing that condition leaves the (one-element) conjunction
sub.dept = res.dept, which is still valid WRT to the set of feature vectors in Ta-
ble 1, so the algorithm replaces conjunction (2) with sub.dept = res.dept in D.
The first top-level loop in the algorithm succeeds in covering all feature vectors
in S. Thus, the learned formula φStudent,Document,read is (res.type = Handbook) ∨
(sub.dept = res.dept).

Extract rules. We convert the formula into an equivalent set of rules and add
them to the candidate mined policy. For each conjunction c in the formula φCs,Cr,a,
we create a rule with subject type Cs, resource type Cs, action a, and with c’s

13

conjuncts as atomic conditions and atomic constraints. For the running example, the
formula φStudent,Document,read has two (degenerate) conjunctions, and the algorithm
successfully extracts the two desired rules given above in the description of Table 1.

5.2 Phase 2: Improve the Rules

Phase 2 has two main steps: eliminate negative features, and merge and simplify
rules. We adopt these steps from DTRM. We give brief overviews of these steps in
this paper, and refer the reader to [2] for additional details.

Eliminate Negative Features. This step is included only in DTRMU, in order
to mine rules without negation. This step is omitted from DTRMU−. It eliminates
each negative feature in a rule ρ by removing the negative feature (if the resulting
rule is valid) or replacing it with one or more positive feature(s).

Merge and Simplify Rules. This step attempts to merge and simplify rules using
the same techniques as [2] (e.g., removing atomic conditions and atomic constraints
when this preserves validity of the rule, eliminating overlap between rules, and re-
placing constraints with conditions), extended with one additional simplification
technique: If an atomic condition on a Boolean-valued path p has the form p 6= F
or p 6= T , it is replaced with p = T or p = F , respectively.

Naively applying DTRM. One might wonder whether DTRM− can be used to
mine policies, by assuming that features involving unknown attribute values evaluate
to F (instead of U). Although there is no reason to believe that this will work, it is easy
to try, so we did. For the running example, DTRM− produces two rules:〈Student, true,
Document, res.type =Handbook, true,{read}〉 and 〈Student, true, Document, res.type
6= Handbook, sub.dept = res.dept,{read}〉. This policy is incorrect, because it does not
cover feature vector 2 in Table 1, i.e., it prevents CS-student-1 from reading CS-doc-2.

6 Evaluation Methodology

We adopt Bui et al.’s methodology for evaluating policy mining algorithms [3]. It is
depicted in Figure 3. It takes a class model and a set of ReBAC rules as inputs. The
methodology is to generate an object model based on the class model (independent
of the ReBAC rules), compute the authorizations AU from the object model and
the rules, run the policy mining algorithm with the class model, object model, and
AU as inputs, and finally compare the mined policy rules with the simplified original
(input) policy rules, obtained by applying the simplifications in Section 5.2 to the
given rules. Comparison with the simplified original policy is a more robust measure
of the algorithm’s ability to discover high-level rules than comparison with the original
policy, because the original policy is not always the simplest. If the mined rules are
similar to the simplified original rules, the policy mining algorithm succeeded in
discovering the desired ReBAC rules that are implicit in AU .

14

Policy N #obj #field #FV #rule

EMR 15 353 877 4134 6

healthcare 5 736 1804 42121 8

healthcare 5− 736 1875 42121 8

project-mgmt 5 179 296 4080 10

project-mgmt 10− 376 814 23627 10

university 5 738 926 83761 10

e-document 75 284 1269 31378 39

eWorkforce 10 412 1124 14040 19

Original

Rules

Object Model

Generator
Class

Model

Object

Model

Policy Mining

Algorithm

Mined

Rules

Policy Similarity

Computation

Authorizations

AU

Authorizations

Generator

Similarity of original

rules and mined rules

LEGEND

Inputs Algorithms Outputs

1

2

3

4

Fig. 3. Left: Policy sizes. For the given value of the object model size parameter N (after the
underscore in the policy name), #obj is the average number of objects in the object model,
and #field is the average number of fields in the object model, i.e., the sum over objects
o of the number of fields in o. #FV is the number of feature vectors (i.e., labeled SRA
tuples) that the algorithms generate to learn a formula. Averages are over 5 pseudorandom
object models for each policy. “healthcare 5−” and “project-mgmt 10−” are the policies
with negations that we generated. Right: Evaluation methodology; reproduced from [2].

6.1 Datasets

We use four sample policies developed by Bui et al. [6]. One is for electronic medical
records (EMR), based on the EBAC policy in [1], translated to ReBAC; the other
three are for healthcare, project management, and university records, based on ABAC
policies in [22], generalized and made more realistic, taking advantage of ReBAC’s
expressiveness. These policies are non-trivial but relatively small.

We also use Bui et al.’s translation into ORAL2− [2] of two large case studies
developed by Decat, Bogaerts, Lagaisse, and Joosen based on the access control
requirements for Software-as-a-Service (SaaS) applications offered by real companies
[12,13]. One is for a SaaS multi-tenant e-document processing application; the other
is for a SaaS workforce management application provided by a company that handles
the workflow planning and supply management for product or service appointments
(e.g., install or repair jobs).

More detailed descriptions of these policies are available in [2]. The ABAC or
ReBAC versions of these policies, or variants of them, have been used as benchmarks
in several papers on policy mining, including [19,5,14,15,2].

These sample policies and the case studies do not include any rules with negations.
Therefore, we created modified versions of the healthcare and project management
policies that include some rules with negation; the names of the modified version end
with “−”. For the healthcare policy, we add a new attribute “COIs” in the Patient
class to specify the physicians or nurses who have a conflict of interest with the patient,
and in the rules that give any permission on a patient’s record to a physician or nurse,
we add the constraint subject /∈ resource.patient.COIs. For the project management
policy, we add a new attribute “status” in the Task class with possible values
not started, in progress, and completed. In the rules that give permission to change the
cost, schedule, or status of a task, we add the condition resource.status 6= completed.

15

The object models are generated by policy-specific pseudorandom algorithms
designed to produce realistic object models, by creating objects and selecting their
attribute values using appropriate probability distributions. These algorithms are
parameterized by a size parameter N; for most classes, the number of instances is
selected from a normal distribution whose mean is linear inN . We use the same object
model generators as Bui and Stoller [2], which are slightly modified versions of the
object model generators described and used in [3,6], which are available online.2 Note
that, in these object models, all attribute values are known. The table in Figure 3 shows
several metrics of the size of the rules, class model, and object model in each policy.

6.2 Policy Similarity Metrics

We evaluate the quality of the generated policy primarily by its syntactic similarity
and policy semantic similarity to the simplified original policy. These metrics are
first defined in [22,5] and adapted in [2] to take negation into account. They are
normalized to range from 0 (completely different) to 1 (identical). They are based on
Jaccard similarity of sets, defined by J(S1, S2) = |S1∩S2|/ |S1∪S2|. For convenience,
we extend J to apply to single values: J(v1, v2) is 1 if v1 = v2 and 0 otherwise.

Syntactic similarity of policies measures the syntactic similarity of rules in the
policies, based on the fractions of types, conditions, constraints, and actions that rules
have in common. The syntactic similarity of rules is defined bottom-up as follows. For
an atomic condition ac, let sign(ac), path(ac), and val(ac) denote its sign (positive or
negative), its path, and its value (or set of values), respectively. Syntactic similarity
of atomic conditions ac1 and ac2, synac(ac1, ac2), is 0 if they contain different paths,
otherwise it is the average of J(sign(ac1), sign(ac2)), J(path(ac1),path(ac2)), and
J(val(ac1),val(ac2))); we do not explicitly compare the operators, because atomic
conditions with the same path must have the same operator, since the operator is
uniquely determined by the multiplicity of the path. For a set S of atomic conditions,
let paths(S) = {path(ac) | ac ∈ S}. For sets S1 and S2 of atomic conditions,

syn(S1, S2) = |paths(S1)∪ paths(S2)|−1
∑

ac1∈S1,ac2∈S2

synac(ac1, ac2)

The syntactic similarity of rules ρ1 = 〈st1, sc1, rt1, rc1, c1,A1〉 and ρ2 = 〈st2, sc2,
rt2, rc2, c2,A2〉 is syn(ρ1, ρ2) = average(J(st1, st2), syn(sc1, sc2), J(rt1, rt2),
syn(rc1, rc2), J(c1, c2), J(A1,A2)). The syntactic similarity of policies π1 and π2,
denoted syn(π1, π2), is the average, over rules ρ in π1, of the syntactic similarity
between ρ and the most similar rule in π2.

The semantic similarity of polices measures the fraction of authorizations that
the policies have in common. Specifically, the semantic similarity of policies π1 and
π2 is J([[π1]] , [[π2]]).

7 Evaluation Results

We performed two series of experiments. The first series of experiments compares our
algorithms with Bui and Stoller’s DTRM and DTRM− algorithms (which are state-

2 https://www.cs.stonybrook.edu/~stoller/software/

https://www.cs.stonybrook.edu/~stoller/software/

16

of-the-art, as discussed in Section 1), and shows that, on policies where all attribute
values are known, our algorithms are equally effective at discovering the desired
ReBAC rules, produce policies with the same quality, and have comparable running
time. The second series of experiments, on policies containing a varying percentage
of unknown values, shows that our algorithms are effective at discovering the desired
ReBAC rules, even when a significant percentage of attribute values are unknown.

We implemented our formula-learning algorithm in Python, on top of Esmer’s
implementation of the C4.5 decision-tree learning algorithm3. Bui and Stoller’s im-
plementation of DTRM− [2] uses the optimized version of the CART decision-tree
learning algorithm provided by the scikit-learn library4; we could not use it, because
it supports only binary trees. Since Esmer’s implementation of C4.5 supports only
information gain as the feature scoring metric, we chose it as the scoring metric in
scikit-learn when running DTRM and DTRM−, which originally used the default
scoring metric, which is gini index. This change had a negligible effect on the algo-
rithms’ output (no effect for all policies except e-document 75, for which it improved
the results slightly) and allows a fairer comparison of DTRM and DTRM− with
DTRMU and DTRMU−. We re-used Bui and Stoller’s implementation of Phase 2,
with the small extension in Section 5.1. When generating feature vectors, we use
the same path length limits (cf. Section 5.1) as in [6,3] for all algorithms. We set
the value of the max iter parameter in the formula-learning algorithm to 5. We ran
DTRM− and DTRMU− on the policies containing rules with negation (healthcare 5−

and project-mgmt 10−), and we ran DTRM and DTRMU on the other policies. All
experiments were run on Windows 10 on an Intel i7-6770HQ CPU.

7.1 Comparison with DTRM and DTRM−

We compared our algorithms with DTRM and DTRM− using the datasets described
in Section 6.1. We ran experiments on five object models for each policy and averaged
the results. The standard deviations (SD) are reasonable, indicating that averaging
over five object models for each data point is sufficient to obtain meaningful results.

All of these algorithms always mine policies that grant the same authorizations as
the input ACL policies and thus achieve perfect semantic similarity for all datasets.
Our algorithms achieve almost exactly the same syntactic similarity as DTRM and
DTRM− when comparing mined rules with simplified original rules, as explained in
Section 6. DTRM and DTRMU both achieve the same results for average syntactic
similarity: 1.0 (SD = 0) for healthcare 5, project-mgmt 5, and university 5; 0.99 (SD
= 0.01) for EMR 15; 0.98 (SD = 0.01) for eWorkforce 10; and 0.92 (SD = 0.02)
for e-document 75. DTRMU− and DTRM− both achieve 1.0 (SD = 0) average
syntactic similarity for healthcare 5− and project-mgmt 10−. For all of the datasets,
our algorithms and theirs mine policies with the same average WSC.

The running times of DTRM and DTRM− are somewhat faster than our al-
gorithms. Averaged over all policies, DTRM is 1.53 (SD = 0.20) times faster than

3 https://github.com/barisesmer/C4.5
4 https://scikit-learn.org/stable/modules/tree.html

https://github.com/barisesmer/C4.5
https://scikit-learn.org/stable/modules/tree.html

17

DTRMU, and DTRM− is 1.72 (SD = 0.05) times faster than DTRMU−. The dif-
ference in the running time comes mostly from the decision-tree learning step. When
there are no unknown values, our algorithms and DTRM and DTRM− are essentially
the same at the algorithm level, aside from our algorithms having a very small
overhead to check for unknowns. Therefore, we attribute the difference in running
time primarily to the use of different tree-learning libraries—Esmer’s straightforward
implementation of C4.5 used by our algorithms vs. the optimized version of CART in
scikit-learn used by DTRM and DTRM−. Furthermore, C4.5 and CART are similar
algorithms and should construct the same binary trees when applied to boolean
feature vectors labeled with booleans (they handle continuous data differently), so
the difference in running time is mainly due to implementation-level differences.

7.2 Experiments with unknown attribute values

We generated datasets with unknown attribute values by changing the values of
pseudorandomly chosen fields to unknown in the datasets used for the experiments
in Section 7.1. We introduce a scaling factor s to vary how many unknown values
are introduced. In each policy, for most fields f of each class C, we pseudorandomly
choose a probability p in the range [0.02s,0.05s], and then, for each instance o of C, we
change the value of f to unknown with probability p. This is done for all fields except
a few manually classified as required or important. For a required field, we take p = 0,
i.e., no instances are changed to unknown. For an important field (i.e., one whose
value is more likely to be known), we take p = 0.01s. For example, the university
policy has one required field, Transcript.student (the student whose transcript it is),
and one important field, Faculty.department. For all policies, the number of required
or important fields is less than 15% of the total number of fields in the class model.

We ran experiments with s = 0 (i.e., all attribute values are known, same datasets
as in Section 7.1), 1, 2, and 3. Averaged over all policies, the percentages of field values
in the object model that are changed to unknown are 3%, 6%, and 8% for s = 1, 2,
and 3, respectively. Experimental results appear in Table 2 and are discussed below.

Policy
s = 0 s = 1 s = 2 s = 3

Syn. Sim Run Time Syn. Sim Slowdown Syn. Sim Slowdown Syn. Sim Slowdown

EMR 15 0.99 76.19 0.99 2.28 1.00 9.52 0.99 6.46

healthcare 5 1.00 129.50 1.00 1.24 1.00 1.25 0.99 1.23

project-mgmt 5 1.00 3.81 1.00 1.08 1.00 1.21 1.00 1.45

university 5 1.00 266.29 1.00 1.07 1.00 1.03 1.00 1.07

eWorkforce 10 0.98 96.40 0.96 11.88 0.93 8.41 0.94 9.13

e-document 75 0.92 420.27 0.93 8.03 0.93 15.77 0.91 9.41

healthcare 5− 1.00 171.95 1.00 1.38 0.99 1.38 0.99 1.34

project-mgmt 10− 1.00 38.04 1.00 1.39 0.99 1.71 0.99 1.74

Table 2. Experimental results for our algorithms on datasets with different values of scaling
factor s. “Syn. Sim” is the average syntactic similarity achieved on each policy. “Run time”
is measured in seconds. For s > 0, we report the slowdown relative to s = 0, i.e., the ratio
of the running time to the running time on the same policy with s = 0.

18

Policy Similarity and WSC. Our algorithms always mine policies that grant
exactly the same authorizations as the input ACL policies and thus achieve perfect
semantic similarity for all datasets.

For the sample policies (including the variants with negation), our algorithms
achieve 0.99 or better average syntactic similarity for all four values of s. For the case
studies, DTRMU achieves 0.96, 0.93, and 0.94 syntactic similarity for eWorkforce 10
with s = 1, 2, and 3, respectively; for e-document 75, the results are 0.93, 0.93, and
0.91, respectively. The standard deviations are less than 0.02 for all results, except for
eWorkforce 10 with s = 2, where SD = 0.04. In short, we see that unknown attribute
values cause a small decrease in policy quality, but policy quality remains high even
with up to 8% of field values set to unknown (with s = 3), and trend downward
slowly as the percentage of unknowns increases.

Our algorithms generate policies with the same or better (smaller) average WSC
than the simplified input policies for all datasets except e-document 75, for which the
average WSC of the mined policy is 20%, 14%, and 15% higher in experiments with
s = 1, 2, and 3, respectively. The standard deviations (over the 5 object models) for
each policy are between 5% and 9% of the averages for EMR 15, eWorkforce 10, and
e-document 75; for other policies, the standard deviations are 0.

Running Time. Table 2 reports our algorithms’ running times for s = 0 and
the slowdown (relative to s = 0) for larger values of s. This slowdown reflects the
additional processing needed to handle unknown values. Averaged over all policies,
the average slowdown is 3.5, 5.0, and 4.0 for s = 1, 2, and 3, respectively. The median
slowdown is 1.4, 1.5, and 1.6 for s = 1, 2, and 3, respectively.

Our algorithms spend most of the time in phase 1, to learn decision trees and
extract rules. The slowdown on a few policies is notably larger than the others, and
the standard deviations in running time for those policies are also high, indicating
that, for each of those policies, the algorithms take much longer on a few object
models than on the others. The larger slowdown for these object models is caused
by additional time spent eliminating features involving the unknown. In particular,
several of the features involving unknown cannot be eliminated by max iter iterations
of the top-level while loop, so the for loop over uncov is executed to eliminate them;
we use the second approach in Section 5.1, generating rules that use “id”. On the
positive side, these low-quality rules are removed in phase 2, and the algorithms still
succeed in mining high-quality policies.

8 Related Work

We discuss related work on policy mining. As mentioned in Section 1, the primary
distinction of our work is that no related work on ReBAC or ABAC policy mining
considers unknown attribute values. We are not aware of related work on learning
concise formulas in three-valued logic.

Related work on ReBAC policy mining. Bui et al. developed several ReBAC
policy mining algorithms [4,5,6,3,2], the most recent and best of which are DTRM

19

and DTRM− [2]. Our algorithms modify them to handle unknown attribute values.
Bui et al.’s algorithms in [5] can mine ReBAC policies from incomplete and noisy
information about permissions [5].

Iyer et al. present algorithms, based on ideas from rule mining and frequent
graph-based pattern mining, for mining ReBAC policies and graph transition policies
[15]. Their policy mining algorithm targets a policy language that is less expressive
than ORAL2−, because it lacks set comparison operators and negation; furthermore,
unlike ORAL2, it does not directly support Boolean attributes, and encoding them
may be inefficient [2]. Also, in Bui and Stoller’s experiments, DTRM is faster and
more effective than their algorithm [2].

Iyer et al. [16] present an algorithm for active learning of ReBAC policies from a
black-box access control decision engine, using authorization queries and equivalence
queries. The algorithm is assumed to have access to complete information about
attributes and relationships.

Related work on ABAC Policy mining. Xu et al. proposed the first algorithm
for ABAC policy mining [22] and a variant of it for mining ABAC policies from logs
[21]. Medvet et al. developed the first evolutionary algorithm for ABAC policy mining
[19]. Iyer et al. developed the first ABAC policy mining algorithm that can mine
ABAC policies containing deny rules as well as permit rules [14]. Cotrini et al. proposed
a new formulation of the problem of ABAC mining from logs and an algorithm based
on APRIORI-SD, a machine-learning algorithm for subgroup discovery, to solve it
[9]. Cotrini et al. also developed a “universal” access control policy mining algorithm
framework, which can be specialized to produce policy mining algorithms for a wide
variety of policy languages [8]; the downside, based on their experiments, is that
the resulting algorithms achieve lower policy quality than customized algorithms for
specific policy languages. Law et al. present a scalable inductive logic programming
algorithm and evaluate it for learning ABAC rules from logs [18].

References

1. Bogaerts, J., Decat, M., Lagaisse, B., Joosen, W.: Entity-based access control:
supporting more expressive access control policies. In: Proc. 31st Annual Computer
Security Applications Conference (ACSAC). pp. 291–300. ACM (2015)

2. Bui, T., Stoller, S.D.: A decision tree learning approach for mining relationship-based
access control policies. In: Proceedings of the 25th ACM Symposium on Access Control
Models and Technologies (SACMAT 2020). p. 167–178. ACM Press (2020)

3. Bui, T., Stoller, S.D., Le, H.: Efficient and extensible policy mining for relationship-based
access control. In: Proceedings of the 24th ACM Symposium on Access Control Models
and Technologies (SACMAT 2019). pp. 161–172. ACM (2019)

4. Bui, T., Stoller, S.D., Li, J.: Mining relationship-based access control policies. In: Proc.
22nd ACM Symposium on Access Control Models and Technologies (SACMAT). pp.
239–246 (2017)

5. Bui, T., Stoller, S.D., Li, J.: Mining relationship-based access control policies from
incomplete and noisy data. In: Proceedings of the 11th International Symposium on
Foundations & Practice of Security (FPS 2018). Lecture Notes in Computer Science,
vol. 11358. Springer-Verlag (2018)

20

6. Bui, T., Stoller, S.D., Li, J.: Greedy and evolutionary algorithms for mining relationship-
based access control policies. Computers & Security 80, 317–333 (jan 2019), preprint
available at http://arxiv.org/abs/1708.04749. An earlier version appeared as a
short paper in ACM SACMAT 2017.

7. C4.5 algorithm, https://en.wikipedia.org/wiki/C4.5_algorithm
8. Cotrini, C., Corinzia, L., Weghorn, T., Basin, D.: The next 700 policy miners: A

universal method for building policy miners. In: Proc. 2019 ACM Conference on
Computer and Communications Security (CCS 2019). pp. 95–112 (2019)

9. Cotrini, C., Weghorn, T., Basin, D.: Mining ABAC rules from sparse logs. In: Proc. 3rd
IEEE European Symposium on Security and Privacy (EuroS&P). pp. 2141–2148 (2018)

10. Das, S., Mitra, B., Atluri, V., Vaidya, J., Sural, S.: Policy engineering in RBAC and
ABAC. In: From Database to Cyber Security, Lecture Notes in Computer Science, vol.
11170, pp. 24–54. Springer Verlag (2018)

11. Decat, M., Bogaerts, J., Lagaisse, B., Joosen, W.: The e-document case study:
functional analysis and access control requirements. CW Reports CW654, Department
of Computer Science, KU Leuven (February 2014)

12. Decat, M., Bogaerts, J., Lagaisse, B., Joosen, W.: The e-document case
study: functional analysis and access control requirements. CW Reports
CW654, Department of Computer Science, KU Leuven (February 2014),
https://lirias.kuleuven.be/handle/123456789/440202

13. Decat, M., Bogaerts, J., Lagaisse, B., Joosen, W.: The workforce manage-
ment case study: functional analysis and access control requirements. CW Re-
ports CW655, Department of Computer Science, KU Leuven (February 2014),
https://lirias.kuleuven.be/handle/123456789/440203

14. Iyer, P., Masoumzadeh, A.: Mining positive and negative attribute-based access control
policy rules. In: Proc. 23rd ACM on Symposium on Access Control Models and
Technologies (SACMAT). pp. 161–172. ACM (2018)

15. Iyer, P., Masoumzadeh, A.: Generalized mining of relationship-based access control
policies in evolving systems. In: Proc. 24th ACM on Symposium on Access Control
Models and Technologies (SACMAT). pp. 135–140. ACM (2019)

16. Iyer, P., Masoumzadeh, A.: Active learning of relationship-based access control policies.
In: Lobo, J., Stoller, S.D., Liu, P. (eds.) Proceedings of the 25th ACM Symposium
on Access Control Models and Technologies, SACMAT 2020, Barcelona, Spain, June
10-12, 2020. pp. 155–166. ACM (2020), https://doi.org/10.1145/3381991.3395614

17. Kleene, S.C.: Introduction to Metamathematics. D. Van Nostrand, Princeton, NJ (1950)
18. Law, M., Russo, A., Bertino, E., Broda, K., Lobo, J.: FastLAS: Scalable inductive logic

programming incorporating domain-specific optimisation criteria. In: Thirty-Fourth
AAAI Conference on Artificial Intelligence (AAAI 2020). pp. 2877–2885. AAAI Press
(2020)

19. Medvet, E., Bartoli, A., Carminati, B., Ferrari, E.: Evolutionary inference of attribute-
based access control policies. In: Proceedings of the 8th International Conference on
Evolutionary Multi-Criterion Optimization (EMO): Part I. Lecture Notes in Computer
Science, vol. 9018, pp. 351–365. Springer (2015)

20. Three-valued logic, https://en.wikipedia.org/wiki/Three-valued_logic
21. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies from logs. In: Proc.

28th Annual IFIP WG 11.3 Working Conference on Data and Applications Security
and Privacy (DBSec). pp. 276–291. Springer (2014), extended version available at
http://arxiv.org/abs/1403.5715

22. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies. IEEE Transactions
on Dependable and Secure Computing 12(5), 533–545 (September–October 2015)

http://arxiv.org/abs/1708.04749
https://en.wikipedia.org/wiki/C4.5_algorithm
https://lirias.kuleuven.be/handle/123456789/440202
https://lirias.kuleuven.be/handle/123456789/440203
https://doi.org/10.1145/3381991.3395614
https://en.wikipedia.org/wiki/Three-valued_logic
http://arxiv.org/abs/1403.5715

	 Learning Attribute-Based and Relationship-Based Access Control Policies with Unknown Values

