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Abstract

Relationship-based access control (ReBAC) provides a high level of expressiveness and flexibility
that promotes security and information sharing, by allowing policies to be expressed in terms of chains
of relationships between entities. ReBAC policy mining algorithms have the potential to significantly
reduce the cost of migration from legacy access control systems to ReBAC, by partially automating
the development of a ReBAC policy.

This paper presents new algorithms, called DTRM (Decision Tree ReBAC Miner) and DTRM ™,
based on decision trees, for mining ReBAC policies from access control lists (ACLs) and informa-
tion about entities. Compared to state-of-the-art ReBAC mining algorithms, our algorithms are
significantly faster, achieve comparable policy quality, and can mine policies in a richer language.

1 Introduction

In relationship-based access control (ReBAC), access control policies are expressed in terms of chains
of relationships between entities. This increases expressiveness and often allows more natural policies.
High-level access control policy models such as attribute-based access control (ABAC) and ReBAC are
becoming increasingly widely adopted, as security policies become more dynamic and more complex.
ABAC is already supported by many enterprise software products, using a standardized ABAC language
such as XACML or a vendor-specific ABAC language. Forms of ReBAC are supported in popular online
social network systems and are being studied and adapted for use in more general software systems as well.

High-level policy models such as ReBAC allow for concise and flexible policies and promise long-term
cost savings through reduced management effort. The up-front cost of developing a ReBAC policy to
replace an existing lower-level policy, such as access control lists or an RBAC policy, can be a significant
barrier to adoption of ReBAC. Policy mining algorithms have the potential to greatly reduce this cost,
by automatically producing a high-level policy from existing lower-level data; vetting and tweaking it
is significantly less work than creating a high-level policy from scratch. There is a substantial amount
of research on role mining, surveyed in [MSVAT6, DMAT18|, and a small but growing literature on
ABAC policy mining [XS15 XS14) MBCF15, MTLI15, ICWBI8, IM18|, KJ18, [CCWB19] (surveyed in
[DMA™18|) and ReBAC policy mining [BSLI7, BSLIS, BSL19b, BSLI9al IMT9].



The ReBAC policy mining problem as defined by Bui et al. [BSL17, BSL19b| is: Given information
about the attributes of all entities in the system, and the set of currently granted permissions; Find a
ReBAC policy that grants the same permissions using concise, high-level rules. For realistic datasets, the
search space of possible policies is enormous. In traditional ABAC languages, such as XACML, each expres-
sion involves at most one attribute dereference. In ReBAC, an expression may contain a path expression
representing a chain of attribute dereferences, and the search space grows exponentially in the path length.

This paper proposes new ReBAC policy mining algorithms, called DTRM (Decision Tree ReBAC
Miner) and DTRM ™, based on decision tree learning. Decision trees are a natural basis for ReBAC policy
mining because logic-based policy rules can be extracted from them much more easily than rules from
neural networks, Bayes classifiers, etc. Also, a decision tree is a compact representation of ABAC (and
ReBAC) policies that supports efficient policy evaluation [LCHX0S, NDS™19]. DTRM has two main
phases: (1) learn an authorization policy in the form of a decision tree, using a modified version of the
decision tree learning algorithm in Scikit [DT19], which is an optimized version of the well-known CART
algorithm [BFOS84], and then extract a set of candidate authorization rules from the decision tree; (2)
construct the mined policy by optionally eliminating negative conditions and constraints from the candidate
rules (depending on whether the target policy language is ORAL2 or ORAL2™, as discussed below) and
then merging and simplifying the candidate rules. We selected Scikit’s algorithm because it has been used
successfully in a variety of application areas, and a patch for the above modification is available for it.

Our approach is general and could be used to mine policies in any ReBAC language. Our imple-
mentation produces policies in an extension of ORAL (Object-oriented Relationship-based Access-control
Language), a ReBAC policy language developed by Bui et al. ORAL [BSL17, [BSL18, BSL19b, [BSL.19a]
or a similar language [IM19] is used in much of the published work on ReBAC policy mining.

ORAL interprets ReBAC as object-oriented ABAC: relationships are expressed using attributes that
refer to other objects, and path expressions built from chains of such attributes, as in object-oriented
languages such as UML and Java. In ORAL, rules are built from atomic conditions, each of which
is a condition on a single object—the subject (the entity making the access request) or resource (the
entity to which access is requested)—and atomic constraints, each of which expresses a relationship
between characteristics of the subject and the resource. An example of a condition is subject.employer
= LargeBank. An example of a constraint is subject.department € resource.project.departments.

The most recent version of ORAL, introduced in [BSL19a], supports two additional set comparison
operators. We refer to that version as ORAL2, and we introduce ORAL2™, an extension of ORAL2
with negative conditions and negative constraints. A negative condition or constraint is the negation
of an atomic condition or constraint, e.g., subject.employer = LargeBank or subject.department ¢
resource.project.departments. We give algorithms, called DTRM and DTRM™, that mine policies
in ORAL2 and ORAL2™, respectively. The motivation for introducing ORAL2™ is that negation
is supported in some well-known ABAC languages, including XACML, and some ReBAC languages
[BDLJ15al, [CPS12, [Fonll], and it sometimes allows more concise policies. We also support mining
ORAL2 policies, i.e., policies without negation, for two reasons. First, some organizations may prefer
policy languages without negation to reduce the chance of writing rules that grant excess permissions when
new entities are added; for example, a rule with the condition subject.department # MechEng may grant
excess permissions to members of new departments, whereas a rule with the condition subject.department



€{ChemEng, ElecEng} will not. Second, mining of ORAL2 policies allows direct experimental comparison
of our approach with FS-SEA* [BSL19al, a state-of-the-art ReBAC policy mining algorithm.

To demonstrate the benefits of our approach, we conducted an experimental comparison with two
state-of-the-art ReBAC policy mining algorithms: FS-SEA* [BSL19a] and Iyer et al.’s algorithm [IM19].
The datasets used in our experiments include four sample policies, two large case studies based on policies
of real organizations [DBLJ14al [DBLJ14c|, and several synthetic policies including the synthetic policies
used in [BSL19a].

In summary, the main contribution of this paper is new ReBAC policy mining algorithms with two
significant advantages over state-of-the-art ReBAC policy mining algorithms. (1) Our algorithms are
significantly faster; specifically, they are more than 10x faster than FS-SEA* on several datasets, and
are several times faster than Iyer et al.’s algorithm, while achieving comparable or better quality of the
mined policies. The speedup generally increases with policy size hence is expected to be even larger for
the larger datasets arising in practice. (2) DTRM™ mines policies in a richer language than FS-SEA*
and Iyer et al.’s algorithm; specifically, the language includes set comparison operators and negation.

2 Related Work

We discuss related work on ReBAC and ABAC policy mining.

2.1 Related work on ReBAC policy mining

Bui et al. developed several ReBAC policy mining algorithms [BSL17, BSL18| [BSL.19bl [BSL19a], the most
recent and best of which is FS-SEA* [BSL19a]. As shown in Section [7} our algorithms are comparably
effective at discovering the desired ReBAC rules, and are significantly faster; furthermore, DTRM™ can
mine policies in a richer language (with negation). Our algorithms are also simpler than FS-SEA*, which
combines neural networks and a grammar-based genetic algorithm incorporating numerous heuristics
and including two stages of evolutionary search. This is reflected in the sizes of the implementations.
There is 3 KLOC of code in common (which we copied from FS-SEA*), plus an additional 13 KLOC
for FS-SEA*, compared with an additional 6 KLOC for DTRM™ (our more complicated algorithm). All
counts exclude blank lines and comments.

Bui et al.’s policy mining algorithm in [BSL18], which is a variant of the algorithm in [BSL19b],
mines ReBAC policies from incomplete and noisy information about granted permissions [BSL18|. Such
information is commonly available from access logs. In particular, their algorithm identifies and removes
permissions likely to be extraneous, identifies and adds permissions likely to be missing, and reports these
changes to the user. Extending our algorithm to handle incomplete and noisy information is a direction
for future work. Decision tree pruning methods, which are designed to avoid overfitting the input data,
might be suitable for this.

Iyer et al. present algorithms, based on ideas from rule mining and frequent graph-based pattern
mining, for mining ReBAC authorization policies and graph transition policies [[M19]. Their policy mining
algorithm targets a policy language that is less expressive than ORAL2™, because it lacks set comparison
operators and negation; furthermore, unlike ORAL2, it does not directly support Boolean attributes. Set
comparison operators are useful in practice: they are supported in XACML and used in all sample policies



and case studies in [BSL19b]. Boolean attributes can be encoded in their framework, but this may require
adding significant numbers of edges (connecting nodes or edges representing Boolean values to resources,
since all paths referred to by a rule need to end at the resource being accessed), increasing the running time.
They experimentally compare their policy mining algorithm with Bui et al.’s greedy algorithm (however,
they misinterpreted some vaguely labeled output of the tool and incorrectly reported that the greedy
algorithm in [BSL19b] achieved semantic similarity 0.9 for eWorkForce, while it actually achieves semantic
similarity 1). In our experiments described in Section [7] our algorithms are faster and more effective.

2.2 Related work on ABAC Policy mining

Xu et al. proposed the first algorithm for ABAC policy mining [XS15] and a variant of it for mining ABAC
policies from logs [XS14]. Medvet et al. developed the first evolutionary algorithm for ABAC policy mining
[IMBCE15]. Iyer et al. developed the first ABAC policy mining algorithm that can mine ABAC policies
containing deny rules as well as permit rules [[IM18]. Karimi et al. proposed an ABAC policy mining algo-
rithm that uses unsupervised learning based on k-modes clustering [K.J18|. Cotrini et al. proposed a new
formulation of the problem of ABAC mining from logs and a practical algorithm, called Rhapsody, to solve
it [CWBI1S8|. Rhapsody is based on APRIORI-SD, a machine-learning algorithm for subgroup discovery.
Rhapsody can easily be extended to handle path expressions and therefore to support a form of ReBAC pol-
icy mining, but its running time is sensitive to the number of features and would be quite high for ReBAC
mining except on small problem instances [BSL19a]. Cotrini et al. also developed a “universal” access
control policy mining algorithm framework, which can be specialized to produce policy mining algorithms
for a wide variety of policy languages [CCWB19); the downside, based on their experiments, is that the
resulting algorithms achieve lower policy quality than customized algorithms for specific policy languages.

A top-down approach to ABAC policy mining has been pursued, aiming to extract ABAC policies from
natural language documents using natural language processing and machine learning [NTNI18, [ATB18].

3 Policy Language

Our policy language, which we call ORAL2™, is Bui et al.’s ORAL2 (our name for it) [BSL19a], extended
to allow negative conditions and constraints. We give a brief overview of the language, and refer the
reader to [BSL19al for details of ORAL2 and to [BSL19b| for details of the original version of ORAL,
which ORAL2 extends. This overview is largely the same as in [BSL19a]. We include it to make this
paper more self-contained, for the reader’s convenience.

A ReBAC policy is a tuple m = (CM, OM, Act, Rules), where CM is a class model, OM is an object
model, Act is a set of actions, and Rules is a set of rules.

A class model is a set of class declarations. Each field has a type, which is a class name or “Boolean”, and
a multiplicity, which specifies how many values may be stored in the field and is “one” (also denoted “17),
“optional” (also denoted “?”), or “many” (also denoted “*”, meaning any number). Boolean fields always
have multiplicity 1. Every class implicitly contains a field “id” with type String and multiplicity 1. A refer-
ence type is any class name (used as a type). Like [BSL19a], we leave inheritance as a topic for future work.

An object model is a set of objects whose types are consistent with the class model and with unique
values in the id fields. Let type(o) denote the type of object 0. The value of a field with multiplicity



“many” is a set. The value of a field with multiplicity “optional” may be a single value or the placeholder
L indicating absence of a value.

A path is a sequence of field names, written with “.” as a separator. A condition is a set, interpreted
as a conjunction, of atomic conditions or their negations. An atomic condition is a tuple (p, op, val),
where p is a non-empty path, op is an operator, either “in” or “contains”, and wval is a constant value,
either an atomic value (if op is “contains”) or a set of atomic values (if op is “in”). For example, an object
o satisfies (dept.id, in, {CompSci}) if the value obtained starting from o and following (dereferencing)
the dept field and then the id field equals CompSci. In examples, conditions are usually written using
mathematical notation as syntactic sugar, with “€” for “in” and “3” for “contains”. For example,
(dept.id, in, {CompSci}) is more nicely written as dept € {CompSci}. Note that the path is simplified by
omitting the “id” field since all non-Boolean paths end with “id” field. Also, “=" is used as syntactic sugar
for “in” when the constant is a singleton set; thus, the previous example may be written as dept=CompSci.

A constraint is a set, interpreted as a conjunction, of atomic constraints or their negations. Informally,
an atomic constraint expresses a relationship between the requesting subject and the requested resource,
by relating the values of paths starting from each of them. An atomic constraint is a tuple (p1, op, p2),
where p; and po are paths (possibly the empty sequence), and op is one of the following five operators:
equal, in, contains, supseteq, subseteq. Implicitly, the first path is relative to the requesting subject, and
the second path is relative to the requested resource. The empty path represents the subject or resource
itself. For example, a subject s and resource r satisfy (specialties, contains, topic) if the set s.specialties
contains the value r.topic.

In examples, constraints are written using mathematical notation as syntactic sugar, with “=" for
“equal”,“D” for “supseteq”, and “C” for “subseteq”.

A rule is a tuple (subject Type, subjectCondition, resource Type, resourceCondition, constraint, actions),
where subject Type and resourceType are class names, subjectCondition and resource Condition are condi-
tions, constraint is a constraint, actions is a set of actions. A rule must satisfy several well-formedness re-
quirements [BSLI9b|. For a rule p = (st, sc, rt,rc, ¢, A), let sType(p) = st, sCond(p) = sc, rType(p) = rt,
rCond(p) = rc, con(p) = ¢, and acts(p) = A.

In example rules, paths in conditions and constraints that start from the subject and resource are
prefixed with “subject” and “resource”, respectively, to enhance readability. For example, the e-document
case study [BSL19b, [DBLJ14b)] involves a large bank whose policy contains the rule: A project member
can read all sent documents regarding the project. Using syntactic sugar, this is written as
( Employee, subject.employer = LargeBank, Document, true, subject.workOn.relatedDoc > resource,
{read}),
where Employee.workOn is the set of projects the employee is working on, and Project.relatedDoc is
the set of sent documents related to the project.

The type of a path p (relative to a specified class) is the type of the last field in the path. The
multiplicity of a path p (relative to a specified class) is one if all fields on the path have multiplicity
one, is many if any field on the path has multiplicity many, and is optional otherwise. Given a class
model, object model, object o, and path p, let nav(o, p) be the result of navigating (a.k.a. following or
dereferencing) path p starting from object o. The result might be no value, represented by L, an atomic
value, or (if p has multiplicity many) a set of values. This is like the semantics of path navigation in



UML’s Object Constraint Language (http://www.omg.org/spec/0CL/).

An object o satisfies an atomic condition ¢ = (p, op, val), denoted o = ¢, if (op = in A nav(o,p) €
val) V (op = contains A nav(o,p) > val). An object o satisfies a condition ¢, denoted o = ¢, if it satisfies
each atomic condition or negated atomic condition in ¢. Objects 01 and 09 satisfy an atomic constraint
¢ = (p1, op, p2), denoted (01, 092) = ¢, if (op = equal Anav(o, p1) = nav(og,p2))V (op = inAnav(oy,p1) €
nav(0z,p2)) V (op = contains A nav(o1,p1) 3 nav(oe,p2)) V (0op = supseteq A nav(o, p1) 2 nav(og,p2)).
An object o satisfies a constraint ¢, denoted o = ¢, if it satisfies each atomic constraint or negated atomic
constraint in c.

An SRA-tuple is a tuple (s,r,a), where the “subject” s and “resource” r are objects, and a is an
action, representing (depending on the context) authorization for s to perform a on r or a request to
perform that access. An SRA-tuple (s, 7, a) satisfies a rule p = (st, sc,rt, rc,c, A), denoted (s, r,a) = p,
if type(s) = st A s = sc Atype(r) =rt Ar [=reA(s,r) =cAa € A. The meaning of a rule p, denoted
[p], is the set of SRA-tuples that satisfy it. The meaning of a ReBAC policy 7, denoted [r], is the union
of the meanings of its rules.

4 Problem Definition

We adopt Bui et al.’s definition of the ReBAC policy mining problem. We present the core parts of the
definition here, and refer the reader to [BSL19b] for more details and discussion.

An access control list (ACL) policy is a tuple (CM, OM, Act, AU), where CM is a class model, OM
is an object model, Act is a set of actions, and AU C OM x OM x Act is a set of SRA tuples representing
authorizations. Conceptually, AU is the union of ACLs. An ReBAC policy 7 is consistent with an ACL
policy (CM, OM, Act, AU) if they have the same class model, object model, actions, and [r] = AU.

Among the ReBAC policies consistent with a given ACL policy 7, the most desirable ones are those
that satisfy the following two criteria. (1) The “id” field should be used only when necessary, i.e., only
when every ReBAC policy consistent with 7y uses it, because uses of it make policies identity-based (like
ACLs) and less general. (2) The policy should have the best quality as measured by a given policy quality
metric Qpol, expressed as a function from ReBAC policies to the natural numbers, with small numbers
indicating high quality. This is natural for metrics based on policy size, which are the most common type.

The ReBAC policy mining problem is: given an ACL policy my = (CM, OM, Act, AU) and a policy
quality metric Qpol, find a set Rules of rules such that the ReBAC policy m = (CM, OM, Act, Rules)
is consistent with 7, uses the “id” field only when necessary, and has the best quality, according to Qpol,
among such policies.

The policy quality metric that our algorithm aims to optimize is weighted structural complexity
(WSC), a generalization of policy size first introduced for RBAC policies [MCL™ 10| and later extended to
ReBAC [BSL19b]. Minimizing policy size is consistent with usability studies showing that more concise
access control policies are more manageable [BM13]. WSC is a weighted sum of the numbers of primitive
elements of various kinds that appear in a rule or policy. WSC is defined bottom-up. The WSC of an
atomic condition (p, op, val) is |p| + |val|, where |p| is the length of path p, and |val| is 1 if val is an
atomic value and is the cardinality of wval if val is a set. The WSC of an atomic constraint (pi, op, p2) is
|p1| + [p2]- The WSC of a negated atomic condition or constraint ¢ is 1 + WSC(c). The WSC of a rule p,
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denoted WSC(p), is the sum of the WSCs of the atomic conditions and atomic constraints in it, plus the
cardinality of the action set (more generally, it is a weighted sum of those numbers, but we take all of the
weights to be 1). The WSC of a ReBAC policy 7, denoted WSC(7), is the sum of the WSC of its rules.

5 Algorithm

5.1 Phase 1: Learn Decision Tree and Extract Rules

A feature is an atomic condition (on the subject or resource) or atomic constraint satisfying user-specified
limits on lengths of paths in conditions and constraints. We define a mapping from feature vectors to
Boolean labels: given an SRA tuple (s,r,a), we create a feature vector (i.e., a vector of the Boolean
values of features evaluated for subject s and resource r) and map it to true if the SRA tuple is permitted
(ie., isin AU) and to false otherwise. We represent Booleans as integers: 0 for false, and 1 for true. We
train a decision tree to learn this classification (labeling) of feature vectors.

We decompose the problem based on the subject type, resource type, and action. Specifically, we learn
a separate decision tree DT, ¢, o to classify SRA tuples with subject type Cj, resource type C,., and
action a. We do this for each (Cs, C,a) such that AU contains some SRA tuple with a subject of type
Cs, a resource of type C;, and action a. The inputs to DT, ¢,  are limited to the features appropriate
for subject type Cs and resource type C,, e.g., the path in the subject condition starts with a field in
class Cs. The set of labeled feature vectors used to train DT, ¢, , contains an element generated from
each possible combination of a subject of type Cs (in the given object model) and resource of type Ci.

This decomposition by type is justified by the fact that all SRA tuples authorized by the same rule
contain subjects with the same subject type and resources with the same resource type. A rule can
authorize SRA tuples with different actions since the last component of a rule is a set of actions. The
first phase of our algorithm learns rules containing a single action; the second phase attempts to merge
similar rules with different actions into a single rule authorizing multiple actions.

As an optimization, we discard a feature if it has the same truth value in all of the labeled feature
vectors used to train a DT; for example, if all instances of some type C' in the given object model have
the same value for a field f, then atomic conditions on field f are discarded.

We also detect sets of equivalent features, which are features that have the same truth value in all
feature vectors labeled true used to train a particular DT. For each set of equivalent features, we keep
the features with the lowest WSC and discard the rest. This is justified by that fact that the discarded
features cannot appear in a policy with minimum WSC and consistent with AU.

Each internal node of a decision tree is labeled with a feature. Each outgoing edge of an internal
node corresponds to a possible value of the feature (true or false). Each leaf node is labeled with an
classification label (permit or deny). A feature vector is classified by testing the feature in the root node,
following the edge corresponding to the value of the feature to reach a subtree, and then repeating this
procedure until a leaf node is reached.

Figure [I] shows an example of a decision tree that represents a rule in an electronic medical record
policy. The subject type, resource type and action are “Physician”, “MedicalRecord” and “read”,
respectively. Internal nodes and leaf nodes are represented in the figure by unfilled and filled boxes,
respectively. The rule specifies that only non-trainee physicians can read medical records which are



associated to them. Formally, the rule is written as ( Physician, subject.isTrainee = False, MedicalRecord,
true, subject € resource.physician,{read}).

[subject € resource.physician ]

True False

[ subject.isTrainee = False ] [ DENY ]

True False

l PERMIT l I DENY l

Figure 1: A sample decision tree for part of the healthcare sample policy.

5.1.1 Build Decision Trees

CART (and other well-known decision tree building algorithms including ID3 and C4.5) builds a decision
tree by recursively partitioning feature vectors in the dataset, starting from a root node associated with the
entire dataset. It chooses (as described below) a feature to test at the root node, creates a child node for
each possible outcome of the test, partitions the set of feature vectors associated with the root node among
the children, based on the outcome of the test, and recursively applies this procedure to each child. The
recursion stops when all of the feature vectors associated with a node have the same classification label.

We use the decision tree learning algorithm in the Python library scikit-learn [DT19]. It is an op-
timized version of CART [BFOS84]. We disable its pruning methods. Pruning aims to reduce overfitting
and make the decision trees generalize better. However, a pruned tree might misclassify some feature
vectors in the training data. Pruning is therefore inappropriate for our purpose, which is to produce a
policy completely consistent with the given ACL policy. The current implementation of the algorithm
in scikit-learn treats categorical features as continuous features. For example, instead of treating a binary
feature as a feature with possible values of 0 and 1, the test checks if the feature’s value is less than or
greater or equal than 0.5 for 0 and 1 respectively.

To choose which feature to test at each node n, the algorithm applies a scoring criteria to the remaining
features (i.e., features that have not been used for splitting at an ancestor of n) and then choosing the top-
ranked feature. The most popular scoring criteria are information gain and Gini index. For both of them,
smaller values are better. We experimented with both on some sample policies, and the generated decision
trees were identical. We adopted scikit-learn’s default scoring metric, Gini index, for our experiments.

The Information Gain uses entropy to calculate the homogeneity of a set of feature vectors. Entropy
is the measure of uncertainty of a random variable. The entropy is 0 if the sample contains only instances
of the same class, and the entropy is 1 if the sample is equally divided. The information gain at node



n for splitting with feature f is

|deCi5(Sn, fa])|

InfoGain(n, f) = Z Entropy(decis(Sy, f,7))
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where S, is the set of feature vectors associated with the current node n, j ranges over the possible
outcomes of testing feature f, decis(S, f,j) is the subset of S containing feature vectors for which testing
of feature f has outcome j, i ranges over the classification labels, and label(S,7) is the subset of S
containing feature vectors with label i.

The Gini Index uses impurity to measure how likely a randomly selected element would be misclassified.
If all instances in the sample have the same class, the impurity will be 0. The Gini Index is calculated
by subtracting the sum of squared probabilities of each class from 1. The Gini index for splitting at node
n with feature f is

Ginilndex(n, f) = Z WImpuﬂty(decis(Sm £,9)
j n

AL 2
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When multiple features are tied for top-ranked according to the scoring criterion, scikit-learn chooses

pseudorandomly among them. We adopt a modification to the algorithm that allows specification of

a secondary metric as a tie-breaker, and we use the WSC of the feature (recall that WSC of atomic
conditions and atomic constraints is defined in Section E[) as the secondary metric.

5.1.2 Extract rules

We convert the decision tree into an equivalent set of rules and include them in the candidate policy. For
each distinct path through the tree from the root node to a leaf node labeled “PERMIT”, we generate a
rule containing the features associated with the internal nodes on that path; furthermore, if the path follows
the False branch out of a node, then the feature associated with that node is added to the rule as a negative
feature. For example, for the sample decision tree in Figure[T] only one rule is generated, which is the same
as the input rule mentioned in Section [5.1} Rules extracted directly from the decision tress always have
non-overlapping meanings. The next phase of our algorithm can produce rules with overlapping meanings.

5.2 Phase 2: Improve the Rules

Phase 2 has two main steps: eliminate negative features, and merge and simplify rules.



5.2.1 Eliminate Negative Features

This step is included only in DTRM, in order to mine rules without negation. This step is omitted from
DTRM™. This step eliminates each negative feature —f in a rule p by applying the following substeps
in order until one succeeds. A rule is wvalid if it covers only SRA tuples in AU.

1. Remove —f from p, if the resulting rule is valid.

2. Replace —f with a feature f’, if the resulting rule is valid and the resulting policy (i.e., the policy
with p replaced with the resulting rule) covers all SRA tuples in AU. In particular, try this for
each feature f’ not already used in p, in ascending order of WSC.

3. If -f is a negative atomic condition, and path p has multiplicity “one”, then replace all of the
negative atomic conditions with path p with a positive atomic condition using the same path p
and the same operator, and with a set of constants which is the complement of the set of constants
that appear in those negative atomic conditions. The complement is with respect to the set of
all possible constants for that path. Note that this step always succeeds when it is applicable, i.e.,
the resulting rule is always valid, and the resulting policy always covers all SRA tuples in AU.
Generalizing this step to apply when p has multiplicity “many” would require either replacing
p with multiple rules, or extending the policy language to allow atomic conditions containing
operators (such as D) for which both arguments have multiplicity “many”.

4. If —f is a subject atomic condition, remove all subject atomic conditions (positive or negative) in
p, and add the condition “subject.id € C”, where C is the set of ids of subjects that appear in
SRA tuples covered by p. An analogous step applies if =f is a resource atomic condition. Note
that this step always succeeds when it is applicable.

5. Replace —f with a set of features, if the resulting rule is valid and the resulting policy covers all
SRA tuples in AU. In particular, try this for all sets containing two more features not already
used in p, in ascending order of WSC of the set (which is the sum of the WSCs of the features
in it). Note that this step can be reached only if f is a constraint. In the experiments described
in Section [7] this step is never reached, i.e., one of the previous steps always succeeds.

5.2.2 Merge and Simplify Rules

This step attempts to merge and simplify rules using the same techniques as [BSL19b).

First, this step attempts to merge pairs of rules that have the same subject type, resource type, and
constraint by taking the least upper bound of their subject conditions, the least upper bound of their
resource conditions, and the union of their sets of actions. The least upper bound of conditions ¢; and
¢, denoted ¢; U ¢o, is

{(p,in, val) | (Jualy, valy : (p,in,valy) € c1 A (p,in, vala) € o
A val = valy U valg)}
U {(p, contains, val) | (p, contains, val) € ¢
A (p, contains, val) € cz)}.
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When computing least upper bounds, DTRM™ uses only positive atomic conditions; negative atomic

conditions are dropped. Note that the meaning of the merged rule py, is a superset of the meanings

of the rules p; and ps being merged. If the merged rule py,, is valid, then it replaces p; and ps.
Second, this step attempts to simplify the rules as follows.

1. It eliminates atomic conditions from the subject and resource conditions when this preserves validity.
Removing one atomic condition might prevent removal of another atomic condition, so it searches
for a set of removable atomic conditions that maximizes the quality of the resulting rule.

2. It eliminates atomic constraints when this preserves validity. It searches for the set of atomic
constraints to remove that maximizes the quality of the resulting rule.

3. It eliminates overlapping actions between rules. Specifically, an action « in a rule p is removed if there
is another rule p' in the policy such that sCond(p’) C sCond(p) ArCond(p’) C rCond(p) Acon(p’) C
con(p) A a € acts(p’).

4. It eliminates actions when this preserves the meaning of the policy. In other words, it removes
an action ¢ in rule p if all the SRA tuples covered by a in p are covered by other rules in the policy.
Note that the previous item is a special case of this one, listed separately to ensure that the special
case takes precedence.

5. If the subject condition contains an atomic condition of the form p = ¢, and the constraint contains an
atomic constraint of the form p = p/, then replace that atomic constraint with the atomic condition
P/ = ¢ in the resource condition (note that this is a form of constant propagation); and similarly
for the symmetric situation in which the resource condition contains such an atomic condition, etc.

DTRM™ consider an additional case with the presence of negative condition/constraint. If the sub-
ject condition contains an atomic condition of the form p = ¢, and the constraint contains an atomic
constraint of the form p # p/, then replace that atomic constraint with the atomic condition p’ # ¢
in the resource condition; and similarly for the symmetric situation as mentioned in the first case.

6. Remove cycles in the paths in the conditions and constraint, if the resulting rule is valid and the result-
ing policy still covers all of AU. A cycle is a path that navigates from some class C' back to class C.

7. If a subject/resource path of an atomic constraint evaluates to a same constant value ¢ for all of the
subjects/resources that are in SRA tuples covered by the rule, then replace the atomic constraint
with corresponding resource/subject condition and constant ¢. In DTRM™, if the atomic constraint
is negative, it will be replaced with the corresponding negative atomic condition.

5.3 Asymptotic Running Time

This section analyzes the asymptotic running time of our algorithm. We first analyze the complexity of
phase 1. Let nge,t and ngamp be the number of features and feature vectors (samples), respectively; they
depend on the size of the object model. The cost of splitting samples at each node is O(nsamp - Nfeat ); this is
mainly the cost of computing the scoring criteria for each feature on the current samples set. Let sz.qe be
the “size” of the rules extracted from the tree, specifically, the sum of the numbers of features (conditions
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and constraints) in each extracted rule; typically, the size of these intermediate rules is comparable to
the size of the final mined rules. Note that the number of nodes in the tree is at most sz.e. The cost of
building the tree is O(nsamp Meat - S2rule), and the cost of extracting the rules is O(szyyle). This cost for each
tree is summed over the number of trees, which is the number of (Cs, C,., a) tuples, explained in Section
Now consider phase 2. The running time of the eliminating negative features step depends on the
running times of its substeps. Recall that the substeps are applied in order until one succeeds. The
cost of checking whether a rule is valid and the cost of computing a rule’s coverage are O(ngamp), since
they require assessing all samples. Substep (1) takes O(nsamp) time for the rule validity check, and O(1)
time for the negative feature removal. Substep (2) takes O(neat - Nisamp) time to find a valid replacement
feature among the set of all possible features. Let nop; denote the maximum (over all types) number
of objects of a single type in the object model. The cost of substep (3) is O(ngp;); this is mainly the
cost of computing the complement of the set of constants that appear in the negative atomic condition
for a specify object type; recall that constants in our framework are object identifiers or boolean values.
Substep (4) takes O(nsamp) time to compute the rule’s coverage and extract the appropriate constants
for the new atomic condition. For substep (5), the worst-case cost is high, since it could need to consider
all subsets of features, but in practice, this step is never even reached in our experiments (one of the
first four steps always succeeds), so we omit it from the overall complexity analysis of the algorithm. Let
Nneg be the number of negative features generated from the first phase, which is typically small. If the
first 4 substeps are all applied for every negative feature, the cost is O(nneg - ((Nfeat * Misamp) + Tobj))-
The running time of the merge rules step and simplify rules step depend on the number of rules
generated in Phase 1. Let n,yes denotes the number of these rules; this is typically similar to the number
of rules in the final mined policy. Let n¢ong and negns be the maximum number of atomic conditions
and atomic constraints, respectively, in each of these rules. Let Im (mnemonic for “largest meaning”)
denote the maximum value of | [p] | among all rules considered in these steps. The value of Im is at most

|AU| but typically much smaller. The cost of checking rule validity in these stesp is O(Im).

3
rules

The cost of the merging step is O(n? , . -Im); note that the algorithm checks validity of merged rule for
each merging attempt. The running time of the simplification step depends on its substeps. The cost of
substeps (1) and (2) are O(nyyles - 2""<ond - Im) and O(nyyes - 270" - Im), respectively; the exponential factors
here are small in practice, because rules typically have only a few conditions and constraints (e.g., according
to Table 1 in [BSL19b, the average number of conditions and constraints per rule in the policies considered
there are at most 2.3 and 1.3, respectively). The cost of each of substeps (3) and (4) is O(n2,.. | Act|-Im).
The cost of substep (5) is O(Tpyles  Teond * Teeons)- Lhe cost of substep (6) is O(Nyyles - (Meond + Teons) * Melass) s

where n,ss 18 the number of classes in the class model. The cost of substep (7) is O(nyyes * Tcons * {M).

6 Evaluation Methodology

We adopt Bui et al.’s methodology for evaluating policy mining algorithms [BSL19a]. It is depicted in
Figure [2] It takes a class model and a set of ReBAC rules as inputs. The methodology is to generate an
object model based on the class model (independent of the ReBAC rules), compute the authorizations
AU from the object model and the rules, run the policy mining algorithm with the class model, object
model, and AU as inputs, and finally compare the mined policy rules with the simplified original (input)
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Policy N #obj | #field | #FV | #rule
EMR_15 353 877 4134 6
healthcare_5 736 1804 42121 | 8
project-mgmt_5 | 179 296 4080 10
university_5 738 926 83761 | 10
e-document_75 | 284 1269 31378 | 39
e-document_100 | 352 1653 52466 | 39
e-document_125 | 423 2065 82860 | 39
e-document_150 | 486 2406 108403 | 39
e-document_175 | 563 2830 152093 | 39

Original Object Model Class
eWorkforce_10 412 1124 14040 19 Rules Generator < Model
eWorkforce 15 | 585 | 1647 | 31769 | 19 i h@. Oi - lM”
eWorkforce 20 | 691 | 1963 | 45625 | 19 et < Woaa " Aot
eWorkforce_25 862 2484 74856 | 19 -
eWorkforce 30 | 1016 | 2928 | 104845 | 19 @ LA“‘“;"Z&‘“”S
syn_20_x 678 | 7848 | 25600 | x Policy Similarity Mined
syn_25_20 828 | 9773 | 40000 | 20 Computation Rules
syn_30_20 978 | 11698 | 57600 | 20 Sim“arityloforigma, LEGEND

Inputs  Algorithms  Outputs

syn_35_20 1128 | 13623 | 78400 | 20 rules and mined rules

Figure 2: Left: Policy sizes. For the given value of the object model size parameter N, #obj is the
average number of objects in the object model, and #field is the average number of fields in the object
model, i.e., the sum over objects o of the number of fields in 0. #FV is the number of feature vectors
(i.e., labeled SRA tuples) that the algorithms use to train a classifier. Averages are over 5 pseudorandom
object models for each policy. For the syn_20_M policies, the number of rules M is 10, 20, 30 or 40.
Right: Evaluation methodology; reproduced from [BSL19al.

policy rules, obtained by applying the simplifications in Section to the given rules. Comparison with
the simplified original policy is a more robust measure of the algorithm’s ability to discover high-level
rules than comparison with the original policy, because the original policy is not always the simplest.
If the mined rules are similar to the simplified original rules, the policy mining algorithm succeeded in
discovering the desired ReBAC rules that are implicit in AU.

6.1 Datasets

We use four sample policies developed by Bui et al. [BSL19b]. One is for electronic medical records (EMR),
based on the EBAC policy in [BDLJ15b], translated to ReBAC; the other three are for healthcare, project
management, and university records, based on ABAC policies in [XS15], generalized and made more
realistic, taking advantage of ReBAC’s expressiveness. These policies are non-trivial but relatively small.

We also use Bui et al.’s translation into ORAL2 [BSL19b] of two large case studies developed by Decat,
Bogaerts, Lagaisse, and Joosen based on the access control requirements for Software-as-a-Service (SaaS)
applications offered by real companies [DBLJ14a, DBLJ14c]. One is for a SaaS multi-tenant e-document
processing application; the other is for a SaaS workforce management application provided by a company
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that handles the workflow planning and supply management for product or service appointments (e.g.,
install or repair jobs).

Finally, we use the synthetic ORAL2 policies described in [BSL19a] and some extensions of them
with additional rules.

All of the object models are generated by policy-specific pseudorandom algorithms designed to
produce realistic object models, by creating objects and selecting their attribute values using appropriate
probability distributions. These algorithms are parameterized by a size parameter IN; for most classes,
the number of instances is selected from a normal distribution whose mean is linear in N. Bui et al.’s
policy rules and object model generators for the sample policies and case studies, and their synthetic
policy generator, are available online [SSS19]. We slightly modified the object model generators for the
project management, workforce management, and e-document policies, to make the generated object
models slightly more realistic. More details about object model generation are in [BSL19a, BSL19b].

These policies, or variants of them, have been used as benchmarks in several other papers on policy
mining. In work on ReBAC mining, Iyer et al. [IM19] use variants of parts of three of the sample policies
and the workforce management case study, and Bui et al. [BSLI8] use all of the sample policies and
case studies. In work on ABAC mining, Medvet et al. [MBCE15|, Iyer at al. [IM18], and Karimi et al.
[KJI18] use Xu et al.’s original ABAC versions of some of the sample policies.

The table in Figure [2| shows several metrics of the size of the rules, class model, and object model
in each policy. #field is computed by summing, over the objects in the object model, the number of
fields (including “id” field and Boolean fields) in each object.

The Electronic Medical Record (EMR) sample policy, based on the EBAC policy in [BDLJ15a], controls
access by physicians and patients to electronic medical records, based on institutional affiliations, patient-
physician consultations (each EMR is associated with a consultation), supervisor relationships among
physicians, etc. The numbers of physicians, consultations, EMRs, and hospitals are proportional to V.

The healthcare sample policy, based on the ABAC policy in [XS15], controls access by nurses, doctors,
patients, and agents (e.g., a patient’s spouse) to electronic health records (HRs) and HR items (i.e.,
entries in health records). The numbers of wards, teams, doctors, nurses, teams, patients, and agents
are proportional to V.

The project management sample policy, based on the ABAC policy in [XS15], controls access by
department managers, project leaders, employees, contractors, auditors, accountants, and planners to
budgets, schedules, and tasks associated with projects. The numbers of departments, projects, tasks,
and users of each type are proportional to V.

The wuniversity sample policy, based on the ABAC policy in [XS15], controls access by students,
instructors, teaching assistants (TAs), department chairs, and staff in the registrar’s office and admissions
office to applications (for admission), gradebooks, transcripts, and course schedules. The numbers of
departments, students, faculty, and applicants for admission are proportional to N.

The e-document case study, based on [DBLJ14al, is for a SaaS multi-tenant e-document processing
application. The application allows tenants to distribute documents to their customers, either digitally or
physically (by printing and mailing them). The overall policy contains rules governing document access
and administrative operations by employees of the e-document company, such as helpdesk operators and
application administrators. It also contains specific policies for some sample tenants. One sample tenant
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is a large bank, which controls permissions to send and read documents based on (1) employee attributes
such as department and projects, (2) document attributes such as document type, related project (if
any), and presence of confidential or personal information, and (3) the bank customer to which the
document is being sent.Some tenants have semi-autonomous sub-organizations, modeled as sub-tenants,
each with its own specialized policy rules. The numbers of employees of each tenant, registered users
of each customer organization, and documents are proportional to V.

The workforce management case study, based on [DBLJ14d], is for a SaaS workforce management
application provided by a company, pseudonymously called eWorkforce, that handles the workflow
planning and supply management for product or service appointments (e.g., install or repair jobs).
Tenants (i.e., eWorkforce customers) can create tasks on behalf of their customers. Technicians working
for eWorkforce, its workforce suppliers, or subcontractors of its workforce suppliers receive work orders to
work on those tasks, and appointments are scheduled if appropriate. Warehouse operators receive requests
for required supplies. The overall policy contains rules governing the employees of eWorkforce, as well
as specific policies for some sample tenants, including PowerProtection (a provider of power protection
equipment and installation and maintenance services) and TelCo (a telecommunications provider, including
installation and repair services). Permissions to view, assign, and complete tasks are based on each
subject’s position, the assignment of tasks to technicians, the set of technicians each manager supervises,
the contract (between eWorkforce and a tenant) that each work order is associated with, the assignment of
contracts to departments within eWorkforce, etc. The only change we make is to omit from the workforce
management case study the classes and 7 rules related to work orders, because they involve inheritance,
which our algorithm does not yet support (it is future work). The numbers of helpdesk suppliers, workforce
providers, subcontractors, helpdesk operators, contracts, work orders, etc., are proportional to N.

The synthetic policies developed by Bui et al. [BSL19a] are designed to have realistic structure,
statistically similar in some ways to the sample policies and case studies described above. The class model
is designed to allow generating atomic conditions and atomic constraints with many combinations of path
length and operator. It supports the types of conditions and constraints that appear in the sample policies
and case studies, plus constraints involving the additional constraint operators that are supported in
ORAL2 but not in the original ORAL [BSL19b]. The object model generator’s size parameter N specifies
the desired number of instances of each subject class. The number of instances of each resource class is 5- V.
The numbers of instances of other classes is fixed at 3. This reflects a typical structure of realistic policies, in
which the numbers of instances of some classes (e.g., doctors, patients, health records) scale linearly with the
overall size of the organization, while the numbers of instances of other classes (e.g., departments, medical
specialties) grow much more slowly (which we approximate as constant). Policy rules are generated using
several numbers and statistical distributions based on the rules in the sample policies and case studies.

6.2 Policy Similarity Metrics

We evaluate the quality of the generated policy primarily by its syntactic similarity and policy semantic
similarity to the simplified original policy. These metrics are first defined in [XS15, BSLI8| and are
normalized to range from 0 (completely different) to 1 (identical). We adapt the syntactic similarity
metric to take negation into account. The metrics are based on Jaccard similarity of sets, defined by
J(S1,52) = |S1 N Sa|/|S1 U Ss|. For convenience, we extend J to apply to single values: J(vy,vg) is 1
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if v1 = vy and 0 otherwise.

Syntactic similarity of policies measures the syntactic similarity of rules in the policies, based on
the fractions of types, conditions, constraints, and actions that rules have in common. The syntactic
similarity of rules is defined bottom-up as follows. For a possibly negated atomic condition ac, let sign(ac),
path(ac), and val(ac) denote its sign (positive or negative), its path, and its value (or set of values),
respectively. Syntactic similarity of atomic conditions ac; and acs is O if they contain different paths,
otherwise it is the mean of J(sign(acy),sign(acz)), J(path(ac ), path(acz)), and J(val(acy), val(acz))); we
do not explicitly compare the operators, because atomic conditions with the same path must have the
same operator, since the operator is uniquely determined by the multiplicity of the path. For a set S of
atomic conditions, let paths(S) = {path(ac) | ac € S}. For sets S; and Sy of atomic conditions,

syn(Sy, Ss) = |paths(S;) U paths(S)| ™ Z syn,.(aci, aca)

ac) €S1,ac2€S2

The syntactic similarity of rules p; = (sti, sci,7rt1, rei,e1, A1) and py = (sta, sca, rta, re2, C2, Ag) is
syn(pi, p2) = mean(J(st1, sta),syn(sci, sca), J(rti,rta),syn(rei, rea), J(c1, c2), J(Ar, A2)).

The syntactic similarity of policies m and g, syn(my, m2), is the average, over rules p in 71, of the
syntactic similarity between p and the most similar rule in 7.

The semantic similarity of polices measures the fraction of authorizations that the policies have in
common. Specifically, the semantic similarity of policies 7 and 7 is J([m1], [m2])-

7 Evaluation Results

This section presents the results of experiments comparing our algorithms with Bui et al.’s FS-SEA*
algorithm [BSL19a] and Iyer et al.’s algorithm [IM19]. DTRM and DTRM™ are implemented in Python,
except that phase 2 step 2 (merge and simplify rules) uses the Java code from Bui et al.’s implementation
of FS-SEA*| available at [SSS19]. Experiments were run on Windows 10 on an Intel i7-6770HQ CPU. In
summary, we find that: (1) compared with FS-SEA*, our algorithms are comparably effective at discovering
the desired ReBAC rules, and are significantly faster, with the speedup exceeding 10x for several datasets
and generally increasing with policy size, hence expected be even larger for the large datasets arising
in practice; and (2) compared with Iyer et al.’s algorithm, our algorithms are several times faster, and
produce policies that are the same size or smaller (fewer rules) and more similar to the original policies.

7.1 Comparison with FS-SEA*

We compared DTRM and DTRM™ with FS-SEA* using the datasets described in Section We
use the same path length limits (cf. Section as in [BSL19b, BSL19a]. For the case studies, we
generated policies with varying size (of the object model): N = 10, 15,20, 25,30, 35 for eWorkforce and
N = 75,100, 125, 150, 175 for e-document. For each size, we generated 5 pseudo-random object models.
For synthetic policies, we generated two families of policies. Synthetic policies are designated by syn_N_M,
where N is the object model size parameter, and M is the number of rules. The first family consists of
5 sets of M = 20 synthetic rules, and object models with sizes N = 20, 25,30 (one of each size); we chose
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Syntactic Similarity Running Time (sec)

Policy FS-SEA* DTRM DTRM™ FS-SEA* DTRM SpdUp DTRM™ SpdUp
1 o o o 1 o o o I o o o
EMR_15 0.99 | 0.01 | 099 | 0.01 | 0.99 | 0.01 | 96 7.37 56 0.30 1.70 53 5.55 1.82
healthcare 5 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | 111 14.54 80 41.07 | 1.39 70 29.68 | 1.57
project-mgmt._5 | 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | 6 0.45 2 1.62 3.88 2 0.39 4.07
university_5 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00 | 271 21.98 159 | 64.02 | 1.70 131 | 44.32 | 2.07
e-doc._75 0.93 | 0.02 | 0.90 | 0.01 | 0.90 | 0.01 | 696 133.88 | 296 | 42.57 | 2.35 121 | 1490 | 5.75
e-doc._100 094 | 0.01 | 091 | 0.03 | 0.90 | 0.02 | 1734 | 542.88 | 650 | 64.94 | 2.67 250 | 19.14 | 6.94
e-doc._125 0.93 | 0.01 | 092 | 0.01 | 0.93 | 0.02 | 3516 | 1415.93 | 1200 | 276.13 | 2.93 481 | 2452 | 7.31
e-doc._150 0.91 | 0.01 | 0.94 | 0.01 | 0.94 | 0.00 | 6068 | 1202.25 | 2292 | 323.12 | 2.65 735 | 58.44 | 8.25
e-doc._175 0.92 1 0.01 | 093 | 0.01 | 0.93 | 0.01 | 15218 | 4535.45 | 3823 | 460.36 | 3.98 1227 | 68.07 | 12.41

eWorkforce_10 0.97 | 0.01 | 098 | 0.01 | 0.97 | 0.01 | 70 9.32 50 5.80 1.41 48 0.69 1.47
eWorkforce_15 0.95 | 0.02 | 0.98 | 0.02 | 0.97 | 0.02 | 287 37.68 182 | 13.62 | 1.58 176 | 2.06 1.63
eWorkforce_20 0.92 | 0.03 | 098 | 0.02 | 0.96 | 0.02 | 669 89.99 426 | 94.17 | 1.57 319 | 5.16 2.10
eWorkforce_25 0.95 | 0.04 | 097 | 0.02 | 0.95 | 0.02 | 1750 | 294.25 | 946 | 280.87 | 1.85 745 | 10.67 | 2.35
eWorkforce_30 0.97 1 0.02 | 097 | 0.02 | 0.95 | 0.02 | 3113 | 725.28 | 1492 | 312.45 | 2.09 1378 | 17.42 | 2.26

syn_20_10 0.99 | 0.00 | 0.99 | 0.01 | 0.99 | 0.01 | 938 348.24 | 166 | 52.16 | 5.66 142 | 1242 | 6.61

syn_20_20 0.98 | 0.01 | 0.98 | 0.02 | 0.97 | 0.04 | 3129 | 887.18 | 309 | 88.93 | 10.11 256 | 2497 | 12.22
syn_20_30 0.99 | 0.00 | 0.99 | 0.01 | 0.98 | 0.03 | 6303 | 1258.03 | 379 | 88.73 | 16.65 317 | 2725 | 19.86
syn_20_40 0.99 | 0.01 | 0.98 | 0.02 | 0.97 | 0.03 | 11169 | 2812.94 | 435 | 69.75 | 25.67 370 | 14.52 | 30.21
syn_25_20 1.00 | 0.00 | 0.98 | 0.02 | 0.97 | 0.04 | 6494 | 2283.31 | 571 | 142.31 | 11.38 485 | 4243 | 13.40
syn_30_20 1.00 | 0.00 | 0.99 | 0.01 | 0.99 | 0.01 | 11161 | 3396.60 | 898 | 82.72 | 12.43 861 | 75.63 | 12.96
syn_35_20 0.99 | 0.01 | 0.99 | 0.01 | 0.99 | 0.01 | 21758 | 7355.68 | 1419 | 138.17 | 15.33 1416 | 114.47 | 15.36

Table 1: Comparison of DTRM, DTRM ™, and FS-SEA*. i and o are the mean and standard deviation,
respectively. SpdUp is the speed up, computed as the ratio of the running time of each of our algorithms
to the running time of FS-SEA*.

M = 20 because it is the average number of rules in the sample policies and case studies. The second
family consists of sets of M = 10, 30,40 synthetic rules (one of each size), and 5 object models with size
N =20. We ran DTRM, DTRM™, and FS-SEA* on all of them, and average the results for the five
policies with the same N and M. The standard deviations are reasonable, indicating that averaging over
5 object models for each data point is sufficient to obtain meaningful results.

7.1.1 Policy Similarity and WSC

All three algorithms always mine policies that grant exactly the same authorizations as the input ACL
policies and thus achieve perfect semantic similarity for all datasets.

All algorithms achieve similar syntactic similarity when comparing mined rules with simplified original
rules, as explained in Section @ The minimum, median, and maximum (over all datasets) syntactic
similarity achieved by each algorithm are: 0.91, 0.98, 1.0 for FS-SEA*; 0.90, 0.98, 1.0 for DRTM; and
0.90, 0.97, 1.0 for DTRM™. The syntactic similarity achieved by DTRM and DTRM- are usually the
same or better than that achieved by FS-SEA* and in the worst cases in Table [} are at most 2% and
4% lower, respectively. DTRM ™ achieved slightly lower syntactic similarity since the input policies do
not use any negative atomic condition/constraint.

We report results for WSC in terms of the ratio of the WSC of the policy mined by DTRM or
DTRM™ to the WSC of the policy mined by FS-SEA*; thus a ratio below 1 means that DTRM or
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Figure 3: Speedups of DTRM and DTRM™ relative to FS-SEA*. There are 5 clusters, corresponding
to 5 groups of policies. The “sample” cluster contains bars for the following policies (from left to right):
EMR_15, healthcare_5, project-management_5 and university_5; “e-doc” cluster for e-document_75,
e-document_100, e-document_125, e-document_150, e-document_175; “eWorkforce” cluster for eWork-
force_10, eWorkforce_15, eWorkforce 20, eWorkforce 25, eWorkforce_30; “syn” cluster for syn_20_20,
syn_25_20, syn_30_20, syn_35_20; “syn_20” cluster for syn_20_10, syn_20_20, syn_20_30, syn_20_40.

DTRM™ produce a more concise policy than FS-SEA*. The minimum, median, and maximum (over all
datasets) of this ratio are: 0.79, 1.0, 1.21 for DRTM, and 0.86, 1.01, 1.32 for DTRM~. WSC of policies
mined by DTRM™ is not smaller than WSC of policies mined by DTRM, even though theoretically
negation could allow more concise policies. This indicates that DTRM™ sometimes produces policies
that use negation even when it is not beneficial. This is not surprising, because when constructing the
decision tree, the algorithm does not have a preference for using or avoiding negation.

Detailed results for policy similarity appear in Table [I} Detailed results for WSC appear in Table
We conclude that all three algorithms produce policies with similar quality according to all three metrics.

7.1.2 Running Time

We report results for running time as the speedup relative to FS-SEA*, i.e., the ratio of the running time
of each algorithm to the running time of FS-SEA*. Detailed results appear in Table [I, The results are
summarized in the stacked bar chart in Figure[3| Each bar has three segments, representing three overlaid
bars, each corresponding to an algorithm. The total height (as measured on the y-axis) of the top of each
segment is the speedup of that algorithm. The first (black) segment is for FS-SEA*; so it always has height
1. The second (white) segment is for DTRM. The third (shaded) segment is for DTRM™. For example, if
DTRM achieved speedup 2.2 and DTRM™ achieved speedup 4.4 for some policy, then the top of the black
segment would be at height 1, the top of the white segment at height 2.2 (hence the white segment would be
1.2 units long), and the top of the shaded segment at height 4.4. This stacked bar chart format is suitable
for reporting the speedups because, in all of our experiments, DTRM™ is faster than DTRM, and DTRM
is faster than FS-SEA*. The bars within each cluster other than the sample policy cluster are ordered
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WSC Number of Rules

Policy Orig sOrig FS-SEA* DTRM . DTRM™ . | Orig | FS-SEA* DTRM | DTRM™
Ratio Ratio
14 M o M o H o 1z o 14 14 o oo w oo

EMR_15 49 47 1 0.00 |47 |0.00 |47 |0.00 |1.00 |47 |0.00 |1.00 |6 6 0.00 |6 [0.00 (|6 |0.00
healthcare_5 39 39 (000 |39 [000 |39 [000 |1.00 |39 |0.00 |100 |8 8 0.00 | 8 [0.00 |8 |0.00
project-mgmt._5 | 67 67 |[0.00 |67 [000 |67 |000 |100 |67 |0.00 |100 |10 10 0.00 | 10 | 0.00 | 10 | 0.00
university_5 54 54 (000 |54 [000 |54 [000 |1.00 |54 |0.00 |100 |10 10 0.00 | 10 | 0.00 | 10 | 0.00
e-doc._75 359 | 248 | 1.96 | 252 | 6.09 | 305 | 21.27 | 1.21 |325|1834 |1.29 |39 32.2 | 045 |39 |217 |40 | 1.79
e-doc._100 359 | 251 | 2.53 | 255 | 3.67 | 309 | 26.95| 1.21 | 337 |2226 | 132 |39 32 0.71 | 39 | 3.32 | 40 | 2.30
e-doc._125 359 | 252 | 1.67 | 273|890 | 302 16.39 | 1.10 | 321 | 26.91 | 1.17 | 39 332 | 1.09 |38 | 1.76 | 38 | 2.28
e-doc._150 359 | 251 | 1.79 | 278 | 13.84 | 277 | 7.28 | 0.99 |300 | 595 |1.08 | 39 336 | 1.52 |36 |0.89 |36 | 0.89
e-doc._175 359 | 251 | 0.80 | 317 | 49.07 | 297 | 26.57 | 0.94 | 322 | 30.96 | 1.02 | 39 344 | 1.82 |38 | 344 | 38| 3.05

eWorkforce_10 1710 | 133 | 7.30 | 157 | 879 | 128 | 9.09 | 0.81 | 136 | 10.27 | 0.87 | 19 18 0.00 |19 |0.45 |20 | 045
eWorkforce_15 171 | 131 | 897 | 154 | 2.87 | 125 | 2.60 | 0.82 | 135 |5.64 |0.88 |19 16.8 | 1.09 | 18 | 0.55 | 19 | 0.55
eWorkforce_20 171 | 131|582 | 159 | 560 | 131|542 | 0.83 |139|6.66 | 0.88 | 19 172 | 1.09 | 19 | 0.55 | 20 | 0.55
eWorkforce_25 171 | 130 | 6.95 | 163 | 12.10 | 129 | 13.99 | 0.79 | 140 | 16.58 | 0.86 | 19 182 | 045|19|1.09 |20 | 1.10
eWorkforce_30 171 1129 | 1.20 | 165 | 5.45 | 143 | 13.76 | 0.87 | 151 | 15.60 | 0.92 | 19 182 | 1.09 |19 | 1.52 | 20 | 1.52

syn_20_10 73 71 1366 |71 |3.65 |70 |312 |099 |72 |642 |1.02 |10 9.8 045110 |0.71 | 10 | 0.71
syn-20-20 155 | 150 | 7.29 | 169 | 29.65 | 156 | 9.20 | 0.92 | 161 | 9.82 | 0.95 | 20 202 08421089 |21 141
syn_20_30 230 | 211 | 6.76 | 217 | 546 | 214 | 9.56 | 0.99 | 220 | 14.00 | 1.02 | 30 28.8 | 1.09 | 29 | 1.41 | 29 | 1.95
syn_20_40 312 | 280 | 11.48 | 282 | 6.91 | 286 | 18.25 | 1.01 | 292 | 24.02 | 1.03 | 40 374 1055 |38 |207 |39 277
syn_25_20 155 | 150 | 7.29 | 150 | 7.29 | 156 | 6.60 | 1.04 | 161 | 7.98 | 1.07 | 20 19.60 | 0.55 | 20 | 1.14 | 21 | 1.58
syn_30_20 155 | 150 | 7.29 | 150 | 7.29 | 153 | 5.89 | 1.02 | 153 | 6.58 | 1.02 | 20 19.60 | 0.55 | 20 | 1.30 | 20 | 1.30
syn_35_20 155 | 150 | 7.29 | 150 | 7.17 | 151 | 6.65 | 1.01 152 | 7.57 | 1.01 |20 19.60 | 0.55 | 20 | 1.22 | 20 | 1.22

Table 2: Comparison of DTRM, DTRM ™, and FS-SEA*: WSC and number of rules in mined policies.
Orig and sOrig refer to the original rules and the simplified original rules, respectively. Ratio is the ratio
of the WSC of the policy mined by DTRM or DTRM™ to the WSC of the policy mined by FS-SEA*.

left-to-right by increasing policy size, specifically by object model size for the e-doc., eWorkforce, and syn
clusters, and by number of rules for the syn_20 cluster. Observe that speedup generally increases from
left to right within those clusters, i.e., generally increases with policy size. A main reason that speedups
for e-document and synthetic policies are larger than for eWorkforce and most sample policies is that the
former policies have a larger number of rules per (Cs, Cy, a) tuple (explained in Section[5.1). DTRM (and
DTRM™) achieve larger speedups for such policies, because FS-SEA* repeats its expensive processing
(feature selection and evolutionary search) for each generated rule, while DTRM performs its expensive
processing (tree construction) once per (Cs, C., a) tuple and can quickly extract multiple rules from a tree.

Experiments with Sample Policies DTRM and DTRM™ spend most of the time in phase 1 to learn
decision trees. The averaged running times spent on phase 2 are less than 1 second for EMR._15 and project-
mangagment_5, and are less than 3 seconds for healthcare_5 and university_5. DTRM and DTRM™ are
faster than FS-SEA* on all of these policies. The average speedup is 2.17 for DTRM and 2.38 for DTRM ™.
DTRM has similar running time as DTRM™ on the sample policies, since only a few negative features are
generated when learning decision trees for these policies, and they are not useful and hence are removed in
the “merge and simplify rules” phase, so the negative feature elimination step in DTRM has no work to do.

Experiments with Case Study Policies For eWorkforce, the average speedup is 1.70 for DTRM and

1.96 for DTRM™. The negative feature elimination step in DTRM has little effect on the speedup, since
the decision trees generated from the first phase do not contain many negative features. For e-document,
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Policy Input Policies Avg. # of Mined Rules Avg. Running Time (sec)
#obj | #field | #FtVec | #rules | [IM19] | DTRM | DTRM™ | [IM19] | DTRM | SpdUp | DTRM™ | SpdUp
eWorkforce_10 | 354 | 530 8662 7 8 7 7 14 3 4.67 3 4.67
eWorkforce_15 | 505 | 751 20170 7 8 7 7 34 10 3.40 10 3.40
eWorkforce 20 | 601 | 897 29158 7 8 7 7 78 19 4.11 19 4.11
eWorkforce 25 | 755 1121 48253 7 8 7 7 101 42 2.40 41 2.46
eWorkforce_30 | 888 1304 | 67653 7 8.3 7 7 346 76 4.55 74 4.68

Table 3: Comparison of DTRM, DTRM™ and Iyer et al.’s algorithm on the simplified eWorkforce_10
dataset. #obj, #field, #FtVec and #rules have the same meanings as in Figure SpdUp is the
speedup of DTRM and DTRM™ relative to Iyer et al.’s algorithm.

the average speedup is 2.92 for DTRM and is 8.13 for DTRM™, and the speedup for DTRM™ increases
with policy size. The difference in speedup is larger for e-document, because more negative features are
generated in phase 1, so the negative feature elimination step in DTRM takes longer.

DTRM and DTRM™ have lower average speedups on sample policies and eWorkforce, compared
with the other policies (discussed next), because these policies are simpler, allowing FS-SEA* to have
relatively good running time on them. In particular, FS-SEA* needs only one or a few iterations of
feature selection and evolution to learn the rules for a given combination of subject type, resource type,
and action, whereas for the more complicated policies, FS-SEA* typically needs more such iterations.

Experiments with Synthetic Policies In experiments with the first family of synthetic policies,
with M = 20 rules and varying object model size, the average speedup is 12.31 for DTRM and 13.49
for DTRM™. For both DTRM and DTRM™, the speedup generally increases with object model size;
the 3% dip from syn_25_20 to syn_30_20 is not statistically significant (it’s less than the o).

In experiments with the second family of synthetic policies, with object model size N = 20 and
varying number of rules, the average speedup is 17.48 for DTRM and 20.76 for DTRM ™. The speedups of
both DTRM and DTRM™ significantly increase with the number of rules: for DTRM, speedup increases
from 5.66 with 10 rules to 25.67 with 40 rules; for DTRM™, speedup increases from 6.61 with 10 rules
to 30.21 with 40 rules.

7.2 Comparison with Iyer et al.’s Algorithm

We compare DTRM and DTRM™ with Iyer et al.’s ReBAC mining algorithm [IM19] using modified
versions of the eWorkforce datasets described in Section We use Iyer et al.’s translation of a subset of
the eWorkforce rules (used in experiments in [IM19]) as a starting point, and update it retain more of the
original ORAL2 rules. We also modify the ORAL2 rules to exactly match (in meaning and structure, not
syntax) the translated rules. We end up with 17 rules in each framework. Note that the original eWorkforce
rules cannot be used directly: they need to be simplified, because Iyer et al.’s framework in [IM19] is less
expressive than ORAL2. In particular, we eliminate Boolean attributes, and set comparison operators
other than equality. We also simplify the object models in the eWorkforce_10 dataset by eliminating fields
and classes not used in the modified rules. We implemented a translator that converts the simplified object
models into Iyer et al.’s “system graph” representation. This enables us to run their system on significantly
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larger system graphs than used in any of the experiments (with any policy, not just eWorkforce) in [IM19).
We then compare the results of running our algorithms and their implementation of their algorithms.

When run on the modified eWorkforce_10 dataset, their system does not finish in a reasonable time
(we used a timeout of 30+ minutes, since DTRM and DTRM™ take less than a minute for this dataset) for
some object models, and it returns errors, such as “MemoryError” and “IndexError: pop from empty list”,
for others. We reported these issues to Iyer et al. Until they provide a fix, we circumvented these issues by
removing the rules that trigger these issues, and removing parts of the object models unused by the remain-
ing rules, until their system ran successfully for the remaining rules and at least one of the simplified object
models for each object model size. In the end, we removed 10 rules that their system has trouble with, leav-
ing 7 rules. The majority of the problematic rules are syntactically more complicated than the remaining
ones. Specifically, 8 out of 10 of the problematic rules contain more than two atomic conditions/constraints
(in ORAL2) or relationship patterns (in [IM19]’s policy language). In contrast, most (specifically, 5 out of
7) of the remaining rules contain only one atomic condition/constraint or relationship pattern (the other
two remaining rules contain 3 atomic conditions/constraints). Results of these experiments are reported
in Table [3] We set the path length limits for DTRM and DTRM™ to smaller values suitable for these
simplified policies: MCSE = 5, MSPL, = 2, MRPL = 1, SPED = 0, RPED = 0, and MTPL = 4. Even
using these 7 remaining rules and significantly simplified object models, their system does not finish in
a reasonable time (30 minutes) for some of the 5 object models for each policy size. Although we do not
know for certain whether this is due to inefficiency of their algorithm or bugs in their implementation,
we make the more generous assumption (i.e., assume the latter) and therefore omit those object models
from the reported results. Consequently, the results in Table [3| are averages over 4 object models for
eWorkforce_10, 1 for eWorkforce_15, 1 for eWorkforce_20, 2 for eWorkforce 25, and 3 for eWorkforce_30.

All three algorithms mine policies that grant the same authorizations as the input policies. For
DTRM, the mined policies are identical to the input policies. For DTRM™, the mined policies are almost
identical to the input policies: the only difference is replacement of the condition tenant.id = PP in
one input rule with the negative condition tenant.id # Telco, which is equivalent in context of these
simplified object models. For Iyer et al.’s algorithm, the mined policy contain one more rule than the
original policy (8 instead of 7) for all object models, except it contains two more rules for one object
model of eWorkforce_30, because their algorithm fails to mine some of the desired relationship patterns,
generating instead multiple rules containing longer relationship patterns. We do not report WSC for these
experiments, because the algorithms use different policy languages, and WSC is language-dependent.

DTRM and DTRM™ are faster than Iyer et al.’s algorithm for all policies. Averaged over all policies,
DTRM is 3.83 times faster, and DTRM™ is 3.86 times faster. DTRM and DTRM™ have very similar
running times in these experiments, because very few negative features appear in the rules extracted
from the decision trees.

8 Future Work

Directions for future work include: extending our algorithms to handle incompleteness and noise in the
ACLs, perhaps using decision tree pruning methods, which are designed to avoid overfitting; extending
our algorithms to identify errors in attribute values, and possibly suggest corrections; and developing
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incremental algorithms that efficiently handle updates to the object model or authorizations.
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