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Abstract—A common rehabilitative technique for those with
neuromuscular disorders is functional electrical stimulation
(FES) induced exercise such as FES-induced biceps curls. Closed-
loop control of a motorized FES system presents numerous
challenges since the system has nonlinear and uncertain dynamics
and switching is required between motor and FES control, which
is further complicated by the muscle having an uncertain control
effectiveness. In this paper, data-based, opportunistic learning
is achieved by implementing an integral concurrent learning
(ICL) controller during a motorized and FES-induced biceps
curl exercise. A Lyapunov-based analysis is performed to ensure
exponential trajectory tracking and opportunistic, exponential
learning of the uncertain human and machine parameters. In
addition to improved tracking performance and robustness the
potential of learning the specific dynamics of a person during a
rehabilitative exercise could be clinically significant. Preliminary
simulation results are provided and demonstrate an average
position error of 0.14 + 1.17 deg and an average velocity error
of 0.004 + 1.18 deg/s.

Index Terms—Functional electrical stimulation (FES), integral
concurrent learning (ICL), parameter identification, switched
systems, rehabilitation robotics, Lyapunov methods.

I. INTRODUCTION

Functional electrical stimulation (FES) induced exercise is
commonly used for rehabilitation of those with neuromuscular
disorders [1]. One application of FES is FES-induced biceps
curls [2]-[5]. However, there are numerous challenges asso-
ciated with closed-loop control of FES-induced biceps curls.
For example, the dynamics are uncertain and nonlinear [6],
high levels of stimulation (i.e., pulse width) can be uncom-
fortable, and the muscle control effectiveness is uncertain [7].
For rehabilitative systems including hybrid exoskeletons [8],
further complications result from the need to control switching
between a motor and FES of a muscle.

Closed-loop FES controllers have been developed for var-
ious rehabilitative methods, such as leg extensions [9]-[12],
rowing [13], walking [8], cycling [14]-[18], and upper-body
movement [2]-[5] among others. A common technique used
for closed-loop FES controllers is to use high-gain and or

*Department of Mechanical and Aerospace Engineering, University of
Florida, Gainesville FL 32611-6250, USA Email: {brendoncallen, kimber-
lyjstubbs, wdixon}@ufl.edu

This research is supported in part by the National Defense Science and
Engineering Graduate Fellowship Program, the Assistant Secretary of Defense
for Health Affairs, through the Congressionally Directed Medical Research
Program under Award No. W81XWHI1910330, and NSF award number
1762829. Any opinions, findings and conclusions, or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily
reflect the views of the sponsoring agency.

high (infinite) frequency feedback to ensure robustness despite
uncertainties in the system (cf. [2], [4], [5], [9], [10]). Such
robust control methods are further motivated because they
typically yield a negative definite derivative of a strict Lya-
punov function, which facilitates the development of switched
systems analysis methods, including the development of dwell-
time conditions. However, such robust control methods result
in an accelerated onset of fatigue due to high frequency of
stimulation and can be uncomfortable [15]. Motivated by the
goal of reducing the high-gain and high-frequency feedback
components of FES controllers, various results have developed
adaptive feedforward terms to augment FES controllers (cf.
[8], [11], [13]-[18]). Results such as [12], [13], and [18] ap-
proximate the uncertain dynamics using fuzzy logic or neural
networks (NN) up to some residual error by using model-free
feedforward terms. The results in [14]-[17] take advantage of
the fact that cycling is a repetitive and periodic task by using
repetitive learning control (RLC) or iterative learning control
(ILC) to exploit past control inputs to improve the tracking
performance. In contrast to such model-free control methods,
results such as [8] and [11] exploit knowledge of the dynamics
to develop model-based adaptive controllers.

For some applications, it is preferred for the adaptive
controller to not only improve tracking performance, but
to also learn or identify the parameters of the system. In
general, such an objective requires satisfying the persistence of
excitation (PE) condition; traditional adaptive controllers yield
asymptotic tracking results with no guarantee of parameter
identification [19]. In [20], it is shown that adaptive controllers
without PE can exhibit a bursting phenomenon, which results
in periods of unstable or oscillatory behavior. Additionally,
in general, it is not possible to verify the PE condition
for nonlinear systems [19]. In recent years, methods were
developed to perform model approximation online such as
initial excitation (IE) [21] and concurrent learning (CL) [22].
IE uses a switched parameter estimator and low pass filters
to relax the PE condition and yield exponential parameter
convergence. CL has a finite excitation (FE) condition that
is more mild than PE and can be satisfied online. CL. works
by using previous input and output data of the system to
update the estimate of the unknown parameters, facilitating
the potential for exponential stability. More recently, integral
concurrent learning (ICL) [19], [23], and [24] was developed
motivated by the fact that traditional CL requires the highest
order derivative to be known [19] (which can be calculated



numerically with a filter applied to reduce the noise).

To date no IE, CL, or ICL based controller has been devel-
oped for an FES system. Performing ICL on a motorized FES
system has numerous benefits. For example, person specific
dynamics can be identified in real time, which could have
clinical significance and such methods can yield exponential
results, which facilitate switched systems analysis that is
inherent to many FES objectives. Additionally, adaptive con-
trol reduces high-gain/high-frequency feedback components,
resulting in a more efficient FES controller with lower overall
FES inputs, leading to a more comfortable experience and
delaying the onset of fatigue [15].

In this paper, an ICL controller is developed for motorized
and FES-induced biceps curls, and a Lyapunov-based analysis
is performed to ensure exponential stability of the trajectory
tracking and parameter estimate errors, eliminating the poten-
tial for bursting errors [19]. During the biceps curl, control
is switched between FES and the motor during elbow flexion
and extension, respectively. This switched control is further
complicated by the fact that the control effectiveness of the
muscle is unknown. The existence of switching between mul-
tiple control inputs, when at least one has an uncertain control
effectiveness, creates a unique problem that differentiates the
result in this paper from those of previous ICL results, such
as those in [19], [23], and [24]. The solution is to utilize
opportunistic learning where the parameters of each subsystem
are learned while the subsystem is active. A preliminary
simulation is performed to validate the performance of the
designed control system and yields an average position error
of 0.14 £ 1.17 deg and an average velocity error of 0.004 +
1.18 deg/s. Efforts to perform preliminary experiments were
stymied due to Covid-19. 0 \tilde {\theta}

II. DYNAMICS

The nonlinear and uncertain arm-joint dynamics are mod-
eled as in [5] as'

M(§) +G(q) + P(q,4) + Ba(q) = mm (t) + 7 (), (D

whereq:R20—>Q,q:RZU%R,andéj:RZU%R
denote the measurable forearm angle about the elbow joint,
measurable angular velocity, and unmeasured acceleration,
respectively, and the set of all possible forearm angles is
denoted by @ C R. The inertial and gravitational effects,
denoted by M : R — Ry and G : Q — R, respectively,
are defined as

M (§) £ J§, G (q) £ mglcos(q—bo), )

where J,m, g, € R-( are unknown constants and 6y € R+
is a known constant. The passive viscoelastic tissue effect
and the hybrid exoskeleton bicep machine’s viscous damping
effect, denoted by P : @ xR — R and By : R — R,
respectively, are defined as

P(q,q) £ ke1 (¢ — ke2) +byd,  Ba(q) £bag, (3)

IFor notational brevity, all explicit dependence on time, ¢, within the terms
q(t), ¢(t), and ¢(t) is suppressed.

where k.1, keo,by,bg € R, are unknown constants. The
forearm-joint torque produced by FES and the motor are
denoted by 7, : R>g — R and 7, : R>o — R, respectively,
and are defined as

Tm (t) = b m (t) ,  Te (t) £ bette (t) 5 “4)

where b,, € Ry is an unknown constant that denotes the
muscle control effectiveness of the biceps brachii muscle
group for a given electrode placement?, and b, € R~ denotes
the known and constant motor control effectiveness. The FES
input (i.e., pulse width), u,, : R>o — R, and the motor input
(i.e., current), u. : R>o — R, are respectively defined as

A

U (1) 2 ko () upps (1), e (t) 2 keoe (£) Umot (1),

&)
where k,,,k. € Rso are selectable constants, and urggs :
R>p — R and et : R>o — R denote the subsequently
designed control inputs for the FES and motor, respectively.
The FES and motor switching signals, denoted by o,
R>o — {0, 1} and o, : R>g — {0, 1}, respectively, are
defined as

1 Gga >0
om (1) 2 ’ , 6)
®) { 0, otherwise (
1 gqa <0
o. (t) & ’ , 7
®) { 0, otherwise @

where, ¢4 : R>9 — R, denotes the desired and sufficiently
smooth (the first and second derivatives exist and are bounded)
position trajectory, and ¢q : R>o — R, denotes the desired
velocity trajectory. The switching signals are designed such
that FES is applied during elbow flexion and the motor is
activated during elbow extension. Therefore, whenever o, =
1, 0. = 0 and whenever 0. = 1, o, = 0. Substituting (2),
(4), and (5) into (1) yields3

BmUmuFES + Beumot = Jq + G + P+ Bd, (8)
where B,, £ b,,k,, and B, £ b.k.o.. The switched system
in (8) has the following properties [1]. Property 1: c¢; <
M < cj, where cj, ¢y € R5( are known constants. Property
2: The muscle control effectiveness b,, is lower and upper
bounded and thus, ¢, < B, < cp, where ¢, cg € R+ are
known constants. Property 3: The dynamics in (8) are linear
in the unknown constant parameters and can be expressed as

Y16, £ Ji+ G+ P + By, 9)

2Due to the effects of changing muscle geometry, the muscle control
effectiveness changes with the elbow angle. However, with proper electrode
placement, stimulation of the bicep during curls can be segmented into distinct
regions for each electrode, where over an electrode’s respective region the
muscle effectiveness can be approximated as a constant [3], [5]. In this paper,
a single electrode is considered. Subsequent research will include multiple
electrodes and switching between them with opportunistic learning of the
muscle effectiveness at each electrode site.

3For notational brevity, all functional dependencies are hereafter suppressed
unless required for clarity of exposition.



when only the motor is active (i.e., 0, = 1 and o, = 0) and
can be expressed as

Yla'rn = (‘]q+G+P+Bd)7 (10)

1
B,
when only FES is active (i.e., 0, = 1 and 0. = 0) , where
Y, € RY™*P, B, € R, and 6,,0,, € RP denote the unknown
constant parameters when in the motor and FES regions,
respectively, and p is the number of uncertain parameters.

III. CONTROL DEVELOPMENT

A. Tracking Error Development

The control objective is for the forearm to track a desired
trajectory and is quantified by a measurable position tracking
error, denoted by e; : R>g — R, and defined as

e1 = qa— g (11)

A measurable auxiliary tracking error, denoted by e : R>g —
R, is designed as

€9 £ él -+ aeqp, (12)

where o € R is a selectable constant. The open-loop error
system is obtained by taking the derivative of (12), multiplying
by J, and using (8) to yield

Jé }/296 - Beumota oe=1
€y = )

Bm(nam*uFES)7 O—m::l

(13)

where 0, and 6,,, are the uncertain parameters defined in (9)

and (10), respectively, and the measurable matrix Y> € RIxP
combined with 6. is defined as
Y20, £ Jijg+ G+ P+ By + aJéy. (14)

B. Parameter Identification Development

The motor and FES parameter identification errors, denoted
by 6. € R? and 6,, € RP, respectively, are defined as

0.260-4,,
Oy 20 — 0,0,

(15)
(16)
where the motor and FES parameter estimates are denoted by
0. € R? and 60, € RP, respectively. The update laws for the

motor and FES parameter estimates are designed based on the
subsequent stability analysis as

. F6Y2T€2 + k:gl"eSe, O = 1
b = 50, e =0 a7
kSFeSm Oe =1
. FmY2T€2 + k4FmSm, Om = 1
Om = S0, o =0,  (18)
k4FmSm; o =1
where S, and S, are auxiliary terms defined as
S. 2 Zyz;( i = Ve ) (19)

m - Z yzyzz ( mi ymiam) ) (20)
where k3, ks € Ry are selectable constants, I'., "), € RP*P
are selectable constant, positive definite and diagonal matrices,
N, N,, € N are constant integers denoting the size of the
concurrent learning history stacks, and the switching signals,
Oet : R>o — {0, 1} and 0,1 : R>9 — {0, 1}, are respectively
defined as

N 1 0. =0and \pin { i yg;yei} > Ae
Oel (t) £ 0 oo — 0 and )\mm {Zl : yg;ym} e )
(21)
oo (8) 2 1 o, =0and A\nin { yg,;zymz}
mi () =

0 0 =0 and A {Zizi VEVmi} < Am
(22)
where Ain {-} (A\mae {-} ) denotes the minimum (maximum)
eigenvalue of {-} and A, \,,, € Ry are selectable constants.
The motor ICL terms Ve; £ Ve (tei) and Ue; = U, (to;) are

defined as
Onx1 g.=0
Ve (t) =S Onx1 t—t5, €[0,At], (23)
[ Yi(o)do t—1t5 > At
0 g, =10
U (1) =10 t—te e0,At], (24
[ a Bettmor (0) do ¢ — 5 > At
where t¢; € (& + At, ¢ 1), Vn € {0,1,2,...}, 0,,x1 denotes

a n X 1 matrix of zeros, and /At € R~ denotes a selectable
constant that represents the size of the window of integration.
The switching times are denoted by {t%,},i € {m, e}, n €
{0,1,2,...}, which represent the instants in time when o,
becomes nonzero (i = m) and the instants when o, becomes
nonzero (i = ¢). The FES ICL terms YV,,; = Y (tmi) and
Upni = Uy, (tm;) are defined as

Onx1 om =0
Vi (1) = 4 Onxa t—tmefo, A, (29
ft acV1(o)do t =17 > At
0 om =0
Un (t) =40 t—tm e [0,At], (26)
[l ., omurps (0)do t—t" > At
where t,,; € (t7" 4+ At,t8), Yn € {0,1,2,...}. The aux-

iliary terms S, and S, contain a history stack of prior
input and output data generated from the dynamics. When
t € (t& 4+ At, ) ,Vn, substituting the definition of (9) into
(8) and integrating both sides yields

yeiee = Z’{eia VtezV (27)



Likewise, when ¢ € (7" + At, %), Vn, substituting the defi-
nition of (10) into (8) and integrating both sides yields

ynn'am = Vtrnz (28)

mis

The ICL terms in (23)-(26) are designed to remove the
dependence on acceleration. Integrating both sides of (9) yields

t

t
/ Y (0) Oedo = Y30, + / Y4 (o) 0.do, (29)
t—At t—At

vt € (& + At,t7,), Vn, where the regression matrices
Y3, Y, € RY¥P are defined as

Yabe £ J(q(t) — 4 (t — At)), (30)
Y0, 2 G+ P+ By,. 31)

Likewise, integrating both sides of (10) yields

t t
/ Y1 (0) Opdo £ Y30,, + / Yy (0)Omdo,  (32)
t—At t—At
Yt e (thr + At, t5), Vn, where
J . .

Vi £ = (1) = (= 50), (33)
Vil = 5 (G+P+Ba). (34)

Motivated by [19], [23], and [24] the design of (30), (31),
(33), and (34) allow for (23) and (25) to be calculated without
requiring the acceleration to be measured. To facilitate the
subsequent analysis, substituting (27) into (19) and using
(15) and substituting (28) into (20) and using (16) yields
the subsequent equivalent and non-implementable auxiliary
equations

Ne
Se = Zyg;yeiéea

i=1

(35)

N,

=1

(36)

C. Closed-Loop Error System
Adaptive motor and FES controllers are designed based on
(13) and the subsequent stability analysis respectively as

1 A
ot = 5= (Yabe + kres +e1) (37

(&

upgps = Y20, + kaea, (38)

where k1, ko € Ry are selectable constants. Substituting (37)
and (38) into (13) yields the closed-loop error system

Yole — kies — ex,
Bm (Y20~m - k262> y Om = 1

. =1

Jéy = (39)

IV. STABILITY ANALYSIS

The design of the parameter estimate update laws in (17)
and (18) allow for the traditional PE criteria for parameter
identification to be relaxed to the FE criteria that is provided
in Assumption 1.

Assumption 1. The system is sufficiently excited over a
finite duration of time such that 37.,7,, € Rs( such

that Vi > To Apin {0 VEVi} = Ao and Wt >
Tos Ain {ZiN;; y;y} > A Let T € Reg be defined
as T = max (T,, T),).

A positive definite, continuously differentiable, common
Lyapunov function candidate denoted by V : R?T2P — Ry
is defined as

1 1 lornag 1, 5 j
V é 56% -+ 5(]6% + iezF;19e + §Bm9ﬁrfn19m’ (40)

which satisfies the following inequalities:

Ml <V < A2, (41)
where z € R2t2P is defined as
o qT
22 e 67 0T, 42)

and A1, Ao € R+ are known constants defined as

A2 %min (L, ¢, Amin AT} coAmin {T7'})

Ao £ %max (1, €75 Amaz {Fe_l}  CBAmas {Fr_nl}) ‘

Theorem 1. For the closed-loop error system defined in (39),
the adaptive update laws and controllers defined in (17), (18),
(37), and (38) yield bounded trajectory tracking errors and
parameter estimation errors over the time interval t € [0,T),
provided the following gain conditions are satisfied

1 1
5, ko > ch
Proof: The solution to the time derivative of (40) exists
almost everywhere (a.e.) within ¢ € [tg,00), because the
closed-loop error system in (39) and the update laws in (17)
and (18) are discontinuous. A generalized time derivative
of V, called V, exists such that V (z) € V (2). Let z (¢)
for t € [tg,o0) be a Filippov solution to the differential
inclusion z € K [h] (2) an(qiﬂ let h : R* — R* be defined as

h éi él é2 ée ém ]
of (40) and using (12) yields

a> (43)

[25]. Taking the time derivative

V Q €1 (62 — 0461) + €2K [JBQ] — égFglK |:ée:|

- : (44)

B 0TI K [9m] ,

where K] is defined as in [26].

From the switching laws in (6) and (7) there are two cases:

either only the motor is active (o, = 1 and o,,, = 0) or only
FES is active (0, = 1 and o, = 0).



For the case when o, = 1, substituting (17), (18), (35),
(36) and (39) into (44) canceling common terms, and using

the fact that V (2) 13 V (2), yields

—0461 k‘1€2 k3éz Zi\/:el yg;yeiéev omi =0
V E 70&61 kleg kgéz vazpl yg;ymée
~ka B, 3205 Vi Vomibm Omi = 1
45)

By Assumption 1, learning is not complete for ¢t € [0,7),
therefore S~ YT V,; and SN YT, are positive semi-
definite for at least a portion of ¢ € [0, T). Therefore, (45) can
be bounded above by

1% < —ael

ki3, (46)

vt € [te,tm,) N[0,T),Vn. For the case when oy, = 1,
substituting (17), (18), (35), (36) and (39) into (44) and
canceling common terms yields

—ae? + ereg — By kae3

V ae. —k4B,, éT vani yz,;iymiémv e =0
—ae? — Bkl — k3T vael VIVeife
_k4B QT Z " ynjj”ymze + ejesg, Ocl = 1
47)

Likewise, since learning is not complete for t € [0,T), (47)
can be upper bounded by utilizing Property 2 and Young’s
Inequality as

. ae. 1 1
V< —<a—2) et — <cbk2—2) e,

Yt e [th,t5) N [0,T),Yn. An overall upper bound for both

(46) and (48) can be obtained as

. ae. 1
< _ _ -
v ()

Yt € [0,T), where 3 £ min (kl,Cbkg ) Since V' > 0 and
V < 0 it can be seen that V € L., and thus e1, 62,99, 9m €
L. By the definitions in (15) and (16) and since 9@,9 €
Coo, then ém 9m € L, it can likewise be shown that é1, ¢, ¢ €

(48)

el — Be3, (49)

Lo and Yy € L, and thus, U, urpes € Loo. In fact, it
can be shown by using (41) that
A2
(D)< /5 =01 (50)
1
|

Theorem 2. For the closed-loop error system defined in (39),
the adaptive update laws and controllers defined in (17), (18),
(37), (38) vyield exponential trajectory tracking errors and
parameter estimation errors over the time interval t € [0, c0)

in the sense that
JOlexp (—=t), 5D
<p | ———
p M ,

provided the gain conditions in (43) are met, where T is
defined in Assumption 1 and

1 1
§ £ min <a — 3 ki, cpko — Q,kgAe,k4)\mcb> .

Proof: By Assumption 1, Amin {vajl ygyﬂ»} > A
and Apin {ZiN;q y,?”ymi} > A, for all ¢ € [T,00), which
implies that Zf\sl yg;ym- and Zfi"i ygiymi are both positive
definite for all ¢ € [T,00). Therefore, for the case when

o, = 1, (45) can be upper bounded using Assumption 1 and

Property 2 to yield
V< —ae? - ksAe0L 0o — kaAmc0L O,

kies — (52)

vt € [tg,tm ) N [T,00),Vn. Likewise, for the case when
om = 1, (47) can be bounded above by utilizing Assumption
1, Property 2, and Young’s Inequality as

V < —(a-1)e-
—ksA0T0,

(Cbk‘g ) 62
— k4)\mcb0 Gm,

(53)
Yt e [t t¢) N [T, 00),¥n. An overall upper bound for both
(52) and (53) can be obtained by using (41) as

. ae. )
V < -——V
— AQ )

(54)
Vt € [T, o0). From (52) and (53), (40) is a common Lyapunov
function for the case when o, = 1 and the case when o,,, = 1.
Solving the differential inequality in (54) and using (41) yields

T)) WVt e [T, 00).

A o
=01 < /52 I (@ exp (55 (0 -
(55)

Combining the result in (55) with (50) from Theorem 1 yields
the exponential bound for all ¢ € [0, c0) shown in (51). Using
(42) and (55) it can be shown that el,eg,ée,ém € Lo
Following a similar development as in Theorem 1 it can be
shown that w01, urpgs € Lo and the remaining signals are
bounded. |

V. SIMULATION

To demonstrate the performance of the controllers in (37)
and (38) and the update laws in (17) and (18) a preliminary
numerical simulation was performed using the dynamics in
(8). The desired trajectory was designed as

) = 5 + 5 [1- oo (551)]

and the initial forearm position and velocity were selected
as q(0) = § rad and ¢ (0) = 0 rad/s. The initial parameter
estimates were selected as 0, = 0,, = [O,O,O,O,2]T. The
following control gains were used k1 = 15, ko = 25, k3 = 5,
ky = 10, kp, = 20, A = 001, o« = 1, At = 0.5s,
N, = N. = 500, T, = diag{95,20,0.05,0.05,15},
T'. = diag {210, 5,0.05,0.01, 2}.

The following plots show the results of the simulation. The
position and velocity tracking errors are shown in Figure 1.
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Fig. 1. Tracking errors.
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Fig. 2. Control inputs.

The control inputs, u,, and u., are shown in Figure 2. The
adaptive parameter estimates versus the actual parameters for
both the motor and FES subsystems are shown in Figure 3.
The parameter estimate errors for both subsystems are shown
in Figure 4. The minimum eigenvalue plot for both subsystems
is shown in Figure 5.

The position and velocity errors over the entire simulation
were 0.14 +£1.17 deg and 0.004 + 1.18 deg/s. The root mean
square (RMS) position error and velocity errors were 1.18
deg and 1.18 deg/s, respectively over the simulation. The
simulation demonstrates the ability of the designed control
system to yield small tracking errors and to estimate the
parameters of each subsystem. The parameter estimates could
be improved by increasing the duration of the simulation or
by using more advanced methods to increased the minimum
eigenvalue of each subsystem, such as is discussed in [19],
[23], and [24]. Additionally, the trajectory could be modified
to further excite the system.

L

0 20 40 60 80 100 120

0 20 40 60 80 100 120
Time (s)

Fig. 3. Parameter estimates for both subsystems. The solid lines indicate the
actual parameter values and the dotted lines indicate the parameter estimate.

0 20 40 60 80 100 120
Time (s)

Fig. 4. Parameter estimate errors for both subsystems.

VI. CONCLUSION

A data-based ICL controller was developed for a switched,
motorized FES-induced biceps curl exercise. A Lyapunov-
based stability analysis guaranteed both exponential trajectory
tracking and opportunistic parameter identification. The de-
veloped ICL formulation allows for a more mild FE condition
for learning instead of the PE condition and for the dynamics
of both the machine and the person to be identified without
the need to know the angular acceleration of the elbow joint.
Adaptive FES controllers can potentially lower the high-
gain/high-frequency inputs from traditional robust controllers
and replace them with feedforward adaptive components,
which can help to delay the onset of fatigue. A preliminary
simulation is perfomed to validate the performance of the
designed control system and yields an average position error of
0.14 £ 1.17 deg and an average velocity error of 0.004 + 1.18
deg/s. Future work will allow for switching between multiple
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(Controller 2).

electrodes by spatially switching stimulation as the muscle
geometry changes with joint angle to improve efficiency and
further reduce fatigue [5].
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