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This paper presents a quantitative framework to analyze the complexity of folding origami structures
from flat membranes. Extensive efforts have realized intricate origami patterns with desired functions
such as mechanical properties, packaging efficiency, and deployment behavior. However, the complexity
associated with the manufacturing or folding of origami patterns has not been explored. Understanding
how difficult origami structures are to make, and how much time they require to form is crucial infor-
mation to determining the practical feasibility of origami designs and future applications such as robotic
origami assembly in space. In this work, we develop this origami complexity metric by modeling the geo-
metric properties and crease formation of the origami structure, from which it outputs crease and pattern
complexity values and a prediction of the time to complete the pattern assembly, based on the character-
istics of the operator. The framework is experimentally validated by fabricating various Miura-ori origami
paper models.

© 2021 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.
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Origami, an ancient form of art, has rapidly evolved into an en-
gineering design approach in aerospace, mechanical, civil, biomed-
ical, and many other fields. Its capability of transforming materials
and structures into different two and three-dimensional configu-
rations is not only of fundamental scientific interests, but also has
enabled a wide variety of engineering applications that were previ-
ously infeasible. This shape-transformative characteristic of origami
has stimulated a rich collection of fundamental studies on its me-
chanics including stability, dynamics, folding and deploying be-
havior, mechanical properties, and numerical modeling [1-7]. Re-
cent advances have realized novel applications ranging from large-
scale solar arrays, space telescopes, spacecraft sunshields, and an-
tennae to micro-scale tissue scaffolds, electronics, and microelec-
tromechanical systems [8-12]. Engineering with origami has fur-
ther promoted research in active self-foldable materials, metama-
terials with exotic mechanical properties, soft robots and compli-
ant mechanisms, stiff energy absorbers, and bulletproof shields [2,
8, 13-28].

Origami engineering has moved farther away from simple
shapes to more complex geometries to serve more advanced de-
sign purposes. For example, Freeform Origami is a recently devel-
oped method to achieve highly complex origami structures based
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on sets of desired design objectives [29-31]. As more complex
origami structures are designed - using computer software or
otherwise - they become increasingly intricate and thus require
more time and effort to be physically produced. Although in-
tricate origami designs may have advantages, their manufacture
could be too challenging to be practical for some applications. Un-
derstanding how difficult these structures are to make and how
much time they require to form are crucial to the evaluation of
origami designs and their manufacture. Despite the extensive study
of origami patterns and materials, in recent years, a fundamental
understanding of the complexity of folding origami structures has
been overlooked.

The work presented here provides a quantitative framework
based on origami geometry and topology to understand and an-
alyze those production efforts, which engineers can utilize when
comparing different designs. This framework produces a set of
metrics which describe the complexity of origami patterns as they
are folded from a two-dimensional flat sheet. Pattern complexity
describes the origami structure before folding begins and assigns
a complexity value independent of folding orders, techniques, or
skills. Dynamic crease complexity refers to the relative efforts of
folding one crease to folding others as the creases are sequentially
made and the structure changes shape. This framework currently
takes into consideration only intrinsic geometric and topological
properties of origami, such as folding pattern and folding order to
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determine the complexity of creating the structure. As future ad-
vances in origami engineering identify new sources of complexity,
this framework can be expanded upon. This paper presents present
our efforts to quantify crease complexity and translate it to a use-
able, practical metric that will benefit future engineering endeav-
ors with origami.

To present the current status of relevant research, we begin
with a brief literature review. It should be noted that, although
engineering origami is being extensively studied, the practical dif-
ficulty and complexity of folding origami structures have been
scarcely studied in depth.

Halkjelsvik and Jergensen [32] performed a comprehensive re-
view on performance time predictions that integrated research
from engineering, management science, and psychology. Their re-
sults - those which related to our research - mainly discussed
sources of error in predicting the time of accomplishing a task
by both an observer and a subject. This was a valuable insight
into possible sources of error that could be encountered. How-
ever, due to the technical focuses and interests of this work, it did
not present a method of predicting the amount of time to com-
plete a task nor a measure of the complexity of a task. This paper,
like many others from the field of psychology, assigned an arbi-
trary scale for complexity and focused heavily on subjective, self-
reported results of both complexity and estimations of time. The
gaps in previous research, as discussed both here and in the fol-
lowing paragraphs, reinforced the need for an objective quantita-
tive determination of these metrics.

An early attempt at quantification for comparable tasks to
origami came in a paper by Richardson et al. [33]. Then, they
lamented, “a general lack of understanding as to what factors af-
fect assembly task complexity and the use of diagrammatic in-
structions,” which follows remarkably closely to the need we have
ascribed to origami research. Part of their preliminary quantifica-
tion stemmed from experiments conducted by Novick and Morse
[34], which showed that reducing the number of steps in an as-
sembly process, increased the accuracy of the assembler. To analo-
gize to origami, an assembly process and order is equivalent to
the act of folding the membrane and the order in which the folds
are made. They then identified and defined seven task variables
each of which they posited might have a contribution to the ef-
forts of completing the tasks. Three of these, "Symmetrical Planes”,
"Fastening Points", and "Component Groups", are likely not rele-
vant because the folds do not change their relative position on
the membrane, are already aligned within the assembly, and do
not consist of any subassemblies. The remaining four all have ana-
logues in origami folding. "Selections" corresponds to the reduction
in complexity as the folds are made over time, "Fastenings" corre-
sponds to the complexity of making nodes (the points at which
folds meet), "Components” corresponds to either the number of
folds or the number of nodes that must be made, and "Novel
Assemblies" corresponds to differences in fold length and non-
repetitive patterns. By establishing these task variables, they have
made the quantification more universal - applicable to a greater
variety of structures. This research was continued by Richardson
et al. [35] with further efforts to identify the physical attributes of
an assembly which make it more difficult or complex from a cog-
nitive science perspective. Understanding this perspective is impor-
tant, as that field has specific definitions of complexity which differ
from those used in this paper. As will be shown, we utilized a very
similar line of logic to Richardson et al. for developing our frame-
work; showing that our approaches to the problem were aligned.
A 2013 paper by Kanis [36], cited this paper and asserts there may
be significant flaws with similar studies to this and Halkjelsvik and
Jergensen’s concerning the abuse of statistical information and the
use of arbitrary complexity scales, among others. The nature of the
criteria the researchers set is not seriously called into question, but
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their attempts to find statistical significance in their experimental
data are. This again reinforces the necessity of objectivity, which
requires a measurement of task complexity and duration based en-
tirely on the properties of the structure and modified only by the
operator’s actions, rather than by self-reported data on arbitrary
scales.

The first sources of our literature review dealt primarily with
humans as the operators and how they performed the assembly.
Structures can be assembled by robots or self-assemble using, for
example, motors and actuators. Self-folding methods largely ap-
ply energy (e.g. thermal, magnetic, or electrical) to a pre-creased
membrane to induce folding or unfolding along the crease lines,
without the aid of an operator [37]. Stern et al. [37] defined the
crease complexity of self-folding origami as relative to the geom-
etry of the folding pattern, the locations of the motors or actu-
ators, and the energy requirements to activate and control them.
Therefore, in the case of a self-folding origami structure the crease
complexity directly corresponds to a calculation of the energy re-
quired at each actuator and has no relation to the human capacity
to perform the task, as was the case in the previously discussed
papers. The difficulty of completing the entire structure (pattern
complexity) then is the sum of the energy required at each actua-
tor. Dynamic crease complexity for robotic assembly may be sim-
ilarly quantified by the taxation on the operator’s energy or com-
putational systems. A paper on robotic origami folding by Balk-
com and Mason [38] described the process of robots analyzing
and completing the pattern as node-centric; where the tasks to be
completed were the nodes and not the folds. As our calculation for
crease complexity is similarly computationally-based, we adopted
this node-centric approach into our method; tracking the develop-
ment of folds as they pertain to the formation of nodes.

In the next few paragraphs, we describe how our framework
generates and analyzes a pattern, calculates its complexity, and cal-
culates the time of completion. Figure 1 lays out the schematic for
our analysis in three phases: pattern generation (red), static nodal
complexity calculation and pattern complexity (blue), and dynamic
crease complexity and time calculations (green).

The Pattern Generation phase takes the geometric information
(fold lengths, angles, and tessellations) of the pattern and gener-
ates two matrices which describe the position and orientation of
the fold lines and the nodes. The Static Nodal Complexity calcula-
tion determines the initial value of complexity for forming every
node in the pattern, prior to any folds being made. This calculation
is based on the distance of the node to the nearest corner of the
pattern and the number of folds required to complete the node.
The Pattern Complexity is the sum of the static nodal complexity of
each node and indicates the initial complexity of an origami pat-
tern without regard to folding order, folding technique, or operator
skill.

Pattern GenerationThe Dynamic Crease Complexity and time cal-
culations change the values of complexity over time, as folds are
successively made according to a specific folding order. This is
done by reducing the number of remaining folds around a node,
as they are made, and removing the geometric weight if the node
has been completed. An experimentally determined time value of
a similar task on a smaller scale (initial time) is used to provide a
base time for the completion of the first fold of the pattern. From
this, the framework compares the complexity values of the rest of
the folding pattern as the folds are made to this value to deter-
mine the amount of time (T-matrix) each fold in the pattern will
take to complete. The framework is implemented in Matlab.

We chose to use the Miura-ori pattern to test and refine our
analysis method (Fig. 2) [39,40]. To generate the geometry of the
Miura-ori pattern, four variables are used: length is the length of
the fold lines (which are all the same), angle is the smaller inte-
rior angle of the parallelogram panels formed by the folds, rows
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Fig. 1. Schematic of quantitative framework for calculating the complexity of folding origami structures. (For interpretation of the references to color in this figure, the

reader is referred to the web version of this article.)
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Fig. 2. Geometric input variables. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

is the number of times the unit parallelogram is flipped and re-
peated across the top straight side, and cols (columns) is the num-
ber of times the unit parallelogram is repeated next to the right
angled side. Figure 2 shows the direction of increasing rows in red
and columns in blue and marks the angle in green and the equal
lengths of two sides in purple.

From these four values, the framework creates one initial an-
gled line and one initial straight line at the bottom left of the pat-
tern; setting their intersection (a node) as the origin to the co-
ordinate system relevant for later calculations. It then propagates
the straight and angled lines to fit the prescribed pattern by gen-
erating a matrix of all of the fold lines (L-matrix) and a matrix of
their intersecting nodes (N-matrix) and their respective properties.
This matrix generation is depicted in Fig. 3. The L-matrix stores
each line with an ID (which is the order it was placed in the pat-
tern), the length of the line, and the coordinates of both of its end-
points. The N-matrix stores the coordinates of each node and the
number of intersecting lines. The matrices are generated simulta-
neously and the function which creates the nodes checks to avoid
duplicates. Table 1 shows the lists of variables used to generate the
L- and N- matrices.

As described previously, the Static Nodal Complexity represents
the effects of the intrinsic pattern properties on the ability of the

Angle(s)
Fig. 3. Pattern generation.

Table 1
L- and N-matrices.

L-matrix N-matrix

k = column # and node ID

Nj k.1 = node x coordinate

Lyji=] N ., = node y coordinate

L3 j; = bottom endpoint x coordinate N, ; = # intersecting lines or 1 (edge)
L3 j, = bottom endpoint y coordinate N, , = 0 (not corner) or 1 (corner)
L3 j3 = top endpoint x coordinate

L3 j 4 = top endpoint y coordinate

Jj = column # and line ID
Ly j; = length

operator to fold the pattern, regardless of skill or experience. We
quantify this as the relative efforts of completing one task (a node)
to completing similar tasks with different parameters. Figure 4
presents the flow of information for the calculation of Static Nodal
Complexity, and the accompanying shaded box shows the spe-
cific procedure. The Static Nodal Complexity calculation determines
complexity before any folds have been made, creating a control
against which different folding approaches can be equally com-
pared. A matrix of the nodal complexity values in a given structure
(C-matrix) therefore has a sum, the Pattern Complexity, which rep-
resents the complexity of completing the entire structure, indepen-
dent of operator characteristics. In the framework, the nodal com-
plexity values are based on the geographic position of the nodes
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Fig. 5. Dynamic crease complexity and time calculations flowchart.

relative to the closest corner of the pattern and the number and
length of intersecting lines at each node.

The C-matrix overlays the L and N matrices in its structure to
facilitate identification and incorporation of the complexity contri-
butions from each of their respective elements (static nodal com-
plexity equations, Step 1.1). At present, it is understood that a sig-
nificant contribution to dynamic crease complexity originates from
the formation of the nodes. The complexity calculations in this pa-
per thus influence and draw from the C-matrix overlay of the N-
matrix to reflect this. This approach further allows the source of
the complexity (i.e. geographic or node weight) in the C-matrix
to be easily traced to its dependent element in the N-matrix. Al-
though our research has not identified a direct contribution to
complexity from the L-matrix, it is included in in the C-matrix
structure, should future research find such connections.

After the C-matrix is created, the pattern analysis section of the
framework defines which four nodes on the Miura-ori pattern are
corners by checking if the number of intersecting lines equals two
(SNCE Step 1.2). There would be a similar process for other pat-
terns which define corners generally as the farthest nodes from
the center of the structure; which in some cases may be more
or less than four. In the Miura-ori case, neither of the two lines
which intersect the corner nodes will ever fold, therefore the num-
ber of intersecting fold lines is set to zero. The distance of a non-
corner node to its closest corner defines the geographic weight of
its crease complexity (SNCE Steps 2 and 3.1).

The number of intersecting lines times half of the length of the
lines (lengths are stored in the L-matrix) defines the node weight
of the crease complexity (SNCE Step 3.2). After defining the cor-
ner nodes, the pattern analysis next checks which nodes are edges.
Edge nodes are those on the sides of the membrane where two
lines mark the border of the membrane and the third connects to
a node within the membrane. Similar to the corner nodes, the edge
nodes discount the two lines on the border and only count the one
intersecting fold line. The static nodal complexity of each node is
the sum of its geographic weight and its node weight - and the
sum of the complexities at all of these nodes prior to folding is
called the Pattern Complexity (SNCE Step 3.3).

Static Nodal Complexity Equations

Step 1:

1.1 Define C-matrix

Cap.c1 = complexity of L p, .,

c- H‘latl‘lX{C&b‘c’z = complexity of Ny .

1.2 Define Corner Positions

corner x coordinate,
corner y coordinate.

.. cc
Corner positions p.1
CCp2

Step 2: Calculate Corner Distances

2 2
m= \/(Nl.k,l —cc1,1)* + (Ny 2 — ccrz

B \/(Nl,k,l —cc2.1)” + (N2 — cc22)
tt = \/(Nl.kJ —cc31)” + (Nijz — cc32),
2

2
uu = \/(Nl,k,l —cca 1)’ + (Nyg2 —ccan)’.

N

)
)

Corner distances{ >

Step 3:
3.1 Calculate Geographic Weight
Cy k.12 = min (T, ss, tt, uu) = Geographic weight.
3.2 Calculate Node Weight
length = L, ;1 = constant for Miura or i,
Gok1.2 = 0.5 x length x N, 1 = Node weight.
3.3 Calculate Static Nodal Complexity

Nodal crease complexity = Cy ;12 + Cok1.2-

As a membrane is folded to create an origami structure, the
geometric conditions change over time. The complexity values
change after each fold to reflect that the geometry of the mem-
brane has changed and thus the complexity of making subsequent
folds may increase or decrease. Figure 5 shows the flow of infor-
mation, and the bordered box titled dynamic crease complexity
and time calculations (DCCTC) shows the procedure of calculating
the dynamic crease complexity. The change in complexity values
after each fold is calculated by reducing the number of intersecting
lines at the two adjacent nodes by one (DCCTC Step 1.3.1). If the
node weight is zero, that means all of the folds around the node
have been made, so the geographic weight in the C-matrix is re-
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Table 2
Summary of matrix definitions.
Matrix Description
L-matrix For each fold line: stores its ID, its length, and the coordinates of its endpoints
N-matrix  For each node: stores its coordinates and the number of intersecting fold lines (excluding edges)
C-matrix For each node: stores its geographic weight and its node weight
T-matrix For each fold: stores the time it takes to complete

duced to zero (DCCTC Step 1.3.2). The sum of the C-matrix compo-
nents calculated after each fold is completed is called the dynamic
crease complexity and is stored in a vector X. The sum of this vector
is thus a dynamic pattern complexity. This simulates the folding
process over time and allows this method to be used to estimate
how long the folding process will take for any given origami struc-
ture, quantitatively how complex different patterns are relative to
each other, and whether some folding orders are easier, faster, or
more effective than others for completing a structure.

Dynamic Crease Complexity and Time Calculations

f = crease # within folding order
Fy = vector of line IDs of creases in order (i.e. folding order)
nl, n2 = node IDs of both nodes connected to the crease
X; = complexity of fth crease
Ty = time to complete ftherease
Step 1:
For f =1to fiax
1.1 Determine which nodes n1 and n2 connect to the f&
crease
1.2 Calculate the complexity of folding the f crease by
summing the complexities at the connecting nodes

Xr=Cmi2+CGni12+Cni12+Cin212-

1.3 Update the C-matrix based on folded the f crease
1.3.1 Mark the fold as complete by removing the node
weights of the the fi crease

Con1.1.2 = Cont.1.2 — 0.5«length,

Gn212=CGn12—-05% length.
1.3.2 If the node is complete: G p1.12=00r G212 =
0,setCip112=00rCip12=0
End
Step 2: Calculate the time of the fold and store it in the
T-matrix

X
T(f) = initial time x L
X

Step 3: Sum the times of all the folds to find the total
time to complete the pattern

time = Z T.

As the C-matrix is generated and adjusted for each fold, an ad-
ditional vector (T-matrix) is generated to store the time each fold
takes to make (DCCTC Step 2.1). Table 2 summarizes the definitions
of all matrices used in the framework. The values of time are di-
rectly proportional to each other by their complexity values. Their
constant of proportionality is determined experimentally, based on
the time it takes to complete a smaller or simpler version of the
same pattern. FFFor example, the time to complete the first fold of
a two row by two column miura-ori could be used to predict the
completion time of larger patterns. We demonstrate the soundness
of this approach in the first of the experiments we conducted to
identify and study sources of complexity in paper origami.

Table 3
Sample folding orders.

Folding Order  Definition

SCL/ACL Straight connected/Angled connected
SCL/ADL Straight connected/Angled disconnected
SDL/ACL Straight disconnected/Angled connected
SDL/ADL Straight disconnected/Angled disconnected
ACL/SSL Angled connected/Straight simultaneous
ADL/SSL Angled disconnected/Straight simultaneous

Our first study utilizing the framework concerned complexity
due to tessellation of the Miura-ori pattern. For this study, the
operator was provided pre-printed and cut Miura-ori patterns on
printer paper. The operator was well trained on folding paper
origami patterns, therefore the time needed for mastering the fold-
ing techniques was not included. In the future, it will be interest-
ing to study the learning curves for new operators. The patterns
ranged from two rows by two columns (2 x 2) to five rows by five
columns (5 x 5) with every permutation in between. Further, three
copies of each pattern were made to provide more data points. The
folding pattern followed the same rule regardless of the shape of
the membrane. The first fold was the mountain fold (red) in the
lower left of Fig. 2, followed by the unconnected folds up the first
column. Next were the connected valley folds (blue) between the
first and second columns. Using the orientation as shown in Fig. 2,
the operator proceeded up each column of unconnected folds from
left to right, alternating with going up the intermediate connected
folds. This folding order will be referred to as the “Columnar” fold-
ing order in the next subsection. The operator was timed for how
long each pattern took to complete. The average times in seconds
to complete each set of three patterns are shown in Fig. 6. In Fig. 7,
a 5 x 5 paper Miura-ori is shown before (left) and after (right)
folding.

The folding pattern as described above was input into our
framework along with the geometric information. For this test, all
of the patterns had an angle of 60 degrees and a length of 50.8
mm (2 in). We performed the full calculation of static nodal and
dynamic crease complexity for only the 2 x 2 pattern and divided
the average time found during the test proportionately across the
four folds based on their relative complexity. The time value of the
first fold of the 2 x 2 pattern, which is the same first fold for all
patterns, was then set as the time value of the first fold for all
other pattern sizes. For all subsequent folds that time value was
multiplied by the ratio of the complexity of that fold to the com-
plexity of the first fold. Those time values were stored in the T-
matrix, the sum of which was the total predicted time that each
other pattern should have taken to fold (see dynamic crease com-
plexity and time calculations). Figure 6 displays the results of this
test of our framework on the same scale as the experimental data.
We found that our estimates differed by an average of 4% or about
3-4 s from the actual average time of each set of three patterns.

Our second study concerned complexity due to varying the
folding order and scaling direction of the Miura-ori pattern. For
this study, the operator was provided the same materials and
training as in the previous study and tessellation of the pattern
was from a 2 x 2 to 4 x 4 Miura-ori pattern. Table 3, below,
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Fig. 6. Columnar folding order calculation and experimental data.

Fig. 7. 5 x 5 Miura-ori before and after folding.

lists a variety of folding orders on which we tested our framework.
The table compares all permutations of straight (S) and angled (A)
lines, connected (CL) and disconnected (DL) lines, and the order
in which each type of line was completed first (First/Last). A vi-
sual representation of folding orders from Table 3 can be found in
the Appendix. The terms “straight” and “angled” are in reference
to the orientation of fold lines in Fig. 2, where “angled” lines are
those not parallel with adjacent lines. “Connected lines” refers to
a sequence of fold lines of the same orientation which adjoin each
other at nodes, as shown in the aforementioned figures. “Discon-
nected lines” refers to a sequence of fold lines which do not adjoin
each other at nodes. “SSL” means “straight simultaneous lines”, re-
ferring to a single folding of all straight lines, after all angled lines
were completed. In all folding orders, the operator began at the
bottom left of those patterns and worked toward the top right, fol-
lowing these guidelines.

For this paper, we highlight the results of the SCL/ACL (Fig. 8,
left) and the ACL/SSL (Fig. 8, right) folding orders from the second
study, to demonstrate the efficacy of our framework in a variety of
assembly circumstances. In the SCL/ACL time trials, we completed
the folding order in the same manner described - assembling each

permutation between 2 x 2 and 4 x 4. In our framework, however,
we reversed the scaling from the columnar pattern; instead using
the 4 x 4 data to make time calculations for pattern sizes down
to 2 x 2 (Fig. 9). When compared to the pattern with normal scal-
ing, their errors differed by less than 1%. This demonstrates that
the framework can predict the complexity of varied folding orders,
scaling, and tessellation of the same pattern with consistent accu-
racy.

The ACL/SSL folding order presented a unique challenge to our
framework, initially. Both of the SSL orders began simply as rever-
sals of the straight-line/angled-line orders; but we found that once
all of the angled lines were complete, the straight folds would nat-
urally form when the structure was compressed from the edges.
This prompted the implementation of a simultaneous fold contin-
gency in the complexity calculation. This was accomplished with a
simple logic statement regarding user input information: If a given
folding order has an associated simultaneous fold (the number of
which would be greater than zero), then all folds in the folding or-
der after the simultaneous fold number will have their complexity
reduced to zero. This treats the simultaneous fold as the final fold
and removes the complexities of the remaining folds in the order.
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Fig. 9. SCL/ACL folding order calculation and experimental data.

Previously, the framework overestimated the amount of time re-
quired to complete those patterns. Figure 10 shows that, with this
modification, the framework predicts the completion times for the
pattern with an error consistent with other folding orders.
Origami engineering has realized many unique applications that
were previously infeasible. Advances in origami engineering have
created more and more complex designs without considering the
practical complexity of fabricating those designs. This paper pre-
sented a quantitative framework for calculating the complexity of
origami manufacture based on the initial geometry and dynamic
geometry during folding. The accuracy and versatility of the frame-
work in our study demonstrated that the underlying analytical
methods are sound and that exceptional circumstances can be eas-
ily identified and changes easily implemented to account for them.
From the qualitative analyses of the ergonomists in the literature
review to the consistently accurate time calculations of our exper-

iments, the successful methodology we have developed and pre-
sented throughout this paper creates an open infrastructure which
facilitates improvement as the field of origami engineering pro-
gresses. This framework is an early step in streamlining the design
and assembly process for origami-inspired structures. Further ex-
perimentation in a diversity of scenarios will yield a wider appli-
cability of the methodology and a greater understanding of human
factors in origami engineering. The future of our research will ex-
plore how changes in pattern design, folding orders, and materials
affect the complexity of origami structures. We will also investi-
gate the influences of operator experience on speed and accuracy,
by studying the learning curves of human operators and the ma-
chine learning capabilities of robotic operators and self-deployed
systems. The applications of this research will improve the train-
ing of human and machine operators who may need to assemble
origami structures far from the aid of experts.
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