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a b s t r a c t 

This paper presents a quantitative framework to analyze the complexity of folding origami structures 

from flat membranes. Extensive efforts have realized intricate origami patterns with desired functions 

such as mechanical properties, packaging efficiency, and deployment behavior. However, the complexity 

associated with the manufacturing or folding of origami patterns has not been explored. Understanding 

how difficult origami structures are to make, and how much time they require to form is crucial infor- 

mation to determining the practical feasibility of origami designs and future applications such as robotic 

origami assembly in space. In this work, we develop this origami complexity metric by modeling the geo- 

metric properties and crease formation of the origami structure, from which it outputs crease and pattern 

complexity values and a prediction of the time to complete the pattern assembly, based on the character- 

istics of the operator. The framework is experimentally validated by fabricating various Miura-ori origami 

paper models. 

© 2021 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Origami, an ancient form of art, has rapidly evolved into an en- 

ineering design approach in aerospace, mechanical, civil, biomed- 

cal, and many other fields. Its capability of transforming materials 

nd structures into different two and three-dimensional configu- 

ations is not only of fundamental scientific interests, but also has 

nabled a wide variety of engineering applications that were previ- 

usly infeasible. This shape-transformative characteristic of origami 

as stimulated a rich collection of fundamental studies on its me- 

hanics including stability, dynamics, folding and deploying be- 

avior, mechanical properties, and numerical modeling [ 1 –7 ]. Re- 

ent advances have realized novel applications ranging from large- 

cale solar arrays, space telescopes, spacecraft sunshields, and an- 

ennae to micro-scale tissue scaffolds, electronics, and microelec- 

romechanical systems [ 8 –12 ]. Engineering with origami has fur- 

her promoted research in active self-foldable materials, metama- 

erials with exotic mechanical properties, soft robots and compli- 

nt mechanisms, stiff energy absorbers, and bulletproof shields [ 2 , 

 , 13 –28 ]. 

Origami engineering has moved farther away from simple 

hapes to more complex geometries to serve more advanced de- 

ign purposes. For example, Freeform Origami is a recently devel- 

ped method to achieve highly complex origami structures based 
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n sets of desired design objectives [ 29 –31 ]. As more complex 

rigami structures are designed – using computer software or 

therwise – they become increasingly intricate and thus require 

ore time and effort to be physically produced. Although in- 

ricate origami designs may have advantages, their manufacture 

ould be too challenging to be practical for some applications. Un- 

erstanding how difficult these structures are to make and how 

uch time they require to form are crucial to the evaluation of 

rigami designs and their manufacture. Despite the extensive study 

f origami patterns and materials, in recent years, a fundamental 

nderstanding of the complexity of folding origami structures has 

een overlooked. 

The work presented here provides a quantitative framework 

ased on origami geometry and topology to understand and an- 

lyze those production effort s, which engineers can utilize when 

omparing different designs. This framework produces a set of 

etrics which describe the complexity of origami patterns as they 

re folded from a two-dimensional flat sheet. Pattern complexity 

escribes the origami structure before folding begins and assigns 

 complexity value independent of folding orders, techniques, or 

kills. Dynamic crease complexity refers to the relative effort s of 

olding one crease to folding others as the creases are sequentially 

ade and the structure changes shape. This framework currently 

akes into consideration only intrinsic geometric and topological 

roperties of origami, such as folding pattern and folding order to 
cal and Applied Mechanics. This is an open access article under the CC BY-NC-ND 
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etermine the complexity of creating the structure. As future ad- 

ances in origami engineering identify new sources of complexity, 

his framework can be expanded upon. This paper presents present 

ur effort s to quantify crease complexity and translate it to a use- 

ble, practical metric that will benefit future engineering endeav- 

rs with origami. 

To present the current status of relevant research, we begin 

ith a brief literature review. It should be noted that, although 

ngineering origami is being extensively studied, the practical dif- 

culty and complexity of folding origami structures have been 

carcely studied in depth. 

Halkjelsvik and Jørgensen [32] performed a comprehensive re- 

iew on performance time predictions that integrated research 

rom engineering, management science, and psychology. Their re- 

ults – those which related to our research – mainly discussed 

ources of error in predicting the time of accomplishing a task 

y both an observer and a subject. This was a valuable insight 

nto possible sources of error that could be encountered. How- 

ver, due to the technical focuses and interests of this work, it did 

ot present a method of predicting the amount of time to com- 

lete a task nor a measure of the complexity of a task. This paper,

ike many others from the field of psychology, assigned an arbi- 

rary scale for complexity and focused heavily on subjective, self- 

eported results of both complexity and estimations of time. The 

aps in previous research, as discussed both here and in the fol- 

owing paragraphs, reinforced the need for an objective quantita- 

ive determination of these metrics. 

An early attempt at quantification for comparable tasks to 

rigami came in a paper by Richardson et al. [33] . Then, they 

amented, “a general lack of understanding as to what factors af- 

ect assembly task complexity and the use of diagrammatic in- 

tructions,” which follows remarkably closely to the need we have 

scribed to origami research. Part of their preliminary quantifica- 

ion stemmed from experiments conducted by Novick and Morse 

34] , which showed that reducing the number of steps in an as- 

embly process, increased the accuracy of the assembler. To analo- 

ize to origami, an assembly process and order is equivalent to 

he act of folding the membrane and the order in which the folds 

re made. They then identified and defined seven task variables 

ach of which they posited might have a contribution to the ef- 

orts of completing the tasks. Three of these, "Symmetrical Planes", 

Fastening Points", and "Component Groups", are likely not rele- 

ant because the folds do not change their relative position on 

he membrane, are already aligned within the assembly, and do 

ot consist of any subassemblies. The remaining four all have ana- 

ogues in origami folding. "Selections" corresponds to the reduction 

n complexity as the folds are made over time, "Fastenings" corre- 

ponds to the complexity of making nodes (the points at which 

olds meet), "Components" corresponds to either the number of 

olds or the number of nodes that must be made, and "Novel 

ssemblies" corresponds to differences in fold length and non- 

epetitive patterns. By establishing these task variables, they have 

ade the quantification more universal – applicable to a greater 

ariety of structures. This research was continued by Richardson 

t al. [35] with further effort s to identify the physical attributes of 

n assembly which make it more difficult or complex from a cog- 

itive science perspective. Understanding this perspective is impor- 

ant, as that field has specific definitions of complexity which differ 

rom those used in this paper. As will be shown, we utilized a very 

imilar line of logic to Richardson et al. for developing our frame- 

ork; showing that our approaches to the problem were aligned. 

 2013 paper by Kanis [36] , cited this paper and asserts there may

e significant flaws with similar studies to this and Halkjelsvik and 

ørgensen’s concerning the abuse of statistical information and the 

se of arbitrary complexity scales, among others. The nature of the 

riteria the researchers set is not seriously called into question, but 
2 
heir attempts to find statistical significance in their experimental 

ata are. This again reinforces the necessity of objectivity, which 

equires a measurement of task complexity and duration based en- 

irely on the properties of the structure and modified only by the 

perator’s actions, rather than by self-reported data on arbitrary 

cales. 

The first sources of our literature review dealt primarily with 

umans as the operators and how they performed the assembly. 

tructures can be assembled by robots or self-assemble using, for 

xample, motors and actuators. Self-folding methods largely ap- 

ly energy (e.g. thermal, magnetic, or electrical) to a pre-creased 

embrane to induce folding or unfolding along the crease lines, 

ithout the aid of an operator [37] . Stern et al. [37] defined the

rease complexity of self-folding origami as relative to the geom- 

try of the folding pattern, the locations of the motors or actu- 

tors, and the energy requirements to activate and control them. 

herefore, in the case of a self-folding origami structure the crease 

omplexity directly corresponds to a calculation of the energy re- 

uired at each actuator and has no relation to the human capacity 

o perform the task, as was the case in the previously discussed 

apers. The difficulty of completing the entire structure (pattern 

omplexity) then is the sum of the energy required at each actua- 

or. Dynamic crease complexity for robotic assembly may be sim- 

larly quantified by the taxation on the operator’s energy or com- 

utational systems. A paper on robotic origami folding by Balk- 

om and Mason [38] described the process of robots analyzing 

nd completing the pattern as node-centric; where the tasks to be 

ompleted were the nodes and not the folds. As our calculation for 

rease complexity is similarly computationally-based, we adopted 

his node-centric approach into our method; tracking the develop- 

ent of folds as they pertain to the formation of nodes. 

In the next few paragraphs, we describe how our framework 

enerates and analyzes a pattern, calculates its complexity, and cal- 

ulates the time of completion. Figure 1 lays out the schematic for 

ur analysis in three phases: pattern generation (red), static nodal 

omplexity calculation and pattern complexity (blue), and dynamic 

rease complexity and time calculations (green). 

The Pattern Generation phase takes the geometric information 

fold lengths, angles, and tessellations) of the pattern and gener- 

tes two matrices which describe the position and orientation of 

he fold lines and the nodes. The Static Nodal Complexity calcula- 

ion determines the initial value of complexity for forming every 

ode in the pattern, prior to any folds being made. This calculation 

s based on the distance of the node to the nearest corner of the 

attern and the number of folds required to complete the node. 

he Pattern Complexity is the sum of the static nodal complexity of 

ach node and indicates the initial complexity of an origami pat- 

ern without regard to folding order, folding technique, or operator 

kill. 

Pattern Generation The Dynamic Crease Complexity and time cal- 

ulations change the values of complexity over time, as folds are 

uccessively made according to a specific folding order. This is 

one by reducing the number of remaining folds around a node, 

s they are made, and removing the geometric weight if the node 

as been completed. An experimentally determined time value of 

 similar task on a smaller scale (initial time) is used to provide a 

ase time for the completion of the first fold of the pattern. From 

his, the framework compares the complexity values of the rest of 

he folding pattern as the folds are made to this value to deter- 

ine the amount of time (T-matrix) each fold in the pattern will 

ake to complete. The framework is implemented in Matlab. 

We chose to use the Miura-ori pattern to test and refine our 

nalysis method ( Fig. 2 ) [39,40] . To generate the geometry of the 

iura-ori pattern, four variables are used: length is the length of 

he fold lines (which are all the same), angle is the smaller inte- 

ior angle of the parallelogram panels formed by the folds, rows 
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Fig. 1. Schematic of quantitative framework for calculating the complexity of folding origami structures. (For interpretation of the references to color in this figure, the 

reader is referred to the web version of this article.) 

Fig. 2. Geometric input variables. (For interpretation of the references to color in 

this figure, the reader is referred to the web version of this article.) 
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Fig. 3. Pattern generation. 

Table 1 

L- and N-matrices. 

L-matrix N-matrix 

j = column # and line ID k = column # and node ID 

L 1 , j, 1 = length N 1 ,k, 1 = node x coordinate 

L 2 , j, 1 = j N 1 ,k, 2 = node y coordinate 

L 3 , j, 1 = bottom endpoint x coordinate N 2 ,k, 1 = # intersecting lines or 1 ( e dge ) 

L 3 , j, 2 = bottom endpoint y coordinate N 2 ,k, 2 = 0 ( not corner ) or 1 ( corner ) 

L 3 , j, 3 = top endpoint x coordinate 

L 3 , j, 4 = top endpoint y coordinate 

o

q

t

p

C

c

c

a

p

(

r

d

p

s the number of times the unit parallelogram is flipped and re- 

eated across the top straight side, and cols (columns) is the num- 

er of times the unit parallelogram is repeated next to the right 

ngled side. Figure 2 shows the direction of increasing rows in red 

nd columns in blue and marks the angle in green and the equal 

engths of two sides in purple. 

From these four values, the framework creates one initial an- 

led line and one initial straight line at the bottom left of the pat- 

ern; setting their intersection (a node) as the origin to the co- 

rdinate system relevant for later calculations. It then propagates 

he straight and angled lines to fit the prescribed pattern by gen- 

rating a matrix of all of the fold lines (L-matrix) and a matrix of 

heir intersecting nodes (N-matrix) and their respective properties. 

his matrix generation is depicted in Fig. 3 . The L-matrix stores 

ach line with an ID (which is the order it was placed in the pat-

ern), the length of the line, and the coordinates of both of its end-

oints. The N-matrix stores the coordinates of each node and the 

umber of intersecting lines. The matrices are generated simulta- 

eously and the function which creates the nodes checks to avoid 

uplicates. Table 1 shows the lists of variables used to generate the 

- and N- matrices. 

As described previously, the Static Nodal Complexity represents 

he effects of the intrinsic pattern properties on the ability of the 
3 
perator to fold the pattern, regardless of skill or experience. We 

uantify this as the relative efforts of completing one task (a node) 

o completing similar tasks with different parameters. Figure 4 

resents the flow of information for the calculation of Static Nodal 

omplexity , and the accompanying shaded box shows the spe- 

ific procedure. The Static Nodal Complexity calculation determines 

omplexity before any folds have been made, creating a control 

gainst which different folding approaches can be equally com- 

ared. A matrix of the nodal complexity values in a given structure 

C-matrix) therefore has a sum, the Pattern Complexity , which rep- 

esents the complexity of completing the entire structure, indepen- 

ent of operator characteristics. In the framework, the nodal com- 

lexity values are based on the geographic position of the nodes 
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Fig. 4. Static nodal complexity calculation flowchart. 

Fig. 5. Dynamic crease complexity and time calculations flowchart. 
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elative to the closest corner of the pattern and the number and 

ength of intersecting lines at each node. 

The C-matrix overlays the L and N matrices in its structure to 

acilitate identification and incorporation of the complexity contri- 

utions from each of their respective elements (static nodal com- 

lexity equations, Step 1.1). At present, it is understood that a sig- 

ificant contribution to dynamic crease complexity originates from 

he formation of the nodes. The complexity calculations in this pa- 

er thus influence and draw from the C-matrix overlay of the N- 

atrix to reflect this. This approach further allows the source of 

he complexity (i.e. geographic or node weight) in the C-matrix 

o be easily traced to its dependent element in the N-matrix. Al- 

hough our research has not identified a direct contribution to 

omplexity from the L-matrix, it is included in in the C-matrix 

tructure, should future research find such connections. 

After the C-matrix is created, the pattern analysis section of the 

ramework defines which four nodes on the Miura-ori pattern are 

orners by checking if the number of intersecting lines equals two 

SNCE Step 1.2). There would be a similar process for other pat- 

erns which define corners generally as the farthest nodes from 

he center of the structure; which in some cases may be more 

r less than four. In the Miura-ori case, neither of the two lines 

hich intersect the corner nodes will ever fold, therefore the num- 

er of intersecting fold lines is set to zero. The distance of a non-

orner node to its closest corner defines the geographic weight of 

ts crease complexity (SNCE Steps 2 and 3.1). 

The number of intersecting lines times half of the length of the 

ines (lengths are stored in the L-matrix) defines the node weight 

f the crease complexity (SNCE Step 3.2). After defining the cor- 

er nodes, the pattern analysis next checks which nodes are edges. 

dge nodes are those on the sides of the membrane where two 

ines mark the border of the membrane and the third connects to 

 node within the membrane. Similar to the corner nodes, the edge 

odes discount the two lines on the border and only count the one 

ntersecting fold line. The static nodal complexity of each node is 

he sum of its geographic weight and its node weight – and the 

um of the complexities at all of these nodes prior to folding is 

alled the Pattern Complexity (SNCE Step 3.3). 

Static Nodal Complexity Equations 

Step 1: 
h

4 
1.1 Define C-matrix 

C − matrix 

{
C a,b,c, 1 = complexity of L a,b,c , 
C a,b,c, 2 = complexity of N a,b,c . 

1.2 Define Corner Positions 

Corner positions 

{
cc p, 1 = corner x coordinate , 
cc p, 2 = corner y coordinate . 

Step 2: Calculate Corner Distances 

Corner distances { 

rr = 

√ 

( N 1 ,k, 1 − c c 1 , 1 ) 
2 + 

(
N 1 ,k, 2 − c c 1 , 2 

)2 
, 

ss = 

√ 

( N 1 ,k, 1 − c c 2 , 1 ) 
2 + 

(
N 1 ,k, 2 − c c 2 , 2 

)2 
, 

tt = 

√ 

( N 1 ,k, 1 − c c 3 , 1 ) 
2 + 

(
N 1 ,k, 2 − c c 3 , 2 

)2 
, 

uu = 

√ 

( N 1 ,k, 1 − c c 4 , 1 ) 
2 + 

(
N 1 ,k, 2 − c c 4 , 2 

)2 
. 

Step 3: 

3.1 Calculate Geographic Weight 

C 1 ,k, 1 , 2 = min ( rr , ss , tt , uu ) = Geographic weight . 

3.2 Calculate Node Weight 

leng th = L 2 , j, 1 = constant for Miura or i, 

C 2 ,k, 1 , 2 = 0 . 5 × leng th × N 2 ,k, 1 = Node weight . 

3.3 Calculate Static Nodal Complexity 

Nodal crease complexity = C 1 ,k, 1 , 2 + C 2 ,k, 1 , 2 . 

As a membrane is folded to create an origami structure, the 

eometric conditions change over time. The complexity values 

hange after each fold to reflect that the geometry of the mem- 

rane has changed and thus the complexity of making subsequent 

olds may increase or decrease. Figure 5 shows the flow of infor- 

ation, and the bordered box titled dynamic crease complexity 

nd time calculations (DCCTC) shows the procedure of calculating 

he dynamic crease complexity. The change in complexity values 

fter each fold is calculated by reducing the number of intersecting 

ines at the two adjacent nodes by one (DCCTC Step 1.3.1). If the 

ode weight is zero, that means all of the folds around the node 

ave been made, so the geographic weight in the C-matrix is re- 
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Table 2 

Summary of matrix d efinitions. 

Matrix Description 

L-matrix For each fold line: stores its ID, its length, and the coordinates of its endpoints 

N-matrix For each node: stores its coordinates and the number of intersecting fold lines (excluding edges) 

C-matrix For each node: stores its geographic weight and its node weight 

T-matrix For each fold: stores the time it takes to complete 
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Table 3 

Sample folding orders. 

Folding Order Definition 

SCL/ACL Straight connected/Angled connected 

SCL/ADL Straight connected/Angled disconnected 

SDL/ACL Straight disconnected/Angled connected 

SDL/ADL Straight disconnected/Angled disconnected 

ACL/SSL Angled connected/Straight simultaneous 

ADL/SSL Angled disconnected/Straight simultaneous 
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w  
uced to zero (DCCTC Step 1.3.2). The sum of the C-matrix compo- 

ents calculated after each fold is completed is called the dynamic 

rease complexity and is stored in a vector X . The sum of this vector

s thus a dynamic pattern complexity. This simulates the folding 

rocess over time and allows this method to be used to estimate 

ow long the folding process will take for any given origami struc- 

ure, quantitatively how complex different patterns are relative to 

ach other, and whether some folding orders are easier, faster, or 

ore effective than others for completing a structure. 

Dynamic Crease Complexity and Time Calculations 

f = crease # within folding order 
F f = vector of line IDs of creases in order ( i . e . folding order ) 

n 1 , n 2 = node IDs of both nodes connected to the crease 
X f = complexity of f th crease 

T f = time to complete f th crease 
Step 1: 
For f = 1 to f max 

1.1 Determine which nodes n1 and n2 connect to the f th 

crease 
1.2 Calculate the complexity of folding the f th crease by 

summing the complexities at the connecting nodes 

X f = C 2 ,n 1 , 1 , 2 + C 2 ,n 2 , 1 , 2 + C 1 ,n 1 , 1 , 2 + C 1 ,n 2 , 1 , 2 . 

1.3 Update the C-matrix based on folded the f th crease 
1.3.1 Mark the fold as complete by removing the node 

weights of the the f th crease 

C 2 ,n 1 , 1 , 2 = C 2 ,n 1 , 1 , 2 − 0 . 5 ∗length, 

C 2 ,n 2 , 1 , 2 = C 2 ,n 2 , 1 , 2 − 0 . 5 ∗ length. 

1.3.2 If the node is complete: C 2 ,n 1 , 1 , 2 = 0 or C 2 ,n 2 , 1 , 2 = 

0 , set C 1 ,n 1 , 1 , 2 = 0 or C 1 ,n 2 , 1 , 2 = 0 
End 
Step 2: Calculate the time of the fold and store it in the 

T-matrix 

T ( f ) = init ial t ime × X f 

X 1 
. 

Step 3: Sum the times of all the folds to find the total 
time to complete the pattern 

time = 

∑ 

T . 

As the C-matrix is generated and adjusted for each fold, an ad- 

itional vector (T-matrix) is generated to store the time each fold 

akes to make (DCCTC Step 2.1). Table 2 summarizes the definitions 

f all matrices used in the framework. The values of time are di- 

ectly proportional to each other by their complexity values. Their 

onstant of proportionality is determined experimentally, based on 

he time it takes to complete a smaller or simpler version of the 

ame pattern. FFFor example, the time to complete the first fold of 

 two row by two column miura-ori could be used to predict the 

ompletion time of larger patterns. We demonstrate the soundness 

f this approach in the first of the experiments we conducted to 

dentify and study sources of complexity in paper origami. 
5 
Our first study utilizing the framework concerned complexity 

ue to tessellation of the Miura-ori pattern. For this study, the 

perator was provided pre-printed and cut Miura-ori patterns on 

rinter paper. The operator was well trained on folding paper 

rigami patterns, therefore the time needed for mastering the fold- 

ng techniques was not included. In the future, it will be interest- 

ng to study the learning curves for new operators. The patterns 

anged from two rows by two columns (2 × 2) to five rows by five 

olumns (5 × 5) with every permutation in between. Further, three 

opies of each pattern were made to provide more data points. The 

olding pattern followed the same rule regardless of the shape of 

he membrane. The first fold was the mountain fold (red) in the 

ower left of Fig. 2 , followed by the unconnected folds up the first 

olumn. Next were the connected valley folds (blue) between the 

rst and second columns. Using the orientation as shown in Fig. 2 , 

he operator proceeded up each column of unconnected folds from 

eft to right, alternating with going up the intermediate connected 

olds. This folding order will be referred to as the “Columnar” fold- 

ng order in the next subsection. The operator was timed for how 

ong each pattern took to complete. The average times in seconds 

o complete each set of three patterns are shown in Fig. 6 . In Fig. 7 ,

 5 × 5 paper Miura-ori is shown before (left) and after (right) 

olding. 

The folding pattern as described above was input into our 

ramework along with the geometric information. For this test, all 

f the patterns had an angle of 60 degrees and a length of 50.8 

m (2 in). We performed the full calculation of static nodal and 

ynamic crease complexity for only the 2 × 2 pattern and divided 

he average time found during the test proportionately across the 

our folds based on their relative complexity. The time value of the 

rst fold of the 2 × 2 pattern, which is the same first fold for all

atterns, was then set as the time value of the first fold for all 

ther pattern sizes. For all subsequent folds that time value was 

ultiplied by the ratio of the complexity of that fold to the com- 

lexity of the first fold. Those time values were stored in the T- 

atrix, the sum of which was the total predicted time that each 

ther pattern should have taken to fold (see dynamic crease com- 

lexity and time calculations). Figure 6 displays the results of this 

est of our framework on the same scale as the experimental data. 

e found that our estimates differed by an average of 4% or about 

–4 s from the actual average time of each set of three patterns. 

Our second study concerned complexity due to varying the 

olding order and scaling direction of the Miura-ori pattern. For 

his study, the operator was provided the same materials and 

raining as in the previous study and tessellation of the pattern 

as from a 2 × 2 to 4 × 4 Miura-ori pattern. Table 3 , below,
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Fig. 6. Columnar folding order calculation and experimental data. 

Fig. 7. 5 × 5 Miura-ori before and after folding. 
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ists a variety of folding orders on which we tested our framework. 

he table compares all permutations of straight (S) and angled (A) 

ines, connected (CL) and disconnected (DL) lines, and the order 

n which each type of line was completed first (First/Last). A vi- 

ual representation of folding orders from Table 3 can be found in 

he Appendix. The terms “straight” and “angled” are in reference 

o the orientation of fold lines in Fig. 2 , where “angled” lines are 

hose not parallel with adjacent lines. “Connected lines” refers to 

 sequence of fold lines of the same orientation which adjoin each 

ther at nodes, as shown in the aforementioned figures. “Discon- 

ected lines” refers to a sequence of fold lines which do not adjoin 

ach other at nodes. “SSL” means “straight simultaneous lines”, re- 

erring to a single folding of all straight lines, after all angled lines 

ere completed. In all folding orders, the operator began at the 

ottom left of those patterns and worked toward the top right, fol- 

owing these guidelines. 

For this paper, we highlight the results of the SCL/ACL ( Fig. 8 ,

eft) and the ACL/SSL ( Fig. 8 , right) folding orders from the second

tudy, to demonstrate the efficacy of our framework in a variety of 

ssembly circumstances. In the SCL/ACL time trials, we completed 

he folding order in the same manner described – assembling each 
6 
ermutation between 2 × 2 and 4 × 4. In our framework, however, 

e reversed the scaling from the columnar pattern; instead using 

he 4 × 4 data to make time calculations for pattern sizes down 

o 2 × 2 ( Fig. 9 ). When compared to the pattern with normal scal-

ng, their errors differed by less than 1%. This demonstrates that 

he framework can predict the complexity of varied folding orders, 

caling, and tessellation of the same pattern with consistent accu- 

acy. 

The ACL/SSL folding order presented a unique challenge to our 

ramework, initially. Both of the SSL orders began simply as rever- 

als of the straight-line/angled-line orders; but we found that once 

ll of the angled lines were complete, the straight folds would nat- 

rally form when the structure was compressed from the edges. 

his prompted the implementation of a simultaneous fold contin- 

ency in the complexity calculation. This was accomplished with a 

imple logic statement regarding user input information: If a given 

olding order has an associated simultaneous fold (the number of 

hich would be greater than zero), then all folds in the folding or- 

er after the simultaneous fold number will have their complexity 

educed to zero. This treats the simultaneous fold as the final fold 

nd removes the complexities of the remaining folds in the order. 
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Fig. 8. SCL/ACL and ACL/SSL folding orders. 

Fig. 9. SCL/ACL folding order calculation and experimental data. 

P

q

m

p

w

c

p

s

o

g

w

m

i

F

r

i

s

f

g

a

p

c

f

p

a

g

b

c

s

i

o

reviously, the framework overestimated the amount of time re- 

uired to complete those patterns. Figure 10 shows that, with this 

odification, the framework predicts the completion times for the 

attern with an error consistent with other folding orders. 

Origami engineering has realized many unique applications that 

ere previously infeasible. Advances in origami engineering have 

reated more and more complex designs without considering the 

ractical complexity of fabricating those designs. This paper pre- 

ented a quantitative framework for calculating the complexity of 

rigami manufacture based on the initial geometry and dynamic 

eometry during folding. The accuracy and versatility of the frame- 

ork in our study demonstrated that the underlying analytical 

ethods are sound and that exceptional circumstances can be eas- 

ly identified and changes easily implemented to account for them. 

rom the qualitative analyses of the ergonomists in the literature 

eview to the consistently accurate time calculations of our exper- 
7 
ments, the successful methodology we have developed and pre- 

ented throughout this paper creates an open infrastructure which 

acilitates improvement as the field of origami engineering pro- 

resses. This framework is an early step in streamlining the design 

nd assembly process for origami-inspired structures. Further ex- 

erimentation in a diversity of scenarios will yield a wider appli- 

ability of the methodology and a greater understanding of human 

actors in origami engineering. The future of our research will ex- 

lore how changes in pattern design, folding orders, and materials 

ffect the com plexity of origami structures. We will also investi- 

ate the influences of operator experience on speed and accuracy, 

y studying the learning curves of human operators and the ma- 

hine learning capabilities of robotic operators and self-deployed 

ystems. The applications of this research will improve the train- 

ng of human and machine operators who may need to assemble 

rigami structures far from the aid of experts. 
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Fig. 10. ACL/SSL folding order calculation and experimental data. 
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